TW202229558A - 用於同時基因活化的核酸構建體 - Google Patents

用於同時基因活化的核酸構建體 Download PDF

Info

Publication number
TW202229558A
TW202229558A TW110138077A TW110138077A TW202229558A TW 202229558 A TW202229558 A TW 202229558A TW 110138077 A TW110138077 A TW 110138077A TW 110138077 A TW110138077 A TW 110138077A TW 202229558 A TW202229558 A TW 202229558A
Authority
TW
Taiwan
Prior art keywords
sequence
recombinase
promoter
open reading
reading frame
Prior art date
Application number
TW110138077A
Other languages
English (en)
Inventor
賽門 亞斯蘭德
尤里奇 高菲特
Original Assignee
瑞士商赫孚孟拉羅股份公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞士商赫孚孟拉羅股份公司 filed Critical 瑞士商赫孚孟拉羅股份公司
Publication of TW202229558A publication Critical patent/TW202229558A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/64General methods for preparing the vector, for introducing it into the cell or for selecting the vector-containing host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10351Methods of production or purification of viral material
    • C12N2710/10352Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14151Methods of production or purification of viral material
    • C12N2750/14152Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/30Vector systems comprising sequences for excision in presence of a recombinase, e.g. loxP or FRT
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/50Vector systems having a special element relevant for transcription regulating RNA stability, not being an intron, e.g. poly A signal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2521/00Reaction characterised by the enzymatic activity
    • C12Q2521/50Other enzymatic activities
    • C12Q2521/507Recombinase

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本文報導新穎 DNA 構建體及其使用方法。本發明在 DNA 分子之編碼股及模板股上使用非生產性/不活化啟動子及基因之特意排列,經由與位點特異性重組酶之相互作用將該等非生產性/不活化啟動子及基因轉變成其活性形式。更詳言之,根據本發明之 DNA 元件相對於所含有之第一基因及第二基因的表現不具有功能。藉由對於該第一基因及第二基因之表現不具有功能,根據本發明之 DNA 元件可整合到細胞的基因體中,而在整合之後並無直接地表現所包含之結構基因的風險。識別並對該 DNA 元件之該等重組識別序列具有功能之重組酶經活化或導入細胞時,基因才表現。因此,在本發明之經基因體整合之 DNA 元件中,介於第一突變重組酶識別序列與第二突變重組酶識別序列之間之重組酶介導的卡匣反轉 (RMCI) 係經啟動。RMCI 導致位於兩個突變重組酶識別序列之間之根據本發明之 DNA 元件之該部分的反轉。從而該第一啟動子變成可操作地連接至第一基因,且該第二啟動子變成可操作地連接至第二基因。僅此後,該第一基因及該第二基因係經轉錄且各自編碼的蛋白質係經表現。因此,根據本發明之 DNA 元件特別地用於同時活化細胞內的兩種基因。

Description

用於同時基因活化的核酸構建體
本文報導新穎 DNA 構建體及其使用方法。藉助根據本發明之新穎 DNA 構建體,可使用位點特異性重組酶技術同時活化至少兩種基因的轉錄。本發明在 DNA 分子之編碼股及模板股上使用啟動子及基因元件之特意無活性排列,經由與位點特異性重組酶之相互作用將該啟動子及基因元件轉變成其活性形式。本文亦報導具有交換之啟動子及併入之 LoxP 位點的新穎 VA RNA 元件。
基因治療廣義上係指治療性投予基因物質以修飾活細胞的基因表現,因而改變其生物學特性。經過數十年的研究,基因治療已進入市場,並預期將變得越來越重要。一般來說,基因療法可分為活體內或離體方法。
目前,大多數活體內療法依賴於使用重組腺相關病毒 (rAAV) 載體進行 DNA 遞送。AAV 是一種小的、天然存在的、非致病性小病毒,其由無套膜之二十面體殼體組成。其包含大約 4.7 kb 之單股 DNA 基因體。野生型 AAV 載體的基因體攜帶兩種基因 rep 及 cap,其側翼是反向末端重複 (ITR)。ITR 對於順式病毒複製及包裝是必需的。rep 基因編碼四種不同的蛋白質,其表現係由兩個可選擇的啟動子 P5 及 P19 所驅動。此外,經由交替剪接產生不同的形式。Rep 蛋白具有多重功能,例如,舉例而言,DNA 結合、核酸內切酶及解旋酶活性。其在基因調控、位點特異性整合、切除、複製及包裝中發揮作用。cap 基因編碼三個殼體蛋白及一個組裝活化蛋白。藉由使用選擇性剪接及選擇性起始密碼子用法而達成差異表現這些蛋白質,且由位於 rep 基因之編碼區的單一啟動子 P40 驅動表現。
在經工程化之治療性 rAAV 載體中,病毒基因被轉基因表現卡匣替換,該表現卡匣之側翼仍接病毒 ITR,但在所選啟動子之控制下編碼所關注基因。與野生型病毒不同,經工程化 rAAV 載體不會被位點特異性整合在宿主基因體中,主要在轉導細胞核中維持游離基因體。
AAV 本身不具有複製能力,但需要輔助基因的功能。此在自然界中由共感染之輔助病毒所提供,諸如,例如腺病毒或單純皰疹病毒。例如,已知五個腺病毒基因,即 E1A、E1B、E2A、E4 及 VA 對 AAV 複製為必要者。與其他編碼蛋白質之輔助基因相比,VA 是一種小 RNA 基因。
為生產 rAAV 載體,將攜帶 ITR 側翼之轉基因的 DNA 導入至包裝宿主細胞株,其亦包含 rep 及 cap 基因以及所需的輔助基因。有許多方法可將這三組 DNA 元件導入至細胞中以及許多方法將其組合到不同 DNA 質體上 (參見,例如,Robert, M.A.等人,Biotechnol. J. 12 (2017) 1600193)。
已廣泛地使用兩種一般生產方法。在三重轉染方法中,將攜帶 E2A、E4 及 VA 之腺病毒輔助質體 (pHELPER)、包含 rep/cap 之質體與包含 rAAV-轉基因之質體暫態地共轉染已表現腺病毒 E1A 及 E1B 之 HEK293 細胞。或者,可將 rep/cap 及病毒輔助基因體合在一個更大的質體上 (雙轉染方法)。第二種方法包括用兩個桿狀病毒感染昆蟲細胞 (Sf9),一者攜帶 rAAV 基因體而另一者攜帶 rep 及 cap。在該系統中,桿狀病毒質體本身提供輔助功能。同樣地,單純皰疹病毒係與 HEK293 細胞或 BHK 細胞合併使用。最近 Mietzsch 等人 (Hum. Gene Ther. 25 (2014) 212-222; Hum. Gene Ther. Methods 28 (2017) 15-22) 將 rep 及 cap 穩定地整合到經工程化 Sf9 細胞的基因體中。對於這些細胞,攜帶 rAAV 轉基因的單桿狀病毒足以產生 rAAV 載體。Clark 等人 (Hum. Gene Ther. 6 (1995) 1329-1341) 產生具有將 rep/cap 基因 及 rAAV 轉基因整合至其基因體中的 HeLa 細胞株。經由野生型腺病毒轉染細胞誘導 rAAV 載體的產生,並產生 rAAV 載體及腺病毒的混合原液。
目前為止,尚無描述過將輔助基因穩定地整合到其基因體中的哺乳動物細胞株。rep 以及病毒輔助基因之表現對細胞具毒性且需要充分控制 (參見,例如,Qiao, C.等人,J. Virol. 76 (2002) 1904-1913)。
對於 rep 基因,此種控制係經由將內含子導入至 rep 基因來達成,該內含子含有側翼為 LoxP 位點之多腺苷酸化位點。在重組腺病毒的幫助下導入 cre 重組酶後,移除多腺苷酸化位點並剪接掉內含子 (參見,例如,Yuan, Z.等人,Hum. Gene Ther. 22 (2011) 613-624;Qiao, C. 等人,如上所述)。
Podhajska, A.J. 等人 (Gene 40 (1985) 163-168) 報導具有三個新穎特性之基因表現質體的原型:(i) 其「關閉 (OFF) 階段」在所有常見宿主中都是絕對的,因為表現啟動子遠離研究的基因並被強力終止子所阻斷;(ii) 「開啟 (ON) 階段」是經由啟動子之快速有效反向而實現;(iii) 只需短熱脈衝或暴露於其他誘導劑來啟動此兩階段過程。
WO 97/9441 (EP 0 850 313 B1)報導一種生產重組腺相關病毒 (AAV) 的方法,該方法包含以下步驟:(1) 培養包含細胞之組合物,該細胞已被以下暫態地轉染:(a) 包含編碼 AAV rep 及 cap 蛋白之核酸的 AAV 輔助質體;(b) 包含必要腺病毒輔助基因之腺病毒輔助質體,存在於該質體中之必要腺病毒輔助基因係選自由 E1A、E1B、E2A、E4、E4ORF6、E4ORF6/7、VA RNA 及其組合所組成之群組;及 (c) 包含第一及第二 AAV 反向末端重複 (ITR) 之 AAV 質體,其中該第一及第二 AAV ITR 位於編碼所關注多肽之 DNA 的側翼,該 DNA 可操作地連接至啟動子 DNA;在沒有腺病毒顆粒的情況下;及 (2) 純化由此產生的重組 AAV。
JP 10-33175 A 報導一種基因序列,其中將側翼為兩個重組酶識別序列之填充序列插入至腺相關病毒的基因體序列中,其中基因序列的特徵在於重組酶識別序列之插入位點介於啟動子 P5 及 rep78/68 基因之轉譯起始密碼子之間,且填充序列含有與啟動子 P5 及 rep78/68 基因之方向相同的至少一個可檢測基因標記及 polyA 訊號。
WO 98/24918 (EP 0 942 999 B1;US 6,303,302 B1) 報導一種基因捕獲構建體,其含有第一報導基因,其經活化後可活化第二報導基因,其中第一報導基因編碼重組酶,第二報導基因編碼蛋白質因子且第二報導基因經活化從而重組酶刪除位於第二報導基因之前的 DNA 片段並且以此種方式將第二報導基因置於由啟動子控制下之下游。
WO 98/27207 報導一種包含重組酶可活化之腺相關病毒 (AAV) 包裝卡匣的多核苷酸,該卡匣自上游到下游包含以下列出之相對順序的組分:(i) 第一位點特異性重組 (ssr) 位點;(ii) ssr 介入序列;及 (iii) 第二位點特異性重組 (ssr) 位點;其中卡匣包含啟動子及選自由 AAV rep 基因及 AAV cap 基因體成之群的 AAV 包裝基因,其中啟動子位於 ssr 介入序列內或位於第一 ssr 位點之上游,且 AAV 包裝基因位於第二 ssr 位點之下游或位於 ssr 介入序列內,並且其中啟動子可活化地連接至 AAV 包裝基因。
WO 98/10086 (US 6,274,354 B1) 報導有效生產重組 AAV 的方法。在一態樣中,將三種質體導入至宿主細胞。第一質體引導 Cre 重組酶之表現,第二質體含有啟動子、側翼為 LoxP 位點及 rep/cap 之間隔子序列,且第三質體包含含有側翼為 AAV ITR 之轉基因及調控序列的袖珍基因。在另一態樣中,宿主細胞穩定地或誘導性地表現 Cre 重組酶,且將攜帶系統之其他元件的兩個質體導入至宿主細胞中。
WO 98/27217(EP 0 953 647 B1)報導一種使用重組酶及其識別序列調控病毒結構蛋白基因表現的 DNA 構建體,其中啟動子、重組酶識別序列、抗藥基因、polyA 加入訊號、重組酶識別序列、病毒結構蛋白基因及 polyA 加入訊號依此順序排列。
WO 2001/36615 (EP 1 230 354 B1)報導包含至少一種核酸的永久性羊水細胞株,該核酸使腺病毒 E1A 及 E1B 區域之基因產物進行表現。
WO 2001/66774 報導一種控制所關注基因表現的系統,其包含第一 DNA 序列,該序列包含與啟動子功能相關連接的所關注基因,以及包含第二基因的第二 DNA 序列,該基因編碼對靶向 DNA 序列具有重組特異之活性之多肽,且該兩種 DNA 序列側翼為該兩種 DNA 序列之一者,其特徵在於第二 DNA 序列位於啟動子及所關注基因之間。
Silver, D.P. 及 Livingstone, D.M. 報導,在缺乏外源 LoxP 位點之培養細胞中,Cre 重組酶之持續表現使生長下降、細胞病變效應及染色體畸變。一種結合負反饋迴路以限制 Cre 重組酶表現之持續時間及強度的自切除反轉錄病毒載體避免可測量之毒性,並保留切除側翼為 LoxP 位點之靶序列的能力 (Mol. Cell 8 (2001) 233-243)。
Siegel, R.W. 等人概述,假設 Cre/LoxP 系統在解釋基因功能之重要性日益增加,則更精細的活化或去活化基因之方案以及允許可選擇標記被回收以供隨後再次使用將需要不兼容 LoxP 位點之組的可利用性。將多個不相容之 LoxP 位點整合至基因體的定義位置允許經由簡單地在靶向載體上指定對應之 LoxP 位點,隨後 Cre 重組酶介導將轉基因構建體導入至不同的染色體位置 (FEBS Lett.499 (2001) 147-153)。
WO 2002/8409 (EP 1 309 709 A2,US 7,972,857) 報導一種在哺乳動物細胞中獲得所關注 DNA 之位點特異性置換的方法,其包含 a) 提供包含受體構建體之哺乳動物細胞,其中該受體構建體包含待替換之受體多核苷酸,該受體多核苷酸側翼為不可逆重組位點 (IRS) 之兩個或更多個拷貝;b) 將供體構建體導入至細胞,該供體構建體包含供體多核苷酸以替換受體多核苷酸,供體多核苷酸側翼為兩個或多個互補之不可逆重組位點 (CIRS);及 c) 使受體構建體及供體構建體與不可逆重組酶多肽接觸;其中不可逆重組酶催化 IRS 及 CIRS 之間的重組以及將受體多核苷酸替換成供體多核苷酸,從而形成替換構建體。
WO 2002/40685 (US 7,449,179 B2) 報導一種製備基因捕獲文庫的方法,以及用於條件不活化基因的基因靶向細胞。提供具有突變元件卡匣及基因捕獲卡匣的質體,每個卡匣具有位點特異性重組序列。突變元件卡匣包含第一位點特異性重組序列及包含突變序列的 DNA,該突變序列包含連接至第一標記基因的剪接受體序列,該第一標記基因連接至多腺苷酸化序列及第二位點特異性重組序列。基因捕獲卡匣包含第一位點特異性重組序列及包含第一基因捕獲元件的DNA,該第一基因捕獲元件包含可操作地連接至第二標記基因的啟動子,該第二標記基因可操作地連接至剪接供體序列,以及包含連接至獨特基因之啟動子的第二基因捕獲卡匣,該獨特基因序列不存在於所選宿主細胞的基因體中。
WO 2002/88353 (EP 1 383 891 B1) 報導一種分離的 DNA 分子,該分子包含至少一個序列 A,其側翼為至少有位點特異性重組酶靶向序列 (SSRTS) L1;及至少一個序列 B,其側翼至少有位點特異性重組酶靶向序列 (SSRTS) L2,該序列 A 及 B 為相反方向之轉錄及轉譯序列,該 SSRTS L1 及 SSRTS L2 無法相互重組,且其中序列 L1 為處於相反方向,序列 L2 為處於相反方向,該 DNA 分子中 SSRTS 序列的順序為 5'-L1-L2-L1-L2-3',且該 SSRTS L1 的重組酶特異性與該 SSRTS L2 的重組酶特異性相同。
Mlynarova, L. 等人報導,在大腸桿菌中,當存在 Cre 重組酶時,重組配偶體之一者存在於非 lox DNA 之反向重複的更大範圍內,則 Lox511 及 Lox2272 位點相對於 LoxP 變得高度混交 (Gene 296 (2002) 129-137)。
Langer, S.J. 等人報導,使用具有互補突變臂 (Lox66 及 Lox71) 的 LoxP 位點允許有效的反式重組,生成野生型 LoxP 位點及具有雙突變臂之缺陷位點 (Nucl. Acids Res. 30 (2002) 3067-3077)。由於雙重突變之 LoxP 位點不再是重組酶的有效受質,因此插入較有利且反應係向一個方向驅動。
Tronche, F. 等人報導在小鼠中使用位點特異性重組酶 (FEBS Lett 529 (2002) 116-121)。他們概述在小鼠中,Cre-LoxP 系統最初用於開啟特定細胞群中的基因表現。產生兩種不同的轉基因小鼠品系。第一者攜帶靜默轉基因,其與啟動子之間以「終止卡匣」隔開。終止卡匣阻止轉基因的轉錄,因其包含強力多腺苷酸化訊號及/或剪接供體序列,或其破壞靜默基因的 ORF。第二者攜帶轉基因,其以細胞類型特異性 (即組織特異性) 方式驅動 Cre 重組酶的表現。在每個表現 Cre 重組酶的細胞中,將切除終止卡匣,而使所需之轉基因僅在該等細胞中表現。根據 Tronche 等人,必須使插入 LoxP 位點不會干擾基因的正常表現。理想情況下,其應被放置在內含子或非轉錄區域內,避免破壞調節區域。然而,在一些情況下,LoxP 位點被插入到經轉錄但未轉譯的區域而無負面影響。Tronche 等人進一步概述在表現高量之 Cre 重組酶的細胞中,觀察到減少之細胞增殖以及增加之細胞凋亡。此與在細胞週期之 G2/M 期中,積累表現 Cre 重組酶之細胞、染色體重排及微核之出現有關。這些畸變可能是由於 Cre 重組酶對存在於基因體中之隱祕標靶位點的作用。
WO 2003/84977 報導一種基因表現控制方法,其使用位於內含子內之轉錄終止序列。經由加入反式作用因子可破壞轉錄終止序列。例如,在「雙剪接開關」中,轉錄終止序列側翼為重組位點,且可被重組酶切除。Cre/LoxP 重組系統可用於此目的。
Thomson, J.G. 等人報導,Cre/LoxP 系統中的插入反應較難控制,因為切除事件在動力學上較有利。將 50 個突變 LoxP 位點組合與天然 LoxP 位點進行比較,顯示 Cre 重組酶結合域內部 6 bp 之突變嚴重地抑制重組,然而外部 8 bp 之突變較具耐受 (Genesis 36 (2003) 162-167)。
WO 2004/29219 報導用於在細胞及生物體中控制 shRNA 構建體之時間及空間表現的載體及方法。此種載體可為反轉錄病毒載體,例如慢病毒載體。在較佳的實施例中,shRNA 之表現由 RNA 聚合酶 III 啟動子調節;已知此類啟動子產生有效靜默。雖然基本上可使用任何的 polIII 啟動子,但理想的實例包括人類 U6 snRNA 啟動子、小鼠 U6 snRNA啟動子、人類及小鼠 H1 RNA 啟動子及人類 tRNA-val 啟動子。
Mizukami, H. 等人報導使用用於腺相關病毒載體生產之突變型及野生型 LoxP 序列及改良之包裝系統,對 rep 及 cap 表現之單獨控制。他們經由使用兩個獨立的質體,開發出 Rep 及 Cap 蛋白之誘導表現系統,一者具有突變,另一者具有野生型 LoxP 序列,Cre 重組酶可同時誘導兩種不同蛋白質的表現 (Mol. Biotechnol. 27 (2004) 1-14)。為達到重組,將表現 Cre 重組酶之腺病毒質體應用於培養物。為控制 rep 及 cap 表現,填充序列側翼為兩個 LoxP (野生型或突變型) 序列。在 Cre 重組酶存在下,移除填充序列並表現 cap 及 rep 基因。
Chatterjee, P.K. 等人報導,活體內獲得之結果與先前報導結果之間的差異可能與可用於重組之暫態相較於組成型表現之 Cre 重組酶蛋白有關。LoxP 位點似混交著隨著 Cre 重組酶蛋白的量及持久性而增加 (Nucl. Acids Res. 32 (2004) 5668-5676)。
Ventura, A. 等人報導來自轉基因之 Cre-lox 調節之條件性 RNA 干擾 (Proc. Natl. Acad. Sci. USA 101 (2004) 10380-10385)。作者已生成兩種用於條件性之 Cre-lox 調節的 RNA 干擾的慢病毒載體。一種載體允許條件性活化,而另一種允許短髮夾 RNA (shRNA) 表現之條件性不活化。前者基於一種經由包括 LoxP 位點及 TATA 盒之間之雜合體以修改小鼠 U6 啟動子之策略。
US 2006/110390 報導腺病毒表現載體 AdCMV-Ku70 及 AdCMV-Ku80,其係基於 Cre 重組酶依賴性螢光素酶表現質體,由相反方向之突變 LoxP 位點 Lox71 及 Lox66 所組成之 AdCUL,其側翼為巨細胞病毒直接早期啟動子 (CMV) 之下游的反義螢火蟲螢光素酶報導基因。Lox71 及 Lox66 之間之 Cre 重組酶介導的重組將夾接之卡匣反轉成有義方向,使螢光素酶基因表現。
US 2006/143737 (US 7,267,979 B2) 報導一種用於重組酶反轉或切除產生雙股靶標序列 RNA 的構建體,從而發揮觸發內源基因靜默機制之作用。
WO 2006/99615 報導應用 Cre 重組酶及具有不相容間隔子之半突變 LoxP 位點,將經修飾之靶向基因單方向地交換到腺病毒載體的纖維區中。
Missirlis, P.I. 等人 (BMC Genomics 7 (2006) A13) 報導在 Cre 重組酶介導的重組中,LoxP 間隔區之高通量篩選識別序列及混交特徵。他們概述,假設間隔子及反向重複突變體已成功地一起使用,則如果可鑑別出足夠數量之非混交 LE/RE 間隔子突變體,有可能將大量 DNA 片段導入至給定之標靶分子、染色體或基因體中。然而,經由反向重複之序列化 RMCE 或插入重組一直受到目前為止所鑑別出之少量穩定、非混交 LoxP 位點的限制。
WO 2015/068411 報導一種 AAV-LoxP 質體,其包含編碼標靶蛋白之核苷酸序列,該序列位於與啟動子的方向相反之 Lox71 與 LoxJTZ17 之間,該啟動子通常不表現所關注蛋白質。
WO 2011/100250 報導一種用於在真核細胞內,活體基因調控之靶向質體,其中靶向質體在基因體中之特定基因座導入 LoxP-FRT-Neo STOP-FRT-tetO-LoxP 卡匣。
Kawabe, Y. 等人報導一種使用重組中國倉鼠卵巢 (CHO) 細胞用於生產抗體的基因整合系統 (Cytotechnol.64 (2012) 267-279)。側翼為野生型及突變 LoxP 位點的之換卡匣被整合到 CHO 細胞之染色體中,以建立受體創始細胞。然後,製備供體質體,該供體質體包括側翼為一對相容之 LoxP 位點之標記-抗體表現卡匣,且亦包含在選擇標記之表現卡匣與抗體之表現卡匣之間的內部未配對的 LoxP 位點。將供體質體及 Cre 重組酶表現質體共轉染到創始 CHO 細胞中,以在 CHO 基因體中產生 RMCE,使抗體基因產生位點特異性整合,恢復原始野生型 LoxP 位點並產生不再參與 RMCE 之無活性的雙突變 LoxP 位點。重複 RMCE 程序以增加整合基因的拷貝數,從而在每個步驟中切除並移除存在於細胞中之選擇標記的表現卡匣。
Niesner, B. 及 Maheshri, N. 報導,經由在所關注基因前面插入側翼為反向 LoxP 位點的啟動子,可經由 Cre 重組酶介導的啟動子翻轉隨機地改變表現。此類似旋轉木馬的過程,不斷地翻轉啟動子的方向。該過程的終止經由 Cre 重組酶表現之終止而達成。然而,雖然 Cre 重組酶是高效的,但多次反轉事件可能會使不可逆的喪失夾接啟動子或與其他基因體區域之重組所造成的大規模重排 (Biotechnol. Bioeng. 110 (2013) 2677-2686)。
WO 2013/014294 報導經由同源重組將第一基因替換成選擇標記 (例如氯黴素乙醯轉移酶抗生素標記),因而標記可由於存在於標記兩端之 LoxP 位點而被移除。在使用的設置中,使用兩種經修飾之 LoxP 位點 (Lox66 及 Lox71) ,每個都具有不同的突變。經 Cre 重組酶重組後,留下 Lox72 位點 (Lambert, J.M. 等人,Appl. Environ. Microbiol. 73 (2007) 1126-1135),其現具有兩個突變而非一個,且無法再被 Cre 重組酶識別。
US 2013/58871 報導經由使用兩個以頭對頭位置定向之突變 LoxP 位點 (Lox66 及 Lox71) 產生 Cre 重組酶介導的可轉換反轉質體。當存在 Cre 重組酶時,側翼為兩個突變 LoxP 位點之基因係經反向,形成一個 LoxP 及一個雙突變 LoxP 位點。因為雙突變之 LoxP 位點對 Cre 重組酶的親和力非常低,因此有利之一步反轉幾乎為不可逆,允許基因根據需要穩定地切換成「開」及「關」。在不存在 Cre 重組酶的情況下,經由消除包含偽 TATA 盒及夾接基因兩側之起始密碼子的序列,使表現之洩漏最小化。
WO 2015/38958 報導一種 cap-in-cis rAAV 基因體,其中使用泛素 C 啟動子片段以驅動 mCherry 報導基因之表現,然後為合成之 polyA 序列;由 rep 調節序列所控制的 AAV 殼體基因,接著為側翼為 Lox71 及 Lox66 之 SV40 晚期 polyA 訊號;Lox66 位點相對於 Lox71 位點為反向的;在此種配置中,Cre 重組酶介導側翼為突變 LoxP 位點之序列反轉;反轉後,產生出不相容之雙突變 Lox72 及 LoxP 位點,降低反轉回原始狀態的效率。
WO 2015/68411 報導一種病毒AAV-LoxP-WGA,編碼標靶蛋白之核苷酸序列,該核苷酸序列與啟動子的方向相反。此構建體通常不表現所關注蛋白質。當編碼位於位點特異性重組酶識別序列之間之所關注蛋白質的核苷酸序列在表現於方向上經反轉時,表現所關注蛋白質。
Arguello, T. 及 Moraes, C.T. 報導,經由遠端 LoxP 位點之不對稱間隔子的突變,Cre 重組酶活性在活體內受到抑制,但在離體不受抑制。
WO 2016/57800 報導TGG 或 DRG 啟動子,其可操作地連接至 Cre 重組酶及 LOX-終止-LOX 可誘導 RNA 聚合酶 III 啟動子,其可操作地連接至抑制性 RNA。在活體內,作者發現在遠端 (3') LoxP 位點中,中央間隔子位置 4 的單 T 到 C 突變完全地抑制兩種條件性小鼠模型中的重組反應。
WO 2017/100671 報導從經轉導標靶細胞中,以Cre 重組酶依賴性方式回收 AAV 殼體序列。在 rAAV-Cap-in-cis-lox rAAV 基因體中,側翼為 Lox71 及 Lox66 位點之多腺苷酸化 (pA) 序列係經 Cre 重組酶反向。
WO 2017/189683 報導包含基因干擾卡匣之基因構建體及使用其以評估基因表現之時間及順序的方法。
WO 2018/96356 報導一種在包含標靶基因之細胞中產生條件性基因剔除的等位基因的方法,該方法包含:將人工內含子序列導入至標靶基因的外顯子中,該人工內含子序列包括:剪接供體序列;第一核酸酶或重組酶位點;分支點序列;第二核酸酶或重組酶位點;剪接受體序列;及位於第一核酸酶或重組酶位點之 5' 或其內的終止密碼子,其中為使導入之內含子不活化,該方法包括在細胞中導入或活化重組酶或核酸酶,從而切除或破壞分支點並廢除人工內含子序列的剪接。
WO 2018/229276 報導一種條件性敲入卡匣,其為一種雙股 DNA 分子,其包含序列 A、序列 B、第一對 RTS1 及 RTS1' 及第二對 RTS2 及 RTS2' 的重組酶標靶位點 (RTS),其中 (i) 第一對之 RTS 及第二對之 RTS 無法重組在一起,且 (ii) RTS1 及 RTS1' 方向相反,及 (iii) RTS2 及 RTS2' 方向相反,及(iv) 序列 A 及 B 及 RTS ,自 5' 到 3' 的順序如下:RTS1、序列 A、RTS2、序列 B、RTS1' 及 RTS2',及 (v) 序列 A 及 B 各自包含至少一個編碼序列且該編碼序列位於不同的 DNA 股上,及 (vi) 由序列 A 所編碼之胺基酸序列與由序列 B 所編碼之胺基酸序列具有至少 90% 的序列同一性,且 (vii) 序列 A 之編碼股與序列 B 之的非編碼股無法雜交。
WO 2019/46069 報導經由在 cap 基因側翼為一對 LoxP 位點並開發出細胞類型特異性之 Cre 重組酶表現,選擇性回收 AAV cap 基因。將表現 Cre 重組酶細胞經 AAV 感染,接著合成第二股 AAV 基因體使導夾接 cap 反向。突變之 LoxP 位點 Lox66 及 Lox71 係用於驅動 Cre 重組酶介導之重組平衡往單向反轉。LoxP 位點最初插入 cap 的 3' UTR,其中其側翼為短填充序列,該短填充序列含有用於 Cre 重組酶依賴性回收之標靶序列。
Fischer, K.B. 等人報導來自重組酶依賴性 AAV 載體之脫靶表現來源及交叉不敏感 ATG-out 載體之緩解 (Proc. Natl. Acad. Sci. USA 116 (2019) 27001-27010)。重組酶依賴性腺相關病毒 (AAV) 允許靶向特定區域並表現不同的轉基因,而無需相對繁瑣之轉基因小鼠品系生產方法。雖然已使用經由使用 lox-STOP-lox 及 FRT-STOP-FRT 系統之重組酶依賴性 AAV 設計,但雙反向開讀框 (ORF) (DIO) 及翻轉/切除 (FLEX) 構建體在設計上實際相同,由於其的大小有限且在使用強力啟動子時具有較少的洩漏性質,因此獲得最廣泛的使用。簡言之,DIO 及 FLEX 設計使用兩對正交識別位點,以重疊的反平行方向圍繞所需之轉基因,即相對於表現卡匣的其餘部分,為反向並因此在轉錄上受到抑制。當暴露於適當的重組酶時,轉基因 ORF 係經恢復並與啟動子及 3'-非轉譯區 (UTR) 有義鎖定,從而驅動表現。在有時稱為「ATG-out」或「分割轉基因」之反向 ORF 中,Kozak 序列及轉基因的起始密碼子位於第一組重組酶識別位點之外,僅在重組後才能重建轉基因 ORF。經由獨立地破壞自發反轉及轉基因 ORF,作者表示須破壞兩者才能完全消除洩漏。此外,雖然只能在高度敏感的系統中檢測到完整 ORF 的洩漏表現,但自發性反轉可驅動低但可檢測之螢光蛋白表現量。最後,作者表示,在 AAV 中使用具降低之同源性的突變重組酶識別位點,利用 ATG-out 轉基因設計 (作者稱之為 CIAO (交叉不敏感 ATG-out)),大量地減少重組酶表現報導小鼠之小鼠腦中的洩漏表現。
暫態轉染方法需要大量的質體 DNA,其需經由大規模發酵及 DNA 純化來生產。更重要地,DNA 與轉染試劑之複合的可擴展性有其限度。電穿孔的可擴展性亦有其限度。此外,細胞之暫態轉染的再現性較差。
依賴單純皰疹病毒或腺病毒轉導之系統具有內在風險,即 rAAV 製劑被具有複製能力之輔助病毒汙染。
基於桿狀病毒的系統具有三個主要缺點:首先,由於桿狀病毒基因體的大小在 100 kb 的範圍內,因此需要應用繁瑣的技術來生成並製備重組病毒 DNA。其次,在實際生產活動之前需準備高度濃縮之重組病毒原液。最後,源自基於桿狀病毒之系統的 rAAV 易受到殼體成分改變及效力降低的影響。因此,需額外嘗試以調整不同殼體蛋白之表現比率 (Kondratov, O.等人,Mol. Ther. 25 (2017) 2661-2675)。
Ojala, D.S. 等人報導,電腦所設計之 SCHEMA AAV 文庫的活體內選擇產生一種用於感染 SVZ 中成人神經幹細胞之新穎變異體 (Mol. Thera.26 (2018) 304-319。
WO 2020/78953 報導一種腺相關病毒 (AAV) 載體生產者細胞,其包含編碼 AAV rep 及 cap基因、輔助病毒基因及 AAV 載體之 DNA 基因體的核酸序列;AAV rep基因包含內含子,該內含子包含轉錄終止序列,其具有位於轉錄終止序列上游之第一重組位點,及位於轉錄終止序列下游之第二重組位點;且所有核酸序列皆一起整合至位於 AAV 載體生產者細胞基因體內的單一基因座上。該發明亦關於生產AAV 載體生產者細胞株的方法。
WO 2018/150271 報導一種哺乳動物細胞,其包含至少四種不同的重組靶位點 (RTS)、包含 E1A、E1B 或其組合的腺病毒 (Ad) 基因,以及可操作地連接至 Ad 基因的啟動子,其中 RTS、Ad基因及啟動子係經染色體整合;使用該細胞產生重組腺相關病毒 (rAAV) 生產者宿主細胞的方法;及使用 AAV 生產者宿主細胞以生產、包裝及純化 rAAV 的方法。
Mingqi, X. 等人報導哺乳動物設計者細胞 - 工程原理及生物醫學應用 (Biotechnol. J. 10 (2015) 1005-1018)。
因此,需要功能基因體學工具,經由該工具可增加基因體序列中可選擇性地解決轉基因 DNA 片段的數量。
本文報導新穎去氧核糖核酸及其使用方法。根據本發明之新穎去氧核糖核酸可用於經由位點特異性重組酶技術同時活化至少兩個開讀框/基因的表現。本發明在去氧核糖核酸 (DNA) 分子之編碼股 ((+) 股,正向股) 及模板股 ((-) 股,負向股) 上使用啟動子及開讀框/基因元件之特意無活性排列,其需經轉錄活化,即允許編碼序列之轉錄之啟動子與該編碼序列的可操作連接,經由與位點特異性重組酶之相互作用而反轉。
本發明之另一個態樣為一種用於 rAAV 顆粒生產之重組酶可活化的包裝細胞株,其中 rep/cap 基因以及腺病毒輔助基因係經 (穩定地) 整合到基因體中,且其中其至少一者 (在一個較佳實施例中,為其至少兩者) 係包含於根據本發明之去氧核糖核酸之中,並且因此可經由與位點特異性重組酶之相互作用而被轉錄活化。在某些實施例中,一種或多種腺病毒輔助基因之轉錄活化係經由重組酶介導的開讀框/基因反轉 (RMCI) 而達成。例如,在其活化後,腺病毒輔助蛋白 E1A 活化來自自體 P5 啟動子之 rep 基因的轉錄,自體 P5 啟動子進而活化 cap 基因的轉錄。在某些實施例中,在根據本發明之去氧核糖核酸中,在腺病毒 E1A 蛋白組成型表現的細胞中 (例如在 HEK 細胞中),使用重組酶介導的開讀框/基因反轉活化 rep/cap 基因轉錄,或使用異源啟動子驅動 rep 及/或 cap 基因轉錄。在某個實施例中,重組酶為 Cre 重組酶形式噬菌體 P1。
在某些實施例中,Cre 重組酶表現由少量 Cre 重組酶編碼核酸之暫態轉染而誘導。已發現通常用於暫態病毒生產之少量的 10% 質體 DNA 即可達成有效重組。若使用編碼 Cre 重組酶之 mRNA,則甚至更少量的核酸即足夠。在某些實施例中,Cre 重組酶編碼核酸係經整合到包裝細胞株的基因體中,且可操作地連接至可誘導啟動子,例如,舉例而言 Tet 可誘導啟動子。在一個較佳的實施例中,包含 ITR 及轉基因之 rAAV 基因體亦被整合到包裝細胞株的基因體中。從而將包裝細胞株轉變為 rAAV 載體及顆粒生產的細胞株。同樣地,在某些實施例中,rAAV 基因體經暫態地導入。
重組後,生產細胞株的細胞在基因上是一致的,並以正確的化學計量表現 rAAV 複製及包裝所需的所有基因 (與此相反,在三重或雙重轉染方法中,一些細胞可接受次較佳劑量的一個或其他質體/基因)。因此,不受此理論的束縛,與暫態包裝或生產細胞相比,穩定的 rAAV 載體/顆粒包裝或生產細胞株係可達成更高的產品品質。此外,以 Cre 重組酶編碼核酸而非輔助病毒轉染以誘導 rAAV 載體或顆粒產生可提供所產生的 rAAV 載體/顆粒之改良安全性。
本發明之另一態樣為一種新穎腺病毒 VA RNA 基因。根據本發明之腺病毒 VA RNA 基因允許 Cre 重組酶介導的反轉活化基因。在根據本發明之腺病毒 VA RNA 中,腺病毒 VA RNA 基因可由具有精確轉錄起始位點及導入到腺病毒 VA RNA 之非編碼 (即調節) 元件中之 LoxP 位點的任何啟動子所驅動。
本發明之另一態樣為新穎 LoxP 位點 (間隔子序列) AGTTTATA (SEQ ID NO: 01 (順方向);SEQ ID NO: 02 (反方向))。該間隔子序列在本文中稱為 Lx。其可與任何已知的左重複序列及右重複序列組合。
在某些實施例中,Lx 間隔子序列與突變之左反向重複及野生型右反向重複組合。此 Cre 重組酶識別序列表示為 Lx-LE,且在順方向上具有 SEQ ID NO: 03 的序列,及在反方向上具有 SEQ ID NO: 04 的序列。
在某些實施例中,Lx 間隔子序列與突變之右反向重複及野生型左反向重複組合。此 Cre 重組酶識別序列表示為 Lx-RE,且在順方向上具有 SEQ ID NO: 05 的序列,及在反方向上具有 SEQ ID NO: 06 的序列。
本發明之技術原理係經由將 DNA 反轉與伴隨之可操作連接至調控元件 (例如,舉例而言啟動子) 組合,以轉錄活化開讀框或基因。
本發明之一個獨立態樣為一種雙股 DNA 元件,其包含 (正向) 編碼股及 (負向) 模板股, 其特徵在於 該編碼股自 5'- 至 3'- 方向按以下順序包含: - 第一啟動子, - 第一重組酶識別序列,其在一個反向重複中包含突變 (即在左反向重複中或右反向重複中包含突變),且另一個反向重複為非突變/野生型反向重複, - 第二啟動子,其相對於該編碼股 (方向) 為反向 (按序列), - 第一多腺苷酸化訊號及/或轉錄終止元件,其相對於該編碼股 (方向) 為反向 (按序列), - 第一開讀框,其相對於該編碼股 (方向) 為反向 (按序列),且可操作地連接至該第一多腺苷酸化訊號及/或轉錄終止元件, - 第二重組酶識別序列,其在作為該第一重組酶識別序列之相應另一個反向重複中包含突變,且其相對於該第一重組酶識別序列處於反向/互逆方向, - 第二開讀框, - 第二多腺苷酸化訊號及/或轉錄終止元件,其可操作地連接至該第二開讀框。
本發明之一個獨立態樣為一種雙股 DNA 元件,其自 5'- 至 3'- 方向,即按以下順序包含: - 以 5'- 至 3'- 方向/正方向之第一啟動子, - 第一重組酶識別序列,其在一個反向重複中包含突變,即在左反向重複中或右反向重複中包含突變, - 以 3'- 至 5'- 方向/負方向之第二啟動子, - 以 3'- 至 5'- 方向/負方向之第一多腺苷酸化訊號及/或轉錄終止元件, - 以 3'- 至 5'- 方向/負方向之第一開讀框,且其可操作地連接至該第一多腺苷酸化訊號及/或轉錄終止元件, - 第二重組酶識別序列,其在作為該第一重組酶識別序列之相應另一個反向重複中包含突變,並且相對於該第一重組酶識別序列處於互逆/反向方向, - 以 5'- 至 3'- 方向/正方向之第二開讀框, - 第二多腺苷酸化訊號及/或轉錄終止元件,其可操作地連接至該第二開讀框。
在某些附屬實施例中,將該雙股 DNA 元件與對該第一重組酶識別序列及第二重組酶識別序列具有功能之重組酶培育引起 -    在位於介於該第一重組酶識別序列及與該第二重組酶識別序列之間之序列的反轉中,此後該第一啟動子可操作地連接至該第一開讀框,且該第二啟動子可操作地連接至該第二開讀框,及 -    在該第一重組酶識別序列與第二重組酶識別序列之間之 DNA 序列之重組酶介導的反轉後,在該第一啟動子與該第一開讀框之間或在該第二啟動子與該第二開讀框之間產生 (第三) 重組酶識別序列,其 ((第三) 重組酶識別序列) 不再對該重組酶具有功能。
本發明之一個獨立態樣為一種雙股腺病毒 VA RNA 元件,其自 5'- 至 3'- 方向,即按以下順序包含: - 以 5'- 至 3'- 方向/正方向之啟動子, - 第一重組酶識別序列,其在一個反向重複中包含突變,即在左反向重複中或右反向重複中包含突變, - 以 3'- 至 5'- 方向/負方向之腺病毒 VA RNA 基因, - 第二重組酶識別序列,其在作為該第一重組酶識別序列的相應的另一個反向重複中包含突變,並且相對於該第一重組酶識別序列處於互逆/反向方向。
在某些附屬實施例中,將雙股 VA DNA 元件與對第一重組酶識別序列及第二重組酶識別序列具有功能之重組酶培育引起 -    介於該第一重組酶識別序列與該第二重組酶識別序列之間之序列的反轉,此後該啟動子可操作地連接至該 VA RNA 基因,及 -    在該第一重組酶識別序列與第二重組酶識別序列之間之 DNA 序列重組酶介導的反轉後,在該啟動子與該 VA RNA 基因之間或該VA RNA 基因之下游產生 (第三) 重組酶識別序列,其 ((第三) 重組酶識別序列) 不再對該重組酶具有功能。
本發明之一個獨立態樣為一種 (雙股) DNA (分子),其包含 -    根據本發明之第一雙股 DNA 元件, -    根據本發明之第二雙股 DNA 元件, -    視情況地,根據本發明之第三雙股 DNA 元件或根據本發明之腺病毒 VA RNA 元件,及 -    rep 或/及 cap 開讀框 (元件)。
在某些附屬實施例中, 1) -    在該第一雙股 DNA 元件中,該第一開讀框為 E1A 開讀框,且該第二開讀框為 E1B 開讀框,或反之亦然;及 -    在該第二雙股 DNA 元件中,該第一開讀框為 E2A 開讀框,且該第二開讀框為 E4 開讀框或 E4orf6 (開讀框),或反之亦然, 或 2) -    在該第一雙股 DNA 元件中,該第一開讀框為 E2A 開讀框,且該第二開讀框為 E4 開讀框或 E4orf6 (開讀框),或反之亦然;及 -    在該第二雙股 DNA 元件中,該第一開讀框為 E1A 開讀框,且該第二開讀框為 E1B 開讀框,或反之亦然。
本發明之一個獨立態樣為一種哺乳動物或昆蟲細胞,其包含至少一種根據本發明之雙股 DNA 元件或分子或其 (序列) 反向形式。
本發明之一個獨立態樣為一種生產重組腺相關病毒 (rAAV) 載體或顆粒的方法,其包含以下步驟: -    培養/繁殖根據本發明的細胞 (在適合細胞分裂的條件下), -    經由根據本發明之重組酶介導的開讀框反轉來活化rAAV 載體或顆粒的產生 (經由將重組酶作為蛋白質或作為 mRNA 或作為 DNA 導入至根據本發明之細胞中,由此重組酶對根據本發明之 DNA 元件或分子中之重組酶識別序列具有功能), - 視情況地培養在前一步驟中獲得的 rAAV 載體或顆粒生產活化細胞 (在適合生產 rAAV 載體或顆粒的條件下), -    自細胞或/及培養基中回收 rAAV 載體或顆粒。
因此,本發明之一個獨立態樣為一種 (雙股) DNA (分子) (用於生產重組腺相關病毒載體或顆粒),其包含: a)   E1A 開讀框及 E1B開讀框;及 b)  E2A 開讀框及 E4 或 E4orf6 開讀框; 其特徵在於 a) 或 b) 之第一開讀框及第二開讀框包含於雙股 DNA 元件,該雙股 DNA 元件包含(正向的) 編碼股及 (負向的) 模板股, 其中該編碼股自 5'- 至 3'- 方向,即按以下順序包含: - 第一啟動子 (以正方向), - 第一重組酶識別序列,其在一個反向重複中包含突變, - 第二啟動子,其相對於該編碼股 (方向) 為反向 (按序列) (即處於反向/負方向), - 視情況地第一多腺苷酸化訊號及/或轉錄終止元件,其相對於該編碼股 (方向) 為反向 (按序列) (即處於反向/負方向) 且其係可操作地連接至該第一開讀框, - (a) 或 b) 的) 第一開讀框,其相對於該編碼股方向為反向 (按序列) (即處於反向/負方向), - 第二重組酶識別序列,其在相應之其他反向重複中包含突變,且相對於該第一重組酶識別序列係處於互逆/反向方向, - a) 的第二開讀框,如果該第一開讀框來自 a);或 b) 的第二開讀框,如果該第一開讀框來自 b) (以正方向), - 視情況地第二多腺苷酸化訊號及/或轉錄終止元件 (以正方向並與可操作地連接至該第二開讀框)。
因此,本發明之一個獨立態樣為一種 (雙股) DNA (分子) (用於生產重組腺相關病毒載體或顆粒),其包含: a)   E1A 開讀框及 E1B開讀框;及 b)  E2A 開讀框及 E4 或 E4orf6 開讀框; 其特徵在於 a) 的該第一及該第二開讀框及該第一開讀框及該第二開讀框 b) 各自包含在雙股 DNA 元件中(即 DNA 分子包含兩個 該 DNA 元件),每一者包含 (正方向的) 編碼股及 (負方向的) 模板股, 其中該編碼股自 5'- 至 3'- 方向,即按以下順序包含: - 第一啟動子 (以正方向), - 第一重組酶識別序列,其在一個反向重複中包含突變, - 第二啟動子,其相對於該編碼股 (方向) 為反向 (按序列) (即處於反向/負方向), - 視情況地第一多腺苷酸化訊號及/或轉錄終止元件,其相對於該編碼股 (方向) 為反向 (按序列) (即處於反向/負方向) 且其係可操作地連接至該第一開讀框, - (a) 或 b) 的) 第一開讀框,其相對於該編碼股方向為反向 (按序列) (即處於反向/負方向), - 第二重組酶識別序列,其在相應之其他反向重複中包含突變,且相對於該第一重組酶識別序列係處於互逆/反向方向, - a) 的第二開讀框,如果該第一開讀框來自 a);或 b) 的第二開讀框,如果該第一開讀框來自 b) (以正方向), - 視情況地第二多腺苷酸化訊號及/或轉錄終止元件 (以正方向並與可操作地連接至該第二開讀框)。
因此,本發明之一個態樣為一種 (雙股) DNA (分子) (用於生產重組腺相關病毒載體或顆粒),其包含 (至少一種) 雙股 DNA 元件,該元件包含 (正向的) 編碼股及 (負向的) 模板股, 其中該編碼股自 5'- 至 3'- 方向,即按以下順序包含: -第一啟動子,在一個較佳實施例中,為腺相關病毒啟動子 P5 或其功能片段或其變異體, - 第一重組酶識別序列,其在一個反向重複中包含突變, - rep 及 cap 開讀框,其包括用於表現 Rep 及 Cap 蛋白的其他啟動子,其相對於該編碼股(方向) 為反向 (按序列) (即以反方向), - 第二重組酶識別序列,其在相應之其他反向重複中包含突變,且對該第一重組酶識別序列係處於互逆/反向方向, - 多腺苷酸化訊號,在一個較佳實施例中為該 rep 及 cap 開讀框的自體多腺苷酸化訊號。
在某些附屬實施例中,將該 (雙股) DNA (分子) 與對該第一重組酶識別序列及第二重組酶識別序列具有功能之重組酶培育引起 -    介於該第一重組酶識別序列與該第二重組酶識別序列之間之序列的反轉,此後該第一啟動子可操作地連接至該 rep 及 cap 開讀框,及 -    在該第一重組酶識別序列與第二重組酶識別序列之間之 DNA 序列之重組酶介導的反轉後,在該第一啟動子與該 rep 及 cap 開讀框之間或在該 rep 及 cap 開讀框與該多腺苷酸化訊號之間產生 (第三) 重組酶識別序列,其中該第一開讀框及該第二開讀框不再對該重組酶具有功能。
本發明之另一個獨立態樣為一種 (雙股) DNA (分子) (用於生產重組腺相關病毒載體或顆粒),其包含雙股 DNA 元件,該元件包含 (正方向的) 編碼股及 (負方向) 的模板股, 其中該編碼股自 5'- 至 3'- 方向,即按以下順序包含: -第一啟動子,在一個較佳實施例中,為腺相關病毒啟動子 P5 或其功能片段或其變異體, - 第一重組酶識別序列,其在一個反向重複中包含突變, - 第二啟動子,其相對於該編碼股 (以反向方向) 為反向,在一個較佳實施例中,為腺相關病毒啟動子 P19 或其功能片段或其變異體, - 視情況地第一多腺苷酸化訊號及/或轉錄終止元件,其相對於該編碼股 (方向) 為反向 (按序列) (即處於反向/負方向) 且其係可操作地連接至該 Rep78 或 Rep68 編碼序列, - 編碼序列,其僅編碼 Rep78 蛋白或僅編碼 Rep68 蛋白,但不能同時編碼兩者, (i) 視情況地使內部 P40 啟動子為非活化的,及/或 (ii) Rep52/40 之起始密碼子係經突變成非起始密碼子,及/或 (iii) 剪接供體及受體位點係經移除, 並且相對於編碼股是反向的 (以反向方向), - 第二重組酶識別序列,其在作為該第一重組酶識別序列之相應另一個反向重複中包含突變,並且相對於該第一重組酶識別序列處於互逆/反向方向, - Rep52/Rep40 及 Cap 開讀框,其包括共同的多腺苷酸化訊號序列,即可操作地連接至該開讀框的多腺苷酸化訊號。
本發明之另一個獨立態樣為一種 (雙股) DNA (分子) (用於生產重組腺相關病毒載體或顆粒),其包含雙股 DNA 元件,該元件包含 (正方向的) 編碼股及 (負方向) 的模板股, 其中該編碼股自 5'- 至 3'- 方向,即按以下順序包含: -第一啟動子,在一個較佳實施例中,為腺相關病毒啟動子 P5 或其功能片段或其變異體, - 第一重組酶識別序列,其在一個反向重複中包含突變, - 第二啟動子,其相對於該編碼股 (以反向方向) 為反向,在一個較佳實施例中,為腺相關病毒啟動子 P19 或其功能片段或其變異體, - 視情況地第一多腺苷酸化訊號及/或轉錄終止元件,其相對於該編碼股 (方向) 為反向 (按序列) (即處於反向/負方向) 且其係可操作地連接至該 Rep78 或 Rep68 編碼序列, - 編碼序列,其僅編碼 Rep78 蛋白或僅編碼 Rep68 蛋白,但不能同時編碼兩者, (i) 視情況地使內部 P40 啟動子為非活化的,及/或 (ii) 該 Rep52/40 開讀框之起始密碼子係經突變成非起始密碼子,及 (iii) 剪接供體及受體位點係經移除, 並且相對於編碼股是反向的 (以反向方向), - 第二重組酶識別序列,其在作為該第一重組酶識別序列之相應另一個反向重複中包含突變,並且相對於該第一重組酶識別序列處於互逆/反向方向, - 該 Rep52 開讀框,視情況地其剪接供體及受體位點經移除,或該 Rep40 開讀框,其包括多腺苷酸化訊號序列,即可操作地連接至該開讀框的多腺苷酸化訊號, - 視情況地第三啟動子,cap 開讀框及多腺苷酸化及/或終止子序列,其中所有皆係可操作地連接。
本發明之一個獨立態樣為一種腺病毒 VA RNA 基因,其可操作地連接至功能性啟動子,其中已加入精確轉錄起始位點且已將 Cre 重組酶識別序列經工程化到腺病毒 VA RNA 基因中/內。
本發明之一個態樣為一種分離的 (哺乳動物或昆蟲) 細胞,其包含本發明之以原始形式或 (重組酶) 反向形式之至少一種 DNA 元件或 DNA (分子) 或腺病毒 VA RNA。
本發明之一個態樣為一種產生/用於產生重組腺相關病毒 (rAAV) 載體或顆粒的方法,該方法包含: - 提供哺乳動物懸浮生長細胞,其包含 - 間隔在兩個 AAV ITR 之間的轉基因表現卡匣; - 編碼腺病毒 E1A、E1B、E2A、E4 或 E4orf6 蛋白及腺病毒 VA RNA 的開讀框; - 編碼腺相關 Rep/Cap 蛋白的開讀框; - 一對或多對之不同的不相容重組酶識別序列; 其中單獨或組合地選自由 E1A 開讀框、E1B 開讀框、E2A 開讀框、E4 開讀框、E4 開讀框 6、Rep78 開讀框、Rep68 開讀框、Rep52 開讀框、Rep40 開讀框、Rep/Cap 開讀框及腺病毒 VA RNA 基因體成之群中的一者或多者各自放置在未經可操作地連接的啟動子,但包括可操作地連接之多腺苷酸化及/或在一對不相容重組酶識別序列之間的轉錄終止訊號,其中一個重組酶識別序列包含在左反向重複中的突變,且一個重組酶識別序列包含在右反向重複中的突變,其中啟動子位於該第一重組酶識別序列的上游,且相對於該啟動子位於上游之該開讀框係以反方向; 其中該重組酶識別序列係經組織以允許產生可檢測之重組酶依賴性變化 (例如經由 rAAV 載體或顆粒生產) ,在某些實施例中,該等一個或多個重組酶識別序列為 Cre 重組酶識別位點 (即,該重組酶識別序列相較於彼此為處於互逆/反向方向,且該重組酶的作用使該等重組酶識別序列之間的序列發生反轉,伴隨可操作連接至位於該反向序列之上游的啟動子),在某些實施例中,該等一個或多個重組酶識別序列為 Flp 識別位點 (即,重組酶識別序列相對於彼此處於互反/反向方向,且該重組酶的作用使重組酶識別序列之間的序列反轉以及伴隨可操作連接至位於該反向序列之上游的啟動子); - 經由用重組酶表現質體或重組酶 mRNA 轉染細胞或經由活化該哺乳動物細胞內之條件性重組酶表現,誘導該哺乳動物細胞中重組酶的表現,由此該重組酶的表現造成重組酶介導的卡匣反轉,從而生產 rAAV 載體或顆粒,且其中該重組酶介導的卡匣反轉為側翼為重組酶識別序列之序列的反轉; - 從該細胞或/及該培養基中分離該 rAAV 載體或顆粒,從而產生該 rAAV 載體或顆粒。
本發明之一個態樣為一種在哺乳動物細胞中獲得所關注 DNA 之位點特異性置換的方法,其包含: a) 提供包含根據本發明之 DNA 元件的哺乳動物細胞; b) 將對 a) 之該 DNA 元件之重組酶識別序列具有功能之重組酶導入至細胞或在細胞中活化; 其中該重組酶催化重組酶識別序列之間的序列反轉,從而獲得哺乳動物細胞中所關注 DNA 的位點特異性置換。
在所有態樣及實施例的某些實施例中,該第一重組酶識別序列在左反向重複中包含突變,且該第二重組酶識別序列在右反向重複中包含突變。此種排列在重組酶介導的反轉後,導致重組酶識別序列之上游 (即位於 5' ) 在反向重複兩者中包含突變,因此不具有功能,即無法被相應之重組酶所識別。重組酶識別序列之下游 (即位於 3' ) 相較於兩個反向重複兩者為野生型,因此具有功能性,即可被相應之重組酶所識別。
在所有態樣及實施例的某些實施例中,該第一重組酶識別序列在右反向重複中包含突變,且該第二重組酶識別序列在左反向重複中包含突變。此種排列在重組酶介導的反轉後,導致重組酶識別序列之下游 (即位於 3' ) 在反向重複兩者中包含突變,因此不具有功能,即無法被相應之重組酶所識別。重組酶識別序列之上游 (即位於 5' ) 相較於兩個反向重複兩者為野生型,因此具有功能性,即可被相應之重組酶所識別。
在所有態樣及實施例的某些實施例中,該第一啟動子處於正方向及/或該第二開讀框處於正方向。
本文報導新穎 DNA 構建體及其使用方法。根據本發明之新穎 DNA 構建體可用於經由使用位點特異性、重組酶介導的卡匣反轉 (RMCI),同時轉錄活化至少兩個開讀框或基因。本發明在雙股DNA 分子之編碼股及模板股上使用啟動子及開讀框之特意非生產性排列,經由與位點特異性重組酶之相互作用 (即,反轉) 將其轉變成其生產 (即,可操作地連接) 形式。 界定
用於進行本發明的有用方法和技術描述於例如 Ausubel, F.M.(ed.), Current Protocols in Molecular Biology, Volumes I to III (1997); Glover, N.D., and Hames, B.D., ed., DNA Cloning: A Practical Approach, Volumes I and II (1985), Oxford University Press; Freshney, R.I.(ed.), Animal Cell Culture – a practical approach, IRL Press Limited (1986);Watson, J.D., et al., Recombinant DNA, Second Edition, CHSL Press (1992);Winnacker, E.L., From Genes to Clones; N.Y., VCH Publishers (1987);Celis, J., ed., Cell Biology, Second Edition, Academic Press (1998);Freshney, R.I., Culture of Animal Cells: A Manual of Basic Technique, second edition, Alan R. Liss, Inc., N.Y.(1987)。
使用重組 DNA 技術能產生核酸衍生物。此類衍生物可例如在個別或數個核苷酸位置藉由取代、改變、交換、缺失或插入而修飾。修飾或衍生化可例如藉由定點誘變的方式進行。此類修飾可容易地由熟習此項技術者進行 (參見例如 Sambrook, J. et al., Molecular Cloning: A laboratory manual (1999) Cold Spring Harbor Laboratory Press, New York, USA;Hames, B.D., and Higgins, S.G., Nucleic acid hybridization – a practical approach (1985) IRL Press, Oxford, England)。
去氧核糖核酸包含編碼股及非編碼股。本文所用之術語「5’」及「3’」是指編碼股上的位置。
術語「3' 側翼序列」表示位於核苷酸序列 3' 端 (下游;下方) 處的序列。
術語「5' 側翼序列」表示位於核苷酸序列 5' 端 (上游,上方) 處的序列。
亦必須注意,除非上下文另有明確規定,否則如本文中及隨附申請專利範圍中所使用,單數形式「一」、「一種」及「該」包括複數個提及物。因此,舉例而言,提及「一個細胞」包括複數個此類細胞及熟習此項技術者已知之其等效物,諸如此類。同樣,術語「一」 (或「一種」)、「一個或多個」及「至少一個」在本文中可互換使用。亦應注意,術語「包含」、「包括」及「具有」可互換使用。
術語「AAV 輔助功能」表示 AAV 衍生的編碼序列 (蛋白質),其可經表現以提供 AAV 基因產物及 AAV 顆粒,而 AAV 顆粒另一方面以反式作用於生產 AAV 複製及包裝。因此,AAV 輔助功能包括 AAV 開讀框 (ORF),其包括 rep 及 cap 及其他例如某些 AAV 血清型的 AAP。rep 基因表現產物已被證明具有許多功能,其中包括:識別、結合及切口 DNA 複製之 AAV 起始點;DNA解旋酶活性;及調節來自 AAV (或其他異源性) 啟動子的轉錄。cap 基因表現產物 (殼體) 提供必要的包裝功能。AAV 輔助功能用於補充 AAV 載體基因體中缺失之反式 AAV 功能。
術語「約」表示其後接著之數值 +/-20% 的範圍。在某些實施例中,術語約表示其後數值之 +/- 10% 的範圍。在某些實施例中,術語約表示其後數值之 +/- 5 % 的範圍。
術語「包含」亦包括術語「由…組成」。
術語「CAS 蛋白」表示 CRISPR 相關蛋白,其具有核糖核酸酶活性並可結合特定的 RNA 序列。
術語「CAS9」表示核酸內切酶 Cas9。此酶結合 RNA 序列 GUUUUAGAGCU(A/G)UG(C/U)UGUUUUG (crRNA 重複) (SEQ ID NO: 26) 並在那裡切割相關 DNA。
術語「Cre 重組酶」表示使用 LoxP 位點之間之類拓撲異構酶 I 機制催化位點特異性重組的酪胺酸重組酶。該酶的分子量約為 38 kDa 且由 343 個胺基酸殘基所組成。其是整合酶家族的成員。例示性的 Cre 重組酶具有以下胺基酸序列: MSNLLTVHQN LPALPVDATS DEVRKNLMDM FRDRQAFSEH TWKMLLSVCR SWAAWCKLNN RKWFPAEPED VRDYLLYLQA RGLAVKTIQQ HLGQLNMLHR RSGLPRPSDS NAVSLVMRRI RKENVDAGER AKQALAFERT DFDQVRSLME NSDRCQDIRN LAFLGIAYNT LLRIAEIARI RVKDISRTDG GRMLIHIGRT KTLVSTAGVE KALSLGVTKL VERWISVSGV ADDPNNYLFC RVRKNGVAAP SATSQLSTRA LEGIFEATHR LIYGAKDDSG QRYLAWSGHS ARVGAARDMA RAGVSIPEIM QAGGWTNVNI VMNYIRNLDS ETGAMVRLLE DGD (SEQ ID NO: 07); 且一種對應之 Cre mRNA 具有以下序列: AUGAGCAACC UGCUGACCGU GCACCAGAAC CUGCCCGCCC UGCCCGUGGA CGCCACCAGC GACGAGGUGA GGAAGAACCU GAUGGACAUG UUCAGGGACA GGCAGGCCUU CAGCGAGCAC ACCUGGAAGA UGCUGCUGAG CGUGUGCAGG AGCUGGGCCG CCUGGUGCAA GCUGAACAAC AGGAAGUGGU UCCCCGCCGA GCCCGAGGAC GUGAGGGACU ACCUGCUGUA CCUGCAGGCC AGGGGCCUGG CCGUGAAGAC CAUCCAGCAG CACCUGGGCC AGCUGAACAU GCUGCACAGG AGGAGCGGCC UGCCCAGGCC CAGCGACAGC AACGCCGUGA GCCUGGUGAU GAGGAGGAUC AGGAAGGAGA ACGUGGACGC CGGCGAGAGG GCCAAGCAGG CCCUGGCCUU CGAGAGGACC GACUUCGACC AGGUGAGGAG CCUGAUGGAG AACAGCGACA GGUGCCAGGA CAUCAGGAAC CUGGCCUUCC UGGGCAUCGC CUACAACACC CUGCUGAGGA UCGCCGAGAU CGCCAGGAUC AGGGUGAAGG ACAUCAGCAG GACCGACGGC GGCAGGAUGC UGAUCCACAU CGGCAGGACC AAGACCCUGG UGAGCACCGC CGGCGUGGAG AAGGCCCUGA GCCUGGGCGU GACCAAGCUG GUGGAGAGGU GGAUCAGCGU GAGCGGCGUG GCCGACGACC CCAACAACUA CCUGUUCUGC AGGGUGAGGA AGAACGGCGU GGCCGCCCCC AGCGCCACCA GCCAGCUGAG CACCAGGGCC CUGGAGGGCA UCUUCGAGGC CACCCACAGG CUGAUCUACG GCGCCAAGGA CGACAGCGGC CAGAGGUACC UGGCCUGGAG CGGCCACAGC GCCAGGGUGG GCGCCGCCAG GGACAUGGCC AGGGCCGGCG UGAGCAUCCC CGAGAUCAUG CAGGCCGGCG GCUGGACCAA CGUGAACAUC GUGAUGAACU ACAUCAGGAA CCUGGACAGC GAGACCGGCG CCAUGGUGAG GCUGCUGGAG GACGGCGAC (SEQ ID NO: 08) 或其具有不同密碼子用法的變異體。
術語「CRISPR」是常間回文重複序列叢集的縮寫;在固定間隔分組成短回文重複。
術語「CRISPR/CAS」表示 CRISPR 相關系統。常間回文重複序列叢集為含有多個短向重複的基因座,並提供對細菌及古細菌的後天性免疫。CRISPR 系統依靠 crRNA 及 tracrRNA 對入侵的外來 DNA 進行序列特異性靜默。存在三種類型的 CRISPR/CAS 系統:在第 II 型系統中,Cas9 作為 RNA 導引之 DNA 核酸內切酶,在 crRNA-tracrRNA 標靶識別時切割 DNA。
術語「crRNA」表示由 crRNA 重複序列及 crRNA 間隔子序列所組成的 RNA;具有特定的二級結構;crRNA 與 Cas9 結合,從而誘導 Cas9 之構象改變,從而標靶 DNA 可與 crRNA 間隔子 (與標靶 DNA 互補) 結合;經由交換 crRNA 間隔子序列,可改變標靶DNA (以靶向 DNA 互補 RNA 序列);crRNA重複由 20 個核苷酸所組成;與 PAM 模體相鄰的 12 個核苷酸對結合特異性至關重要。
術語「供體質體」表示含有供體序列的質體。
術語「供體序列」表示包含 5' 側翼序列-標靶序列-3' 側翼序列的序列。
術語「DSB」表示雙股斷裂:ZFN、TALEN 及 CRISPR/Cas9 作用的產物,雙股斷裂是 DNA 損傷的一種形式,當DNA 兩股都被切割時發生。
術語「空殼體」及「空顆粒」是指具有 AAV 蛋白殼但其全部或部分地缺乏編碼蛋白質或被轉錄成側翼為 AAV ITR 之所關注轉錄物之核酸的 AAV 顆粒,即載體。因此,空殼體不會將編碼蛋白質之核酸或被轉錄成所關注轉錄物的核酸轉移到宿主細胞中。
術語「內源」表示在細胞內天然發生的;由細胞天然地產生;同樣地「內源基因座/細胞內源基因座」是細胞中天然存在的基因座。
如本文所用,術語「外源」是指核苷酸序列並非源自特定細胞,而是藉由 DNA 遞送方法導入該細胞中,例如經由病毒載體之轉染、電穿孔或轉導方法。因此,外源核苷酸序列是人工序列,其中人造物可源自例如不同來源的子序列的組合 (例如重組酶識別序列與 SV40 啟動子和綠色螢光蛋白之編碼序列的組合為一種人工的核酸),或部分序列的缺失 (例如僅編碼膜結合受體或 cDNA 的細胞外域的序列) 或核鹼基的突變。術語「內源」是指源自細胞的核苷酸序列。「外源」核苷酸序列可具有在鹼基組成上相同的「內源」對應物,但是其中序列 (例如經由重組 DNA 技術)被導入細胞中而成為「外源」序列。
如本文所用,術語「側翼」表示位於第二核苷酸序列的 5' 或 3' 末端或兩端之第一核苷酸序列。側翼核苷酸序列可與第二核苷酸序列相鄰或相距給定之距離。除實際需要外,側翼核苷酸序列之長度無具體限制。例如,側翼序列可包含幾個鹼基對或幾千個鹼基對。術語「側翼核苷酸序列」表示在待插入序列 (=標靶序列) 之前或之後的核酸序列片段。
術語「基因座」表示基因在染色體上的位置,即基因在基因體中的位置,即基因位置。
術語「HR」表示同源重組:同源定向修復是 DSB 修復的模板依賴途徑。經由提供含有同源性之供體模板及位點特異性核酸酶,HDR 準確地將供體分子插入至標靶基因座。此種方法能夠插入單個或多個轉基因,以及單個核苷酸取代。
「分離的」組合物是指已從其自然環境之一種或多種組分中分離出來的抗體。在一些實施例中,將組合物純化至大於 95 % 或 99 % 的純度,係藉由 (例如) 電泳 (例如 SDS-PAGE、等電位聚焦 (IEF)、毛細管電泳、CE-SDS) 或層析 (例如粒徑篩析層析或離子交換或反相 HPLC) 所測定。對於例如抗體純度之審查評估方法,參見,例如,Flatman, S. 等人,J. Chrom.B 848 (2007) 79-87。
「分離的」核酸是指已從其自然環境之一種或多種組分中分離出來的核酸分子。分離的核酸包括通常包含核酸分子之細胞中所含之核酸分子,但是核酸分子存在於染色體外或與自然染色體位置不同之染色體位置。
「分離的」多肽或抗體是指已從其自然環境之一種或多種組分中分離出來的多肽分子或抗體分子。
「整合位點」表示其中被/已被插入外源核苷酸序列之細胞基因體中的核酸序列。在某些實施例中,整合位點位於細胞基因體中兩個相鄰的核苷酸之間。在某些實施例中,整合位點包括一段核苷酸。在某些實施例中,整合位點位於哺乳動物細胞基因體的特定位點。在某些實施例中,整合位點在哺乳動物細胞的內源基因中。
術語「LoxP 位點」表示長度為 34 bp 的核苷酸序列,其由末端的兩個回文 13 bp 序列 (反向重複) 組成 (分別為 ATAACTTCGTATA (SEQ ID NO: 14) 及 TATACGAAGTTAT (SEQ ID NO: 15)) 及中央 8 bp 核心 (非對稱) 間隔子序列。間隔子序列決定 LoxP 位點的方向。根據兩個 LoxP 位點彼此之相對方向及位置,介入之 DNA 被切除 (LoxP 位點朝向相同方向),或者被反向 (LoxP 位點朝向相反方向) 。術語「夾接 (floxed)」表示位於兩個 LoxP 位點之間的 DNA 序列。如果有兩個夾接序列 (即基因體中之標靶夾接序列及供體核酸中之夾接序列),則兩者序列可相互交換。此稱為「重組酶介導的卡匣交換」。
例示性的 LoxP 位點顯示在下表:
名稱 核心序列 SEQ ID NO:
LoxP ATGTATGC 16
L3 AAGTCTCC 17
L2 (反向) GCATACAT 18
LoxFas TACCTTTC 19
Lox511 ATGTATAC 20
Lox5171 ATGTGTAC 21
Lox2272 AAGTATCC 22
Loxm2 AGAAACCA 23
Loxm3 TAATACCA 24
Loxm7 AGATAGAA 25
術語「包含外源核苷酸序列之哺乳動物細胞」涵蓋已被導入一種或多種外源核酸的細胞,包括此類細胞的子代。這些細胞可作為進一步基因修飾的起點。因此,術語「包含外源核苷酸序列之哺乳動物細胞」涵蓋包含整合至該乳動物細胞基因體之基因座內單一位點之外源核苷酸序列的細胞,其中該外源核苷酸序列包含位於至少一個第一選擇標記之側翼的至少第一重組識別位點及第二重組識別位點 (這些重組識別位點為不同)。在某些實施例中,包含外源核苷酸序列之哺乳動物細胞為包含整合至該宿主細胞基因體之基因座內單一位點處之外源核苷酸序列的細胞,其中該外源核苷酸序列包含位於至少一個第一選擇標記之側翼的第一重組識別序列及第二重組識別位點,以及位於該第一重組識別序列與該第二重組識別序列之間的第三重組識別序列,且所有重組識別序列皆不相同。
「包含外源核苷酸序列之哺乳動物細胞」與「重組細胞」皆為「轉染細胞」。此術語包括原代轉染細胞及從其衍生的子代,而與繼代次數無關。例如,子代在核酸含量上可與親代細胞不完全相同,但可能含有突變。涵蓋與原始轉染之細胞具有相同功能或生物活性的突變子代。。
術語「NHEJ」表示非同源末端連接。此為一種 DSB 修復途徑,可將兩個斷裂的末端接合或連接在一起。NHEJ 不使用同源模板進行修復,因此通常會導致在斷裂位點導入小的插入及缺失,通常會造成剔除基因功能的框移。
如本文所用,術語「不相容」表示一種重組酶識別位點 (例如第一 LoxP 位點),其不與另一重組酶識別位點 (例如,舉例而言,第二 LoxP 位點) 重組,且其未共享間隔子區同源性。在某些實施例中,與另一個 LoxP 位點重組之不相容的 LoxP 位點與該另一個 LoxP 位點不具有小於 1% 的間隔子同源性,在一個較佳實施例中為 0.5% 或更少。這意味著順式連接的兩個不相容的 LoxP 位點在存在 Cre 重組酶的情況下是穩定的,即最多 1% 的位點交換,在一個較佳的實施例中為 0.5% 或更少的位點交換。
如本文所用,術語「核定位序列」表示包含帶正電荷之胺基酸殘基精胺酸或/及離胺酸之多個拷貝的胺基酸序列。包含該序列的多肽係被細胞所識別並輸入至細胞核中。例示性的核定位序列為 PKKKRKV (SEQ ID NO: 09;SV40 大 T 抗原)、KR[PAATKKAGQA]KKKK (SEQ ID NO: 10,SV40 核質蛋白)、MSRRRKANPTKLSENAKKLAKEVEN (SEQ ID NO: 11;秀麗隱桿線蟲 EGL-13)、PAAKRVKLD (SEQ ID NO: 12,人類 c-myc)、KLKIKRPVK (SEQ ID NO: 13,大腸桿菌末端利用物質蛋白)。本發明所屬技術領域中具有通常知識者可容易地鑑別其他核定位序列。
「編碼 AAV 包裝蛋白之核酸」通常是指一種或多種核酸分子,其包括提供自 AAV 載體中缺失之 AAV 功能的核苷酸序列,其係用於產生轉導潛能之重組 AAV 顆粒。編碼 AAV 包裝蛋白之核酸通常用於提供表現 AAV rep 及/或 cap 基因,以補充 AAV 複製所需之缺失的 AAV 功能;然而,核酸構建體缺乏 AAV ITR,既無法複製亦無法自行包裝。編碼 AAV 包裝蛋白之核酸可為質體、噬菌體、轉座子、黏接質體、病毒或顆粒的形式。已描述許多核酸構建體,例如常用的質體 pAAV/Ad 及 pIM29+45,其編碼 rep 及 cap 基因兩者之表現產物。參見,例如,Samulski 等人 (1989) J. Virol。 63:3822-3828;及 McCarty 等人 (1991) J. Virol. 65:2936-2945。已經描述許多編碼 rep 及/或 cap 基因表現產物的質體 (例如,US 5,139,941 及US 6,376,237)。這些編碼 AAV 包裝蛋白之核酸中的任一者皆可包含根據本發明之 DNA 元件或核酸。
術語「編碼輔助蛋白之核酸」通常是指一個或多個核酸分子,其包括編碼提供腺病毒輔助功能之蛋白及/或 RNA 分子的核苷酸序列。可將具有編碼輔助蛋白之核酸的質體轉染到合適的細胞中,其中該質體然後能夠支持在該細胞中產生 AAV 顆粒。這些編碼輔助蛋白之核酸中的任一者皆可包含根據本發明之 DNA 元件或核酸。該術語明確排除傳染性病毒顆粒,因其存在於自然界中,例如腺病毒、皰疹病毒或牛痘病毒顆粒。
如本文所用,術語「可操作地連接」係指兩個或更多個組分的並置,其中組分處於使其能夠以預期方式起作用的關係。例如,如果啟動子及/或增強子起到調節編碼序列/開讀框/基因之轉錄的作用,則該啟動子及/或該增強子可操作地連接至該編碼序列/開讀框/基因。在某些實施例中,「可操作地連接」的 DNA 序列為連續的。在某些實施例中,例如,當需要連接兩個蛋白編碼區 (例如分泌前導子及多肽) 時,序列為連續的且在相同的讀框中。在某些實施例中,可操作地連接的啟動子位於編碼序列/開讀框/基因的上游,且可與其相鄰。在某些實施例中,例如,關於調節編碼序列/開讀框/基因之表現的增強子序列,雖然兩種組分不相鄰,但可為可操作地連接。如果增強子增加編碼序列/開讀框/基因的轉錄,則增強子可操作地連接至該編碼序列/開讀框/基因。可操作地連接的增強子可位於編碼序列/開讀框/基因的上游、內部或下游,且可位於距該編碼序列/開讀框/基因之啟動子相當遠的距離。
術語「包裝蛋白」是指非 AAV 衍生之病毒及/或細胞功能,AAV 其複製依賴這些功能。因此,該術語涵蓋 AAV 複製所需的蛋白質及 RNA,包括參與 AAV 基因轉錄之活化、階段特異性 AAV mRNA 剪接、AAV DNA 複製、Cap 表現產物合成及 AAV 殼體組裝之部分。基於病毒的輔助功能可源自任何已知的輔助病毒,例如腺病毒、皰疹病毒 (單純皰疹病毒 I 型除外) 及牛痘病毒。
如本文所用,「AAV包裝蛋白」是指 AAV 衍生的序列,其在反式中用於生產性 AAV 複製具有功能。因此,AAV 包裝蛋白由主要的 AAV 開讀框 (ORF)、rep 及 cap 所編碼。rep 蛋白已被證明具有許多功能,其中包括:識別、結合及切口 DNA 複製之 AAV 起始點;DNA解旋酶活性;及調節來自 AAV (或其他異源性) 啟動子的轉錄。cap (殼體) 蛋白提供必要的包裝功能。本文所述之 AAV 包裝蛋白用於補充 AAV 載體中缺失之反式 AAV 功能。
術語「PAM 模體」表示原始間隔子相鄰模體;與原始間隔子相鄰的模體;序列NGG;在標靶 DNA 中;標靶 DNA 之切割發生在 PAM 之前的三個核苷酸。
「質體」是一種核酸或多核苷酸形式,其通常具有用於表現 (例如,轉錄、複製等) 或繁殖 (複製) 質體的附加元件。本文所用的質體亦可用於參考此類核酸或多核苷酸序列。因此,在所有態樣中,本發明之組合物及方法適用於核酸、多核苷酸以及質體,例如用於產生產生病毒 (例如,AAV) 載體的細胞,以產生病毒 (例如,AAV) 顆粒,以產生包含病毒 (例如,AAV) 顆粒等的細胞培養基。
如本文所用,術語「蛋白質化合物」表示包含至少一種多肽的異源多聚體分子,其已在哺乳動物細胞中以功能形式產生。例示性蛋白質化合物為腺相關病毒顆粒 (AAV 顆粒),其包含由殼體多肽及單股 DNA 分子形成的殼體,其為非多肽組分。
如本文所用,術語「重組細胞」表示最終基因修飾後的細胞,例如,舉例而言,表現所關注多肽或生產 rAAV 顆粒,並可用於以任何規模生產該所關注多肽或 rAAV 顆粒的細胞。例如,「包含外源核苷酸序列的哺乳動物細胞」已進行重組酶介導的盒式交換 (RMCE),從而將用於所關注多肽的編碼序列導入宿主細胞的基因體中,即為「重組細胞」。儘管細胞仍能進行進一步的 RMCE 反應,但其並不欲進行。
「重組 AAV 載體」源自病毒 (例如 AAV) 的野生型基因體,經由使用分子生物學方法從病毒 (例如 AAV) 中移除野生型基因體,將其以非天然核酸 (例如轉錄成轉錄物或編碼蛋白質的核酸) 替代。通常,對於 AAV,野生型 AAV 基因體的一個或兩個反向末端重複 (ITR) 序列保留在重組 AAV 載體中。「重組」AAV 載體與野生型病毒 AAV 基因體不同,因為病毒基因體的全部或部分已被相對於病毒基因體核酸之非天然 (即異源) 序列所替換。因此,將併入非天然序列之病毒載體 (例如,AAV) 定義為「重組」載體,其在 AAV 的情況下可稱為「rAAV 載體」。
重組載體 (例如,AAV) 序列可經包裝,在本文中稱為「顆粒」,其用於隨後在離體、體外或活體內感染細胞 (轉導)。當重組載體序列被囊裝或包裝到 AAV 顆粒中時,該顆粒亦可稱為「rAAV」。此類顆粒包括囊裝或包裝載體基因體的蛋白質。具體實例包括病毒套膜蛋白,在 AAV 的情況下,包括殼體蛋白,例如 AAV VP1、VP2 及 VP3。
「重組辨識位點」 (RRS) 是由重組酶辨識的核苷酸序列,並且對於重組酶介導的重組事件是必要及充分的。RRS 可用於定義核苷酸序列中發生重組事件的位置。
如本文所使用,術語「選擇標記」表示一種基因,其允許攜帶該基因的細胞在對應的選擇劑的存在下被特異性地選擇或排除。例如,但並非限制性地,選擇標記可允許以選擇標記基因轉化的宿主細胞在各別的選擇劑存在下 (選擇性培養條件) 被明確選擇;未轉化的宿主細胞將不能在選擇性培養條件下生長或存活。選擇標記可為陽性、陰性或雙功能選擇標記。陽性選擇標記可選擇帶有標記的細胞,而陰性選擇標記則可以選擇性排除帶有標記的細胞。選擇標記可導致藥物抗性或補償宿主細胞中之代謝或分解代謝缺陷。在原核細胞中,可使用導致對氨芐青黴素、四環素、卡那黴素或氯黴素抗性的基因。在真核細胞中用作選擇標記的抗性基因包括但不限於胺基糖苷磷酸轉移酶 (APH) (例如,潮黴素磷酸轉移酶 (HYG)、新黴素和 G418 APH)、二氫葉酸還原酶 (DHFR)、胸苷激酶 (TK)、谷胺酰胺合成酶 (GS)、天冬酰胺合成酶、色胺酸合成酶 (吲哚)、組胺醇脫氫酶 (組胺醇 D) 以及編碼對嘌呤黴素、殺稻瘟素、博萊黴素、腐草黴素、氯黴素、Zeocin 和黴酚酸的抗性的基因。更多標記基因描述於 WO 92/08796 和 WO 94/28143 中。
除了在對應的選擇劑存在下促進選擇外,選擇標記另可為通常不存在於細胞中的分子,例如綠色螢光蛋白 (GFP)、增強型 GFP (eGFP)、合成 GFP、黃色螢光蛋白 (YFP)、增強型 YFP (eYFP)、青色螢光蛋白 (CFP)、mPlum、mCherry、tdTomato、mStrawberry、J-red、DsRed-monomer、mOrange、mKO、mCitrine、Venus、YPet、Emerald、CyPet、mCFPm、Cerulean 及 T-Sapphire。表現此類分子的細胞可與不攜帶此基因的細胞區別,例如分別藉由檢測或不存在編碼的多肽所發出的螢光。
如本文所用,術語「血清型」是基於不同血清學之 AAV 殼體的區別。血清學獨特性是根據抗體對一個 AAV 與另一個 AAV 之間缺乏交叉反應性所確定。此種交叉反應性之差異通常是由於殼體蛋白序列/抗原決定基之差異 (例如,由於 AAV 血清型之 VP1、VP2 及/或 VP3 序列差異)。雖然包括殼體變異體之 AAV 變異體可能在血清學上與參考 AAV 或其他 AAV 血清型沒有差異,但與參考或其他 AAV 血清型相比,其有至少一個核苷酸或胺基酸殘基不同。
在傳統定義下,血清型代表所關注病毒已針對所有存在及特徵血清型之特異性血清進行中和活性測試,且未發現中和所關注病毒的抗體。隨著發現更多天然病毒分離株及/或產生殼體突變體,與目前存在之任何血清型可能存在或不存在血清學差異。因此,在新病毒 (例如 AAV) 不具血清學差異的情況下,此種新病毒 (例如 AAV) 為相應血清型的亞組或變異體。在許多情況下,尚未對具有殼體序列修飾之突變病毒進行中和活性的血清學測試以確定其是否屬於根據傳統血清型定義的另一種血清型。因此,為方便及避免重複,術語「血清型」泛指血清學上不同的病毒 (例如 AAV) 以及血清學上不明顯的病毒 (例如 AAV) ,其可為在亞組內或給定血清型的變異體。
術語「sgRNA」表示單一導引 RNA;含有 crRNA 及 tracerRNA 的單一 RNA 股。
術語「TALEN」表示類轉錄活化因子效應子核酸酶。其為 FokI 切割域及源自 TALE 蛋白之 DNA 結合域的融合。TALE 含有多個 33-35 個胺基酸重複域,其每者識別單鹼基對。與 ZFN 一樣,TALEN 誘導靶向 DSB,活化 DNA 損傷反應途徑而達成定制改變。
術語「tracrRNA」表示反式作用的 CRISPR RNA;非編碼RNA;與 crRNA 部分互補;形成 RNA 雙股螺旋;促進 crRNA 加工;經由 RNase III 活化;結合標靶 DNA;核酸內切酶在結合位點附近作用切割;為經由 CAS9 活化 RNA 導引之切割所需的。
術語「轉導」及「轉染」是指將分子如核酸 (病毒載體、質體) 導入至細胞中。當外源核酸已被導入至細胞膜內時,則細胞已被「轉導」或「轉染」。因此,「轉導細胞」是「核酸」或「多核苷酸」已被導入其中的細胞,或其已導入外源核酸的子代。在特定實施例中,「轉導」細胞 (例如,在哺乳動物中,諸如細胞或組織或器官細胞) 在併入外源分子例如核酸 (例如轉基因) 後,具有基因變化。「轉導」細胞可繁殖且轉錄導入之核酸及/或表現蛋白質。
在「轉導」或「轉染」細胞中,核酸 (病毒載體、質體) 可或可不整合到基因體核酸中。如果導入之核酸整合到受體細胞或生物體的核酸 (基因體 DNA) 中,則其可在該細胞或生物體中穩定地維持,並進一步遞送給受體細胞或生物體之子代細胞或生物體或由其遺傳。最後,導入的核酸可存在於受體細胞或宿主生物體中之染色體外或僅暫態地存在。有許多已知的技術,參見例如 Graham 等人,(1973) Virology, 52:456; Sambrook 等人,(1989) Molecular Cloning, a laboratory manual, Cold Spring Harbor Laboratories, New York;Davis 等人,(1986) Basic Methods in Molecular Biology, Elsevier;及 Chu 等人,(1981) Gene 13:197。此類技術可用於將一種或多種外源 DNA 部分導入到合適的宿主細胞。
如本文所用,術語「轉基因」方便地指所欲或已被導入到細胞或生物體的核酸。轉基因包括任何核酸,例如被轉錄成轉錄物或其編碼多肽或蛋白質的基因。
「載體」是指重組質體序列的一部分,最終直接的或以單股或 RNA 的形式包裝或囊裝,以形成病毒 (例如 AAV) 顆粒。在重組質體用於構建或製備重組病毒顆粒的情況下,病毒顆粒不包括未對應該重組質體之載體序列的「質體」部分。重組質體之此非載體部分被稱為「質體骨架」,其對質體的選殖及擴增很重要,其為繁殖及重組病毒生產所需的過程,但本身並不包裝或囊裝到病毒 (例如,AAV) 顆粒中。因此,「載體」是指被病毒顆粒 (例如,AAV) 包裝或囊裝的核酸。
術語「ZFN」表示鋅指核酸酶。其為來自 FokI 限制內切核酸酶之非特異性 DNA 切割域與鋅指蛋白的融合。ZFN 二聚體誘導靶向 DNA DSB,刺激 DNA 損傷反應途徑。經設計之鋅指結構域的結合特異性將 ZFN 導引到特定的基因體位點。
術語「ZF 切口酶」表示鋅指切口酶。這些 ZFN 在兩個 FokI 切割域之一個中包含不活化突變。ZF 切口酶僅使單股 DNA 斷裂並誘導 HDR,而不會活化誘變 NHEJ 途徑。 基因編輯方法
在過去的數十年裡,已發展出能夠在多種細胞類型及生物體中操縱幾乎任何基因的方法。此種技術通常被稱為「基因體編輯」。 核酸酶
進行基因體編輯的一種方法是基於使用經工程化核酸酶。其由與非特異性 DNA 切割模塊融合之序列特異性 DNA 結合域所組成。此種嵌合核酸酶經由誘導靶向 DNA 雙股斷裂 (DSB) 來達成有效及精準的基因修飾,該等斷裂刺激細胞 DNA 修復機制,包括易錯非同源末端連接 (NHEJ) 及同源定向修復 (HR)。這些方法的多功能性源自於定制化 DNA 結合域以識別幾乎任何序列的能力。
因此,執行基因改變的能力在很大程度上取決於經設計蛋白質的 DNA 結合特異性及親和力 (Gaj, T. 等人,Trends Biotechnol. 31 (2013) 397-405)。
靶向核酸置換經由染色體核酸序列與外源供體核酸序列位點特異性核酸交換之間的同源重組而導入。進行定向基因改變通常稱為「基因靶向」 (參見,例如 Carroll, D.,Genetics, 188 (2011) 773-782)。
鋅指核酸酶 (ZFN) 及類轉錄活化因子效應子核酸酶 (TALEN) 以及 CRISPR/CAS 代表用於靶向替換核酸的工具。常間回文重複序列叢集 (CRISPR)/基於 CAS 之 RNA 導引之 DNA 核酸內切酶依賴對 DNA 進行序列特異性修飾的 crRNA 及 tracrRNA。存在三種類型的 CRISPR/CAS 系統。例如,在第 II 型系統中,CAS9 作為 RNA 導引之 DNA 核酸內切酶,在 crRNA-tracrRNA 標靶識別時切割 DNA。
經由共同遞送位點特異性核酸酶與帶有基因座特異性同源臂之供體質體,單一或多個轉基因 (即包含表現卡匣的外源核酸) 可有效地整合到染色體標靶基因座中。經由協調核酸酶介導之供體 DNA 裂解與染色體靶標,已可經由 NHEJ 介導的接合將大型轉基因 (高達 14 kbps) 導入至各種內源基因座中 (Gaj, T. 等人,Trends Biotechnol. 31 (2013) 397-405)。
如果提供雙股 DNA「供體模板」,則核酸酶誘導之 DSB 的 HR 可用於在斷裂位點或附近導入精確的核酸置換或插入高達 7.6 kbps。寡核苷酸可與 ZFN 一起使用,以導入精確的改變、小型插入及大型刪除。ZFN 已被用於導入 NHEJ 或 HR 介導的基因改變 (Joung, J.K. 及 Sander, J.D.,Nat. Rev. Mol. Cell Biol. 14 (2013) 49-55)。
通常,核酸酶編碼基因經由質體 DNA、病毒載體或活體外轉錄之 mRNA 遞送到細胞中。可經由電穿孔或基於陽離子脂質的試劑進行質體 DNA 或 mRNA 的轉染。整合酶缺陷型慢病毒載體 (IDLV) 可用於將核酸酶遞送到抗轉染細胞類型中。AAV 亦可用於遞送核酸酶。 鋅指核酸酶 (ZFN)
鋅指核酸酶將 FokI 內切核酸酶之非特異性切割結構域 (N) 與鋅指蛋白 (ZFP) 結合,提供一種在基因體中導入位點特異性雙股斷裂 (DSB) 的一般方法。
鋅指 (ZF) 模體之模塊化結構及 ZF 域之模塊化識別使其成為用於設計人工 DNA 結合蛋白的多功能性 DNA 識別模體。每個 ZF 模體由大約 30 個胺基酸所組成並折疊成 ßßa 結構,該結構經由藉由保守之 Cys2His2 殘基螯合鋅離子而穩定。ZF 模體經由將 a 螺旋插入至 DNA 雙螺旋的主溝中來結合 DNA。每個指主要與 DNA 受質內的三聯體結合。相對於每個 ZF 模體之 a-螺旋起點之位置 -1、+1、+2、+3、+4、+5 及 +6 處的關鍵胺基酸殘基係負責與 DNA 位點之大部分序列特異性交互作用。可改變這些胺基酸,同時將剩餘的胺基酸保持為共有骨架,以生成具有不同三聯體序列特異性的 ZF 模體。經由串聯連接數個這些 ZF 模體以形成 ZFP,可達成與較長 DNA 序列的結合。經設計之 ZFP 提供一種強力技術,因其他功能如非特異性 FokI 切割域 (N)、轉錄活化域 (A)、轉錄抑制域 (R) 及甲基化酶 (M)可分別與 ZFP 融合以形成 ZFN,鋅指轉錄活化因子 (ZFA)、鋅指轉錄抑制因子 (ZFR) 及鋅指甲基化酶 (ZFM)。
FokI 限制內切酶為一種細菌型 IIS 限制內切核酸酶,識別雙股 DNA 中的非回文五去氧核糖核苷酸 5'-GGATG-3':5'-CATCC-3' (SEQ ID NO: 27) 並切割識別位點下游 9/13 nt。Durai 等人建議可將 FokI 識別域與其他天然存在的 DNA 結合蛋白交換,該 DNA 結合蛋白識別較長之 DNA 序列或其他經設計之 DNA 結合模體以創建嵌合核酸酶 (Durai, S. 等人,Nucl. Acids Res. 33 (2005) 5978-5990)。
FokI 核酸酶以作為二聚體發揮作用,因此必須針對每個標靶位點設計兩個鋅指陣列。使用必要異二聚體 FokI 結構域減少不需要之同二聚物種的形成,因此具有改良之特異性 (Joung, J.K. 及 Sander, J.D.,Nat. Rev. Mol. Cell Biol. 14 (2013) 49-55)。因此,ZFN 標靶位點由被 FokI 切割域識別之 5 至 7 bp 間隔子序列所隔開之兩個鋅指結合位點所組成 (Gaj, T. 等人,Trends Biotechnol. 31 (2013) 397-405)。 類轉錄活化因子效應子核酸酶 (TALEN)
將植物病原性黃單胞菌屬 (Xanthomonas spp.) 的類轉錄活化因子 (TAL) 效應子與FokI 核酸酶融合可得 TALEN。其成對地結合並切割 DNA。結合特異性係由 TAL 效應子中多型性胺基酸重複之可定制陣列所決定。
TAL 效應子 (TALE) 進入細胞核,結合至宿主基因啟動子中之效應子特異性序列,並活化轉錄。其靶向特異性係由串聯之中心結構域所決定,串聯之中心結構域為 33-35 個胺基酸重複,然後為 20 個胺基酸之單一截短重複。自然存在的識別位點之前有 TAL 效應子活性所需的 T (Cermak, T. 等人,Nucl. Acids Res. 39 (2011) e82)。
TALE 特異性係由被稱為重複可變雙殘基 (RVD) 的兩個高度變異胺基酸所決定。與鋅指一樣,模塊化 TALE 重複係連接在一起,以識別連續之 DNA 序列 (Gaj, T. 等人,Trends Biotechnol. 31 (2013) 397-405)。
TAL 效應子可與 FokI 核酸酶之催化結構域融合,以在活體內產生用於基因體編輯的靶向 DNA 雙股斷裂 (DSB)。由於 FokI 裂解為二聚體,因此這些 TAL 效應子核酸酶 (TALEN) 成對地起作用,結合跨間隔子之相反的靶標,其中 FokI 結構域在間隔子上聚集在一起以產生斷裂。幾乎所有細胞中的 DSB 都經由兩個高度保守的過程之一者進行修復,即非同源末端連接 (NHEJ) 及同源重組 (HR),其可用於基因插入或替換。
TALEN 或 TAL 效應子構建體的組裝涉及兩個步驟:(i) 將重複模塊組裝成 1-10 個重複之中間陣列及 (ii) 將中間陣列連接到骨架中以製備最終構建體 (Cermak, T. 等人,Nucl. Acids Res. 39 (2011) e82)。
TALEN 標靶位點由具不同長度 (12-20 bp) 之間隔子序列所隔開之兩個 TALE 結合位點所組成 (Gaj, T. 等人,Trends Biotechnol. 31 (2013) 397-405)。
對於典型的異二聚體標靶位點 (即,通常出現在天然 DNA 序列中),配對之 TALEN 構建體一起轉染到標靶細胞中。
使用合適之限制內切核酸酶將針對標靶核酸之一對 TALEN 中之一者次選殖到哺乳動物表現質體中。按照製造商的方案,使用 LipofectAmine 2000 (Invitrogen) 經由轉染將所得質體導入至標靶細胞。轉染後 72 小時收集細胞 (Cermak, T. 等人,Nucl. Acids Res. 39 (2011) e82)。 常間回文重複序列叢集 (CRISPR)/CRISPR 相關蛋白 9 (CRISPR/CAS9)
天然存在之 CRISPR/CAS II 型系統已發展成為針對真核細胞之強力基因編輯工具。特別是證明 crRNA 及 tracrRNA 可組合成單一導引 RNA (sgRNA) 為此發展鋪路。Cas9 在 DNA 中產生單一雙股斷裂。該方法利用在真核細胞中之 DNA 修復途徑,提供兩種進行基因改變的方法。第一種依賴於的非同源末端連接 (NHEJ),其連接切割端。在第二種方法,同源定向修復 (HDR) 係用於使用與另一段與標靶具有同源性之 DNA 而修復受損的等位基因。經由提供可經由重組插入之 DNA 元件,可達成任何類型的插入、缺失或序列改變 (Rath, D. 等人,Biochim.117 (2015) 119-128)。
在第 II 型 CRISPR/CAS 系統中,外來 DNA 之短片段 (稱為「間隔子」) 被整合到 CRISPR 基因體基因座內,並轉錄且加工成短 CRISPR RNA (crRNA)。這些 crRNA 與反式活化之 crRNA (tracrRNA) 黏合,並經由 CAS 蛋白直接序列特異性切割及靜默病原性 DNA。已顯示,Cas9 蛋白之標靶識別需要 crRNA 內的「種子」序列及 crRNA 結合區上游之保守之含有二核苷酸之原始間隔子相鄰模體 (PAM) 序列。CRISPR/CAS 系統已被證明可經由共同遞送表現 Cas9 內切核酸酶及必要 crRNA 組分之質體直接移至人類細胞中 (Gaj, T. 等人,Trends Biotechnol. 31 (2013) 397 -405)。 重組細胞株生成
通常,對於有效及大規模生產所關注蛋白質化合物 (例如對於 rAAV 顆粒或治療性多肽),需穩定表現且如果可能亦分泌該蛋白質化合物的細胞。此種細胞被稱為「重組細胞」或「重組生產細胞」。產生此種重組細胞的過程稱為「細胞株開發」 (CLD)。
在第一步中,將編碼所關注蛋白質化合物之所需核酸序列轉染合適的宿主細胞。可能需要轉染額外的輔助多肽。在第二步中,選擇穩定表現所關注蛋白質化合物的細胞。此可例如基於共表現選擇標記的來達成,該選擇標記已與編碼所關注蛋白質化合物之核酸序列共轉染,或者為蛋白質化合物本身之表現。
為表現編碼序列 (即開讀框),需額外的調控元件,諸如啟動子及多腺苷酸化訊號 (序列)。因此,開讀框可操作地連接至額外的轉錄調控元件。此可經由將其整合到所謂的表現卡匣中來達成。表現卡匣在哺乳動物細胞中具有功能而所需的最小調控元件為在該哺乳動物細胞中具有功能的啟動子,其位於開讀框的上游 (即 5'),以及在該哺乳動物細胞中具有功能的多腺苷酸化訊號序列,其位於開讀框的下游 (即 3')。此外,終止子序列可能存在於多腺苷酸化訊號 (序列) 的 3' 端。為達到表現,啟動子、開讀框/編碼區及多腺苷酸化訊號序列須以可操作地連接的形式排列。
同樣地,被轉錄成非蛋白質編碼 RNA 的核酸稱為「RNA 基因」。對於 RNA 基因的表現,亦需要額外的調控元件,諸如啟動子及轉錄終止訊號或多腺苷酸化訊號 (序列)。這些元件的性質及定位取決於所欲驅動表現 RNA 基因的 RNA 聚合酶。因此,RNA 基因通常亦被整合到表現卡匣中。
如果所關注蛋白質化合物是由不同 (單體) 多肽組成的異源多聚體多肽,則不僅需要單一表現卡匣,且需要每個不同多肽之一個表現卡匣,即開讀框/編碼序列,以及 RNA 基因 (如果存在)。這些表現卡匣至少在含有之開讀框/編碼序列為不同,但在啟動子及/或多腺苷酸化訊號序列態樣亦可能不同。
例如,如果所關注蛋白質化合物為全長抗體 (其包含兩個輕鏈拷貝及兩個重鏈拷貝的異源多聚體多肽),則需要兩種不同的表現卡匣,一種用於輕鏈而一種用於重鏈。例如,如果全長抗體為雙特異性抗體 (即,包含特異性結合至兩種不同抗原之兩種不同結合位點的抗體),則每條輕鏈以及每條重鏈亦彼此不同。因此,雙特異性全長抗體由四種不同的多肽組成,因此需要包含編碼四種不同多肽之四種不同開讀框的四種表現卡匣。
如果所關注蛋白質化合物為 AAV 顆粒 (它由不同的 (單體) 多肽及單股 DNA 分子組成,且亦需要其他輔助因子來生產及囊裝),則需要許多表現卡匣,其包含之開讀框/編碼序列是不同的。在此種情況下,至少需要用於所需輔助功能以及VA RNA 之每個轉基因的表現卡匣,形成AAV 載體之殼體的不同多肽。因此,每個輔助 E1A、E1B、E2A、E4orf6、VA RNA、rep 及 cap 基因都需要單獨的表現卡匣。
如前幾段所述,所關注蛋白質化合物越複雜或所需之額外輔助多肽及/或 RNA 的數量分別越多,則所需之不同表現卡匣的數量就越多。本質上隨著表現卡匣的數量增加,整合到宿主細胞基因體中的核酸的大小也會增加。然而,可轉移之核酸大小實際上有上限,其為約 15 kbps (千鹼基對) 之範圍。超過這個限度,處理及加工效率將大幅降低。此問題可藉由使用兩個或多個分開之核酸來解決。因此,不同的表現卡匣被分配給不同的核酸,由此每個核酸僅包含一些表現卡匣。
對於細胞株開發,可使用攜帶所關注蛋白質化合物之表現卡匣之核酸的隨機整合 (RI)。通常,經由使用 RI,核酸或其片段會隨機整合到宿主細胞的基因體中。
或者,對於 RI,靶向整合 (TI) 可用於 CLD。在 TI CLD 中,一種或多種包含不同表現卡匣的核酸被導入至宿主細胞基因體中的預定基因座。
在 TI 中,同源重組或重組酶介導的卡匣交換反應 (RMCE) 可用於將包含對應表現卡匣之核酸 (a) 整合到 TI 宿主細胞基因體中的特定基因座中。
在某些實施例中,提供一種將單一去氧核糖核酸靶向整合到 (宿主) 哺乳動物細胞之基因體中的方法 (即一種用於產生重組哺乳動物細胞的方法),該細胞隨後包含編碼蛋白質化合物之核酸且隨後產生該蛋白質化合物,其包含以下步驟: a)   提供哺乳動物細胞,其包含整合在該哺乳動物細胞基因體之基因座內的給定 (視情況地單一) 位點的外源核苷酸序列,其中該外源核苷酸序列包含位於至少一個第一選擇標記側翼的第一重組序列及第二重組序列,其中所有重組序列皆不相同或/及不相容的 (即,其不會造成交叉交換反應); b)  將 a) 中提供之包含兩種不同重組序列及一到八種表現卡匣之去氧核糖核酸導入至該哺乳動物細胞,其中 該去氧核糖核酸自 5'- 至 3'- 方向 (按以下順序) 包含: -    第一重組序列, -    一到八個表現卡匣,其中一種表現卡匣編碼一個第二選擇標記,及 -    第二重組序列, 其中該去氧核糖核酸之該第一重組序列及該第二重組序列與整合之外源核苷酸序列上之該第一重組序列及該第二重組序列相匹配; c)   視情況地在步驟 b) 中獲得之該哺乳動物細胞中導入或活化對該第一重組序列及第二重組序列具有功能的重組酶 (使介於該第一重組序列與第二重組序列之間之該外源核苷酸序列的部分與介於該第一重組序列與第二重組序列之間之該去氧核糖核酸酸的部分進行交換,從而將後者整合到該哺乳動物細胞的基因體中); d)  視情況地選擇表現該第二選擇標記並產生由導入之去氧核糖核酸所編碼之該蛋白質化合物的細胞, 從而產生包含編碼蛋白質化合物之核酸並產生該蛋白質化合物的重組哺乳動物細胞。
在某些實施例中,提供一種將兩種氧核糖核酸同時靶向整合到 (宿主) 哺乳動物細胞之基因體中的方法 (即一種用於產生重組哺乳動物細胞的方法),該細胞包含編碼蛋白質化合物之核酸且其視情況地表現該蛋白質化合物,其包含以下步驟: a)   提供哺乳動物細胞,其包含整合在該哺乳動物細胞基因體之基因座內的給定 (視情況地單一) 位點的外源核苷酸序列,其中該外源核苷酸序列包含位於至少一個第一選擇標記側翼的第一重組序列及第二重組序列,以及位於該第一重組序列與該第二重組序列之間的第三重組序列,且所有重組序列皆不相同或/及不相容的 (即,其不會造成交叉交換反應); b)  將 a) 中提供之包含三種不同重組序列及一到八種表現卡匣之去氧核糖核酸導入至該細胞,其中 該第一去氧核糖核酸自 5'- 至 3'- 方向 (按以下順序) 包含: -    第一重組序列, -    一種或多種 (在一個較佳實施例中,多達四種) 表現卡匣, -    編碼一種第二選擇標記之表現卡匣的 5'-末端部分,及 -    第三重組序列的第一拷貝, 且 該第二去氧核糖核酸自 5'- 至 3'- 方向 (按以下順序) 包含: -    該第三重組序列的第二拷貝, -    編碼該第二選擇標記之表現卡匣的 3'-末端部分, -    一種或多種 (在一個較佳實施例中,多達四種) 表現卡匣,且 -    第二重組序列, 其中該第一去氧核糖核酸及第二去氧核糖核酸之該第一重組序列至第三重組序列與整合之外源核苷酸序列上之該第一重組序列至第三重組序列相匹配, 其中編碼該第二選擇標記之表現卡匣的 5'- 末端部分及 3'- 末端部分一起形成該第二選擇標記的功能性表現卡匣; c)   視情況地在步驟 b) 中獲得之該哺乳動物細胞中導入或活化對該第一重組序列、第二重組序列及第三重組序列具有功能的重組酶 (使介於該第一重組序列與第三重組序列之間之該外源核苷酸序列的部分及介於該第三重組序列與第二重組序列之間的部分與介於該第一重組序列與第三重組序列及該第三重組序列與第二重組序列之間之該去氧核糖核酸酸的部分進行交換,從而將後者整合到該哺乳動物細胞的基因體中); d)  視情況地選擇表現該第二選擇標記並視情況地產生由導入之去氧核糖核酸所編碼之該蛋白質產物的細胞, 從而產生包含編碼該蛋白質化合物之核酸的重組哺乳動物細胞。
為增加選擇壓力,第一選擇標記為負選擇標記,例如在某些實施例中,為來自單純皰疹病毒的胸苷激酶 (使細胞對胸苷類似物敏感,例如 5-碘-2'-氟-2'-去氧-1-β-D-阿拉伯-呋喃糖尿嘧啶 (FIAU) 或更昔洛韋 (ganciclovir)) 或來自白喉棒狀桿菌的白喉毒素片段 A (經由抑制蛋白質合成引起毒性;例如經由白喉毒素 A 片段基因之由磷酸甘油酸激酶啟動子 (PGK) 所驅動表現)。在交換導入之去氧核糖核酸的期間,移除負選擇標記。此允許區分出正確的靶向整合及不正確的隨機整合。
在所有態樣及實施例的某些實施例中,每個表現卡匣自 5'- 到 3' 方向包含啟動子、開讀框/編碼序列或 RNA 基因及多腺苷酸化訊號序列及/或終止子序列。在某些實施例中,開讀框編碼多肽,且表現卡匣包含具有或不具有額外終止子序列的多腺苷酸化訊號序列。在某些實施例中,表現卡匣包含 RNA 基因,啟動子為第 2 型 Pol III 啟動子且存在多腺苷酸化訊號序列或 polyU 終止子。參見,例如,Song 等人,Biochemical and Biophysical Research Communications 323 (2004) 573–578。在某些實施例中,表現卡匣包含RNA 基因,啟動子為第 2 型 Pol III 啟動子及 polyU 終止子序列。
在所有態樣及實施例的某些實施例中,開讀框編碼多肽,啟動子為具有或不具有內含子 A 的人類 CMV 啟動子,多腺苷酸化訊號序列為 bGH (牛生長激素) polyA 訊號序列且終止子為 hGT (人類胃泌素終止子)。
在所有態樣及實施例的某些實施例中,啟動子為具有內含子A的人類 CMV 啟動子,多腺苷酸化訊號序列為 bGH 多腺苷酸化訊號序列且終止子為 hGT,除了 RNA 基因之表現卡匣及選擇標記之表現卡匣,其中對於選擇標記,啟動子為 SV40 啟動子,且多腺苷酸化訊號序列為 SV40 多腺苷酸化訊號序列,且不存在終止子,且其中對於 RNA 基因,啟動子為野生型第 2 型聚合酶 III 啟動子且終止子為聚合酶 II 或 III 終止子。
在所有先前態樣及實施例的某些實施例中,人類 CMV 啟動子具有 SEQ ID NO: 28 之序列。在某些實施例中,人類 CMV 啟動子具有 SEQ ID NO: 29 之序列。在某些實施例中,人類 CMV 啟動子具有 SEQ ID NO: 30 之序列。
在所有先前態樣及實施例的某些實施例中,bGH 多腺苷酸化訊號序列為 SEQ ID NO: 31。
在所有先前態樣及實施例的某些實施例中,hGT 具有 SEQ ID NO: 32 之序列。
在所有先前態樣及實施例的某些實施例中,SV40 啟動子具有 SEQ ID NO: 33 之序列。
在所有先前態樣及實施例的某些實施例中,SV40 多腺苷酸化訊號序列為 SEQ ID NO: 34。
須指出,本發明不涵蓋包含腺病毒基因功能 E1A 及 E1B 之核酸序列及伴隨地 SV40 大 T 抗原或艾司坦-巴爾病毒 (EBV) 核抗原 1 (EBNA-1) 之核酸序列的永久性人類細胞株。 同源重組
在某些實施例中,靶向整合由同源重組介導。
經由同源重組之靶向整合為本領域的成熟技術。例如,30 多年以來,同源重組已被用於以位點特異性方式在鼠胚胎幹細胞中導入特定的基因修飾 (Doetschman, T. 等人,Nature 330 (1987) 576-578;Thomas, K.R. 及 Capecchi, M.R.,Cell 51 (1987) 503-512;Thompson, S. 等人,Cell 56 (1989) 313-321;Zijlstra, M. 等人,Nature 342 (1989) 435-438;Bouabe, H. 及 Okkenhaug, K.,Meth. Mol. Biol. 1064 (2013) 315-336)。
在使用同源重組進行靶向整合的情況下,重組序列為與外源核酸序列同源的序列,而稱為「同源臂」。在此情況下,導入宿主細胞之去氧核糖核酸包含作為第一重組序列之與外源核酸序列 (即安放位點) 之 5' (上游) 序列同源的序列,以及作為第二重組序列之與外源核酸序列之 3' (下游) 序列同源的序列。通常,靶向整合頻率隨著同源臂的長度及同基因性而增加。理想情況下,同源臂源自從對應宿主細胞所製備的基因體 DNA。 核酸酶
在某些實施例中,靶向整合是經由位點特異性核酸酶介導的同源重組。
在某些實施例中,位點特異性核酸酶係選自鋅指核酸酶 (ZFN)、類轉錄活化因子效應核酸酶 (TALEN) 及常間回文重複序列叢集 (CRISPR)/CRISPR 相關蛋白 9 核酸酶 (Cas9) 系統。
核酸酶編碼基因經由質體 DNA、病毒載體或活體外轉錄之 mRNA 遞送到細胞中。可經由電穿孔或基於陽離子脂質的試劑進行質體 DNA 或 mRNA 的轉染。整合酶缺陷型慢病毒載體可用於將核酸酶遞送到抗轉染細胞類型中。AAV 載體亦可用於核酸酶遞送。 重組酶
重組系統,如 Cre/LoxP 或 Flp/FRT,可用於交換不同核酸分子之間的部分核酸序列,從核酸分子中切除核酸片段,或在核酸分子內部的反轉。使用單一開/關事件,重組酶作用的結果可是永久性,其可持續一段給定但有限的時間,且其可對特定之細胞類型或組織進行調整。 Flp 重組酶
Flp/FRT 位點特異性重組系統涉及經由重組酶翻轉酶 (Flp) 對翻轉酶識別標靶 (FRT) 位點之間的序列進行重組。翻轉酶源自釀酒酵母 (Saccharomyces cerevisiae)。Flp 的序列可例如自 UniProt P03870 獲取。34 bp FRT 位點具有 GAAGTTCCTATTCtctagaaaGAATAGGAACTTC (SEQ ID NO: 36;中心間隔子為小寫字母) 之序列,其中 Flp 重組酶與位於 8 bp 中央間隔子序列之側翼之 GAAGTTCCTATTC (順向 SEQ ID NO: 37;逆向 SEQ ID NO: 38) 的反向 13 bp 重複結合。
例示性 FRT 位點顯示在下表中 (參見 Branda 及 Dymecki,Dev.Cell 6 (2004) 7-28):
名稱 間隔子序列 SEQ ID NO:
野生型 TCTAGAAA 39
F3 TTCAAATA 40
F5 TTCAAAAG 41
Cre 重組酶
Cre/LoxP 位點特異性重組體系已廣泛用於許多生物學實驗系統中。Cre 重組酶是一種 38 kDa 位點特異性 DNA 重組酶,其可識別 34 bp LoxP 序列。Cre 重組酶源自噬菌體 P1,且屬於酪胺酸家族位點特異性重組酶。Cre 重組酶可以介導 LoxP 序列之間的分子內和分子間重組。標準 LoxP 序列由側翼為兩個 13 bp 的反向重複之 8 bp 非回文間隔子組成。Cre 重組酶與 13 bp 重複結合,從而介導 8 bp 間隔子序列內的重組。Cre-LoxP 介導的重組高效發生,且無需其他宿主因子。如果將兩個 LoxP 序列以相同的方向置於同一核苷酸序列上,則 Cre 重組酶介導的重組將切除位於兩個 LoxP 序列之間的 -DNA 序列,使其成為共價閉合環。如果兩個 LoxP 序列位於同一核苷酸序列之彼此反向/互逆方向位置上,則 Cre 重組酶介導的重組將反轉位於兩個 LoxP 序列之間的 DNA 序列的方向。如果兩個 LoxP 序列位於兩個不同 DNA 分子上,且如果一個 DNA 分子是環狀,則 Cre 重組酶介導的重組將導致環狀 DNA 序列的整合。
Cre 重組酶可用任何已知的方法導入細胞或在細胞內活化。例如,使用基於脂質體的基因遞送 (WO 93/24640;Mannino 及 Gould-Fogerite,BioTechniques 6 (1988) 682-691;US 5,279,833;WO 91/06309;Feigner 等人,Proc.Scil. Nat . USA 84 (9871) 7413-7414),或病毒載體,例如乳頭狀瘤病毒、反轉錄病毒及腺相關病毒載體 (例如,Berns 等,Ann. NY Acad. Sci. 772 (1995) 95-104;Ali 等人,Gene Ther. 1 (1994) 367-384;Haddada 等人,Curr. Top.Microbiol. Immunol. 199 (1995) 297-306;Buchscher 等人,J. Virol. 66 (1992) 2731-2739;Johann 等人,J. Virol. 66 (1992) 1635-1640;Sommerfelt 等人,Virol. 176 (1990) 58-59;Wilson 等人,J. Virol. 63 (1989) 2374-2378;Miller 等人,J. Virol. 65 (1991) 2220-2224;WO 94/26877;Rosenburg 及 Fauci,Fundamental Immunology, Third Edition Paul (ed.) Raven Press, Ltd., New York (1993) 及其中的參考文獻;West 等人,Virology 160 (1987) 38-47;US 4,797,368;WO 93/24641;Kotin, Human Gene Therapy 5 (1994) 793-801;Muzyczka, J. Clin. Invest. 94 (1994) 1351;US 5,173,414;Tratschin 等人,Mol. Cell. Biol. 5 (1985) 3251-3260;Tratschin 等人,Mol. Cell. Biol. 4 (1984) 2072-2081;Hermonat and Muzyczka, Proc. Natl. Acad. Sci. USA 81 (1984) 6466-6470;Samulski 等人,J. Virol. 63 (1989) 3822-3828)。
例如,Li, X. 等人已描述一種表現 Cre 重組酶的血清型 2 之重組 AAV 載體 (PLOS ONE 7 (2012) e50063) 及 Scammell, E. 等人 (J. Neurosci. 23 (2003) 5762 – 5770)。使用此種 rAAV-Cre 可誘導標靶 LoxP 位點之非常完整的重組。對於基於 rAAV 載體的遞送,另見 Muzyczka,Curr. Top.Microbiol. Immunol. 158 (1992) 97-129;US 4,797,368;WO 91/18088;Samulski,Current Opinion in Genetic and Development 3 (1993) 74-80。
例如,可使用 Cre 重組酶表現質體。
例如,可使用 Cre 重組酶編碼 mRNA。
許多功能性 LoxP 位點為已知的,例如,舉例而言,Lox511、Lox66、Lox11、Lox76、Lox75、Lox43、Lox44 (參見,例如 Hoess, R. 等人,Nucl. Acids Res. 14 (1986) 2287-2300;Albert, H. 等人,Plant J. 7 (1995) 649-659)。
例如,如果使用 Cre 重組酶,則要交換的序列係由基因體中以及供體核酸中兩個 LoxP 位點的位置所定義。這些 LoxP 位點被 Cre 重組酶識別。無須其他要件,即無需 ATP 等。
Cre/LoxP 系統在不同的細胞類型中運行,如哺乳動物、植物、細菌及酵母菌。 使用重組酶的靶向整合
在某些實施例中,靶向整合係經由重組酶介導的卡匣交換反應 (RMCE)。
RMCE 為一種酵素性過程,其中基因體中整合位點處的序列被交換成供體核酸。任何重組酶均可用於此過程,例如 Cre 重組酶、Flp 重組酶、Bxb1 整合酶、pSR1 重組酶或 φC31 整合酶。
一種特定的 TI 方法為雙重組酶介導的卡匣交換 (雙 RMCE)。
雙 RMCE 是一種生產重組哺乳動物細胞的方法,該細胞包含編碼所關注蛋白質化合物的去氧核糖核酸,經由重組酶介導將兩種核酸序列導入至宿主細胞基因體的單一基因座。整合後,兩個核酸序列係彼此可操作地連接。
例如,但並非限制性地,整合的外源核苷酸序列 (即 TI 安放位點) 可包含兩個重組識別位點 (RRS),而 (供體) 核酸序列包含與整合之外源核苷酸序列上之 RRS 相匹配的兩個 RRS。此種單質體 RMCE 策略允許經由在一對 RRS 之間之相應序列中併入適當數量之表現卡匣以導入多個開讀框。
例如,但並非限制性地,整合之外源核苷酸序列 (即,TI 安放點)可包含三個重組辨識位點 (RRS),例如其排列方式為第三 RRS (「RRS3」) 存在於第一 RRS (「RRS1」) 與第二RRS (「RRS2」) 之間,而第一 (供體) 核酸包含兩個 RRS,這兩個 RRS 與整合之外源核苷酸序列上的第一 RRS 及第三 RRS 相匹配,並且第二 (供體) 核酸包含兩個 RRS,這兩個 RRS 與整合之外源核苷酸序列上的第三 RRS 及第二 RRS相匹配。此種雙 RMCE 策略允許經由在每對 RRS 之間之相應序列中併入適當數量之表現卡匣以導入多種基因。
此外,雙質體 RMCE 中需要兩個選擇標記。一個選擇標記表現卡匣被分割成兩部分。第一 (前) 核酸可含有啟動子,之後為轉譯起始密碼子及 RRS3 序列。第二 (後) 核酸對應地包含與選擇標記編碼序列之 N 端融合的 RRS3 序列,減去轉譯起始密碼子 (例如 ATG)。可能需要在 RRS3 位點與選擇標記編碼序列之間插入額外的核苷酸,以確保融合基因的框轉譯,即,可操作的連接。只有當兩個核酸 (前及後) 都被正確地插入時,才會組裝選擇標記的完整表現卡匣,因此使細胞對各自的選擇劑產生抗性。
單一載體及雙載體 RMCE 均經由使存在於供體 DNA 上之 DNA 序列與整合位點所在之哺乳動物細胞基因體上之 DNA 序列精確交換,允許將一個或多個供體 DNA 分子整合到哺乳動物細胞基因體的預定位點中。這些 DNA 序列的特徵在於兩個異源特異性 RRS,位於 i) 至少一個選擇標記或如在某些雙質體 RMCE 中之「分割選擇標記」之側翼;及/或 ii) 至少一個所關注外源基因。
RMCE 參與在標靶基因體基因座內兩個異源特異性 RRS 與供體 DNA 分子之間的重組酶催化的雙重重組交換事件。雙 RMCE 被設計成將來自前和後核酸之 DNA 序列副本導入哺乳動物細胞基因體的預定基因座。RMCE 程序可用多個 DNA 序列重複。
在某些實施例中,靶向整合是經由雙 RMCE 所達成,其中兩種不同的 DNA 序列皆整合到適合 TI 之哺乳動物細胞之基因體的預定位點中,該兩個不同的 DNA 序列各包含至少一個表現卡匣,該表現卡匣編碼所關注蛋白化合物之一部分及/或至少一個選擇標記或其部分,側翼為兩個異源特異性 RRS。在某些實施例中,靶向整合是經由多重 RMCE 所達成,其中來自多個核酸之 DNA 序列皆整合到適合 TI 之哺乳動物細胞之基因體的預定位點中,該多個核酸編碼各包含至少一個表現卡匣,該表現卡匣編碼所關注蛋白化合物之一部分及/或至少一個選擇標記或其部分,側翼為兩個異源特異性 RRS。在某些實施例中,選擇標記可被部分地在第一核酸 (前) 上編碼,及被部分地在第二核酸 (後) 上編碼,從而只有經由雙 RMCE 正確整合核酸兩者才能表現選擇標記。
對於單 RMCE 及雙 RMCE,如上所述之將供體核酸靶向整合到受體/標靶細胞基因體中的方法及將兩種供體核酸同時靶向整合到受體/標靶細胞基因體中的方法包含導入/活化重組酶的額外步驟。
因此,在某些實施例中,重組序列為重組識別序列,且該方法進一步包含以下步驟: c)   導入或活化 i) 或者同時地導入 b) 之去氧核糖核酸;或 ii) 此後依序地 重組酶, 其中該重組酶識別第一去氧核糖核酸及第二去氧核糖核酸的重組識別序列;(並且視情況地,其中一個或多個重組酶進行重組酶介導的卡匣交換)。
在某些實施例中,RRS 選自由以下所組成之群組:LoxP 序列、L3 序列、2L 序列、LoxFas 序列、Lox511 序列、Lox2272 序列、Lox2372 序列、Lox5171 序列、Loxm2 序列、Lox71 序列、Lox66 序列、FRT 序列、F3 序列、F5 序列、Bxb1 attP 序列、Bxb1 attB 序列、φC31 attP 序列、及 φC31 attB 序列。如果必須存在多個 RRS,則在選擇不同 RRS 的情況下,每個序列的選擇取決於另一個。
在某些實施例中,RRS 可由 Cre 重組酶辨識。在某些實施例中,RRS 可由 Flp 重組酶辨識。在某些實施例中,RRS 可由 Bxb1 整合酶辨識。在某些實施例中,RRS 可由 φC31 整合酶辨識。在某些實施例中,RRS 可由 pSR1 重組酶辨識。
在某些實施例中,當 RRS 為 LoxP 位點時,細胞需要 Cre 重組酶進行重組。
在某些實施例中,當 RRS 為 FRT 位點時,細胞需要 Flp 重組酶進行重組。
在某些實施例中,當 RRS 為 Bxb1 attP 位點或 Bxb1 attB 位點時,細胞需要 Bxb1 整合酶進行重組。
在某些實施例中,當 RRS 為 φC31 attP 位點或 φC31 attB 位點時,細胞需要 φC31 整合酶進行重組。
在某些實施例中,當 RRS 為鲁氏接合酵母 (Zygosaccharomyces rouxii) 之 pSR1 重組酶之辨識位點時,細胞需要 pSR1 重組酶進行重組。
重組酶編碼基因可以 DNA、病毒載體或 mRNA 的形式遞送到細胞中。可經由電穿孔或基於陽離子脂質的試劑進行 DNA 或 mRNA 的轉染。整合酶缺陷型慢病毒載體可用於將重組酶遞送到抗轉染細胞類型中。AAV 載體亦可用於重組酶遞送。重組酶蛋白亦可經由非囊泡的方式導入。
在所有態樣及實施例的某些實施例中,重組酶作為 mRNA 導入至細胞中。
在所有態樣及實施例的某些實施例中,重組酶作為 DNA 導入至宿主細胞。在某些實施例中,DNA 為包含在表現卡匣中的重組酶編碼序列。
在所有態樣及實施例的某些實施例中,重組酶為 Cre 重組酶且將 Cre 重組酶作為 Cre 重組酶編碼 mRNA 導入至細胞中,該 mRNA 編碼具有 SEQ ID NO: 07 之胺基酸序列的多肽。
在所有態樣及實施例的某些實施例中,Cre 重組酶 mRNA 編碼包含 SEQ ID NO: 07 之胺基酸序列的多肽且進一步在其 N- 或 C- 端或兩者處包含核定位序列。在某些實施例中,Cre 重組酶 mRNA 編碼具有 SEQ ID NO: 07 之胺基酸序列的多肽且進一步在其 N- 或 C- 端或兩者處彼此獨立地包含一個到五個核定位序列。
在所有態樣及實施例的某些實施例中,Cre 重組酶編碼 mRNA 包含 SEQ ID NO: 08 之核苷酸序列或其具有不同密碼子用法之變異體。在所有態樣及實施例的某些實施例中,Cre 重組酶編碼 mRNA 包含 SEQ ID NO: 08 之核苷酸序列或其具有不同密碼子用法之變異體,且進一步在其 5'- 或 3'- 端或兩者處包含進一步編碼核定位序列之核酸。在所有態樣及實施例的某些實施例中,Cre 重組酶編碼 mRNA 包含 SEQ ID NO: 08 之核苷酸序列或其具有不同密碼子用法之變異體,且進一步在其 5'- 或 3' - 端或兩者處獨立地包含一個到五個編碼核定位序列之核酸。
在某些實施例中,LoxP 序列為野生型 LoxP 序列。在某些實施例中,LoxP 序列為突變型 LoxP 序列。已開發出突變型 LoxP 序列以提高 Cre 重組酶所介導之整合或置換的效率。在某些實施例中,突變型 LoxP 序列選自由以下所組成之群組:L3 序列、2L 序列、LoxFas 序列、Lox511 序列、Lox2272 序列、Lox2372 序列、Lox5171 序列、Loxm2 序列、Lox71 序列、及 Lox66 序列。例如,Lox71 序列在左側 13 bp 重複序列中具有 5 bp 的突變。Lox66 序列在右側 13 bp 重複序列中具有 5 bp 的突變。野生型及突變型 LoxP 序列均可介導 Cre 重組酶依賴性重組。
術語「相匹配 RRS」表示兩個相匹配 RRS 之間發生重組。在某些實施例中,兩個匹配 RRS 相同。在某些實施例中,兩個 RRS 均為野生型 LoxP 序列。在某些實施例中,兩個 RRS 均為突變型 LoxP 序列。在某些實施例中,兩個 RRS 均為野生型 FRT 序列。在某些實施例中,兩個 RRS 均為突變型 FRT 序列。在某些實施例中,兩個匹配 RRS 為不同序列,但是可藉由相同的重組酶進行辨識。在某些實施例中,第一相匹配 RRS 為 Lox71 序列,且第二相匹配 RRS 為 Lox66 序列。在某些實施例中,第一匹配 RRS 為 Bxb1 attP 序列,且第二匹配 RRS 為 Bxb1 attB 序列。在某些實施例中,第一匹配 RRS 為 φC31 attB 序列,且第二匹配 RRS 為 φC31 attB 序列。
在所有態樣及實施例的某些實施例中,雙 RMCE 中的重組識別位點為 L3、2L 及 LoxFas。在某些實施例中,L3 包含作為間隔子序列之 SEQ ID NO: 17 的序列,2L 包含作為間隔子序列之 SEQ ID NO: 18 的序列且 LoxFas 包含作為間隔子序列之具有 SEQ ID NO: 19 的序列。在某些實施例中,第一重組識別位點為 L3,第二重組識別位點為 2L,且第三重組識別位點為 LoxFas。
在所有態樣及實施例的某些實施例中,編碼選擇標記之表現卡匣部分地位於第三重組識別序列之 5’ 且部分地位於 3',其中位於表現卡匣的 5’ 部分包含啟動子及轉錄起始密碼子,且位於表現卡匣的 3’ 部分包含不具轉錄起始密碼子的編碼序列及 polyA 訊號序列。
在所有態樣及實施例的某些實施例中,編碼選擇標記之位於表現卡匣的 5' 部分包含可操作地連接至轉譯起始密碼子的啟動子序列,由此啟動子序列之上游側翼分別為 (即位於其下游) 第二、第三或第四表現卡匣,表現卡匣及起始密碼子之下游側翼 (即位於其上游) 為第三重組識別序列;且編碼選擇標記之位於表現卡匣的 3’ 部分包含核酸,該核酸編碼缺乏轉錄起始密碼子之選擇標記,其上游側翼為第三重組識別序列且下游側翼為 polyA 訊號序列,且之後是分別為第三、第四或第五表現卡匣。
任何已知或未來之包含如本文之外源核酸 (「安放位點」) 而適用於靶向整合的哺乳動物細胞均可用於本發明。
在所有態樣及實施例的一個較佳實施例中,包含整合在哺乳動物細胞基因體之基因座內之單一位點之外源核苷酸序列的哺乳動物細胞為倉鼠細胞或人類細胞,在某些實施例中是 CHO 細胞。
適用於本發明之包含整合在其基因體基因座內單個位點之外源核苷酸序列的例示性哺乳動物細胞為 CHO 細胞或 HEK293 細胞,或具有安放位點 (= 整合在哺乳動物細胞基因體基因座內的單一位點外源性核苷酸序列) 的 Per.C6 細胞,該安放位點包含三個用於 Cre 重組酶介導的卡匣交換的異源特異性 LoxP 位點。在某些實施例中,此種異源特異性 LoxP 位點為 L3、LoxFas 及 2L (參見,例如 Lanza 等人,Biotechnol. J. 7 (2012) 898-908;Wong 等人,Nucleic Acids Res. 33 (2005) e147),其中 L3 及 2L 分別位於 5' 端及 3' 端之安放位點的側翼,或反之亦然,而 LoxFas 位於 L3 與 2L 位點之間。在所有態樣及實施例的某些實施例中,安放位點進一步包含雙順反子單元,經由 IRES 將選擇標記的表現與綠色螢光蛋白 (GFP) 的表現連接起來,允許藉由正選擇穩定安放位點,以及在轉染及 Cre 重組酶介導的重組 (負選擇) 後選擇不存在的位點。例示性的 GFP 具有 SEQ ID NO: 35 之序列。
前段所述之安放點的此種配置允許同時整合兩個核酸,該兩個核酸包含於不同的質體,具有 L3 及 LoxFas 位點所謂前核酸及包含 LoxFas 及 2L 位點的後核酸。不同於安放位點之選擇標記基因的功能元件可分佈在兩個核酸:啟動子之間,且轉錄起始密碼子位於前核酸上,而編碼區及 poly A訊號位於後核酸上。只有正確的 Cre 重組酶介導的該兩者核酸的整合才能誘導針對所對應之選擇劑的抗性。
一般而言,包含外源核苷酸序列之適用 TI 的哺乳動物細胞包含整合在其基因體之基因座內的外源核苷酸序列,其中該外源核苷酸序列包含位於至少一個第一選擇標記之側翼的第一重組識別位點及第二重組識別位點,以及位於該第一重組識別位點與該第二重組識別位點之間的第三重組識別位點,且所有重組識別位點皆不相同。該外源核苷酸序列稱為「安放位點」。
本文所揭示之標的使用適用於 TI 外源核苷酸序列的哺乳動物細胞。在某些實施例中,適用 TI 之哺乳宿主細胞包含整合在哺乳動物細胞基因體中之整合位點的外源核苷酸序列。此種適用 TI 之哺乳動物細胞亦可稱為「TI 宿主細胞」。
在所有態樣及實施例的某些實施例中,適用 TI 之哺乳動物細胞為包含安放位點的倉鼠細胞、人類細胞、大鼠細胞或小鼠細胞。在某些實施例中,適用 TI 之哺乳動物細胞為包含對應安放位點之中國倉鼠卵巢 (CHO) 細胞、CHO K1 細胞、CHO K1SV 細胞、CHO DG44 細胞、CHO DUKXB-11 細胞、CHO K1S 細胞、CHO K1M 細胞、人類細胞、HEK293 細胞或 Per.C6 細胞。
在所有態樣及實施例的某些實施例中,適用 TI 之哺乳動物細胞包含整合之外源核苷酸序列,其中外源核苷酸序列包含一個或多個重組識別位點 (RRS)。在某些實施例中,外源核苷酸序列包含至少兩個 RRS。RRS 可被重組酶識別,例如 Cre 重組酶、Flp 重組酶、Bxb1 整合酶或 φC31 整合酶。RRS 可選自由以下所組成之群組:LoxP 位點、L3 位點、2L 位點、LoxFas 位點、Lox511 位點、Lox2272 位點、Lox2372 位點、Lox5171 位點、Loxm2 位點、Lox71 位點、Lox66 位點、FRT 位點、F3 位點、F5 位點、Bxb1 attP 位點、Bxb1 attB 位點、a φC31 attP 位點、及φC31 attB 位點。
在所有態樣及實施例的某些實施例中,選擇標記彼此獨立地選自由以下所組成之群組:胺基糖苷磷酸轉移酶 (APH) (例如,潮黴素磷酸轉移酶 (HYG)、新黴素及 G418 APH)、二氫葉酸還原酶 (DHFR)、胸苷激酶 (TK)、麩醯胺酸合成酶 (GS)、天冬醯胺合成酶、色胺酸合成酶 (吲哚)、組胺醇脫氫酶 (組胺醇 D) 以及編碼對嘌呤黴素、殺稻瘟菌素、博萊黴素、腐草黴素、氯黴素、Zeocin 及黴酚酸的抗性的基因。選擇標記亦可為選自由以下所組成之群組的螢光蛋白:綠色螢光蛋白 (GFP)、增強型 GFP (eGFP)、合成 GFP、黃色螢光蛋白 (YFP)、增強型 YFP (eYFP)、青色螢光蛋白 (CFP)、mPlum、mCherry、tdTomato、mStrawberry、J-red、DsRed-單體、mOrange、mKO、mCitrine、Venus、YPet、Emerald6、CyPet、mCFPm、Cerulean 及 T-Sapphire。
外源核苷酸序列為不源自特定細胞但可藉由 DNA 遞送方法 (例如經由轉染、轉導、電穿孔或轉形方法) 導入細胞的核苷酸序列。在所有態樣及實施例的某些實施例中,適用 TI 之哺乳動物細胞包含整合在哺乳動物細胞基因體中更多整合位點的至少一種外源核苷酸序列。在某些實施例中,外源核苷酸序列整合在哺乳動物細胞之基因體之特定基因座中的整合位點。
在所有態樣及實施例的某些實施例中,整合之外源核苷酸序列包含一個或多個重組辨識位點 (RRS),其中 RRS 可由重組酶進行辨識。在某些實施例中,整合之外源核苷酸序列包含至少兩個 RRS。在某些實施例中,整合之外源核苷酸序列包含三個 RRS,其中第三 RRS 位於第一 RRS 和第二 RRS 之間。在某些實施例中,第一 RRS 和第二 RRS 相同,並且第三 RRS 不同於第一或第二 RRS。在某些實施例中,所有三個 RRS 均不同。在某些實施例中,RRS 彼此獨立地選自由以下所組成之群組:LoxP 位點、L3 位點、2L 位點、LoxFas 位點、Lox511 位點、Lox2272 位點、Lox2372 位點、Lox5171 位點、Loxm2 位點、Lox71 位點、Lox66 位點、FRT 位點、F3 位點、F5 位點、Bxb1 attP 位點、Bxb1 attB 位點、φC31 attP 位點、及 φC31 attB 位點。
在所有態樣及實施例的某些實施例中,整合之外源核苷酸序列包含至少一個選擇標記。在某些實施例中,整合之外源核苷酸序列包含第一 RRS、第二 RSS 及第三 RRS,及至少一個選擇標記。在某些實施例中,選擇標記位於第一 RRS 和第二 RRS 之間。在某些實施例中,兩個 RRS 位於至少一個選擇標記之側翼,即第一 RRS 位於 5’ (上游),且第二 RRS 位於選擇標記的 3’ (下游)。在某些實施例中,第一 RRS 與選擇標記之 5’ 端相鄰,並且第二 RRS 與選擇標記之 3’ 端相鄰。
在所有態樣及實施例的某些實施例中,選擇標記位於第一 RRS 與第二 RRS 之間,並且這兩個側翼 RRS 不同。在某些實施例中,第一側翼 RRS 為 L3 序列,且第二側翼 RRS 為 2L 序列。在某些實施例中,L3 序列位於選擇標記之 5’,且 2L 序列位於選擇標記之 3’。
在所有態樣及實施例的某些實施例中,第一側翼 RRS 為具有野生型反向重複的 LoxP 序列,且第二側翼 RRS 為具有一個突變反向重複的 LoxP 序列。在某些實施例中,第一側翼 RRS 為具有第一突變反向重複的 LoxP 序列,且第二側翼 RRS 為具有與第一突變反向重複相同或不同之第二突變反向重複的 LoxP 序列。在某些實施例中,第一側翼 RRS 為具有野生型反向重複的 LoxP 序列,且第三側翼 RRS 為具有一個突變反向重複的 LoxP 序列。在某些實施例中,第二側翼 RRS 為具有野生型反向重複的 LoxP 序列,且第三 RRS 為具有一個突變反向重複的 LoxP 序列。在某些實施例中,第一側翼 RRS 為具有第一突變反向重複的LoxP序列,且第三RRS 為具有第二突變反向重複的 LoxP 序列。在所有態樣及實施例的某些實施例中,第二側翼 RRS 為具有第一突變反向重複的 LoxP 序列,且第三 RRS 為具有第二突變反向重複的 LoxP 序列。
在所有態樣及實施例的某些實施例中,第一側翼 RRS 為野生型 FRT 序列,且第二側翼 RRS 為突變型 FRT 序列。在所有態樣及實施例的某些實施例中,第一側翼 RRS 為第一野生型 FRT 序列,且第二側翼 RRS 為第二突變型 FRT 序列。
在所有態樣及實施例的某些實施例中,第一側翼 RRS 為 Bxb1 attP 序列,且第二側翼 RRS 為 Bxb1 attB 序列。
在所有態樣及實施例的某些實施例中,第一側翼 RRS 為 φC31 attP 序列,且第二側翼 RRS 為 φC31 attB 序列。
在所有態樣及實施例的某些實施例中,整合之外源核苷酸序列包含第一選擇標記及第二選擇標記,其側翼為兩個 RRS,其中第一選擇標記與第二選擇標記不同。在某些實施例中,兩個選擇標記均相互獨立地選自由以下所組成之群組:麩醯胺合成酶選擇標記、胸苷激酶選擇標記、HYG 選擇標記及嘌呤黴素抗性選擇標記。在某些實施例中,整合之外源核苷酸序列包含胸苷激酶選擇標記及 HYG 選擇標記。在某些實施例中,第一選擇標記選自由以下所組成之群組:胺基糖苷磷酸轉移酶 (APH) (例如,潮黴素磷酸轉移酶 (HYG)、新黴素和 G418 APH)、二氫葉酸還原酶 (DHFR)、胸苷激酶 (TK)、麩醯胺合成酶 (GS)、天冬醯胺酸合成酶、色胺酸合成酶 (吲哚)、組胺醇脫氫酶 (組胺醇 D) 以及編碼對嘌呤黴素、殺稻瘟菌素、博萊黴素、腐草黴素、氯黴素、Zeocin 或黴酚酸的抗性的基因,且第二選擇標記選自由下列所組成之群組:GFP、eGFP、合成 GFP、YFP、eYFP、CFP、mPlum、mCherry、tdTomato、mStrawberry、J-red、DsRed 單體、mOrange、mKO、mCitrine、Venus、YPet、Emerald、CyPet、mCFPm、Cerulean、及 T-Sapphire 螢光蛋白。在某些實施例中,第一選擇標記為麩醯胺合成酶選擇標記,且第二選擇標記為 GFP 螢光蛋白。在某些實施例中,處於兩個選擇標記之側翼的這兩個 RRS 不同。
在某些實施例中,選擇標記可操作地連接至啟動子序列。在某些實施例中,選擇標記可操作地連接至 SV40 啟動子。在某些實施例中,選擇標記可操作地連接至人類巨細胞病毒 (CMV) 啟動子。
用於導入供體去氧核糖核酸的獨立方法可基於導入的第二選擇標記來選擇出成功轉染的細胞。
須指出,當根據本發明的 DNA 元件、DNA 分子或VA RNA 基因與重組酶介導的卡匣交換反應組合使用時,針對 RMCE 及 RMCI 係使用不同的重組酶。
例如,Cre/LoxP 系統係用於重組酶介導的卡匣交換反應 (RMCE),而 Flp/FRT 系統係用於根據本發明之 DNA 元件、DNA 分子或 VA RNA 中的重組酶介導的卡匣反轉 (RMCI)。同樣地,Cre/FRT 系統係用於重組酶介導的卡匣交換反應 (RMCE),而 Cre/LoxP 系統係用於根據本發明之 DNA 元件、DNA 分子或 VA RNA 中的重組酶介導的卡匣反轉 (RMCI)。 腺相關病毒載體
對於 AAV 及腺病毒或皰疹病毒輔助功能的一般回顧,參見 Berns and Bohensky, Advances in Virus Research, Academic Press., 32 (1987) 243-306。AAV 的基因體係在 Srivastava 等人,J. Virol.,45 (1983) 555-564 中描述。在 US 4,797,368 中,描述針對構建重組 AAV 載體的設計考慮 (亦參見 WO 93/24641)。描述 AAV 載體的其他參考文獻為 West 等人,Virol. 160 (1987) 38-47;Kotin,Hum. Gene Ther. 5 (1994) 793-801;及 Muzyczka,J. Clin. Invest. 94 (1994) 1351。在 US 5,173,414;Lebkowski 等人,Mol. Cell. Biol. 8 (1988) 3988-3996;Tratschin 等人,Mol. Cell. Biol. 5 (1985) 3251-3260;Tratschin 等人,Mol. Cell. Biol., 4 (1994) 2072-2081;Hermonat 及 Muzyczka,Proc. Natl. Acad. Sci. USA 81 (1984) 6466-6470;Samulski 等人,J. Virol. 63 (1989) 3822-3828 中,描述重組 AAV 載體的構建。
腺相關病毒 (AAV) 是一種複製缺陷型小病毒。其只能在細胞中複製,其中某些病毒功能由共同感染之輔助病毒提供,諸如腺病毒、皰疹病毒以及在某些情況下,痘病毒例如牛痘。儘管如此,只要存在適當的輔助病毒功能,AAV 幾乎可在任何人類、猿類或囓齒動物來源之細胞株中複製。
如果不存在輔助病毒基因,AAV 會在其宿主細胞中建立潛伏期。其基因體整合到 19 號染色體 [(Chr) 19 (q13.4)] 中的特定位點,其稱為腺相關病毒整合位點 1 (AAVS1)。對於特定的血清型 (例如 AAV-2),已發現其他整合位點,例如,舉例而言,在染色體 5 [(Chr) 5 (p13.3)] 上,稱為 AAVS2,以及在染色體 3 [(Chr) 3 (p24.3)] 上,稱為 AAVS3。
AAV 係歸類成不同的血清型。這些已根據參數進行分配,例如紅血球凝集、致腫瘤性及 DNA 序列同源性。目前為止,已鑑別出 10 多種不同的血清型及一百多種對應於不同 AAV 演化枝的序列。
殼體蛋白的類型及對稱性決定相應 AAV 的組織向性。例如,AAV-2、AAV-4 及 AAV-5 對視網膜具特異性,AAV-2、AAV-5、AAV-8、AAV-9 及 AAVrh-10 對腦具特異性,AAV-1、AAV-2 、AAV-6、AAV-8 及 AAV-9 對心臟組織具特異性,AAV-1、AAV-2、AAV-5、AAV-6、AAV-7、AAV-8、AAV-9 及 AAV-10 對肝臟具特異性,AAV-1、AAV-2、AAV-5 及 AAV-9 對肺具特異性。
假型分型 (Pseudotyping) 表示一種包含 AAV 基因體在各種血清型之間交叉包裝的方法,即基因體以不同來源的殼體蛋白包裝。
野生型 AAV 基因體的大小約為 4.7 kb。AAV 基因體亦包含名為 rep 及 cap 的兩個重疊基因,其包含多個開讀框 (參見,例如,Srivastava 等人,J. Viral.,45 (1983) 555-564;Hermonat 等人,J. Viral.51 (1984) 329-339;Tratschin 等人,J. Virol., 51 (1984) 611-619)。Rep 蛋白編碼開讀框提供四種不同大小的蛋白,稱為 Rep78、Rep68、Rep52 及 Rep40。這些蛋白涉及 AAV 的複製、修復及整合。Cap 蛋白編碼開讀框提供四種蛋白質,其為 VP1、VP2、VP3 及 AAP。VP1、VP2 及 VP3 為 AAV 顆粒之蛋白質殼體的一部分。組合之 rep 及 cap 開讀框在其 5' 及 3' 末端的側翼為所謂的反向末端重複 (ITR)。針對複製,除 Rep 及 Cap 蛋白外,AAV 亦需要基因 E1A、E1B、E4orf6、E2A 及 VA 之產物或另一種輔助病毒之對應因子。
例如,在血清型 2 (AAV-2) 的 AAV 的情況下,每個 ITR 的長度為 145 個核苷酸,且位於約 4470 個核苷酸之編碼序列區的側翼。ITR 的 145 個核苷酸中,有 125 個核苷酸具有回文序列且可形成 T 形髮夾結構。此種結構在病毒複製過程中具有引子的功能。剩餘之 20 個未配對的核苷酸以 D 序列表示。
AAV 基因體包含三個用於表現 rep 及 cap 基因的轉錄啟動子 P5、P19 及 P40 (Laughlin 等人,Proc. Natl. Acad. Sci. USA 76 (1979) 5567-5571)。
ITR 序列必須與編碼區以順式存在。ITR 提供具功能之複製起點 (ori)、整合到標靶細胞之基因體所需的訊號,以及自宿主細胞染色體或重組質體中之有效切除及修復。ITR 進一步包含類複製起始元件,例如 Rep 蛋白結合位點 (RBS) 及末端解析位點 (TRS)。已發現 ITR 本身可具有 AAV 載體中轉錄啟動子的功能 (Flotte 等人,J. Biol. Chem. 268 (1993) 3781-3790;Flotte 等人,Proc. Natl. Acad . Sci. USA 93 (1993) 10163-10167)。
對於複製及殼體化病毒單股 DNA 基因體,分別需要 rep 及 cap 基因產物的反式結構。
rep 基因座包含兩個內部啟動子,稱為 P5 及 P19。其包含四種蛋白質的開讀框。啟動子 P5 係可操作地連接至提供編碼 Rep 蛋白 Rep78 (阻滯細胞週期的染色質切口酶) 之非經剪接 4.2 kb mRNA 及編碼 Rep 蛋白 Rep68 (位點特異性核酸內切酶) 之經剪接 3.9 kb mRNA 的核酸序列。啟動子 P19 係可操作地連接至提供編碼 Rep 蛋白 Rep52 之非經剪接 mRNA 及編碼 Rep 蛋白 Rep40 之經剪接 3.3kb mRNA (用於積累及包裝的 DNA 解旋酶) 的核酸序列。
兩個較大的 Rep 蛋白 Rep78 及 Rep68 對 AAV 雙股 DNA 複製為必要,而較小的 Rep 蛋白 Rep52 及 Rep40 似對子代、單股 DNA 積累為必要 (Chejanovsky & Carter, Virology 173 (1989) 120-128)。
較大的 Rep 蛋白 Rep68 及 Rep78 可特異性地結合至 AAV ITR 的髮夾構型。其表現出確定的酶活性,其為解決 AAV 末端複製所需。表現 Rep78 或 Rep68 足以形成感染性顆粒 (Holscher, C. 等人,J. Virol. 68 (1994) 7169-7177 及 69 (1995) 6880-6885)。
認定所有 Rep 蛋白 (主要為 Rep78 及 Rep68) 都表現出調節活性,例如 AAV 基因之誘導及抑制以及對細胞生長的抑制作用 (Tratschin 等人,Mol. Cell. Biol. 6 (1986) 2884-2894;Labow 等人,Mol. Cell. Biol., 7 (1987) 1320-1325;Khleif 等人,Virology, 181 (1991) 738-741)。
重組過表現 Rep78 造成具減少之細胞生長的表型,係由於誘導 DNA 損傷。由此宿主細胞在 S 期阻滯,從而促進病毒的潛伏感染 (Berthet, C. 等人,Proc. Natl. Acad. Sci. USA 102 (2005) 13634-13639)。
Tratschin 等人報導,P5 啟動子受到 Rep78 或 Rep68 的負自動調節 (Tratschin 等人,Mol. Cell. Biol. 6 (1986) 2884-2894)。由於表現 Rep 蛋白的毒性作用,在 AAV 穩定整合後,已報導某些細胞僅具非常低的表現 (參見,例如 Mendelson 等人,Virol. 166 (1988) 154-165)。
cap 基因座包含一個啟動子,稱為 P40。啟動子 P40 係可操作地連接至提供 2.6 kb mRNA 的核酸序列,該 mRNA 經由選擇性剪接及使用選擇性起始密碼子而編碼 Cap 蛋白 VP1 (87 kDa,非經剪接 mRNA 轉錄物)、VP2 (72 kDa,來自經剪接 mRNA 轉錄物) 及 VP3 (61 kDa,來自替代的起始密碼子)。VP1 到 VP3 構成病毒殼體的構建塊。殼體具有與細胞表面受體結合並允許病毒在細胞內運輸的功能。VP3 約佔病毒顆粒蛋白總量的 90%。儘管如此,所有三種蛋白質對於生產有效之殼體皆為必要。
據報導,將所有三種殼體蛋白 VP1 到 VP3 不活化可防止積累單股子代 AAV DNA。VP1 胺基末端之突變 (「Lip-陰性」或「Inf-陰性」) 仍允許將單股 DNA 組裝成病毒顆粒,從而大幅度降低感染效價。
AAP 開讀框編碼組裝活化蛋白 (AAP)。其大小約為 22 kDa,可將天然 VP 蛋白運輸到核仁區進行殼體組裝。此開讀框位於 VP3 蛋白編碼序列的上游。
在單一 AAV 顆粒中,僅包含一個單股 DNA 分子。其可能為「正」股或「負」股。含有 DNA 分子的 AAV 病毒顆粒具有感染性。在經感染的細胞內,親代感染單股被轉變為雙股,該雙股隨後被擴增。擴增產生出大量雙股 DNA 分子,其中單股被置換並包裝成殼體。
腺相關病毒 (AAV) 載體可轉導分裂細胞及休眠細胞。可假設使用 AAV 載體導入標靶細胞的轉基因將長期表現。使用 AAV 載體的一個缺點是可導入細胞的轉基因大小有限制。
Carter等人已經表明可刪除整個 rep 及 cap 開讀框並以轉基因替換 (Carter, B. J.,"Handbook of Parvoviruses",由 P. Tijssen,CRC Press, pp. 155-168 (1990)).此外,據報導,須維持 ITR 以保留複製、修復、包裝及將轉基因整合到標靶細胞之基因體中的功能。
當包含相應病毒輔助基因之細胞被 AAV 載體轉導時,或者反之亦然,當包含整合之 AAV 前病毒的細胞以合適之輔助病毒轉導時,AAV 前病毒被活化並再次進入裂解感染週期 (Clark, K.R. 等人,Hum. Gene Ther. 6 (1995) 1329-1341;Samulski, R.J., Curr. Opin. Genet. Dev.3 (1993) 74-80)。
E1A 為腺病毒 DNA 進入細胞核後所表現的第一個病毒輔助基因。E1A 基因編碼 12S 及 13S 蛋白,其係基於相同之 E1A mRNA 的選擇性剪接。表現 12S 及 13S 蛋白使活化其他病毒功能 E1B、E2、E3 及 E4。此外,表現 12S 及 13S 蛋白迫使細胞進入細胞週期的 S 期。如果只表現 E1A 衍生的蛋白質,細胞將會死亡 (細胞凋亡)。
E1B 為第二個表現的病毒輔助基因。其被 E1A 衍生的蛋白質 12S 及 13S 活化。E1B 基因衍生之 mRNA 可以兩種不同的方式剪接,產生第一個 55 kDa 轉錄物及第二個 19 kDa 轉錄物。E1B 55 kDa 蛋白參與調節細胞週期、防止在感染晚期之細胞 mRNA 的運輸以及防止 E1A 誘導的細胞凋亡。E1B 19 kDa 蛋白參與防止 E1A 誘導的細胞凋亡。
E2 基因編碼不同的蛋白質。E2A 轉錄物編碼單股結合蛋白 (SSBP),其為 AAV 複製所必要者。
E4 基因亦編碼數種蛋白質。E4 基因衍生的 34 kDa 蛋白 (E4orf6) 與 E1B 55 kDa 蛋白一起阻止細胞 mRNA 在細胞質中的積累,亦促進病毒 RNA 自細胞核運輸到細胞質中。
通常,為生產重組 AAV 顆粒,將不同的互補質體共轉染到宿主細胞中。質體之一者包含夾在兩個順式作用 AAV ITR 之間的轉基因。子代重組基因體之複製及後續包裝所需之缺少的 AAV 元件 (即 Rep 及 Cap 蛋白的開讀框) 以反式包含在第二質體中。過表現 Rep 蛋白造成抑制細胞生長的作用 (Li, J. 等人,J. Virol. 71 (1997) 5236-5243)。此外,AAV 複製需要包含輔助病毒基因的第三質體,即來自腺病毒的 E1、E4orf6、E2A 及 VA。
為減少所需質體的數量,Rep、Cap 及腺病毒輔助基因可組合在單一質體上。
或者,宿主細胞可已穩定表現 E1 基因產物。此種細胞為 HEK293 細胞。標示為 293 的人類胚胎腎殖株是在 1977 年經由將腺病毒 DNA 整合到人類胚胎腎細胞 (HEK 細胞) 中所產生的 (Graham, F.L. 等人,J. Gen. Virol. 36 (1977) 59-74)。HEK293 細胞株包含腺病毒血清型 5 基因體之鹼基對 1 至 4344。此涵蓋 E1A 及 E1B 基因以及腺病毒包裝訊號 (Louis, N. 等人,Virology 233 (1997) 423-429)。
當使用 HEK293 細胞時,缺少的 E2A、E4orf6 及 VA 基因可經由與腺病毒共感染或經由與 E2A、E4orf6 及 VA 表現質體共轉染來導入 (參見,例如Samulski, R.J. 等人,J. Virol. 63 (1989) 3822-3828; Allen, J.M. 等人,J. Virol. 71 (1997) 6816-6822;Tamayose, K. 等人,Hum. Gene Ther. 7 (1996) 507-513;Flotte, T.R. 等人,Gene Ther. 2 (1995) 29-37;Conway, J.E. 等人,J. Virol. 71 (1997) 8780-8789;Chiorini, J.A. 等人,Hum. Gene Ther. 6 (1995) 1531-1541;Ferrari, F.K. 等人,J. Virol. 70 (1996) 3227-3234;Salvetti, A. 等人,Hum. Gene Ther. 9 (1998) 695-706;Xiao, X. 等人,J. Virol. 72 (1998) 2224-2232;Grimm, D. 等人,Hum. Gene Ther. 9 (1998) 2745-2760;Zhang, X. 等人,Hum. Gene Ther. 10 (1999) 2527-2537)。或者,可使用腺病毒/AAV 或單純皰疹病毒/AAV 雜合載體 (參見,例如 Conway, J.E. 等人,J. Virol. 71 (1997) 8780-8789;Johnston, K.M. 等人,Hum. Gene Ther. 8 (1997) 359-370:Thrasher, A.J. 等人,Gene Ther. 2 (1995) 481-485;Fisher, J.K. 等人,Hum. Gene Ther. 7 (1996) 2079-2087;Johnston, K.M. 等人,Hum. Gene Ther. 8 (1997) 359-370)。
因此,在經整合並表現 rep 基因之細胞株傾向緩慢生長或以非常低的量表現 Rep 蛋白。
一個重大安全議題為複製潛能腺病毒 (RCA) 對 rAAV 顆粒製劑的汙染。當整合到宿主細胞中之載體基因體及腺病毒 DNA 在病毒複製期間經由同源重組重組時,會產生出 RCA (Lochmueller, H. 等人,Hum. Gene Ther. 5 (1994) 1485-1491;Hehir K.M. 等人,J. Virol. 70 (1996) 8459-8467)。因此,HEK 293 細胞不適合生產用於藥物應用的腺病毒載體。
為限制轉基因對特定組織的活性 (即限制整合位點),可將轉基因可操作地連接至可誘導或組織特異性啟動子 (參見,例如,Yang,Y. 等人, Hum. Gene.6 (1995) 1203-1213)。
直至今日,rAAV 顆粒生產的主要困難是 rAAV 載體的低效包裝,導致效價低。包裝一直很困難的數個原因包括 -    若存在野生型 AAV 基因體,進行較佳之殼體化; -    由於與 rep 基因產物相關的抑制作用,難以產生足夠的補充功能,例如由野生型 rep 及 cap 基因所提供的功能; -    質體構建體的共轉染效率有限。
所有這些問題都是基於 Rep 蛋白的生物學特性。尤其是 Rep 蛋白之抑制 (細胞抑制及細胞毒性) 特性以及逆轉培養細胞永生化表型之能力是問題所在。此外,當使用廣泛使用的 AAV P5 啟動子時,Rep 蛋白會下調其自身的表現 (參見,例如 Tratschin 等人,Mol. Cell. Biol. 6 (1986) 2884-2894)。 根據本發明之例示性化合物及組合物
本文報導新穎 DNA 構建體及其使用方法。根據本發明之新穎 DNA 構建體可用於經由使用位點特異性重組酶技術,同時轉錄活化至少兩個開讀框。本發明在雙股 DNA 分子之編碼股及模板股上使用啟動子及開讀框之特意非生產性排列,經由位點特異性重組酶之反轉將其轉變成其生產形式。
本發明之技術概念的基本原理是經由結合 DNA 反轉及可操作連接至啟動子來活化基因表現。
本發明之一個獨立態樣為一種雙股 DNA 元件,其包含 (正向) 編碼股及 (負向) 模板股, 其特徵在於 該編碼股以正方向按以下順序 (即自 5'- 至 3'- 方向) 包含 -    正方向之第一啟動子, -    正方向之第一重組酶識別序列,其在一個反向重複中包含突變, -    負方向之第二啟動子 (即相對於該編碼股為負方向), -    負方向之第一多腺苷酸化訊號序列及/或轉錄終止子元件 (即相對於該編碼股之 5'- 至 3'- 方向為反向), -    負方向之第一開讀框,且可操作地連接至第一多腺苷酸化訊號序列及/或轉錄終止子元件 (即相對於該編碼股之 5'-到 3'- 方向為反向), -    第二重組酶識別序列,其在與該第一重組酶識別序列不同之相應其他反向重複中包含突變,且處於負方向 (即與該第一重組酶識別序列為互逆方向,且相對於該編碼股之 5'- 至 3'- 方向為反向), -    正方向之第二開讀框,及 -    正方向之第二多腺苷酸化訊號序列及/或轉錄終止子元件,且可操作地連接至該第二開讀框。
本發明之一個獨立態樣為一種雙股 DNA 元件,自 5'- 至 3'- 方向按以下順序包含 -    以 5'- 至 3'- 方向 (即正方向) 之第一啟動子, -    以 5'- 至 3'- 方向之第一重組酶識別序列,其在一個反向重複中包含突變, -    以 3'- 至 5'- 方向 (即負方向) 之第二啟動子, -    以 3'- 至 5'- 方向之第一多腺苷酸化訊號序列及/或轉錄終止子元件 (即相對於該編碼股之 5'- 至 3'- 方向為反向), -    以 3'- 至 5'- 方向之第一開讀框,且可操作地連接至該第一多腺苷酸化訊號序列及/或轉錄終止子元件, -    第二重組酶識別序列,其包含除該第一重組酶識別序列以外之相應其他反向重複中的突變,且處於 3'- 至 5'- 方向 (即與該第一重組酶識別序列為互逆), -    以5'- 至 3'- 方向之第二開讀框,及 - 以5'- 至 3'- 方向之第二多腺苷酸化訊號序列及/或轉錄終止子元件,且可操作地連接至該第二開讀框。
在所有態樣及實施例的某些實施例中,將該雙股 DNA 元件與對該第一重組酶識別序列及第二重組酶識別序列具有功能之重組酶培育引起 -    介於該第一重組酶識別序列與該第二重組酶識別序列之間之序列的反轉,此後該第一啟動子可操作地連接至該第一開讀框,且該第二啟動子可操作地連接至該第二開讀框,及 -    重組後在該第一啟動子與該第一開讀框之間或該第二啟動子與該第二開讀框產生 (第三) 重組酶識別序列,其不再對該重組酶具有功能。
因此,根據本發明之 DNA 元件相對於所含有之第一開讀框及第二開讀框的轉錄不具有功能。經由使在第一開讀框及第二開讀框之轉錄不具有功能,根據本發明之 DNA 元件可整合到細胞的基因體中,而在整合之後並無直接地表現所包含之開讀框的風險。在導入至細胞後,僅在對具有 DNA 元件之重組識別序列具有功能之重組酶 (即識別識別序列) 在細胞內被活化或被導入細胞時,開讀框才被轉錄。因此,本發明之基因體整合之 DNA 元件中的第一重組酶識別序列與第二重組酶識別序列之間的重組酶介導的卡匣反轉 (RMCI) 被啟動。RMCI 使位於兩個反向重組酶識別序列之間之根據本發明之 DNA 元件之其部分反轉。從而該第一啟動子變成可操作地連接至該第一開讀框,且該第二啟動子變成可操作地連接至該第二開讀框。僅此後,該等第一開讀框及第二開讀框係經轉錄且各自編碼的蛋白質係經表現。因此,根據本發明之 DNA 元件特別地用於同時活化細胞內之兩個開讀框的轉錄。
圖 1 的左側部分示意性地顯示根據本發明之具有轉錄無活性開讀框的 DNA 元件。圖 1 的右側部分顯示由 RMCI 所產生之具有可操作地連接之啟動子及開讀框 (即具有轉錄活性的開讀框) 的反向 DNA 元件。
因此,本發明之一個獨立態樣為一種雙股 DNA 元件,其自 5'- 至 3'- 方向按以下順序包含 -    以 5'- 至 3'- 方向 (即正方向) 之第一啟動子, -    以 5'- 至 3'- 方向之第一重組酶識別序列,其在兩個反向重複中包含突變或在反向重複中沒有突變, -    以 5'- 至 3'- 方向之第一開讀框,其可操作地連接至該第一啟動子, -    以 5'- 至 3'- 方向之第一多腺苷酸化訊號序列及/或轉錄終止子元件,且可操作地連接至該第一開讀框, -    以 5'- 至 3'- 方向之第二啟動子, -    第二重組酶識別序列,其在反向重複兩者中包含突變 (若該第一重組酶識別序列在該反向重複中不具突變),或其在反向重複中不具突變 (若該第一重組酶識別序列在該反向重複兩者中具有突變), -    以 5'- 至 3'- 方向之第二開讀框,其可操作地連接至該第二啟動子,及 - 以5'- 至 3'- 方向之第二多腺苷酸化訊號序列及/或轉錄終止子元件,且可操作地連接至該第二開讀框。
重組酶識別序列保持在反向並經此被活化的構建體中。由於交換反應為酶促反應,因此在酶仍然存在/具有活性或重新導入的情況下,第二 (即反向) 反轉反應是可能的,因為重組酶識別序列 (例如 LoxP 位點) 在任何交換後仍保留其功能。反向反轉反應會使先前活化之開讀框的轉錄不活化。重組酶介導的卡匣反轉的可逆性取決於所用之重組酶識別序列以及所使用的重組酶。
例如,由 Cre 重組酶所催化的 RMCI 反應是可逆反應。因此,在其基因體中包含活性 Cre 重組酶及 LoxP 位點之細胞傾向發生預期但亦可能發生非預期的反轉事件,因為重組酶識別序列在每次交換反應後仍保留功能。
因此,需控制重組酶系統之活性或/及作用位點及/或可逆性,以防止在初級的、預期的反轉反應發生後發生次級的、非預期的反轉反應。
因此,根據本發明之 DNA 元件包含單側、突變之重組酶識別序列。因此,每個重組酶識別序列具有一個野生型反向重複及一個突變之反向重複。例如,第一重組酶識別序列具有突變之左反向重複 (及右野生型重複),而第二重組酶識別序列具有突變之右反向重複 (及左野生型重複)。在 RMCI 之後,經活化及生產的 DNA 包含一個具有兩個野生型反向重複之重組酶識別序列及一個具有兩個突變反向重複之重組酶識別序列。雙突變重組酶識別序列不再被重組酶識別,因而防止潛在的回向反應。基於此種特意設計,只可發生單次 (即一次) RMCI,且轉錄被穩定地活化。
在所有態樣及實施例的一個較佳實施例中,重組酶為Cre 重組酶且重組酶識別序列為 RE-LoxP 位點及 LE-LoxP 位點。
在所有態樣及實施例的一個較佳實施例中,重組酶為 Flp 重組酶且重組酶識別序列為 RE-FRT 及 LE-FRT 位點。
或者,可使用 phiC31 介導的 RMCI。在此反轉的反應期間,重組位點未被保留。更詳言之,與 Cre 或 FLP 系統相比,attP 及 attB 位點重組以產生不相容之 attL 及 attR 位點,因而防止連續的交換反應。因此,其可經由分別用反向 attP 及 attB 位點,將要反向之序列側翼用於一次性單向 RMCI (參見,例如,Haecker, I., et al., Nat. Sci. Rep.7 (2017) 43883)。
在所有態樣及實施例的一個較佳實施例中,重組酶為 phiC31-整合酶且重組酶識別序列為 attP 及 attB。根據本發明,將 AttP 及 attB 視為在重複之一者中具有突變之重組酶識別序列,因為使用這些序列使得重組酶識別序列在 RMCI 之後不再具有功能。
為進一步增加根據本發明之 DNA 元件的有利效果,亦可選擇所用的啟動子為可誘導/可活化的啟動子。因此,只有經由進一步之特異性啟動子活化,才能在重組酶介導的反轉後開啟開讀框的轉錄。此結果一方面達成對開讀框轉錄的改良控制,另一方面達成再次關閉轉錄的可能性。經由根據本發明之DNA 元件及可誘導啟動子的組合,可緊縮單獨使用可誘導啟動子時的潛在洩漏。可誘導系統在本領域係已知的,例如 Tet-on/off 系統。
本文所揭示之標的不僅提供適用於生產具有多個開讀框之可誘導轉錄之重組哺乳動物細胞之基因構建體的方法,亦提供穩定大規模生產相應蛋白質化合物的方法。同樣地,可獲得具有高產量之所關注蛋白質化合物的重組穩定生產哺乳動物細胞。
根據本發明之方法可與任何位點特異性重組酶一起使用,例如 Cre 重組酶、Flp 重組酶 (識別 FRT-位點,例如 GAAGTTCCTATTC-TCTAGAAA-GTATAGGAACTTC (SEQ ID NO: 36))、phiC31-整合酶、及 Dre 重組酶 (識別 roxP 位點,例如 TAACTTTAAATA-ATGCCAAT-TATTTAAAGTTA (SEQ ID NO: 42);Bessern, J.L. 等人,Nat. Commun. 10 (2019) 1937) 或其經工程化變異體如 Tre、Brec 1 及 VCre (識別 LoxP 變異體,諸如 LoxLTR (ACAACATCCTATT-ACACCCTA-TATGCCAACATGG (SEQ ID NO: 43)) 及 LoxBTR (AACCCACTGCTTA-AGCCTCAA-TAAAGCTTGCCTT (SEQ ID NO: 44)),或 LoxV (TCAATTTCTGAGA-ACTGTCAT-TCTCGGAAATTGA (SEQ ID NO: 45);Sarkar, I. 等人,Science 316 (2007) 1912–1915,Karpinski, J. 等人,Nat. Biotechnol. 34 (2016) 401-409,Bessern, J.L. 等人,Nat. Commun. 10 (2019) 1937) 分別使用其各自的重組酶特異性 LoxP 位點、FRT 位點、attB/attP 位點及 roxP 位點。唯一的前提是使用的重組酶識別序列是不相容的,即,其只與第二相同之拷貝相互作用,且與密切相關之序列無可檢測的混交 (promiscuity)。
下方以 Cre/LoxP 系統為例,說明本發明之方法,其中位點特異性重組酶為 Cre 重組酶,且重組識別位點分別為 LoxP 位點。此作法係例示說明本發明之概念。本發明所屬技術領域中具有通常知識者可立即地理解,以 Cre/LoxP 顯示之發明概念同樣可應用於如上所列之其他位點特異性重組酶系統,例如 Flp/FRT 系統,或 phiC31/att 系統,或 Dre/roxP 系統。因此,在本文提供之例示及定義中,術語「Cre 重組酶」可分別替換為「Flp 重組酶」或「phiC31 整合酶」或「Dre 整合酶」,且術語「LoxP 位點」可分別代替換成術語「FRT 位點」或「att 位點」或「roxP 位點」。
根據 LoxP 位點之方向及同一性/非同一性,重組酶會反轉、切除或替換所介入之 DNA 序列。因此,在第一種模式中,兩個 LoxP 位點係定向在相同方向上。此造成在與 Cre 重組酶相互作用時,介入之 DNA 序列被刪除,留下分離之 LoxP 位點。在第二種模式中,兩個 LoxP 位點係以頭對頭的方向定向,即兩個 LoxP 位點相對於彼此處於互逆/反向方向。在此方向上,與 Cre 重組酶之相互作用造成介入之 DNA 序列的反轉,留下兩個 LoxP 位點。在第二種模式之 DNA 序列反轉期間,LoxP 位點之間的編碼股及模板股相互交換,即在與 Cre 重組酶相互作用之前的編碼股在與 Cre 重組酶相互作用後變成模板股,且反之亦然。此過程稱為重組酶介導的卡匣反轉 (RMCI)。在第三種模式中,兩個分子與 Cre 重組酶相互作用,該等兩個分子各自包含 DNA 序列,側翼為方向相同之第一及第二 LoxP 位點,其中第一分子上之一個 LoxP 位點與第二分子上之一個 LoxP 位點相同,且第一分子上之第二 LoxP 位點與第二分子上相應之另一個 LoxP 位點相同。此種相互作用使兩個分子之間之 LoxP 位點之間的 DNA 序列交換。此過程稱為重組酶介導的卡匣交換或短 RMCE。
與野生型LoxP 位點不相容的變體 LoxP 位點為本領域習知。然而,這些不相容 LoxP 位點的數量是有限的。下表 1a 列出一些與 LoxP 不相容位點且無混交 (即沒有非特異性相互作用) 的位點。
1a 不相容 LoxP 位點。
位點 ATAACTTCGTATA- 間隔子 - TATACGAAGTTAT (SEQ ID NO: 14+15) 引用文獻
LoxP ATGTATGC (SEQ ID NO: 16) Langer, S.J. 等人,Nucl. Acids Res. 30 (2002) 3067-3077
Lox5171 ATGTGTAC (SEQ ID NO: 21) Lee 及 Saito,Gene 216 (1998) 55-65
Lox2272 AAGTATCC (SEQ ID NO: 22) Lee 及 Saito,Gene 216 (1998) 55-65
LoxFas ACAACTTCGTATA/TACCTTTC/ TATACGAAGTTGT  (SEQ ID NO: 46) Lanza 等人,Biotechnol. J. (2012) 898-908
Lox511 ATGTATAC (SEQ ID NO: 20) Hoess 等人,Nucl. Acids Res. 14 (1986) 2287
Loxm3 TAATACCA (SEQ ID NO: 24) Langer, S.J. 等人,Nucl. Acids Res. 30 (2002) 3067-3077
Loxm7 AGATAGAA (SEQ ID NO: 25) Langer, S.J. 等人,Nucl. Acids Res. 30 (2002) 3067-3077
L3 AAGTCTCC (SEQ ID NO: 17) Wong 等人,Nucl. Acids Res. 33 (2005) e147
- GTATAGTA (SEQ ID NO: 47) Missirlis, P.I. 等人,BMC Genomics 7 (2006) 73
- GGCTATAG (SEQ ID NO: 48) Missirlis, P.I. 等人,BMC Genomics 7 (2006) 73
與野生型 FRT 位點不相容的 FRT位點是本領域所習知的。然而,這些不相容 FRT 位點的數量是有限的。下表 1b 列出一些與 FRT 不相容位點且無混交 (即沒有非特異性相互作用) 的位點。
1b 不相容 FRT 位點。
位點 GAAGTTCCTATTC- 間隔子 - GTATAGGAACTTC (SEQ ID NO: 37+38) 引用文獻
FRT TCTAGAAA (SEQ ID NO: 39) McLeod 等人,1986
F3 TTCAAATA (SEQ ID NO: 40) Schlake 及 Bode,1994
F5 TTCAAAAG (SEQ ID NO: 41) Schlake 及 Bode,1994
可輕易地獲致單一特定不相容 LoxP 位點 (參見如上之表 1a)。如果必須在單一核酸中進行一個以上之基於 Cre-lox 的交換,則需要一個以上之不相容 LoxP 位點,即包含兩個或多個不相容 LoxP 位點之集合。此代表該集合中之每個 LoxP 位點必須與包含在該集合中之所有其他 LoxP 位點不相容。如果要選擇性活化多於一個開讀框,則特別需要此種集合。
例如,Lee 及 Saito (Gene 216 (1998) 55-65) 合成一套完整之具有單一鹼基取代的 24 種 LoxP 間隔子突變體,及具有雙鹼基取代的 30 種 LoxP 間隔子突變體。其中,已鑑別出兩種 LoxP 間隔突變體 (即突變體 Lox5171 及 Lox2272),其與相同突變體有效重組,但與其他突變體或野生型 LoxP 無法有效重組。
同樣地,Langer, S.J. 等人 (Nucl. Acids Res. 30 (2002) 3067-3077) 進行基因篩選,其經設計以鑑別新穎含有突變間隔子的 LoxP 位點,該位點展示出與標準 LoxP 位點之增強的不相容性。自 Langer 等人的表 1 可看出,可鑑別出彼此不相容的 LoxP 集合。
2 Langer 等人的表 1。
Figure 02_image001
(SEQ ID NO: 16、20、23、24、25、49)
Missirlis, P.I. 等人 (BMC Genomics 7 (2006) 73, A13) 在 Cre 重組酶介導的重組中進行 LoxP 間隔子的高通量篩選鑑別序列及混交特徵。他們已鑑別出 31 種獨特、新穎、自我重組的序列,其中兩個只有單一重組夥伴。
表 3 例示不相容 LoxP 位點集合。
3 不相容 LoxP 位點集合。
位點集合 間隔子序列 ATAACTTCGTATA- 間隔子 - TATACGAAGTTAT 引用文獻
Lox5171/ Lox2272 ATGTGTAC/ AAGTATCC (SEQ ID NO: 21+22) Lee 及 Saito,Gene 216 (1998) 55-65
Lox2272/ Lox511 A GGTATCC/ ATGTATAC (SEQ ID NO: 22+20) Gan 及 Zhao, Acta.Biochim.Biophys. Sin.37 (2005) 495-500
LoxP/ LoxFas/ Lox2272 GCATACAT/ TACCTTTC (亦為反向重複 5' 端的 ACAA)/ GGATAC CT (SEQ ID NO: 16+19+22) Siegel 等人,FEBS Lett.499 (2001) 147-153
Lox2272/ Lox511-I/ LoxFas GGATAC CT/ ATGTATAC/ TACCTTTC (SEQ ID NO: 22+20+19) Siegel 等人,FEBS Lett.499 (2001) 147-153
LoxP/ Loxm3/ Loxm7 GCATACAT TGGTATTA TTCTATCT (SEQ ID NO: 16+24+25) Langer, S.J. 等人,Nucl. Acids Res. 30 (2002) 3067-3077
粗體核苷酸代表與 Lee 及 Saito 之對應出版物之間的序列差異。
Langer, S.J. 等人報導使用具有互補突變反向重複 (Lox66 及 Lox71) 的 LoxP 位點允許高效的反式重組,從而產生野生型 LoxP 位點及兩個反向重複經突變之缺陷位點。因為具有兩個反向重複經突變之 LoxP 位點不再是重組酶的有效受質,因此反應係朝一個方向驅動的。
這些互補的突變反向重複在重複序列的一個末端含有經改變之鹼基五聯體 (pentett)。在左反向重複的末端具有突變之突變體稱為 LE 突變體。同樣地,在右反向重複末端具有突變之突變體稱為 RE 突變體。LE 突變體 Lox71 在左反向重複的 5' 端具有從野生型序列變為 TACCG (SEQ ID NO: 50) 的5 bp,而 RE 突變體 Lox66 具有變為 CGGTA (SEQ ID NO: 51) 之五個 3'- 最多鹼基。Lox71 與位於順式之反向 Lox66 位點發生重組酶反應後,產生的 LoxP 位點仍位於順式並包圍標靶 DNA 序列,但產生之 LoxP 位點之一者為雙突變位點,即每個末端序列具有突變,該末端序列因此包含 LE 反向重複突變及 RE 反向重複突變。相應之其他產生的 LoxP 位點對應於野生型序列。該經雙重突變之 LoxP 位點在 Cre 重組酶介導的重組中不再具有作用 (參見,例如,Langer 等人;Missirlis 等人,同上)。
已知不同的 LoxP RE 突變體及 LE 突變體序列。下表 4a 中列出一些突變體序列。
4a LoxP RE 突變體及 LE 突變體序列。
突變位點 序列 ( 底線為突變 ) 引用文獻
Lox71 (LE) * TACCGTTCGTATA-GCATACAT-TATACGAAGTTAT (SEQ ID NO: 52) Albert, H. 等人,The Plant Journal (1995) 649-659
Lox66 (RE) * ATAACTTCGTATA-GCATACAT-TATACGAA CGGTA(SEQ ID NO: 53) Albert, H. 等人,The Plant Journal (1995) 649-659
LoxJTZ17 (RE) * ATAACTTCGTATA-GCATACAT-TATA GCAA TTTAT (SEQ ID NO: 54) Araki, K. 等人,BMC Biotechnol. 10 (2010) 29
LoxKR1 (RE) ATAACTTCGTATA-GCATACAT-TATAC CAA CT GTT (SEQ ID NO: 55) Araki, K. 等人,BMC Biotechnol. 10 (2010) 29
LoxKR2 (RE) ATAACTTCGTATA-GCATACAT-TATAC CAA CTTA A(SEQ ID NO: 56) Araki, K. 等人,BMC Biotechnol. 10 (2010) 29
LoxKR3 (RE) * ATAACTTCGTATA-GCATACAT-TATAC CTTGTTAT (SEQ ID NO: 57) Araki, K. 等人,BMC Biotechnol. 10 (2010) 29
LoxKR4 (RE) ATAACTTCGTATA-GCATACAT-TAT TGCAAGTTAT (SEQ ID NO: 58) Araki, K. 等人,BMC Biotechnol. 10 (2010) 29
LoxJT15 (LE) A ATTATTCGTATA-GCATACAT-TATACGAAGTTAT (SEQ ID NO: 59) WO 2018/190348
*:交換反應後具最高穩定性;由 Hoess 等人 (1982) 所定義的反方向定位間隔子。
例如,RE 突變體及 LE 突變體序列 Lox71 及 Lox66,或 LoxJT15 及 LoxJTZ17 可成對使用。
同樣地,已知不同的 FRT RE 突變體及 LE 突變體序列。下表 4b 中列出一些突變體序列。
4b FRT RE 突變體及 LE 突變體序列。
突變位點 序列 ( 底線為突變 ) 引用文獻
LE 突變體 GAAGTTC ATATTC- TCTAGAAA-GTATAGGAACTTC (SEQ ID NO: 60) Senecoff 等人,1988
RE 突變體 GAAGTTCCTATTC- TCTAGAAA- GTATA TGAACTTC (SEQ ID NO: 61) Senecoff 等人,1988
通常,在任一股 (例如 LoxP、Lox511、Lox5171、Lox66 或 Lox71) 上之序列中含有 (功能性) 起始密碼子的重組位點不得以重組後該起始密碼子位於欲活化之基因之 5' UTR 之編碼股上的方式放置。否則,起始密碼子可能會抑制開讀框的轉譯。在此種情況下,可將重組位點 (立即地) 放置在啟動子之 TATA 元件之 3',或介於 TATA 元件與轉錄起始位點之間,使得起始密碼子不被轉錄 (靜默起始密碼子)。
在所有態樣及實施例的某些實施例中,只要所使用的重組酶識別位點是不相容的,則本發明之DNA 元件被組合成二聚體、三聚體及陣列。此為組合使用根據本發明之不同 DNA 元件時的唯一要求。因此,當使用相同的重組酶時,可同時活化兩個、四個、六個及甚至更多個開讀框/基因的轉錄,或者當在根據本發明之每個 DNA 元件中使用不同重組酶之不相容重組酶識別位點時,甚至可依序活化。
在所有態樣及實施例的某些實施例中,當組合根據本發明之兩個或更多個 DNA 元件且每個 DNA 元件對於 RMCI 需要不同的重組酶,則達成兩個、四個、六個及甚至更多個開讀框/基因的依序活化。此可經由如先前所述之兩種不同位點特異性重組酶系統的組合來達成,例如,舉例而言,Cre/LoxP 系統與 Flp/FRT 系統的組合,或 Cre/LoxP 系統與 Dre/roxP 系統(參見,例如 Chuang, K. 等人,Genes Genom.Genet. 6 (2016) 559-571),或 Cre/LoxP 系統與 phiC31 整合酶/att 系統的組合,或 Flp/FRT 系統與 phiC31 整合酶/att 系統的組合。
在所有態樣及實施例的某些實施例中,可達成一個、兩個、三個、四個、五個、六個及甚至更多開讀框/基因的依序活化,其中使用根據本發明之任一 DNA 元件 (依序活化一個或兩個開讀框),或者組合兩個或多個根據本發明之 DNA 元件 (依序活化兩個、三個、四個或更多個開讀框的),其中在兩個或多個 DNA 元件的情況下,每個 DNA 元件對於 RMCI 需要不同的重組酶,且其中第一啟動子或第二啟動子為可誘導啟動子 (在依序活化兩個開讀框的情況下),或者每個第二啟動子為可誘導啟動子 (在依序活化兩個或更多個開讀框的情況下)。
因此,在所有態樣及實施例的某些實施例中,第一啟動子或第二啟動子為可誘導啟動子。在某些實施例中,可誘導啟動子係選自包含以下之群的可誘導啟動子:四環素控制的啟動子、cumate 控制的啟動子、FKBP12-mTOR 控制的啟動子、雷帕黴素控制的啟動子、FKCsA 控制的啟動子、脫落酸控制的啟動子、他莫昔芬控制的啟動子及核糖開關控制的啟動子 (FKCsA = FK506 及環孢菌素 A 的異源二聚體)。
關於可誘導啟動子的回顧請參見,例如 Kallunki, T. 等人,Cells 8 (2019) 796。
在所有態樣及實施例的某些實施例中,可達成一個、兩個、三個、四個、五個、六個及甚至更多開讀框/基因的依序活化,其中使用根據本發明之任一 DNA 元件 (依序活化一個或兩個開讀框),或者組合兩個或多個根據本發明之 DNA 元件 (依序活化兩個、三個、四個或更多個開讀框的),其中在兩個或多個 DNA 元件的情況下,每個 DNA 元件對於 RMCI 需要不同的重組酶,且其中第一啟動子或第二啟動子為抑制性啟動子 (在依序活化兩個開讀框的情況下),或者每個第二啟動子為抑制性啟動子 (在依序活化兩個或更多個開讀框的情況下)。
因此,在所有態樣及實施例的某些實施例中,第一啟動子或第二啟動子為抑制性啟動子。在某些實施例中,抑制性啟動子係選自包含以下之群的抑制性啟動子:四環素控制的啟動子、GAL4/UAS 控制的啟動子及 LexA/lexAop 控制的啟動子。
為達更多的組合,可將組成型抑制性啟動子、可誘導抑制性啟動子及抑制型啟動子組合。例如,如果將四環素依賴性可誘導啟動子及抑制型啟動子組合在一起,經由加入四環素,一個啟動子被靜默,另一個啟動子則被活化,因而允許轉換不同開讀框的轉錄。
圖 2 顯示根據本發明之兩個 DNA 元件的組合。第一 DNA 元件包含第一重組酶識別序列 (RRS1),其在順方向的左反向重複中具有突變;反方向之第一開讀框 (SG1),其可操作地連接至同樣為反方向的第一多腺苷酸化訊號序列;第二重組酶識別序列 (RRS2),其在逆方向的右反向重複中具有突變,其與 RRS1 相容;及順方向之開讀框 (SG2),其可操作地連接至第二多腺苷酸化訊號序列。第二 DNA 元件包含第三重組酶識別序列 (RRS3),其在順方向的左反向重複中具有突變,其與 RRS1 及 RRS2 不相容;反方向之第三開讀框 (SG3),其可操作地連接至第三多腺苷酸化訊號序列;第四重組酶識別序列 (RRS4),其在逆方向的右反向重複中具有突變,其與 RRS1 及 RRS2 不相容但與 RRS3 相容;及第四開讀框 (SG4),其可操作地連接至第四多腺苷酸化訊號序列。
如果所有 RRS 都被單一 (即相同) 的重組酶識別,則在與其培育時會發生兩個反轉反應,即 RRS1 與 RRS2 之間的 DNA 片段以及 RRS3 與 RRS4 之間的 DNA 片段被反轉。因此,所有四個開讀框變得可操作地連接至其各自的啟動子並被轉錄。對應的交換反應如圖 3 所示。例如,如果使用 Cre 重組酶,則可分別使用不相容的 RRS 對 Lox71/Lox66 及 L3-LE/L3-RE。
如果 RRS1 及 RRS2 被第一重組酶識別且 RRS3 及 RRS4 被第二重組酶識別,則在與第一重組酶培育時只發生一個反轉反應,即 RRS1 與 RRS2 之間的 DNA 片段被反轉,而 RRS3 與 RRS4 之間的 DNA 片段保持不變。因此,只有兩個開讀框變得可操作地連接至其各自的啟動子並被轉錄。如果在第一重組酶之後將相應的第二重組酶導入相應的細胞,則 RRS3 與 RRS4 之間的 DNA 片段亦被反轉,相應的開讀框被活化。對應的交換反應如圖 4 所示。例如,第一重組酶可為 Cre 重組酶,且 RRS1/RRS2 為 LoxP 位點,第二重組酶可為 phiC31-整合酶,且 RRS3/RRS4 為 attP 及 attB。
如果至少一個啟動子為可誘導啟動子,與其轉錄可操作地連接至開讀框之啟動子的轉錄需在 RMCI 之後另外存在相應的誘導子,或者如果至少一個啟動子為抑制性啟動子,則在 RMCI 後,經由加入相應的抑制子可抑制其可操作地連接至開讀框的轉錄。 重組 AAV 顆粒
為產生重組 AAV 顆粒,需在單一哺乳動物細胞中表現 Rep 和 Cap 蛋白、輔助蛋白 E1A、E1B、E2A 及 E4orf6 以及腺病毒 VA RNA。尤其是,表現 Rep 蛋白對哺乳動物細胞的生長及存活率具有負面影響。可經由使用根據本發明之DNA 元件來克服這些缺點。例示性設計概述如下並顯示於圖5、圖 6 及 圖 7,其中將根據本發明之一個或兩個 DNA 元件組合使用。可使用任何啟動子 (尤其是 CMV IE 啟動子) 表現輔助蛋白 E1A、E1B、E2A 及 E4orf6,如 Matsushita 等人所示 (Gene Ther. 5 (1998) 938-945)。因此,在下文中可使用任何啟動子。 E1A E1B E2A E4orf6 開讀框
因此,本發明之一個獨立態樣為一種 (雙股) DNA (分子) (用於生產重組腺相關病毒載體或顆粒),其包含: a)   E1A 開讀框及 E1B 開讀框;及 b)  E2A 開讀框及 E4orf6 開讀框; 其特徵在於 a) 或 b) 之該第一開讀框及該第二開讀框包含於 (根據本發明之) 雙股 DNA 元件,該雙股 DNA 元件包含 (正向的) 編碼股及 (負向的) 模板股, 其中該編碼股自 5'- 至 3'- 方向按以下順序包含 -    第一啟動子, -    - 第一重組酶識別序列,其在左反向重複中包含突變, -    - 第二啟動子,其相對於該編碼股為反向 (以反方向), -    第一多腺苷酸化訊號序列及/或轉錄終止元件,其相對於該編碼股為反向且其係可操作地連接至該第一開讀框, -    a) 或 b) 之第一開讀框,其相對於該編碼股為反向 (以反方向), -    第二重組酶識別序列,其在右反向重複中包含突變,且對於該第一重組酶識別序列為互逆方向, -    a) 之第二開讀框 (若第一開讀框來自 a));或 b) 之第二開讀框 (若第一開讀框來自 b)), -    第二多腺苷酸化訊號序列及/或轉錄終止元件,其可操作地連接至該第二開讀框。
在所有態樣及實施例的某些實施例中,相應之其他開讀框位於表現卡匣內,即,可操作地連接至啟動子及多腺苷酸化訊號序列及/或轉錄終止元件。
圖 9 及 10 顯示上述 a) 在 RMCI 之前 (圖9) 及在 RMCI 之後 (圖10) 的方案。
圖 11 及 12 顯示在 RMCI 之前 (圖11) 及在 RMCI 之後 (圖12),上述態樣 b) 的方案。
根據本發明之 DNA 元件中重組識別位點的序列需要相對於彼此具有特定的方向。相對於第一重組識別位點,第一重組識別位點為順方向,且第二重組識別位點為反向/反方向。
例如,LoxP 位點在編碼股/正股/順向股上之 5' 到 3' 方向具有以下序列的情況下: 5’-ataacttcgtata-atgtatgc-tatacgaagttat-3’ 經由將每個核苷酸替換成其互補鹼基,並自原始序列的 3'- 端開始,獲得欲放置在編碼股 (即自 5'- 至 3'- 方向) 的反向序列,其得到如下之反向編碼股序列: 5’-ataacttcgtata-gcatacat-tatacgaagttat-3’。
同樣地,可獲得其他反向序列,該等其他反向序列與根據本發明之 DNA 元件結合。因此,根據本發明之例示性 DNA 元件在編碼股上具有以下序列: 正常方向之 1 st啟動子 - 5’-ataacttcgtata-atgtatgc-tatacgaagttat-3’ (正常方向之 1 st重組酶識別序列) - 反方向之 2 nd啟動子 - 反方向之 1 stpolyA/終止子序列 - 反方向之 1 st開讀框 - 5’-ataacttcgtata-gcatacat-tatacgaagttat-3’ (反方向之 2 nd重組酶識別序列) - 2 nd開讀框 (正常方向) - 正常方向之 2 ndpolyA/終止子序列。
此外,本發明之一個獨立態樣為一種 (雙股) DNA (分子) (用於生產重組腺相關病毒載體或顆粒),其包含 a)   E1A 開讀框及 E1B 開讀框;及 b)  E2A 開讀框及 E4orf6 開讀框; 其特徵在於 a) 之第一開讀框及第二開讀框包含於 (根據本發明之) 雙股 DNA 元件中,且 b)之第一開讀框及第二開讀框包含於 (根據本發明之) 雙股 DNA 元件中 (即 DNA 包含兩個根據本發明之 DNA 元件),每個雙股 DNA 元件包含 (正向的) 編碼股及 (負向的) 模板股, 其中該編碼股自 5'- 至 3'- 方向按以下順序包含 -    第一啟動子, -    - 第一重組酶識別序列,其在左反向重複中包含突變, -    - 第二啟動子,其相對於該編碼股為反向 (以反方向), -    第一多腺苷酸化訊號及/或轉錄終止元件,其相對於該編碼股為反向且其係可操作地連接至該第一開讀框, -    a) 或 b) 之第一開讀框,其相對於該編碼股為反向 (以反方向), -    第二重組酶識別序列,其在右反向重複中包含突變,且對於該第一重組酶識別序列為互逆方向, -    a) 之第二開讀框 (若第一開讀框來自 a));或 b) 之第二開讀框 (若第一開讀框來自 b)),且 -    第二多腺苷酸化訊號及/或轉錄終止元件,其可操作地連接至該第二開讀框。
在每種情況下,將該雙股 DNA 分子與對該第一重組酶識別序列及第二重組酶識別序列具有功能之重組酶培育引起 -    介於該第一重組酶識別序列與該第二重組酶識別序列之間之序列的反轉,此後該第一啟動子可操作地連接至該第一開讀框,且該第二啟動子可操作地連接至該第二開讀框,及 -    重組後在位於該第一啟動子與第一開讀框之間產生 (第三) 重組酶識別序列,其不再對該重組酶具有功能。
同樣在上述兩個態樣中,該第一重組酶識別序列在右反向重複中可包含突變,且該第二重組酶識別序列在左反向重複中可包含突變。此將導致重組後在該第二啟動子與該第二開讀框之間產生重組酶識別序列,其不再對該重組酶具有功能。
可經由使用驅動重組酶基因表現之可誘導啟動子或經由導入重組酶編碼 mRNA 等,以達成暫時表現重組酶 (例如 Cre 重組酶)。Carter, Z. 及 Delneri, D (Yeast 27 (2010) 765-775) 報導例示性之可誘導 Cre 重組酶表現系統。其中,經由將轉染體暴露於半乳糖 (YPGal) 數小時,在轉染體中誘導表現 Cre 重組酶。
在所有態樣及實施例的某些實施例中,E1A 及 E1B (開讀框) 之編碼序列係源自人類腺病毒,諸如,舉例而言,特別是人類腺病毒血清型 2 或血清型 5。人類 Ad5 (腺病毒血清型 5) 的例示性序列可在 GenBank 條目 X02996、AC_000008 中找到,而人類 Ad2 的例示性序列可在 GenBank 條目 AC_000007 中找到。在所有態樣及實施例的某些實施例中,核苷酸 505 至 3522 包含編碼人類腺病毒血清型 5 之 E1A 及 E1B 的核酸序列。EP 1 230 354 B1 中所報導的質體 pSTK146 以及 WO 2007/056994 中所報導的質體 pGS119 及 pGS122 亦可作為 E1A 及 E1B 開讀框的來源。 Rep/Cap 開讀框
經由結合 DNA 反轉與可操作連接至啟動子的基因活化原理亦可用於條件性活化 rep 及 cap 開讀框。
除了 P5 啟動子以外,驅動 rep 及 cap 開讀框表現的啟動子位於 Rep 多肽編碼序列內。因此,對於經由重組酶介導的序列反轉及伴隨之可操作地連接至啟動子以條件性活化 rep 及 cap 開讀框,不相容之重組酶識別序列之一者必須位於 P5 啟動子與 rep 開讀框之間,且其他不相容之重組酶識別序列必須位於 cap 開讀框與多腺苷酸化訊號之間。此示意性地在圖 7 的左圖中顯示。
因此,本發明之另一個獨立態樣為一種 (雙股) DNA (分子) (用於生產重組腺相關病毒載體或顆粒),其包含 (根據本發明之) 雙股 DNA 元件,該元件包含 (正方向) 編碼股及 (負方向) 的模板股, 其中該編碼股自 5'- 至 3'- 方向按以下順序包含 -    第一啟動子,在一個較佳實施例中,為腺相關病毒啟動子 P5 或其功能片段或其變異體, -    - 第一重組酶識別序列,其在左反向重複中包含突變, -    rep 及 cap 開讀框,其包括用於表現 Rep 及 Cap 蛋白的其他啟動子,該 rep 及 cap 開讀框相對於該編碼股為反向 (逆向), -    第二重組酶識別序列,其在右反向重複中包含突變,且對於該第一重組酶識別序列為反向/互逆方向,及 -    多腺苷酸化訊號。
本發明之另一個獨立態樣為一種 (雙股) DNA (分子) (用於生產重組腺相關病毒載體或顆粒),其包含 (根據本發明之) 雙股 DNA 元件,該元件包含 (正方向) 編碼股及 (負方向) 的模板股, 其中該編碼股自 5'- 至 3'- 方向按以下順序包含 -    第一啟動子,在一個較佳實施例中,為腺相關病毒啟動子 P5 或其功能片段或其變異體, -    - 第一重組酶識別序列,其在左反向重複中包含突變, -    第二啟動子,其相對於該編碼股 (以反向方向) 為反向,在一個較佳實施例中,為腺相關病毒啟動子 P19 或其功能片段或其變異體, -    第一多腺苷酸化訊號及/或轉錄終止元件,其相對於該編碼股為反向, -    編碼序列,其僅編碼 Rep78 蛋白或僅編碼 Rep68 蛋白,但不能同時編碼兩者,其中內部 P40 啟動子為非活化的,且剪接供體及受體位點係經移除,且其相對於該編碼股為反向 (反向方向), -    第二重組酶識別序列,其在右反向重複中包含突變,且對於該第一重組酶識別序列為反向/互逆方向,及 -    Rep52/Rep40 及 Cap 基因包括一個共同的多腺苷酸化訊號。
圖 13 及 14 顯示在 RMCI 之前 (圖13) 及在 RMCI 之後 (圖14),上述態樣的方案。另請參見圖 7,中間圖。
本發明之另一個獨立態樣為一種 (雙股) DNA (分子) (用於生產重組腺相關病毒載體及顆粒),其包含 (根據本發明之) 雙股 DNA 元件,該元件包含 (正方向) 編碼股及 (負方向) 的模板股, 其中該編碼股自 5'- 至 3'- 方向按以下順序包含 -    第一啟動子,在一個較佳實施例中,為腺相關病毒啟動子 P5 或其功能片段或其變異體, -    - 第一重組酶識別序列,其在左反向重複中包含突變, -    第二啟動子,其相對於該編碼股 (以反向方向) 為反向,在一個較佳實施例中,為腺相關病毒啟動子 P19 或其功能片段或其變異體, -    第一多腺苷酸化訊號及/或轉錄終止元件,其相對於該編碼股 (方向) 為反向 (按順序) (即處於反向/負方向) 且其係可操作地連接至該 Rep78 或 Rep68 編碼序列, -    編碼序列,其僅編碼 Rep78 蛋白或僅編碼 Rep68 蛋白,但不能同時編碼兩者,其中內部 P40 啟動子為非活化的,且剪接供體及受體位點係經移除,且其相對於該編碼股為反向 (反向方向), -    第二重組酶識別序列,其在右反向重複序列中包含突變,且其相對於該第一重組酶識別序列為互逆/反方向, -    Rep52 開讀框,其包括多腺苷酸化訊號序列,即可操作地連接至該開讀框的多腺苷酸化訊號,及 -    視情況地第三啟動子,cap 開讀框及多腺苷酸化及/或終止子序列,其中所有皆係可操作地連接。
另請參見圖 7,右圖。
在上述每個態樣中,將雙股 DNA 分子與分別對該第一重組酶識別序列及第二重組酶識別序列及/或該第三重組酶識別序列及第四重組酶識別序列具有功能的重組酶的培育引起 -    介於該第一重組酶識別序列與該第三重組酶識別序列之間及介於該第二重組酶識別序列與該第四重組酶識別序列之間之序列的反轉,此後該第一啟動子/該第三啟動子可操作地連接至該第一開讀框/該第三開讀框,且該第二啟動子/該第四啟動子可操作地連接至該第二開讀框/該第四開讀框,及 -    重組後在該第一啟動子/第三啟動子與第一開讀框/第三開讀框之間產生重組酶識別序列,其不再對該重組酶具有功能。
同樣在上述三個態樣,該第一重組酶識別序列在右反向重複中可包含突變,且該第二重組酶識別序列在左反向重複中可包含突變。此將導致重組後在該第二啟動子與該第二開讀框之間產生重組酶識別序列,其不再對該重組酶具有功能。
可經由使用驅動重組酶基因表現之可誘導啟動子或經由導入重組酶編碼 mRNA 等,以達成暫時表現重組酶 (例如 Cre 重組酶)。Carter, Z. 及 Delneri, D (Yeast 27 (2010) 765-775) 報導例示性之可誘導 Cre 重組酶表現系統。其中,經由將轉染體暴露於半乳糖 (YPGal) 數小時,在轉染體中誘導表現 Cre 重組酶。 腺病毒 VA RNA 基因
經由結合 DNA 反轉與可操作連接至啟動子的基因活化原理亦可用於條件性活化腺病毒 VA RNA 基因轉錄。
腺病毒 VA RNA 基因由第 2 型聚合酶 III 啟動子驅動,該啟動子包含兩個基因內元件 A 盒及 B 盒。Snouwaert等人 (Nucl. Acids Res. 15 (1987) 8293-8303) 鑑別出完全地消除啟動子活性之 VA RNAI B 盒的突變體。這些突變不太可能影響 VA RNAI 與 PKR 的結合及相關功能 (Clark, K.R. 等人,Hum. Gene Ther. 6 (1995) 1329-1341)。
本發明之另一態樣為一種新穎腺病毒 VA RNA 基因。根據本發明之腺病毒 VA RNA 基因允許 Cre 重組酶介導的反轉活化基因。在根據本發明之腺病毒 VA RNA 中,腺病毒 VA RNA 基因可由具有精確轉錄起始位點及導入到腺病毒 VA RNA 之非編碼 (即調節) 元件中之 LoxP 位點的任何啟動子所驅動。
本案發明人已發現 TATA 盒可整合到 LoxP 位點的 8 bp 間隔子中,因而產生出經特定工程化之新穎 LoxP 位點。該新穎 LoxP 間隔子序列 AGTTTATA (SEQ ID NO: 01) 係表示為 Lx。此種新穎間隔子序列可與任何已知的反向重複序列組合,例如 SEQ ID NO: 14 及 15 (= SEQ ID NO: 14+SEQ ID NO: 01+SEQ ID NO: 15) 之野生型 LoxP 反向重複序列,以及包含 SEQ ID NO: 50 及 51 (= SEQ ID NO: 03 及 05) 之 LE 突變體及 RE 突變體序列的反向重複序列,包含順向及反向 (inv) 形式 (=SEQ ID NO: 14+SEQ ID NO: 02+SEQ ID NO: 15): Lx         ataacttcgtata – agtttata – tatacgaagttat Lx (inv) ataacttcgtata – tataaact - tatacgaagttat Lx-LE   taccgttcgtata – agtttata - tatacgaagttat Lx-RE   ataacttcgtata – agtttata - tatacgaacggta
下方顯示 LoxP 位點 (1)、根據本發明之 Lx-LE 位點 (具有突變之左反向重複) (2) 及例示性 TATA 盒 (3) 的序列比對 (底線為 TATA 盒,間隔子序列為粗體): (1)          ATAACTTCGTATA ATGTATGCTATACGAAGTTAT (2)          TACCGTTCGTATA AG TTTATA TATACGAAGTTAT (3)                         TTTATATAT
可看出,根據本發明之 Lx-LE 位點的 TATA 盒未改變,包含突變左重複 (LE)、野生型右重複及新穎 Lx 間隔子序列。
因此,本發明之一個態樣為 SEQ ID NO: 30 (TACCGTTCGTATAAGTTTATATATACGAAGTTA T) 的 Cre 重組酶識別序列 Lx-LE。
因此,本發明之一個獨立態樣為 LoxP 位點 AGTTTATA (SEQ ID NO: 01 順方向;SEQ ID NO: 02 反方向)。
在所有態樣及實施例的某些實施例中,將 SEQ ID NO: 01 或 SEQ ID NO: 02 的間隔子序列與野生型左反向重複及野生型右反向重複組合。此 Cre 重組酶識別序列在順方向具有 SEQ ID NO: 14+SEQ ID NO: 01+SEQ ID NO: 15 序列的直接組合,在反方向具有 SEQ ID NO: 14+SEQ ID NO: 02+SEQ ID NO: 15 序列的直接組合。
在所有態樣及實施例的某些實施例中,將 SEQ ID NO: 01 或 SEQ ID NO: 02 的間隔子序列與突變左反向重複及野生型右反向重複組合。此 Cre 重組酶識別序列表示為 Lx-LE,且在順方向上具有 SEQ ID NO: 03 的序列,及在反方向上具有 SEQ ID NO: 04 的序列。
在所有態樣及實施例的某些實施例中,將 SEQ ID NO: 01 或 SEQ ID NO: 02 的間隔子序列與突變右反向重複及野生型左反向重複組合。此 Cre 重組酶識別序列表示為 Lx-RE,且在順方向上具有 SEQ ID NO: 05 的序列,及在反方向上具有 SEQ ID NO: 06 的序列。
本發明之另一個獨立態樣為 SEQ ID NO: 03 之 Cre 重組酶識別序列在轉錄腺病毒 VA RNA 基因中的用途。
本發明之另一個獨立態樣為新穎腺病毒 VA RNA 基因。根據本發明之腺病毒 VA RNA 基因允許 Cre 重組酶介導的反轉活化基因。在根據本發明之腺病毒 VA RNA 中,腺病毒 VA RNA 基因轉錄可由具有精確轉錄起始位點及導入到腺病毒 VA RNA 之非編碼 (即調節) 元件中之 LoxP 位點的任何啟動子所驅動。
此態樣之發明如圖 16 所示。
病毒相關 RNA (VA RNA) 為調節轉譯之腺病毒 (Ad) 的非編碼 RNA。腺病毒基因體包含兩個獨立的拷貝:VAI (VA RNAI) 及 VAII (VA RNAII)。兩者均由 RNA 聚合酶 III 轉錄 (參見,例如 Machitani, M. 等人,J. Contr.Rel.154 (2011) 285-289)。
Ma, Y. 及 Mathews, M.B. 使用系統發育方法研究腺病毒相關 RNA 的結構、功能及進化(J. Virol. 70 (1996) 5083-5099)。他們根據 47 種已知人類腺病毒血清型,提供其比對及共有 VA RNA 序列。該揭露在此經由引用整體併入本申請案。
VA RNA、VAI 及 VAII 係由 157-160 個核苷酸 (nt) 所組成。
根據血清型,腺病毒含有一個或兩個 VA RNA 基因。咸認為 VA RNAI 係主要的前病毒,而 VA RNAII 可部分地彌補 VA RNAI 之缺失 (Vachon, V.K. 及 Conn, G.L.,Virus Res. 212 (2016) 39-52)。
雖然 VA RNA 非必要,但其經由克服細胞抗病毒機制在有效的病毒生長中仍扮演重要角色。亦即,雖然 VA RNA 對於病毒生長非必要,但在載體生成的起始步驟中,VA RNA 缺失之腺病毒無法生長,其中每個細胞僅存在數個病毒基因體拷貝,可能是因為未充分地表現阻斷細胞抗病毒機制之 VA RNA 以外的病毒基因 (參見 Maekawa, A. 等人,Nature Sci. Rep.3 (2013) 1136)。
已由實驗定義出組成 RNA 聚合酶 III 之內部控制區 (或啟動子) 的 A 盒及 B 盒係用於腺病毒血清型 2 (Ad 2) VA RNAI。這些盒都具有相當的保守性。所有 VA RNA 在相似位置皆具有該等兩個盒。B 盒同源性非常高。位於 B 盒上游 34 到 40 nt 之A 盒在一些 VA RNA 中的同源性稍低。相互互補的四核苷酸 CCGG (SEQ ID NO: 77) 與 (U/C)CCGG (SEQ ID NO: 78) 之對形成 VA RNA 的頂莖的一部分,在 VA RNA 序列中相當保守。第一 CCGG 是固定的,該第一 CCGG 包括 B 盒 的前兩個鹼基。除了一個VA RNA 基因,所有 VA RNA 基因具有在 5' 半部分與 tRNA 轉錄起始元件 (分別為 RRYNNARYGG (SEQ ID NO: 79) 及 GWTCRANNC (SEQ ID NO: 80) 之 A 盒及 B 盒共通序列) 同源的序列。VA RNAII 基因中之 A 盒同源性通常比 VA RNAI 基因中之 A 盒同源性的弱,此與 A 盒對 VA RNA 轉錄的重要性不如 B 盒 的發現一致。VA RNA 編碼序列的末端是 T 殘基串,側翼為核苷酸 C 及 G,T 殘基串為典型的聚合酶 III 終止位點。胸苷的數量從最少 4 個到超過 10 個不等,且在 T 富集串的兩側至少缺乏 3 個 A 殘基之核苷酸 (Ad 12 及 Ad 18 除外,其在非常長之 T 串的中間具有 A 殘基) (Ma, Y. 及 Mathews, M.B., J. Virol. 70 (1996) 5083-5099)。
已發現 VA RNAI 及 VA RNAII 的 B 盒序列對於內部聚合酶 III 啟動子的活性為必要。
Maekawa, A. 等人 (Nature Sci. Rep.3 (2013) 1136) 報導缺乏病毒相關 RNA 基因之腺病毒載體的高效生產,該腺病毒載體干擾細胞 RNAi 機制,其中組成型地表現及高度表現翻轉酶重組酶之經感染 HEK293 細胞經由 FLP 重組酶介導切除 VA RNA 基因座,以獲得 VA RNA 缺失之腺病毒。
SEQ ID NO: 81 顯示人類腺病毒 2 VA RNAI (GenBank 條目 AC_000007 之核苷酸 10586-10810) 序列;SEQ ID NO: 82 顯示 G58T/G59T/C68A (連續殘基編號) 序列。SEQ ID NO: 83 顯示人類腺病毒 5 VA RNAI (GenBank 條目 AC_000008 之核苷酸 10579-10820) 序列;SEQ ID NO: 84 顯示人類腺病毒 5 VA RNAI 及 VA RNAII 序列。
Hahn, S. (Nat. Struct. Mol. Biol. 11 (2004) 394-403) 及 Revyakin, A. 等人 (Gen. Devel. 26 (2012) 1691-1702) 報導 RNA 聚合酶 II 轉錄機制之結構及機制,而 Nikitina, T.V. 及 Tishchenko, L.I.(Mol. Biol. 39 (2005) 161-172) 回顧 RNA 聚合酶 III 轉錄機制。其摘述如下。
轉錄,即 DNA 模板上的 RNA 合成,係由 DNA 依賴性 RNA 聚合酶所進行 (Pols,[EC 2.7.7.6])。除 RNA 聚合酶之外,亦涉及其他因子,稱為一般轉錄因子 (GTF)。這些一般轉錄因子對識別啟動子序列、對調節因子之反應以及轉錄過程中聚合酶活性所需之構象變化為必要。
核心啟動子 (指定非調節或基礎轉錄所需的最小 DNA 序列) 用於將 Pol 定位在稱為預啟動複合體 (PIC) 的狀態中。在此種狀態下,Pol 及 GTF 都與啟動子結合,但未處於開始轉錄的活性構象。
真核細胞包含三個 Pol,分別標示為 I、II 及 III,其具不同的次單元組合物。
由特定之 Pol 所轉錄的基因被相應地分配到 I、II 或 III 類。
Pol I 轉錄前 rRNA 的基因。除了 U6 snRNA 以外,Pol II 轉錄所有蛋白編碼基因及 snRNA 基因。Pol III 轉錄 5S rRNA、tRNA、U6 snRNA、7SK RNA、7SL RNA 的基因;Alu 重複;某些病毒基因;及小穩定非轉譯 RNA 的基因。
不同類的基因具不同結構的啟動子,啟動子決定參與形成 PIC 的基本 (一般) 轉錄因子及 Pol。
RNA 聚合酶 II (Pol II) 負責將基因訊息自 DNA 流向真核細胞中的訊息使 RNA (mRNA)。研究已鑑別出 GTF:TFIIA、TFIIB、TFIID、TFIIE、TFIIF 及 TFIIH,GTF 與 Pol II 在啟動子位點一起組裝到 PIC 中,並以基礎活性量直接轉錄起始。進一步調節轉錄活性取決於 DNA 模板中的順式控制元件,這些順式控制元件被共活化子所輔助之序列特異性活化子/抑制子所識別。
在 Pol II 核心啟動子中所發現之序列元件包括 TATA 元件 (TATA 結合蛋白 (TBP) 結合位點)、BRE (TFIIB 識別元件)、Inr (啟動子元件) 及 DPE (下游啟動子元件)。大多數啟動子包含一個或多個這些元件,但沒有一個元件對啟動子功能為絕對必要。啟動子元件為轉錄機制次單元的結合位點,且用於將轉錄機制不對稱地定位在啟動子上以導引單方向轉錄。
TBP 的核心結構域由兩個不完美的重複組成以形成分子,該分子與 8 bp TATA 元件上之 DNA 結合。在含有 TATA 的啟動子上,形成此種蛋白質-DNA 複合體是組裝轉錄機制的第一步。類 TATA 序列位於轉錄起始位點上游約 30 bp 處。
RNA 聚合酶 III (Pol III) 在所有真核 Pol 中具有最複雜的結構:該酶由 17 個次單元所組成,次單位範圍自 ~10 kDa 至 ~160 kDa,且總分子量為 600-680 kDa。
由 Pol III 所轉錄的 III 類基因包含三個結構不同的啟動子,其大多具有基因內位置。Pol III 轉錄機制的一般轉錄因子為 TFIIIA、TFIIIB、TFIIIC 及小核 RNA 活化蛋白複合物 (SNAPc)。
在 III 類基因 (1 型、2 型、3 型) 之不同啟動子上組裝 PIC 需一個或多個 A 盒、B 盒及 C 盒;內部控制區 (ICR);TATA 盒;遠端 (DSE) 及近端 (PSE) 序列元件。1 型基因在位置 +57 處的 A 盒及在位置 +90 處包含 C 盒,該等位置係相對於 +1 處的轉錄起始點。2 型基因包含 A 盒 及 B 盒。3 型基因在位置 -250 處包含 DSE、在位置 -60 處包含 PSE 以及在位置 -27 處包含 TATA 框,該等位置係相對於 +1 之轉錄起始點。可存在 A 盒 ,但並非必需的。
Pol III 在所有三種類型的啟動子上之募集及轉錄起始都需要轉錄因子 IIIB (TFIIIB) 的作用,且募集及轉錄起始受到高度調控。TFIIIB 結合位點為 TATA 盒周圍 +/-8 nt。此外,所有三種聚合酶需要 TBP (Han, Y. 等人,Cell. Discover.4 (2018) 40)。
關於三種類型的 Pol III 基因,Oler, A.J. 等人 (Nat. Struct. Mol. Biol. 17 (2010) 620-628) 根據 1) 順式調控元件的存在及位置,以及 2) 對特定基本或輔助轉錄因子的要求,概述將 Pol III 導向至標靶基因所需的因子以及人類中 Pol III 基因的三種「類型」。簡言之,5S rRNA 為唯一需要 TFIIIA 的 1 型基因。1 型及 2 型基因皆需 TFIIIC,TFIIIC 為一種基本因子及靶向複合體,其識別 2 型基因內 A 盒 及 B 盒元件,但不識別 1 型基因。TFIIIB 複合體包括識別 TATA/啟動子及啟動 Pol III 所需的 TBP。2 型及 3 型基因利用 TFIIIB 的選擇性組裝:BRF1 (TFIIIB 相關因子 1) 用於 2 型基因,且 BRF2 (TFIIIB 相關因子 2) 用於 3 型基因。3 型基因缺乏內 A 盒或內 B 盒,且不依賴於 TFIIIC,而是依賴上游 PSE 及 DSE 以及特定因子 (OCT1、SNAPc 等) 進行靶向。尤其,3 型 Pol III 啟動子的結構類似於 Pol II 基因,其利用上游調控元件而非基因內元件。
在某些實施例中,根據本發明之新穎腺病毒 VA RNA 基因自 5'- 至 3'- 方向按以下順序包含 -    腺病毒 VA RNAI 之至少六個 5'- 端核苷酸,其包含轉錄起始位點 (TSS) 的 (以防止繞過隨後的聚合酶 III (poly III) 終止子); -    功能性聚合酶 III 終止子 (以防止從視情況存在之組成型活性上游啟動子轉錄反向互補 VA RNA), -    反向形式之腺病毒 VA RNAI 序列 (自 3'- 至 5'- 方向)。
在所有態樣及實施例的某些實施例中,VA RNA 基因進一步包含融合至其 5'- 端的聚合酶啟動子。
在所有態樣及實施例的某些實施例中,根據本發明之腺病毒 VA RNA 基因在其 5'- 端進一步包含直接融合至 (或經由核苷酸連接子融合至) SEQ ID NO:03 的 Cre 重組位點。在某些實施例中,根據本發明之腺病毒 VA RNA 基因在其 5'- 端包含直接融合至 (或經由核苷酸連接子融合至) SEQ ID NO: 03 的 Cre 重組酶位點,且在其 3'- 端包含直接融合至 (或經由核苷酸連接子融合至) SEQ ID NO: 06 的 Cre 重組酶位點。
在所有態樣及實施例的某些實施例中,根據本發明之腺病毒 VA RNA 序列包含 SEQ ID NO: 62 或 SEQ ID NO: 81 或 SEQ ID NO: 83 的全部或部分野生型序列: gggcactctt ccgtggtctg gtggataaat tcgcaagggt atcatggcgg acgaccgggg ttcgaacccc ggatccggcc gtccgccgtg atccatgcgg ttaccgcccg cgtgtcgaac ccaggtgtgc gacgtcagac aacgggggag cgctcctttt ggcttccttc caggcgcggc ggctgctgcg ctagcttttt t.
在所有態樣及實施例的某些實施例中,根據本發明之腺病毒 VA RNA 序列包含具有 SEQ ID NO: 62 之突變 G58T、G59T 及 C68A (序列編號) (全部或部分之野生型序列): gggcactctt ccgtggtctg gtggataaat tcgcaagggt atcatggcgg acgaccgttg ttcgaacacc ggatccggcc gtccgccgtg atccatgcgg ttaccgcccg cgtgtcgaac ccaggtgtgc gacgtcagac aacgggggag cgctcctttt ggcttccttc caggcgcggc ggctgctgcg ctagcttttt t.
圖 15 顯示包含上述 SEQ ID NO: 62 與 SEQ ID NO: 63 序列的比對。
根據本發明之腺病毒 VA RNA 基因在 5'- 端與 SEQ ID NO: 03 融合,且在 3'- 端與 SEQ ID NO: 06 融合,圖 16 顯示在 RMCI 之前的腺病毒 VA RNA 基因,圖 17 顯示在 RMCI 之後的腺病毒 VA RNA 基因。
在某些實施例中,根據本發明之腺病毒 VA RNA 自 5'- 至 3'- 方向按以下順序包含以下序列: (1) taccgttcgt ataagtttat atatacgaag ttat (SEQ ID NO: 03) (1a) 視情況的填充序列 ggacgaaaca cc(SEQ ID NO: 68) (2) gggcac (SEQ ID NO: 64) (3) tttttt (SEQ ID NO: 65) (4) aggagcgctc ccccgttgtc tgacgtcgca cacctgggtt cgacacgcgg gcggtaaccg catggatcac ggcggacggc cggatccggt gttcgaacaa cggtcgtccg ccatgatacc cttgcgaatt tatccaccag accacggaag agtgccc (SEQ ID NO: 66) (5) taccgttcgt atatataaac ttatacgaag ttat (SEQ ID NO: 06)
在某些實施例中,根據本發明之腺病毒 VA RNA 基因包含以下序列: taccgttcgt ataagtttat atatacgaag ttatggacga aacaccgggc acttttttca gtggccaaaa aagctagcgc agcagccgcc gcgcctggaa ggaagccaaa aggagcgctc ccccgttgtc tgacgtcgca cacctgggtt cgacacgcgg gcggtaaccg catggatcac ggcggacggc cggatccggt gttcgaacaa cggtcgtccg ccatgatacc cttgcgaatt tatccaccag accacggaag agtgcccggt gtttcgtcct accgttcgta tatataaact tatacgaagt tat (SEQ ID NO: 67)。
在某些實施例中,根據本發明之 Lx-LE 位點包含以下序列,該序列包括用於適當間隔的填充序列: taccgttcgt ataagtttat atatacgaag ttatggacga aacacc (SEQ ID NO: 69)。
本發明之另一態樣為包含根據本發明之腺病毒 VA RNA 的細胞,該腺病毒 VA RNA 為原始形式或反向形式。 包含根據本發明之 DNA 元件及 DNA 分子的例示性用途及方法
根據本發明之雙股 DNA 元件或分子以及任何核酸可用於生產重組AAV 載體及包含其的重組 AAV 顆粒。
本領域已知用於產生 rAAV 顆粒的不同方法。例如,使用 AAV 質體及 AAV 輔助序列進行轉染並與一種 AAV 輔助病毒 (例如腺病毒、皰疹病毒或牛痘病毒) 共感染,或使用重組 AAV 質體、AAV 輔助質體及輔助功能質體進行轉染。產生 rAAV 顆粒的非限制性方法描述於例如 US 6,001,650、US 6,004,797、WO 2017/096039 及 WO 2018/226887。在生產重組 rAAV 顆粒 (即在細胞培養系統中產生顆粒) 後,可從宿主細胞及細胞培養上清液中獲得 rAAV 顆粒並進行純化。
本發明之態樣為使用根據本發明之分子例如核酸 (例如,質體) 轉導細胞並產生相應基因產物的方法。此外,當用序列 (例如編碼病毒包裝蛋白及/或輔助蛋白的質體) 轉導此類細胞時,可產生重組病毒顆粒,該顆粒包括編碼所關注蛋白質之核酸或包含被轉錄成所關注轉錄物的序列,其中至少一個核酸包含根據本發明之 DNA 元件或核酸進而以高產率產生重組病毒顆粒。
本發明提供病毒 (例如,AAV) 顆粒生產平台,該平台包括經由使用根據本發明之核酸或 DNA (元件) 之特徵,該特徵與目前「工業標準」的病毒 (例如,AAV) 顆粒生產過程不同。
在討論核酸 (質體) 時,可根據提供 5’ 至 3' 方向之序列的習慣,描述本文中之特定多核苷酸的序列或結構。
更通常地,經根據本發明之 DNA 元件或核酸轉染或轉導的此類細胞可稱為「重組細胞」。此種細胞例如可為酵母細胞、昆蟲細胞或哺乳動物細胞,其已被作為編碼包裝蛋白 (例如 AAV 包裝蛋白) 之核酸 (質體)、編碼輔助蛋白之核酸 (質體)、編碼蛋白質或被轉錄成所關注轉錄物之核酸 (質體) (即置於兩個 AAV ITR 之間的轉基因,或其他轉移核酸 (質體)) 的受體,其中至少一者包含根據本發明之 DNA 元件或分子。該術語包括已經轉導或經轉染之原始細胞的子代。應當理解,由於自然、偶然或特意之突變,單一親代細胞的子代在形態學或基因體或總核酸互補方面不一定與原始親代完全相同。
許多適用於維持細胞存活率或提供細胞生長及/或增殖的細胞生長培養基為可商購獲得或可輕易地生產。此類培養基的實例包括無血清真核生長培養基,例如用於維持存活率或提供哺乳動物 (例如人類) 細胞生長的培養基。非限制性實例包括 Ham's F12 或 F12K培養基 (Sigma-Aldrich)、FreeStyle (FS) F17培養基 (Thermo-Fisher Scientific)、MEM、DMEM、RPMI-1640 (Thermo-Fisher Scientific) 及其混合物。此種培養基可加入維生素及/或微量礦物質及/或鹽及/或胺基酸,例如哺乳動物 (例如人類) 細胞的必需胺基酸。
輔助蛋白質體可為質體、噬菌體、轉座子或黏接質體的形式。特別是,已證明輔助功能不需完全互補腺病毒基因。例如,已證明無法進行 DNA 複製及合成晚期基因的腺病毒突變體允許 AAV 複製。Ito 等人,J. Gen. Virol. 9 (1970) 243;Ishibashi 等人,Virology 45 (1971) 317。
已顯示 E2B 及 E3 區域內的突變體支持 AAV 複製,代表 E2B 及 E3 區域可能未涉及提供輔助功能。Carter 等人,Virology 126 (1983) 505。然而,在 E1 區具缺陷或具有缺失之 E4 區的腺病毒則無法支持 AAV 複製。因此,對於腺病毒輔助蛋白,AAV 複製可能直接地或間接地需要 E1A 及 E4 區域 (參見,例如,Laughlin 等人,J. Virol. 41 (1982) 868;Janik 等人,Proc. Natl . Acad. Sci. USA 78 (1981) 1925;Carter 等人,Virology 126 (1983) 505)。其他經表徵的腺病毒突變體包括:E1B (Laughlin 等人,(1982),同上;Janik 等人 (1981),同上;Ostrove 等人,Virology 104 (1980) 502);E2A (Handa 等人,J. Gen. Virol. 29 (1975) 239;Strauss 等人,J. Virol. 17 (1976) 140;Myers 等人,J. Virol. 35 (1980) 665;Jay 等人,Proc. Natl. Acad. Sci. USA 78 (1981) 2927;Myers 等人,J. Biol. Chem. 256 (1981) 567);E2B (Carter, Adeno-Associated Virus Helper Functions, in I CRC Handbook of Parvoviruses (P. Tijssen ed., 1990));E3 (Carter 等人,(1983),同上);及 E4 (Carter 等人,(1983),同上;Carter (1995))。
針對 E1B 中具有突變之腺病毒提供之輔助蛋白的研究報導稱,生產 AAV 顆粒需要 E1B 55 kDa 蛋白,但不需要 E1B 19 kDa。此外,WO 97/17458 及 Matshushita 等人 (Gene Therapy 5 (1998) 938-945) 描述編碼各種腺病毒基因的輔助功能質體。輔助質體的實例包含腺病毒 VA RNA 編碼區、腺病毒 E4 ORF6 編碼區、腺病毒 E2A 72 kDa 編碼區、腺病毒 E1A 編碼區及缺乏完整 E1B 55 kDa 編碼區的腺病毒 E1B 區 (參見,例如,WO 01/83797)。
因此,本文提供一種使用根據本發明之 DNA 元件或核酸或 DNA 生產重組 AAV 載體或包含該重組 AAV 載體之 AAV 顆粒的方法,該 AAV 載體包含編碼蛋白質之核酸或被轉錄成所關注轉錄物的核酸。
本發明之一個態樣為一種生產重組 AAV 載體或包含該重組 AAV 載體之 AAV 顆粒的方法,該 AAV 載體包含編碼蛋白質之核酸或被轉錄成所關注轉錄物的核酸,該方法包含以下步驟: (i) 提供包含編碼 AAV 包裝蛋白之核酸及/或編碼輔助蛋白之核酸的一個或多個質體,其中至少一個包含根據本發明之 DNA 元件或分子; (ii) 提供包含核酸的質體,該核酸編碼所關注蛋白質或被轉錄成所關注轉錄物; (iii) 將一個或多個哺乳動物或昆蟲細胞與所提供之質體接觸; (iv) 進一步加入轉染試劑,並視情況地培育質體/轉染試劑/細胞混合物;或提供物理方式 (例如電流) 將核酸導入至細胞; (v) 培養轉染細胞並在培養過程中的某個時間點/培養時間誘導 RMCI; (vi) 從培養細胞中收穫培養細胞及/或培養基,以產生細胞及/或培養基收穫物;及 (vii) 從細胞及/或培養基收穫物中分離及/或純化重組AAV 載體或AAV顆粒,從而產生包含編碼所關注蛋白質或被轉錄成所關注轉錄物之核酸的重組 AAV 載體或 AAV 顆粒。
本發明之一個態樣為一種生產重組 AAV 載體或包含該重組 AAV 載體之 AAV 顆粒的方法,該 AAV 載體包含編碼蛋白質之核酸或被轉錄成所關注轉錄物的核酸,該方法包含以下步驟: (i) 提供包含編碼 AAV 包裝蛋白之核酸及/或編碼輔助蛋白之核酸的一個或多個質體,其中至少一個包含根據本發明之 DNA 元件或分子; (ii) 提供包含核酸的質體,該核酸編碼所關注蛋白質或被轉錄成所關注轉錄物; (iii) 將一個或多個哺乳動物或昆蟲細胞與 (i) 所提供之質體接觸; (iv) 進一步加入轉染試劑,並視情況地培育質體/轉染試劑/細胞混合物;或提供物理方式 (例如電流) 將核酸導入至細胞; (v) 選擇穩定轉染的細胞; (vi) 將 (v) 中選擇的細胞與 (ii) 所提供的質體接觸; (vii) 進一步加入轉染試劑,並視情況地培育質體/轉染試劑/細胞混合物;或提供物理方式 (例如電流) 將核酸導入至細胞; (viii) 培養 (viii) 的轉染細胞並在培養過程中的某個時間點/培養時間誘導 RMCI; (ix) 從培養細胞中收穫培養細胞及/或培養基,以產生細胞及/或培養基收穫物;及 (x) 從細胞及/或培養基收穫物中分離及/或純化重組AAV 載體或AAV顆粒,從而產生包含編碼所關注蛋白質或被轉錄成所關注轉錄物之核酸的重組 AAV 載體或 AAV 顆粒。
本發明之一個態樣為一種生產重組 AAV 載體或包含該重組 AAV 載體之 AAV 顆粒的方法,該 AAV 載體包含編碼蛋白質之核酸或被轉錄成所關注轉錄物的核酸,該方法包含以下步驟: (i) 提供包含編碼 AAV 包裝蛋白之核酸及/或編碼輔助蛋白之核酸的哺乳動物或昆蟲細胞,其中至少一個核酸包含根據本發明之 DNA 元件或分子; (ii) 提供包含核酸的質體,該核酸編碼所關注蛋白質或被轉錄成所關注轉錄物; (iii) 將 (i) 的細胞與 (ii) 所提供的質體接觸; (iv) 進一步加入轉染試劑,並視情況地培育質體/轉染試劑/細胞混合物;或提供物理方式 (例如電流) 將核酸導入至細胞; (v) 選擇穩定轉染的細胞; (vi) 培養 (v) 的穩定轉染細胞並在培養過程中的某個時間點/培養時間誘導 RMCI; (vii) 從培養細胞中收穫培養細胞及/或培養基,以產生細胞及/或培養基收穫物;及 (viii) 從細胞及/或培養基收穫物中分離及/或純化重組AAV 載體或AAV顆粒,從而產生包含編碼所關注蛋白質或被轉錄成所關注轉錄物之核酸的重組 AAV 載體或 AAV 顆粒。
可以多種方式將包含根據本發明之 DNA 元件或分子的核酸導入至細胞中。
本領域已報導將 DNA 轉移到哺乳動物細胞中的多種方法。這些方法在根據本發明之方法中都是有用的。在所有態樣及實施例的某些實施例中,使用電穿孔、核轉染或顯微注射進行核酸轉移/轉染。在所有態樣及實施例的某些實施例中,使用無機物質 (例如,舉例而言,磷酸鈣/DNA 共沉澱)、陽離子聚合物 (例如,舉例而言,聚乙烯亞胺、DEAE-葡聚醣) 或陽離子脂質 (脂質體) 進行核酸轉移/轉染。磷酸鈣及聚乙烯亞胺為用於大規模核酸轉移的最常用轉染試劑 (參見,例如 Baldi 等人,Biotechnol. Lett.29 (2007) 677-684),其中聚乙烯亞胺為較佳。
在所有態樣及實施例的某些實施例中,包含根據本發明之 DNA 元件或分子的核酸以組合物的形式提供,該組合物與聚乙烯亞胺 (PEI) 組合,視情況地與細胞組合。在某些實施例中,組合物包括質體/PEI 混合物,其具有複數個組分:(a) 一個或多個包含編碼 AAV 包裝蛋白之核酸及/或編碼輔助蛋白之核酸的質體,其中至少一個核酸包含本發明之 DNA 元件或分子;(b) 包含編碼蛋白質或被轉錄成所關注轉錄物之核酸的質體;及 (c) 聚乙烯亞胺 (PEI) 溶液。在某些實施例中,質體的莫耳比範圍為約 1:0.01 至約 1:100,或莫耳比範圍為約 100: 1 至約 1:0.01,且組分 (a)、(b) 及 (c) 視情況地培育質體約 10 秒至約 4 小時的時間。
在所有態樣及實施例的某些實施例中,組合物進一步包含細胞。在某些實施例中,細胞與組分 (a)、(b) 及/或 (c) 的質體/PEI 混合物接觸。
在所有態樣及實施例的某些實施例中,組合物視情況地與細胞組合,該組合物進一步包含游離 PEI。在某些實施例中,細胞與游離 PEI 接觸。
在所有態樣及實施例的某些實施例中,細胞已與組分 (a)、(b) 及/或 (c) 的混合物接觸至少約 4 小時,或約 4 小時至約 140 小時,或約 4 小時至約 96 小時。在一個較佳的實施例中,細胞已經與組分 (a)、(b) 及/或 (c) 及視情況之游離 PEI 的混合物接觸至少約 4 小時。
除包含根據本發明之DNA 元件或分子的核酸之外,組合物可包含其他質體。此種質體及細胞可與游離的 PEI 接觸。在某些實施例中,質體及/或細胞已與游離 PEI 接觸至少約 4 小時,或約 4 小時至約 140 小時,或約 4 小時至約 96 小時。
本發明亦提供使用包含根據本發明之 DNA 元件或分子的核酸,以產生轉染細胞的方法。該方法包括:提供包含根據本發明之 DNA 元件或分子及視情況之一個或多個額外質體之核酸的步驟;提供包含聚乙烯亞胺 (PEI) 的溶液;及將該核酸及視情況之質體與 PEI 溶液混合,以產生核酸/質體/PEI 混合物。在某些實施例中,將此種混合物培育約 10 秒至約 4 小時範圍內的一段時間。在此種方法中,將細胞接著與核酸/質體/PEI 混合物接觸以產生核酸/質體/PEI 細胞培養物;然後加入游離 PEI 至產生之核酸/質體/PEI 細胞培養物中,以產生游離 PEI/核酸/質體/PEI 細胞培養物;然後將產生的游離 PEI/核酸/質體/PEI細胞培養物培養至少約 4 小時,從而產生轉染細胞。在某些實施例中,質體包含編碼蛋白質或被轉錄成所關注轉錄物的核酸。
進一步提供用於產生轉染細胞 (其產生重組 AAV 載體或 AAV 顆粒) 的方法,其包括:提供一個或多個質體,該質體包含編碼 AAV 包裝蛋白之核酸及/或編碼輔助蛋白之核酸,其中其至少一個質體包含根據本發明之 DNA 元件或分子;提供包含編碼蛋白質或轉錄成所關注轉錄物之核酸的質體;提供包含聚乙烯亞胺 (PEI) 的溶液;將上述質體與 PEI 溶液混合,其中質體的莫耳比範圍為約 1:0.01 至約 1: 100,或莫耳比範圍為約 100: 1 至約 1:0.01,以產生質體/PEI 混合物 (且視情況地將質體/PEI 混合物培育約 10 秒至約 4 小時範圍內的一段時間);將細胞與質體/PEI 混合物接觸,以產生質體/PEI 細胞培養物;向產生之質體/PEI 細胞培養物中加入游離 PEI 以產生游離 PEI/質體/PEI 細胞培養物;及將游離 PEI/質體/PEI 細胞培養物培育至少約 4 小時,從而產生轉染細胞,該轉染細胞產生包含編碼蛋白質或被轉錄成所關注轉錄物之核酸的重組 AAV 載體或顆粒。
另外提供用於產生包含編碼蛋白質的核酸或被轉錄成所關注轉錄物之重組 AAV 載體或 AAV 顆粒的方法,其包括:提供一個或多個包含編碼 AAV 包裝蛋白之核酸及/或編碼輔助蛋白之核酸的質體,其中至少一個質體包含根據本發明之 DNA 元件或分子;提供包含編碼所關注蛋白質或轉錄成所關注轉錄物之核酸的質體;提供包含聚乙烯亞胺 (PEI) 的溶液;將上述質體與 PEI 溶液混合,其中質體的莫耳比範圍為約1:0.01至約1: 100,或莫耳比範圍為約 100: 1 至約 1:0.01,以產生質體/PEI 混合物 (且視情況地將質體/PEI 混合物培育約 10 秒至約 4 小時範圍內的一段時間);將細胞與所述產生之質體/PEI 混合物接觸以產生質體/PEI 細胞培養物;向所述產生之質體/PEI 細胞培養物中加入游離 PEI 以產生游離 PEI/質體/PEI 細胞培養物;將產生之質體/PEI 細胞培養物或游離 PEI/質體/PEI 細胞培養物培育至少約 4 小時以產生轉染細胞;從所產生之轉染細胞中收穫所產生之轉染細胞及/或培養基,以產生細胞及/或培養基收穫物;及從產生之細胞及/或培養基收穫物中分離及/或純化重組 AAV 載體或顆粒,從而產生包含編碼蛋白質或被轉錄成所關注轉錄物之核酸的重組 AAV 載體或顆粒。
使用根據本發明之 DNA 元件生產重組 AAV 載體或 AAV 顆粒的方法可包括一個或多個另外的步驟或特徵。例示性步驟或特徵包括但不限於收穫所產生的培養細胞及/或從所產生的培養細胞收穫培養基以產生細胞及/或培養基收穫物的步驟。另外的例示性步驟或特徵包括但不限於從細胞及/或培養基收穫物中分離及/或純化重組 AAV 載體或 AAV 顆粒,從而產生包含編碼蛋白質或被轉錄成所關注轉錄物之核酸的重組 AAV 載體或 AAV 顆粒。
在所有態樣及實施例的某些實施例中,在不同時間點將 PEI 加入至質體及/或細胞。在某些實施例中,在質體/PEI 混合物與細胞接觸之前、同時或之後,將游離 PEI 加入至細胞。
在所有態樣及實施例的某些實施例中,當細胞與質體/PEI 混合物接觸及/或與游離 PEI 接觸時,細胞具有特定密度及/或細胞生長階段及/或存活率。在一個較佳的實施例中,當細胞與質體/PEI 混合物接觸及/或當細胞與游離 PEI 接觸時,細胞的密度範圍為約 1x10E5 細胞/mL 至約 1x10E8 細胞/mL。在某些實施例中,當細胞與質體/PEI 混合物或與游離 PEI 接觸時,細胞的存活率為約 60% 或大於 60%,或其中當細胞與質體/PEI 混合物接觸時,細胞處於對數生長期,或當細胞與質體/PEI 混合物或與游離 PEI 接觸時,細胞的存活率為約 90% 或大於 90%,或者其中當細胞與質體/PEI 混合物或與游離 PEI 接觸時,細胞處於對數生長期。
在所有態樣及實施例的某些實施例中,所編碼之 AAV 包裝蛋白包括 AAV rep 及/或 AAV cap。在所有態樣及實施例的某些實施例中,此種 AAV 包裝蛋白包括任何 AAV 血清型的 AAV rep 及/或 AAV cap 蛋白。
在所有態樣及實施例的某些實施例中,所編碼之輔助蛋白包括腺病毒 E2 及/或 E4、VARNA 蛋白及/或非 AAV 輔助蛋白。
在所有態樣及實施例的某些實施例中,使用特定量或比例之核酸 (質體)。在某些實施例中,包含編碼蛋白質或被轉錄成所關注轉錄物之核酸的質體及包含編碼 AAV 包裝蛋白之核酸及/或編碼輔助蛋白之核酸 (至少一種該等核酸包含根據本發明之 DNA 元件或分子) 的一個或多個質體的總量係在每 mL 細胞約 0.1 μg 至約 15 μg 的範圍內。在某些實施例中,包含編碼蛋白質或轉錄成所關注轉錄物之核酸的質體與包含編碼 AAV 包裝蛋白之核酸及/或編碼輔助蛋白之核酸 (至少一種該等核酸包含根據本發明之 DNA 元件或分子) 的一個或多個質體的莫耳比,係在約 1:5 至約 1:1 的範圍內,或在約 1:1 至約 5:1 的範圍內。
質體可包括不同或相同質體上的核酸。在所有態樣及實施例的某些實施例中,第一質體包含編碼 AAV 包裝蛋白的核酸,且第二質體包含編碼輔助蛋白的核酸。此種核酸中之至少一種包含根據本發明之 DNA 元件或分子。
在所有態樣及實施例的某些實施例中,包含編碼蛋白質或被轉錄成所關注轉錄物之核酸的質體、與包含編碼 AAV 包裝蛋白之核酸的第一質體、與包含編碼輔助蛋白之核酸的第二質體在共轉染中,莫耳比係在約 1-5: 1: 1,或 1: 1-5: 1,或 1: 1: 1-5的範圍內。
在所有態樣及實施例的某些實施例中,細胞為真核細胞。在某些實施例中,真核細胞為哺乳動物細胞。在一個較佳實施例中,細胞為 HEK293 細胞或 CHO 細胞。
可使用培養真核細胞的常用條件進行培養,即約 37℃、95% 濕度及 8 vol.-% CO 2。可在含血清或無血清培養基中進行貼附培養或懸浮培養。懸浮培養可在任何發酵容器中進行,例如在攪拌釜反應器、波反應器、振動器容器或旋轉容器或在所謂的滾瓶中進行。可分別以高通量形式及篩選進行轉染,例如在 96 或 384 孔形式中進行。
根據本發明之方法包括任何血清型的 AAV 顆粒或其變異體。在所有態樣及實施例的某些實施例中,重組 AAV 顆粒包含以下中的任一者:AAV 血清型 1-12、AAV VP1、VP2 及/或 VP3 殼體蛋白,或經修飾或變體 AAV VP1、VP2 及/或 VP3 殼體蛋白,或野生型 AAV VP1、VP2 及/或 VP3 殼體蛋白。在所有態樣及實施例的某些實施例中,AAV 顆粒包含 AAV 血清型或 AAV 假型,其中 AAV 假型包括不同於 ITR 血清型的 AAV 殼體血清型。
提供或包括 AAV 載體或顆粒之根據本發明的方法亦可包括其他元件。此種元件的實例包括但不限於:內含子、表現控制元件、一種或多種腺相關病毒 (AAV) 反向末端重複 (ITR) 及/或填充物/填充多核苷酸序列。此種元件可位於編碼蛋白質或被轉錄成關注轉錄物的核酸內或側翼,或表現控制元件可操作地連接至核酸,該核酸編碼蛋白質或被轉錄成所關注轉錄物,或 AAV ITR 可位於核酸之 5'- 或 3'- 末端的側翼,該核酸編碼蛋白質或被轉錄成所關注轉錄物,或填充多核苷酸序列可位於核酸之 5'- 或 3'- 末端的側翼,該核酸編碼蛋白質或被轉錄成所關注轉錄物。
表現控制元件包括組成型或可調節控制元件,例如組織特異性表現控制元件或啟動子 (例如提供在肝臟中的表現)。
ITR 可為以下任一者:AAV2 或 AAV6 或 AAV8 或 AAV9 血清型,或其組合。AAV 顆粒可包括與 AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV10、AAV11、AAV-2i8 或 AAV rh74 VP1、VP2 及/或 VP3 殼體蛋白具有 75% 或更多序列同一性的任何 VP1、VP2 及/或 VP3 殼體蛋白,或包含選自以下之任何經修飾或變體 VP1、VP2 及/或 VP3 殼體蛋白:AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV10、AAV11、AAV-2i8 及 AAV-rh74 AAV 血清型。
在產生如本文所述之重組病毒 (例如,AAV) 顆粒之後,如果需要,可使用各種習用方法從宿主細胞中純化及/或分離病毒 (例如,rAAV) 顆粒。此種方法包括管柱層析、CsCl 梯度等。例如,可使用複數個管柱純化步驟,例如在陰離子交換管柱、親和性管柱及/或陽離子交換管柱上的純化。(參見,例如 WO 02/12455 及 US 2003/0207439)。或者或此外,可使用 CsCl 梯度步驟 (參見,例如 US 2012/0135515;及 US 2013/0072548)。此外,如果使用感染性病毒來表現包裝及/或輔助蛋白,則可使用各種方法將殘留病毒去活化。例如,可經由加熱到約 60℃ 的溫度例如 20 分鐘或更長時間將腺病毒去活化。此種處理有效地去活化輔助病毒,因為 AAV 是熱穩定的,而輔助腺病毒是熱不穩定的。
病毒載體 (例如小病毒顆粒,其包括 AAV 血清型及其變異體) 提供一種將核酸以離體、活體外及活體內遞送到細胞中的方式,這些載體編碼蛋白質而使細胞表現所編碼的蛋白質。AAV 係作為基因治療載體的病毒,因其可穿透細胞並導入核酸/基因物質而使核酸/基因物質可在細胞中穩定地維持。此外,例如,這些病毒可將核酸/基因物質導入至特定位點。由於 AAV 與人類之致病性疾病無關,因此 AAV 載體能夠將異源多核苷酸序列 (例如治療蛋白質及藥劑) 遞送至人類病患,而不會引起實質性之 AAV 發病機制或疾病。
可使用的病毒載體包括但不限於多種血清型 (例如 AAV-1 至 AAV-12,及其他) 之腺相關病毒 (AAV) 顆粒及雜合/嵌合 AAV 顆粒。
AAV 顆粒可作為有效遞送基因的載體。此種顆粒具有許多適用於此類應用的所欲特徵,包括對分裂細胞及非分裂細胞的向性。早期臨床經驗亦證實這些載體並無持續的毒性,且引起很小的免疫反應很小或檢測不到免疫反應。已知 AAV 在活體內及活體外經由受體介導的胞吞作用或胞吞轉送作用感染各種細胞類型。這些載體系統已在人類中進行測試,該等載體標靶至視網膜上皮、肝臟、骨骼肌、氣管、大腦、關節及造血幹細胞。
重組 AAV 顆粒通常不包括與發病機制相關的病毒基因。此種載體通常具有一個或多個全部或部分缺失的野生型 AAV 基因 (例如 rep 及/或 cap 基因),但保留至少一個功能側翼 ITR 序列,此為修復、複製及將重組載體包裝成 AAV 顆粒所必需。例如,僅包括載體的必要部分,例如分別為 ITR 及 LTR 元件。因此,AAV 載體基因體包括複製及包裝所需的順式序列 (例如,功能 ITR 序列)。
重組 AAV 載體及其方法及用途包括任何病毒株或血清型。作為非限制性實例,重組 AAV 載體可基於任何 AAV 基因體,諸如,舉例而言,AAV-1、AAV-2、AAV-3、AAV-4、AAV-5、AAV-6、AAV-7、AAV-8、AAV-9、AAV-10、AAV-11、AAV-12、AAV 2i8 或 AAV rh74。此種載體可基於相同或者彼此不同的的病毒株或血清型 (或亞群或變異體)。作為非限制性實例,基於一種血清型基因體的重組AAV 載體可與包裝載體的一種或多種殼體蛋白相同。此外,重組 AAV 載體基因體可基於與包裝載體之一種或多種 AAV 殼體蛋白不同的 AAV (例如 AAV2 ) 血清型基因體。例如,AAV 載體基因體可基於 AAV2,而三種殼體蛋白中的至少一種可為例如 AAV1、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11、AAV12、AAV-2i8,或 AAV rh74 或其變異體。AAV 變異體包括 AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11、AAV12、AAV-2i8 及 AAV rh74 殼體的變異體及嵌合體。
在所有態樣及實施例的某些實施例中,腺相關病毒 (AAV) 載體包括 AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11、AAV12、AAV-2i8 及 AAV rh74,及其變異體 (例如,殼體變異體,例如胺基酸插入、加入、取代及缺失),例如,如 WO 2013/158879、WO 2015/013313 及 US 2013/0059732 (揭露 LK01、LK02、LK03 等) 中所述。
AAV 及 AAV 變異體 (例如殼體變異體) 血清型 (例如,VP1、VP2 及/或 VP3 序列) 可與其他 AAV 血清型不同或並未不同,其他AAV 血清型包括例如 AAV1-AAV12 (例如,與任何 AAV1-AAV12 之血清型之 VP1、VP2 及/或 VP3 的序列不同)。
在所有態樣及實施例的某些實施例中,與參考血清型相關之 AAV 顆粒具有多核苷酸、多肽或其子序列,該多核苷酸、多肽或其子序列包括或由以下所組成:與一個或多個 AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11、AAV12、AAV-2i8 或 AAV rh74 (例如,諸如 ITR,或 VP1、VP2 及/或 VP3 序列) 具有至少 80% 或更多 (例如,85%、90%、95%、96%、97%、98%、99%、99.1%、99.2%、99.3%、99.4%、99.5% 等) 同一性的序列。
本發明之組合物、方法及用途包括 AAV 序列 (多肽和核苷酸) 及其子序列,該子序列相較於參考 AAV 血清型 (例如 AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11、AAV12、AAV-2i8 或 AAV rh74) 展現低於 100% 的序列同一性,但不同於已知的 AAV 基因或蛋白質 (諸如 AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11、AAV12、AAV-2i8 或 AAV rh74、基因或蛋白質等)。在所有態樣及實施例的某些實施例中,AAV 多肽或其子序列包括或由以下所組成:與任何參考 AAV 序列或其子序列 (諸如 AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11、AAV12、AAV-2i8 或 AAV rh74 (例如,VP1、VP2 及/或 VP3 殼體或 ITR)) 具至少 75% 或更多 (例如 80%、85%、85%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.1%、99.2%、99.3%、99.4%、99.5% 等、高達 100%) 同一性的序列。在某些實施例中,AAV 變異體具有 1 個、2 個、3 個、4 個、5 個、5-10 個、10-15 個、15-20 個或更多個胺基酸取代。
可使用本發明所屬領域技術中具有通常知識者已知的重組技術構建重組 AAV 顆粒 (包括 AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11、AAV12、AAV-2i8 或 AAV rh74,以及變異體、相關、混合及嵌合序列),使該 AAV 顆粒包括側翼為一個或多個功能 AAV ITR 序列的一個或多個核酸序列 (轉基因)。
可將重組顆粒 (例如,rAAV 顆粒) 併入醫藥組成物中。此種醫藥組成物尤其可用於以活體內或離體向個體投予及遞送。在某些實施例中,醫藥組成物含有醫藥上可接受之載劑或賦形劑。此種類賦形劑包括本身不誘導對接受該組合物的個體有害之免疫反應的任何藥劑,且其投予不產生過度毒性。
US 5,998,205、US 6,228,646、US 6,093,699、US 6,100,242、WO 94/17810 及 WO 94/23744 描述用於產生腺病毒載體的方案;其全部內容經由引用併入本文。
儘管對人類具有致病性,但 rAAV 載體生產及純化系統的目標是達成以最大限度降低/控制生產相關所產生雜質的策略,例如蛋白質、核酸及載體相關雜質,包括野生型/假野生型型 AAV 物種 (wtAAV) 及 AAV 囊裝之殘留 DNA 雜質。
考量 rAAV 顆粒僅占生物質的小部分,rAAV 顆粒需純化到一定程度之純度才能用作臨床人類基因治療產品 (參見,例如 Smith P.H. 等人,Mo.Therapy 7 (2003) 8348;Chadeuf G. 等人,Mo.Therapy 12 (2005) 744;來自 CHMP 基因治療專家小組會議報告,歐洲藥品管理局 EMEA/CHMP 2005, 183989/2004)。
作為起始步驟,通常為收獲產生 rAAV 顆粒的培養細胞,視情況地與收穫培養的細胞培養上清液 (培養基) 結合,其中已培養上清液中之產生 rAAV 顆粒的細胞 (懸浮或貼附)。可按原樣使用、適當使用或濃縮使用收穫之細胞及視情況的細胞培養上清液。此外,如果使用感染以表現輔助功能,則可將殘留的輔助病毒去活化。例如,可經由加熱到約 60℃ 的溫度例如 20 分鐘或更長時間將腺病毒去活化,這僅去活化輔助病毒,因為 AAV 是熱穩定的,而輔助腺病毒是熱不穩定的。
經由破壞細胞 (例如經由化學或物理方式,諸如清潔劑、微流化及/或均質化) 來裂解收穫物的細胞及/或上清液,以釋放 rAAV 顆粒。在細胞裂解過程中同時或隨後在細胞裂解之後,加入核酸酶 (例如 benzonase) 以降解汙染 DNA。通常,將所得裂解物澄清以移除細胞碎片 (例如經由過濾或離心),以得到澄清之細胞裂解液。在一個特定的實例中,將裂解物以微米孔徑的過濾器 (例如 0.1-10.0 µm 孔徑的過濾器,例如 0.45 µm 及/或孔徑 0.2 µm 的過濾器) 過濾,以產生澄清的裂解物。
裂解物 (視情況澄清裂解物) 含有 AAV 顆粒 (包括 rAAV 載體及空殼體) 及生產/程序相關雜質,例如來自宿主細胞的可溶細胞組分,這些組分尤其可包括細胞蛋白質、脂質及/或核酸及細胞培養基組分。然後將視情況澄清裂解物進行純化步驟,使用層析從雜質中純化 AAV 顆粒 (包含 rAAV 載體)。在第一層析步驟之前,可用合適的緩衝液稀釋或濃縮澄清裂解物。
在細胞裂解、視情況澄清及視情況稀釋或濃縮之後,可使用複數個後續及順序層析步驟來純化 rAAV 顆粒。
第一層析步驟可為陽離子交換層析或陰離子交換層析。若第一層析步驟為陽離子交換層析,則第二層析步驟可為陰離子交換層析或粒徑篩析層析 (SEC)。因此,在所有態樣及實施例的某些實施例中,純化 rAAV 顆粒係經由陽離子交換層析,然後是經由陰離子交換層析純化。
或者,若第一層析步驟為陽離子交換層析,則第二層析步驟可為粒徑篩析層析 (SEC)。因此,在所有態樣及實施例的某些實施例中,rAAV 顆粒純化經由陽離子交換層析,然後經由粒徑篩析層析 (SEC) 純化。
或者,第一層析步驟可為親和力層析。若第一層析步驟為親和力層析,則第二層層析步驟可為陰離子交換層析。因此,在所有態樣及實施例的某些實施例中,經由親和力層析純化 rAAV 顆粒,然後經由陰離子交換層析純化。
視情況地,可將第三層析加入到前述層析步驟中。通常,視情況的第三層析步驟係在陽離子交換、陰離子交換、粒徑篩析或親和力層析之後。
因此,在所有態樣及實施例的某些實施例中,經由陽離子交換層析純化rAAV 顆粒,然後經由陰離子交換層析純化,然後經由粒徑篩析層析 (SEC) 純化。
此外,在所有態樣及實施例的某些實施例中,經由陽離子交換層析進一步純化 rAAV 顆粒,然後經由粒徑篩析層析 (SEC) 純化,然後經由陰離子交換層析純化。
在所有態樣及實施例的更進一步的實施例中,經由親和力層析純化rAAV 顆粒,然後經由陰離子交換層析純化,然後經由粒徑篩析層析 (SEC) 純化。
在所有態樣及實施例的更進一步的實施例中,經由親和力層析純化 rAAV 顆粒,然後經由粒徑篩析層析 (SEC) 純化,然後經由陰離子交換層析純化。
陽離子交換層析的作用是將 AAV 顆粒與存在於澄清裂解物及/或親和力或粒徑篩析層析之管柱洗脫液中的細胞及其他組分分離。能以廣 pH 範圍結合 rAAV 顆粒之強力陽離子交換樹脂的實例包括但不限於任何基於磺酸之樹脂,如存在磺酸鹽官能基團 (包括經芳基及烷基取代之磺酸鹽) 之樹脂,例如磺丙基或磺乙基樹脂。代表性基質包括但不限於 POROS HS、POROS HS 50、POROS XS、POROS SP 及 POROS S (強力陽離子交換劑可自 Thermo Fisher Scientific, Inc., Waltham, MA, USA 獲得)。其他實例包括 Capto S、Capto S ImpAct、Capto S ImpRes (強力陽離子交換劑可自 GE Healthcare, Marlborough, MA, USA 獲得),而商業 DOWEX®、AMBERLITE® 及 AMBERLYST® 系列樹脂可自 Aldrich Chemical Company (Milliwaukee, WI, USA) 獲得。弱陽離子交換樹脂包括但不限於任何基於羧酸的樹脂。例示性陽離子交換樹脂包括羧甲基 (CM)、磷 (基於磷酸官能基團)、甲基磺酸 (S) 及磺丙基 (SP) 樹脂。
陰離子交換層析的作用是將 AAV 顆粒與存在於澄清裂解物及/或來自親和力或陽離子交換或粒徑篩析層析之管柱洗脫液中的蛋白質、細胞及其他組分分離。陰離子交換層析亦可用於減少並由此控制洗脫液中空殼體的量。例如,可用包含適當濃度 (例如,約 100-125 mM,例如 110-115 mM) 之 NaCl 溶液洗滌其上結合 rAAV 顆粒的陰離子交換管柱,且可在沒有顯著洗脫 rAAV 顆粒的流動中洗脫一部分空殼體。隨後,可使用包含更高濃度 (例如,約 130-300 mM NaCl) 之 NaCl 溶液洗脫與陰離子交換管柱結合的 rAAV 顆粒,從而產生管柱洗脫液,該管柱洗脫液具有減少量或耗竭量之空殼體且成比例增加量之 rAAV 顆粒,該 rAAV 顆粒包含 rAAV 載體。
例示性陰離子交換樹脂包括但不限於基於聚胺樹脂及其他樹脂的陰離子交換樹脂。強力陰離子交換樹脂的實例包括通常基於季銨化氮原子的陰離子交換樹脂,包括但不限於季銨鹽樹脂,例如三烷基芐基銨樹脂。合適的交換層析材料包括但不限於 MACRO PREP Q (強力陰離子交換劑可自 BioRad, Hercules, CA, USA 獲得);UNOSPHERE Q (強力陰離子交換劑可自 BioRad, Hercules, CA, USA 獲得);POROS 50HQ (強力陰離子交換劑可自 Applied Biosystems, Foster City, CA, USA);POROS XQ (強力陰離子交換劑可自 Applied Biosystems, Foster City, CA, USA 獲得);POROS SOD (弱陰離子交換劑可自 Applied Biosystems, Foster City, CA, USA 獲得);POROS 50PI (弱陰離子交換劑可自 Applied Biosystems, Foster City, CA, USA 獲得);Capto Q、Capto XQ、Capto Q ImpRes 及 SOURCE 30Q (強力陰離子交換劑可自GE healthcare, Marlborough, MA, USA 獲得);DEAE SEPHAROSE (弱陰離子交換劑可自 Amersham Biosciences, Piscataway, NJ, USA 獲得);Q SEPHAROSE (強力陰離子交換劑可自 Amersham Biosciences, Piscataway, NJ, USA 獲得)。另外的例示性陰離子交換樹脂包括胺基乙基 (AE)、二乙基胺基乙基 (DEAE)、二乙基胺基丙基 (DEPE) 及季胺基乙基 (QAE)。
用於治療人類疾病之重組 AAV 顆粒的純化製造方法應達成以下目標:1) 一致的顆粒純度、效力及安全性;2) 製造方法的可擴展性;3) 可接受的製造成本。
WO 2019/006390 報導純化重組 AAV 顆粒的例示性方法。
下方概述純化重組腺相關病毒顆粒 (rAAV 顆粒) 及可擴展到大規模的生產方法。例如,針對 5 升、10 升、10-20 升、20-50 升、50-100 升、100-200 升或更多升體積的懸浮培養物。重組腺相關病毒顆粒純化及生產方法適用於各種 AAV 血清型/殼體變異體。
在所有態樣及實施例的某些實施例中,純化 rAAV 顆粒包含以下步驟: (a) 收穫包含 rAAV 顆粒之細胞及/或細胞培養上清液以產生收穫物; (b) 視情況地濃縮步驟 (a) 中產生的收穫物以產生濃縮收穫物; (c) 裂解步驟 (a) 中產生的收穫物或裂解步驟 (b) 中產生的濃縮收穫物以產生裂解物; (d) 處理步驟 (c) 中產生的裂解物以減少裂解物中的汙染核酸,從而產生核酸減少的裂解物; (e) 視情況地過濾在步驟 (d) 中產生之核酸減少的裂解物,以產生澄清裂解物,且視情況地稀釋澄清裂解物以產生稀釋澄清裂解物; (f) 將步驟 (d) 的核酸減少的裂解物、步驟 (e) 的澄清裂解物或步驟 (e) 中產生的稀釋澄清裂解物進行陽離子交換管柱層析,以產生包含 rAAV 顆粒的管柱洗脫液,從而將 rAAV 顆粒與蛋白質雜質或其他的生產/程序相關雜質分離,並視情況地稀釋管柱洗脫液,以產生稀釋管柱洗脫液; (g) 將步驟 (f) 中產生的管柱洗脫液或稀釋管管柱洗脫液進行陰離子交換層析,以產生包含 rAAV 顆粒的第二管柱洗脫液,從而將 rAAV 顆粒與蛋白質雜質或生產/程序相關雜質分離,並視情況地濃縮第二管柱洗脫液,以產生濃縮第二管柱洗脫液; (h) 將步驟 (g) 中產生的第二管柱洗脫液或濃縮第二管柱洗脫液進行粒徑篩析管柱層析 (SEC),以產生包含 rAAV 顆粒的第三管柱洗脫液,從而將 rAAV 顆粒與蛋白質雜質或生產/程序相關雜質分離,並視情況地濃縮第三管柱洗脫液,以產生濃縮第三管柱洗脫液;及 (i) 過濾在步驟 (h) 中產生的第三管柱洗脫液或濃縮第三管柱洗脫液,從而產生純化的 rAAV 顆粒。 在某些實施例中,保持步驟 (a) 至 (f) 並與以下步驟組合: (g) 將步驟 (f) 中產生的管柱洗脫液或濃縮管柱洗脫液進行粒徑篩析管柱層析 (SEC),以產生包含 rAAV 顆粒的第二管柱洗脫液,從而將 rAAV 顆粒與蛋白質雜質或其他的生產/程序相關雜質分離,並視情況地稀釋第二管柱洗脫液,以產生濃縮第二管柱洗脫液; (h) 將第二管柱洗脫液或在步驟 (g) 中產生的稀釋第二管柱洗脫液進行陰離子交換層析,以產生包含 rAAV 顆粒的第三管柱洗脫液,從而將 rAAV 顆粒與蛋白質雜質生產/程序相關雜質分離,並視情況地稀釋第三管柱洗脫液,以產生稀釋第三管柱洗脫液;及 (i) 過濾在步驟 (h) 中產生的第三管柱洗脫液或濃縮第三管柱洗脫液,從而產生純化的 rAAV 顆粒。
在某些實施例中,保持步驟 (a) 至 (g) 並與以下步驟組合: (h) 過濾在步驟 (g) 中產生的第二管柱洗脫液或濃縮第二管柱洗脫液,從而產生純化 rAAV 顆粒。
在實施例中,保持步驟 (a) 至 (e) 並與以下步驟組合: (f) 將步驟 (d) 中的核酸減少的裂解物或步驟 (e) 中產生的澄清裂解物或稀釋澄清裂解物進行 AAV 親和力管柱層析,以產生包含 rAAV 顆粒的管柱洗脫液,從而將 rAAV 顆粒與蛋白質雜質或其他的生產/程序相關雜質分離,並視情況地濃縮管柱洗脫液,以產生濃縮管柱洗脫液; (g) 將步驟 (f) 中產生的管柱洗脫液或濃縮管柱洗脫液進行粒徑篩析管柱層析 (SEC),以產生包含 rAAV 顆粒的第二管柱洗脫液,從而將 rAAV 顆粒與蛋白質雜質或其他的生產/程序相關雜質分離,並視情況地稀釋第二管柱洗脫液,以產生稀釋第二管柱洗脫液; (h) 視情況地將步驟 (g) 中產生的第二管柱洗脫液或稀釋第二管柱洗脫液進行陰離子交換層析,以產生包含 rAAV 顆粒的第三管柱洗脫液,從而將 rAAV 顆粒與蛋白質雜質或其他的生產/程序相關雜質分離,並視情況地稀釋第三管柱洗脫液,以產生稀釋第三管柱洗脫液;及 (i) 過濾在步驟 (g) 中產生的第二管柱洗脫液或稀釋第二管柱洗脫液,或過濾在步驟 (h) 中產生的第三管柱洗脫液或濃縮第三管柱洗脫液,從而產生純化的 rAAV 顆粒。
在所有態樣及實施例的某些實施例中,步驟 (b) 及/或步驟 (f) 及/或步驟 (g) 及/或步驟 (h) 的濃縮係經由超濾/滲濾,例如經由切向流過濾 (TFF)。
在所有態樣及實施例的某些實施例中,步驟 (b) 的濃縮將收穫的細胞及細胞培養上清液的體積減少約 2-20 倍。
在所有態樣及實施例的某些實施例中,步驟 (f) 及/或步驟 (g) 及/或步驟 (h)的濃縮將管柱洗脫液的體積減少約 5-20 倍。
在所有態樣及實施例的某些實施例中,步驟 (a) 中產生的收穫物或步驟 (b) 中產生的濃縮收穫物的裂解係經由物理或化學方式。物理方式的非限制性實例包括微流化及均質化。化學方式的非限制性實例包括清潔劑。清潔劑包括非離子清潔劑及離子清潔劑。非離子清潔劑的非限制性實例包括 Triton X-100。清潔劑濃度的非限制性實例為約 0.1% 及 1.0% (v/v) 或 (w/v) 之間 (包括端值)。
在所有態樣及實施例的某些實施例中,步驟 (d) 包括用核酸酶處理從而減少汙染核酸。核酸酶的非限制性實例包括 benzonase。
在所有態樣及實施例的某些實施例中,經由過濾器來過濾步驟 (e) 的澄清裂解物或稀釋澄清裂解物。過濾器的非限制性實例為孔徑介於約 0.1 至 10.0 微米之間 (包括端值) 的過濾器。
在所有態樣及實施例的某些實施例中,步驟 (e) 之稀釋澄清裂解物係使用緩衝磷酸鹽、乙酸鹽或 Tris 水溶液。溶液 pH 的非限制性實例為介於約 pH 4.0 至 pH 7.4 之間 (包括端值)。Tris 溶液 pH 的非限制性實例為大於 pH 7.5,例如介於約 pH 8.0 及 pH 9.0 之間 (包括端值)。
在所有態樣及實施例的某些實施例中,步驟 (f) 之稀釋管柱洗脫液或步驟 (g) 之稀釋第二管柱洗脫液係使用緩衝磷酸鹽、乙酸鹽或 Tris 水溶液。溶液 pH 的非限制性實例為介於約 pH 4.0 至 pH 7.4 之間 (包括端值)。Tris 溶液 pH 的非限制性實例為大於 pH 7.5,例如介於約 pH 8.0 及 pH 9.0 之間 (包括端值)。
在所有態樣及實施例的某些實施例中,將步驟 (i) 產生的 rAAV 顆粒與界面活性劑一起調配,以產生 rAAV 顆粒調配物。
在所有態樣及實施例的某些實施例中,步驟 (f)、(g) 及/或 (h) 的陰離子交換管柱層析包含聚乙二醇 (PEG) 調製之管柱層析。
在所有態樣及實施例的某些實施例中,在 rAAV 顆粒從管柱洗脫之前,用 PEG 溶液洗滌步驟 (g) 及/或 (h) 的陰離子交換管柱層析。
在所有態樣及實施例的某些實施例中,PEG 具有約 1,000 g/mol 至 80,000 g/mol 之範圍內 (包括端值) 的平均分子量。
在所有態樣及實施例的某些實施例中,PEG 的濃度為約 4% 至約 10% (w/v) (包括端值)。
在所有態樣及實施例的某些實施例中,在 rAAV 顆粒從管柱洗脫之前,用界面活性劑水溶液洗滌步驟 (g) 及/或 (h) 的陰離子交換管柱。
在所有態樣及實施例的某些實施例中,在rAAV 顆粒從管柱洗脫之前,用界面活性劑溶液洗滌步驟 (f) 的陽離子交換管柱。
在所有態樣及實施例的某些實施例中,PEG 溶液及/或界面活性劑溶液包含含水性 Tris-HCl/NaCl 緩衝液、水性磷酸鹽/NaCl 緩衝液或水性醋酸鹽/NaCl 緩衝液。
在所有態樣及實施例的某些實施例中,緩衝液或溶液中的 NaCl 濃度係介於約 20-300 mM NaCl 之間 (包括端值) 或介於約 50-250 mM NaCl (包括端值) 之間的範圍內。
在所有態樣及實施例的某些實施例中,界面活性劑包含陽離子界面活性劑或陰離子界面活性劑。
在所有態樣及實施例的某些實施例中,界面活性劑包含十二碳鏈界面活性劑。
在所有態樣及實施例的某些實施例中,界面活性劑包含十二烷基三甲基氯化銨 (DTAC) 或十二烷基肌胺酸鈉 (Sarkosyl)。
在所有態樣及實施例的某些實施例中,以水性 Tris-HCl/NaCl 緩衝液自步驟 (f)、(g) 及/或 (h) 的陰離子交換管柱洗脫出 rAAV 顆粒。
在所有態樣及實施例的某些實施例中,Tris-HCl/NaCl 緩衝液包含100-400 mM NaCl (包括端值),視情況地為具有約 pH 7.5 至約 pH 9.0 (包括端值) 之範圍內的 pH。
在所有態樣及實施例的某些實施例中,用水性 Tris-HCl/NaCl 緩衝液洗滌步驟 (f)、(g)及/或 (h) 的陰離子交換管柱。
在所有態樣及實施例的某些實施例中,水性 Tris-HCl/NaCl 緩衝液中的 NaCl 濃度係在約 75-125 mM 的範圍內 (包括端值)。
在所有態樣及實施例的某些實施例中,水性 Tris-HCl/NaCl 緩衝液具有約 pH 7.5 至約 pH 9.0 的pH (包括端值)。
在所有態樣及實施例的某些實施例中,洗滌一次或多次步驟 (f)、(g) 及/或 (h) 的陰離子交換管柱,以減少第二管柱洗脫液或第三管柱洗脫液中空殼體的量。
在所有態樣及實施例的某些實施例中,陰離子交換管柱之洗滌在 rAAV 顆粒洗脫之前及/或在 rAAV 顆粒洗脫時自管柱中移除空殼體,從而減少在第二管柱洗脫液或第三管柱洗脫液中空殼體的量。
在所有態樣及實施例的某些實施例中,陰離子交換管柱之洗滌在 rAAV 顆粒洗脫之前及/或在 rAAV 顆粒洗脫時自管柱中移除總空殼體的量至少約 50%,從而減少在第二管柱洗脫液或第三管柱洗脫液中空殼體的量約 50%。
在所有態樣及實施例的某些實施例中,水性 Tris-HCl/NaCl 緩衝液中的 NaCl 濃度係在約 110-120 mM 的範圍內 (包括端值)。
在所有態樣及實施例的某些實施例中,洗脫之 rAAV 顆粒及空殼體的比率及/或量係由洗滌緩衝液控制。
在所有態樣及實施例的某些實施例中,自步驟 (f) 之陽離子交換管柱之水性磷酸鹽/NaCl 緩衝液或水性乙酸鹽/NaCl 緩衝液中,洗脫出 rAAV 顆粒。緩衝液中之非限制性 NaCl 濃度為約 125-500 mM NaCl 的範圍內 (包括端值)。緩衝液之 pH 的非限制性實例為約 pH 5.5 至約 pH 7.5 之間 (包括端值)。
在所有態樣及實施例的某些實施例中,步驟 (f)、(g) 及/或 (h) 的陰離子交換管柱包含季銨官能基團,例如季銨化聚乙烯亞胺。
在所有態樣及實施例的某些實施例中,步驟 (g) 及/或(h) 的粒徑篩析管柱 (SEC) 具有約 10,000 g/mol 至約 600,000 g/mol 的分離/分餾範圍 (分子量) (包括端值)。
在所有態樣及實施例的某些實施例中,步驟 (f) 的陽離子交換管柱包含磺酸或官能團例如磺丙基。
在所有態樣及實施例的某些實施例中,AAV 親和力管柱包含結合至 AAV 殼體蛋白的蛋白質或配體。蛋白質的非限制性實例包括結合至 AAV 殼體蛋白的抗體。更具體的非限制性實例包括結合至 AAV 殼體蛋白的單股駱馬 (駱駝科) 抗體。
在所有態樣及實施例的某些實施例中,方法排除氯化銫梯度超速離心的步驟。
在所有態樣及實施例的某些實施例中,從步驟 (a) 中產生的收穫物或步驟 (b) 中產生的濃縮收穫物中,本方法回收大約 50-90% 的總 rAAV 顆粒。
在所有態樣及實施例的某些實施例中,相較於經由單一 AAV 親和力管柱純化產生或純化的 rAAV 顆粒,本方法產生的 rAAV 顆粒具有較高的純度。
在所有態樣及實施例的某些實施例中,實質上同時進行步驟 (c) 及 (d)。
在所有態樣及實施例的某些實施例中,在步驟 (c) 之後但在步驟 (f) 之前,將 NaCl 濃度調整至約 100-400 mM NaCl 的範圍內 (包括端值) 或至約 140-300 mM NaCl 的範圍內 (包括端值)。
在所有態樣及實施例的某些實施例中,rAAV 顆粒源自選自由 AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、Rh10 及 Rh74 所組成之群組的 AAV。
在所有態樣及實施例的某些實施例中,rAAV 顆粒包含與 AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、Rh10、Rh74、SEQ ID NO: 75 或 SEQ ID NO: 76 殼體序列具有 70% 或更高序列同一性的殼體序列。
在所有態樣及實施例的某些實施例中,rAAV 顆粒包含與 AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、Rh10 或 Rh74 ITR 序列具有 70% 或更高序列同一性的 ITR 序列。
在所有態樣及實施例的某些實施例中,細胞為懸浮生長或貼附生長細胞。
在所有態樣及實施例的某些實施例中,細胞為哺乳動物細胞。非限制實例包括 HEK 細胞,諸如 HEK-293 細胞及 CHO 細胞,例如 CHO-K1 細胞。
用於確定含有轉基因之 rAAV 顆粒的感染滴度方法為本領域所習知 (參見,例如 Zhen 等人,Hum. Gene Ther. 15 (2004) 709)。用於測定具包裝轉基因之空殼體及 rAAV 顆粒的方法為習知 (參見,例如 Grimm 等人,Gene Therapy 6 (1999) 1322-1330;Sommer 等人,Malec.7 (2003) 122-128)。
為確定降解/變性殼體的存在或數量,可對純化的 rAAV 顆粒進行 SDS-聚丙烯醯胺凝膠電泳,該凝膠電泳由能夠分離三種殼體蛋白之的任何凝膠 (例如梯度凝膠) 所組成,然後運行凝膠直到樣品分離,並將凝膠轉印到尼龍膜或硝酸纖維素膜上。然後將抗 AAV 殼體抗體作為結合至變性殼體蛋白的初級抗體 (參見,例如 Wobus 等人,J. Viral.74 (2000) 9281-9293)。結合至初級抗體的二級抗體包含檢測初級抗體的方式。使用半定量檢測初級抗體與二級抗體之間的結合以確定殼體的數量。另一種方法是使用具 SEC 管柱的分析級 HPLC 或分析級超速離心機。 ***
除所描繪和要求保護的各種實施例之外,本文所揭露之標的還涉及具有本文所揭露和要求保護的特徵的其他組合的其他實施例。因此,本文所呈現之特定特徵可在本文所揭露之標的範圍內以其他方式彼此組合,使得本文所揭露之標的包括本文所揭露之特徵的任何合適的組合。出於說明和描述的目的,已經提供了本文所揭露之標的的特定實施例的前述描述。其並非旨在窮舉或將本文所揭露之標的限制為所揭露的那些實施例。
本文提及的所有參考文獻均經由引用併入本文。 ***
提供以下實例、序列和附圖以幫助理解本發明,其真正的範圍在所附申請專利範圍中闡明。應當理解的是,在不脫離本發明之精神的前提下,可以對所提出的步驟進行修改。 實例 一般技術 1) 重組 DNA 技術
使用如下所述之標準方法操作 DNA:Sambrook 等人,Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y, (1989)。  根據製造商的說明使用分子生物試劑。 2) DNA 及蛋白質序列分析及序列資料管理
使用 EMBOSS (European Molecular Biology Open Software Suite) 套裝軟體、Invitrogen’s Vector NTI 及 Geneious prime,以創建、定位、分析、註解及說明序列。 3) 基因及寡核苷酸合成
由 Geneart GmbH (Regensburg, Germany) 化學合成製備所需的基因片段。將合成的基因片段選殖到大腸桿菌質體中用以繁殖/擴增。藉由 DNA 定序證實次選殖基因片段的 DNA 序列。或者,藉由對化學合成的寡核苷酸進行黏合或經由 PCR,以組裝短的合成 DNA 片段。由 metabion GmbH (Planegg-Martinsried, Germany) 製備各自的寡核苷酸。 4) 試劑
若無另外說明,所有商業化學品、抗體及套組均按照製造商的方案使用。 5) TI 宿主細胞株的培養
將 TI CHO 宿主細胞培養於 37℃,濕度為 85% 且 CO 2為 5% 的加濕培養箱。其在含有 300 µg/ml 潮黴素 B 及 4 µg/ml 第二選擇標記的專屬 DMEM/F12 培養基中培養。每 3 或 4 天以 0.3x10E6 細胞/ml 之濃度分樣細胞,總體積為 30 ml。使用 125 ml 無擋板錐形震盪瓶培養。以 150 rpm 以 5 cm 的振盪幅度振盪細胞。以 Cedex HiRes Cell Counter (Roche) 確定細胞計數。將細胞保持在培養中直到其達到 60 日齡。 6) 選殖 一般
使用 R 位點之選殖取決於所關注基因 (GOI) 旁邊的 DNA 序列,該序列等於位於以下片段中的序列。類似地,經由重疊相同序列並隨後由 DNA 連接酶連接組裝 DNA 中的切口,則可組裝片段。因此,有必要選殖單基因,特別是含有正確 R 位點之初步質體。在成功選殖這些初步質體後,經由直接在 R 位點旁邊切割之酶的限制消化,將側翼為 R 位點的所關注基因切掉。最後一步是在一個步驟中組裝所有 DNA 片段。更詳言之,5'-核酸外切酶移除重疊區 (R-位點) 的 5'- 端。之後,可進行 R 位點的黏合,且 DNA 聚合酶延伸 3' 端以填補序列中的空位。最後,DNA 連接酶連接核苷酸之間的缺口。加入含有不同酶 (如核酸外切酶、DNA 聚合酶及連接酶) 的組裝主混合物,並隨後在 50℃ 下培育反應混合物,可將單個片段組裝成一個質體。之後,用質體轉染潛能大腸桿菌細胞。
對於一些質體,使用經由限制酶的選殖策略。藉由選擇合適的限制內切酶,可將所關注所欲基因切下,然後經由連接將其插入至不同的質體中。因此,較佳為使用並以巧妙的方式選擇在多重選殖位點 (MCS) 切割的酶,以便可在正確的陣列中進行片段的連接。如果質體及片段之前用相同的限制酶切割,則片段及質體的黏性端會完美地接合在一起,隨後可經由 DNA 連接酶連接。連接後,用新生成的質體轉染潛能大腸桿菌細胞。 經由限制消化進行選殖
對於使用限制內切酶消化質體,將以下組分吸取至冰上:
:限制消化反應混合物
組分 ng ( 設定點 ) µl
純化之 DNA CutSmart 緩衝液 (10x) 限制酶 PCR 級水 tbd tbd 5 1 加至 50
總計    50
如果在一次消化中使用更多酶,則使用每種酶 1 µl,並經由加入較多 PCR 級水或較少 PCR 級水來調整體積。選擇所有酶的前提為其符合可與來自 New England Biolabs 之 CutSmart 緩衝液一起使用 (100% 活性) 的資格,且具有相同的培育溫度 (均為 37℃)。
使用熱混合器或熱循環儀進行培育,允許在恆溫 (37℃) 下培育樣品。在培育過程中,不攪動樣品。培育時間設置為 60 分鐘。然後將樣品直接與加載染料混合,並加載到瓊脂糖電泳凝膠上或儲存在 4℃/冰上以備進一步使用。
製備用於凝膠電泳的 1% 瓊脂糖凝膠。因此,將 1.5 g 多用途瓊脂糖稱重到 125 錐形搖瓶中,並注入 150 ml TAE 緩衝液。混合物在微波爐中加熱直至瓊脂糖完全溶解。將 0.5 µg/ml 溴化乙錠加入至瓊脂糖溶液中。然後將凝膠澆注至模具中。瓊脂糖凝固後,將模具放入電泳室,並用 TAE 緩衝液填入電泳室。然後裝載樣品。在第一槽中 (從左邊起算),加載合適的 DNA 分子量標記物,接著加載樣本。凝膠在 <130 V 下運行約 60 分鐘。電泳後,從電泳室中取出凝膠並在 UV 成像儀中進行分析。
切割出標靶條帶並轉移到 1.5 ml Eppendorf 中。使用來自 Qiagen 的 QIAquick Gel Extraction Kit 並根據製造商的說明,進行凝膠的純化。將 DNA 片段儲存於 ‑20℃ 以備進一步使用。
用於連接的片段以 1:2、1:3 或 1:5 的莫耳比吸取在一起,以用於插入質體,莫耳比具體取決於插入片段及質體片段之長度及其之間的相互關係。如果應插入質體的片段很短,則使用 1:5 的比例。如果插入物較長,則使用相較於質體的較少量。每次連接使用 50 ng 量之質體,並使用 NEBioCalculator 計算特定的插入量。使用來自 NEB 的 T4 DNA ligation kit 連接。下表出示連接混合物的實例。
:連接反應混合物
組分 ng ( 設定點 ) 濃度 [ng/µl] µl
T4 DNA 連接酶緩衝液 (10x) 質體 DNA (4000 bp) 插入 DNA (2000 bp) 無核酸酶水 T4 連接酶       2
50 50 1
125 20 6.25
      9.75
      1
總計       20
自混合 DNA 及水開始,加入緩衝液,最後加入酶,所有組分都在冰上吸取。經由上下吸取輕微地混合反應液,短暫微量離心,然後在室溫下培育 10 分鐘。培育後,T4 連接酶在 65℃ 下加熱去活化 10 分鐘。樣品在冰上冷卻。在最後一步,將 2 µl 連接質體轉形 10-β 潛能大腸桿菌細胞 (見下方內容)。 轉化 10-β 潛能大腸桿菌細胞
將用於轉形之 10-β 潛能大腸桿菌細胞在冰上解凍。之後,將 2 µl 質體 DNA 直接吸取至細胞懸浮液中。輕彈試管並置於冰上 30 分鐘。此後,將細胞放入 42℃ 的熱塊中並精確熱休克 30 秒。緊接著,將細胞在冰上急冷 2 分鐘。將 950 µl 的 NEB 10-β Outgrowth Medium 加入至細胞懸浮液中。將細胞在 37℃ 下振盪培育一小時。然後,將 50-100 µl 吸取至預熱 (37℃) 的 LB-Amp 瓊脂平盤上,並以一次性抹刀塗抹。將平盤在 37℃ 下培育隔夜。只有成功併入質體並攜帶安比西林抗性基因的細菌才能在這些平盤上生長。第二天挑取單一菌落,在 LB-Amp 培養基中培養,用於後續的質體製備。 細菌培養
在 LB 培養基 (Luria Bertani 之縮寫) 中培養大腸桿菌,該培養基中攙入 1 ml/L 100 mg/ml 安比西林,使安比西林濃度為 0.1 mg/ml。對於不同的質體製備量,以單一細菌菌落接種以下量。
:大腸桿菌培養體積
數量質體製備 體積 LB-Amp 培養基 [ml] 培育時間 [h]
Mini-Prep 96 孔 (EpMotion) 1.5 23
Mini-Prep 15 ml 管 3.6 23
Maxi-Prep 200 16
對於 Mini-Prep,96 孔 2 ml 深孔盤之每孔注入 1.5 ml LB-Amp 培養基。挑取菌落並將牙籤塞入培養基中。當挑取所有菌落後,用黏性透氣膜將平盤密封。將平盤在 37℃ 培養箱中以 200 rpm 的振盪速率培養 23 小時。
對於 Mini-Preps,在 15 ml 試管 (帶有通風蓋) 中裝入 3.6 ml LB-Amp 培養基並同樣接種細菌菌落。在培育期間,牙籤並未被移除而是留在管中。與 96 孔盤一樣,試管在 37℃、200 rpm 下培育 23 小時。
對於 Maxi-Prep,將 200 ml LB-Amp 培養基裝入高壓滅菌的 1 L Erlenmeyer 燒瓶中,並接種大約為 5 小時年齡的 1 ml 細菌日培養物。錐形瓶以紙塞密閉並在 37℃、200 rpm 下培育 16 小時。 質體製備
對於 Mini-Prep,將 50 µl 細菌懸浮液轉移到 1 ml 深孔盤中。之後,將細菌細胞在板中以 3000 rpm、4℃ 離心 5 分鐘。移除上清液,將帶有細菌沉澱物的平盤置於 EpMotion 中。約 90 分鐘後完成運行,並可從 EpMotion 中取出溶析的質體 DNA 以供進一步使用。
對於 Mini-Prep,自培養箱中取出 15 ml 試管,並將 3.6 ml 細菌培養物分樣至兩個 2 ml Eppendorf 管。在室溫下,在台式微量離心機中以 6,800xg 將管離心 3 分鐘。之後,根據製造商的說明使用 Qiagen QIAprep Spin Miniprep Kit 進行 Mini-Prep。以 Nanodrop 測量質體 DNA 濃度。
根據製造商的說明使用 Macherey-Nagel NucleoBond® Xtra Maxi EF Kit 進行 Maxi-Prep。以 Nanodrop 測量 DNA 濃度。 乙醇沉澱
將一定體積的 DNA 溶液與 2.5 倍體積的 100% 乙醇混合。混合物在 -20℃ 下培育 10 分鐘。然後將 DNA 在 14,000 rpm,4℃ 下離心 30 分鐘。小心地移除上清液並以 70% 乙醇洗滌沉澱物。再次將管在 14,000 rpm,4℃ 下離心 5 分鐘。藉由吸取小心地移除上清液並乾燥沉澱物。當乙醇蒸發後,加入適量之無內毒素水。給予 DNA 時間在 4℃ 下再溶於水中隔夜。取一小部分等分樣品並以 Nanodrop 裝置測量 DNA 濃度。 表現卡匣組成
對於表現開讀框,使用包含以下功能元件的轉錄單元: -    來自包括內含子 A 的人類巨細胞病毒的直接早期增強子和啟動子, -    人重鏈免疫球蛋白 5'-非轉譯區 (5'UTR), -    如果需要,則包含包括訊號序列的相應開讀框的核酸, -    牛生長激素多腺苷酸化序列 (BGH pA),和 -    視情況地,人類胃泌素終止子 (hGT)。
除了包含要表現的所需基因的表現單元/表現盒外,基本/標準哺乳動物表現質體還包含 -    來自質體 pUC18 的複製起點,其允許此質體在大腸桿菌中複製,及 -    β-內醯胺酶基因,其在大腸桿菌中賦予安比西林抗性。 細胞培養技術
使用標準細胞培養技術,如敘述於 Current Protocols in Cell Biology (2000), Bonifacino, J.S., Dasso, M., Harford, J.B., Lippincott-Schwartz, J. and Yamada, K.M. (eds.), John Wiley & Sons, Inc。 HEK293 系統中的暫態轉染
經由使用 HEK293 系統 (Invitrogen) 根據製造商的說明用相應的質體 (見下方實例 1 至 4) 暫態轉染,以產生包含根據本發明之 DNA 元件的細胞。簡言之,將相應質體及 293fectin™ 或 fectin (Invitrogen) 的混合物轉染至在無血清 FreeStyle™ 293 表現培養基 (Invitrogen) 中之搖瓶或攪拌發酵瓶中懸浮生長的 HEK293 細胞 (Invitrogen)。對於 2 L 搖瓶 (Corning),將 HEK293 細胞以 1*10 6細胞/mL 的密度接種在 600 mL 中,並在 120 rpm、8% CO 2下培育。第二天,將約 42 mL 混合物轉染約 1.5*10 6細胞/mL 的細胞密度的細胞,該混合物為 A) 20 mL Opti-MEM (Invitrogen) 與 600 µg 總質體 DNA (1 µg/mL) 及 B) 20 ml Opti-MEM + 1.2 mL 293 fectin 或 fectin (2 µL/mL)。根據葡萄糖消耗量,在發酵過程中加入葡萄糖溶液。 SDS-PAGE
LDS 樣品緩衝液,四倍濃縮液 (4x):4 g 甘油、0.682 g TRIS 鹼、0.666 g TRIS 鹽酸鹽、0.8 g LDS (十二烷基硫酸鋰) 、0.006 g EDTA (乙二胺四酸)、0.75 ml 之 1% 重量百分比 (w/w) Serva Blue G250 水溶液、0.75 ml 之 1% 重量百分比 (w/w) 酚紅溶液,加水使總體積為 10 毫升。
將培養液中的細胞裂解。此後將溶液離心以移除細胞碎片。將澄清上清液與 1/4 體積 (v/v) 之 4xLDS 樣品緩衝液及 1/10 體積 (v/v) 的之 0.5 M 1,4-二硫蘇糖醇 (DTT) 混合。然後將樣品在 70℃ 下培育 10 分鐘,經由 SDS-PAGE 分離蛋白質。根據製造商之說明,使用 NuPAGE® Pre-Cast 凝膠系統 (Invitrogen 公司)。具體言之,使用 10% NuPAGE® Novex® Bis-TRIS 預製凝膠 (pH 6.4) 及 NuPAGE® MOPS 電泳緩衝液。 西方墨點法
轉移緩衝液:39 mM 甘胺酸、48 mM TRIS 鹽酸鹽、0.04% 重量 (w/w) 之 SDS 及 20% 體積 (v/v) 之甲醇
在 SDS-PAGE 後,將分離的多肽電泳轉移至硝酸纖維素濾膜 (孔徑:0.45 µm),係根據 Burnette 的「半乾墨點法」 (Burnette, W.N.,Anal. Biochem. 112 (1981) 195-203)。 實例 1 產生根據本發明的 DNA 構建體,該 DNA 構建體用於經由 RMCI Cre 重組酶介導同時活化 E2A E4orf6 開讀框
產生第一 DNA 片段,其中 608 bp CMV 直接早期啟動子及增強子 (SEQ ID NO: 28) 與人類免疫球蛋白 5' UTR 組合。此兩種元件以頭對頭融合至間斷 L3 元件,該間斷 L3 元件具有突變之左反向重複 (L3-LE;taccgttcgt ataaagtctc ctatacgaag ttat;SEQ ID NO: 70) 且側翼具有 XbaI (5'- 端) 及 KpnI (3 '- 端) 限制位點。經由 DNA 合成產生出相應的 DNA 片段,並將其選殖到合適的穿梭質體中。
同樣地,產生並選殖第二 DNA 片段,該第二 DNA 片段在其編碼股的 5'- 至 3'- 方向包含:HindIII 限制位點、具有突變之右反向重複的 L3 位點 (L3-RE;ataacttcgt ataaagtctc ctatacgaac ggta; SEQ ID NO: 71)、Kozak 序列、編碼腺病毒 E2A 蛋白的開讀框 (GenBank 登錄號 AC_000007)、牛生長激素多腺苷酸化訊號序列 (BGH poly A;SEQ ID NO: 31)、人類胃泌素轉錄終止子序列 (HGT;SEQ ID NO: 32) 及 KpnI 限制位點。
亦生成並選殖第三片段,該第三片段在其編碼股自 5'- 至 3'- 方向包含:MfeI 限制位點、Kozak 序列、編碼腺病毒 E4orf6 蛋白的開讀框 (GenBank 登錄號 AC_000007)、BGH poly A、HGT 序列及 HindIII 限制位點。 使用各自的限制酶自其穿梭質體中切下三個片段。在四方向連接反應中,將切除的片段與攜帶 MfeI 及 XbaI 相容突出端之質體骨架及嘌呤黴素選擇標記結合,以產生出用於穩定轉染哺乳動物細胞的質體。
圖 11 說明 DNA 片段內元件的順序及方向,順序及方向係由連接過程中黏性端的相容性所決定。 實例 2 產生根據本發明的 DNA 構建體,該 DNA 構建體用於經由 RMCI Cre 重組酶介導同時活化 E1A E1B 開讀框
將 608 bp CMV 啟動子及增強子元件的兩個拷貝 (但不包括 TATA 盒及轉錄起始位點之間的序列) 以頭對頭融合至間斷的 Lox71 位點。所得片段在 5' 端具有 XbaI 限制位點,在 3' 端具有 KpnI 限制位點。經由 DNA 合成產生出完整的 DNA 片段,並將其選殖到合適的穿梭質體中。
同樣,合成並選殖第二 DNA 片段,該第二 DNA 片段在其編碼股自 5'- 至 3'- 方向包含:SacI 限制位點、Lox66 位點、在 TATA 盒與轉錄起始位點之間的 CMV 啟動子片段,該CMV 啟動子片段具有突變/非活化的 SacI 位點、人類免疫球蛋白重鏈 5'UTR、Kozak 序列、編碼腺病毒 E1A 蛋白的開讀框 (GenBank 登錄號 AC_000008)、牛生長激素多腺苷酸化訊號序列 (BGH poly A)、人類胃泌素轉錄終止子序列 (HGT) 及 KpnI 限制位點。
亦合成並選殖第三片段,該第三片段自 5'- 至 3'- 方向包括:SacI 限制位點、在 TATA 盒與轉錄起始位點之間的 CMV 啟動子片段、人類免疫球蛋白重鏈 5'-UTR、Kozak 序列、編碼腺病毒 E1B 19 kDa 及 E1B 55 kDa 蛋白的開讀框 (GenBank 登錄號 AC_000008)、牛生長激素多腺苷酸化訊號序列 (BGH poly A)、人類胃泌素轉錄終止子序列 (HGT) 及 MfeI 限制位點。
使用各自的限制酶自其穿梭質體中切下三個片段。在四方向連接反應中,將片段與攜帶 MfeI 及 XbaI 相容突出端之質體骨架及嘌呤黴素選擇標記結合,以產生出用於穩定轉染哺乳動物細胞的質體。
圖 9 說明 DNA 片段內元件的順序及方向,順序及方向係由連接過程中黏性端的相容性所決定。 實例 3 產生根據本發明的 DNA 構建體,該 DNA 構建體用於經由 RMCI Cre 重組酶介導同時活化 Rep78 Rep52/40 轉錄
將包括轉錄起始位點下游 21 bp 的 AAV2 P5 啟動子與包括轉錄起始位點下游 103 bp 的 AAV2 P19 啟動子以頭對頭融合至間斷 LoxFas 位點,該間斷 LoxFas 位點具有突變左反向重複 (LoxFas-LE;taccgttcgt atataccttt ctaacgaag ttat;SEQ ID NO: 72)。所得片段在 5' 端具有 XbaI 限制位點,在 3' 端具有 KpnI 限制位點。經由 DNA 合成產生出完整的 DNA 片段,並將其選殖在合適的穿梭質體中。
同樣,產生並選殖第二 DNA 片段,該第二 DNA 片段自 3'- 至 5'- 方向 (即相對於編碼股為反向) 包含:SalI 限制位點、具有突變之右反向重複的 LoxFas 位點 (LoxFas-RE;ataacttcgt atataccttt ctatacgaac ggta;SEQ ID NO: 73)、來自 Rep78/68 5'UTR 的 13 bp 序列、編碼 AAV2 Rep78 蛋白的開讀框、牛生長激素多腺苷酸化訊號 (BGH poly A)、人類胃泌素轉錄終止子 (HGT) 及 KpnI 限制位點。
亦生成第三片段,該第三片段自 5'- 至 3'- 方向包含:SalI 限制位點,自 Rep52/40 起始密碼子上游 13 bp 開始並在VP 基因之終止密碼子下游 124 bp 結束的 AAV2 Rep52/40-Cap 基因、及 Mfe 限制位點。
使用各自的限制酶自其穿梭質體中切下三個片段。在四方向連接反應中,將片段與質體骨架結合,該質體骨架攜帶 MfeI 及 XbaI 相容之突出端之及嘌呤黴素選擇標記,以產生出用於穩定轉染哺乳動物細胞的質體。
圖 13 說明 DNA 片段內元件的順序及方向,順序及方向係由連接過程中黏性端的相容性所決定。 實例 4 產生根據本發明的 DNA 構建體,該 DNA 構建體用於經由 RMCI Cre 重組酶介導活化 VA RNAI 轉錄
以化學合成 DNA 片段,其自 5'- 至 3'- 方向包含:SEQ ID NO: 69 的 Lx-LE 位點,該 Lx-LE 位點包含 TATA 訊號 (TTTATATAT;SEQ ID NO: 74),該 TATA 訊號整合至 Cre 重組位點,該 Cre 重組位點具有來自標準 LoxP 位點之突變左反向重複及確保無混交之高度歧異 (Lx-LE;taccgttcgt ataagtttat atatacgaag ttat;SEQ ID NO: 03) (將 TATA 與轉錄起始位點之間的距離進行比對以反映一般距離),來自 Ad2 VA RNAI 基因 5'- 端的一個短片段,緊隨該片段之後為聚合酶 III 終止子 (hexa-dT)、反方向之 Ad2 VA RNAI 基因 (GenBank AC_000007) 以及包含 Lx 位點的3' 端序列,該 Lx 位點具有反向的右反向重複 (Lx-RE 反向;taccgttcgt atatataaac ttatacgaag ttat;SEQ ID NO: 06)。
該片段與攜帶嘌呤黴素選擇標記的質體骨架連接,產生出用於穩定轉染哺乳動物細胞的質體。
圖 16 顯示該 DNA 片段中元件的順序及方向。 實例 5 用於 RMCI 之卡匣的穩定整合
將適合懸浮生長的 CHO-K1 細胞置於 50 mL 化學成分確定的培養基中,於 37℃ 及 5-7 vol.-% CO 2的一次性通風 125 mL 搖瓶中繁殖。培養物以 140-180 rpm/min 的固定攪拌速度搖晃,每 3-4 天用新鮮培養基稀釋至 2-3 x 10 5/mL 的密度。使用 Cedex HiRes 細胞計數器 (Roche Innovates AG, Bielefeld, Germany) 測定培養物的密度及存活率。
為穩定整合 RMCI 卡匣,將懸浮生長的 CHO-K1 細胞以 4 x 10 5細胞/mL 的密度接種在新鮮之化學成分確定的培養基中。第二天,根據製造商的方案,使用 Nucleofector Kit V (Lonza,Switzerland),以 Nucleofector 裝置進行轉染。用 30 µg 線性化質體 DNA 轉染 3 x 10 7細胞。轉染後,將細胞接種在不含選擇劑的 30 ml 新鮮的化學成分確定的培養基中。
轉染兩天後,將細胞接種到含有作為選擇劑之 1 至 10 µg/mL 嘌呤黴素的 384 孔盤中,每孔接種 300 至 500 個細胞。三週後,經由使用 NYONE Plate 成像儀 (SYNENTECH GmbH,Elmshorn,Germany) 之成像鑑別細胞菌落。將菌落轉移至 96 孔盤,並經由 PCR 分析 RMCI 卡匣的整合。將含有所有所需 RMCI 卡匣之細胞株在含有嘌呤黴素之化學成分確定的培養基中進一步擴增,並在擴增後冷凍保存。 實例 6 經由根據本發明 Cre 介導的卡匣反轉 (RMCI) 進行基因活化及 AAV 產生 經由 Cre 重組酶介導的 RMCI 的基因活化
對於經由卡匣反轉 (Cre 介導的 RMCI) 之 Cre 介導的基因活化,將 Cre 重組酶編碼 mRNA 暫態地轉染細胞,該等細胞攜帶上述實例之一者中所獲得之腺病毒輔助基因之無活性 RMCI 卡匣及/或 rep-cap 基因。轉染前一天,將細胞以 4 x 10 5cells/mL 之密度接種至新鮮培養基中。第二天,根據製造商的方案,使用 Nucleofector Kit V (Lonza,Switzerland),以 Nucleofector 裝置進行轉染。用總量為 30 µg 的 Cre 重組酶編碼 mRNA 轉染 3 x 10 7細胞。經由反向基因體 DNA 之 PCR、預期 mRNA 之 RT-PCR 或預期基因產物之西方墨點法,證實成功活化基因。 產生 rAAV 載體生產細胞
對於重組 AAV 載體的生產,將包含 5 µg Cre 重組酶編碼 mRNA 之總量 30 µg 核酸暫態地轉染 3 x 10 7細胞,該等細胞攜帶上述實例之一者中所獲得之腺病毒輔助基因之無活性 RMCI 卡匣及/或 rep-cap 基因。剩餘的 25 µg 核酸由質體 DNA 組成,該質體 DNA 提供重組 AAV 基因體 (轉基因,例如側翼為 AAV ITR 的 GFP 基因) 及輔助基因及/或尚未整合到基因體中之 rep/cap 基因的表現卡匣。
或者,如實例 5 中所述,經由穩定整合到宿主細胞的基因體中以提供重組 AAV 基因體。
如果細胞的基因體已包含所有必需的輔助基因、rep/cap 及重組 AAV 基因體,則僅轉染 Cre 重組酶編碼 mRNA 即足夠。
從細胞培養上清液或總細胞裂解物中收集 AAV 顆粒,並經由 ELISA、定量 PCR 及轉導標靶細胞進行分析。 實例 7 產生根據本發明的 DNA 構建體,該 DNA 構建體用於經由 RMCI FRT 重組酶介導同時活化 mCherry EGFP 開讀框
產生第一 DNA 片段,其中 52 bp 最小 CMV 啟動子 (SEQ ID NO: 85) 在其轉錄方向上與以下元件按以下順序組合: -    人類免疫球蛋白 5' UTR; - 具有突變左反向重複的 FRT 元件 (FRT-LE;GAAGTTCATATTCTCTAGAAAGTATAGGAACTTC;SEQ ID NO: 60); -    SV40 早期啟動子的 417 bp 片段,該片段包括反方向的轉錄起始 (TS) 區 (SEQ ID NO: 86); -    SEQ ID NO: 32 的人類胃泌素轉錄終止子序列 (HGT),但為反方向; -    SEQ ID NO: 31 的牛生長激素多腺苷酸化訊號序列 (BGH poly A),但為反方向; -    編碼 mCherry 螢光蛋白的開讀框 (GenBank 登錄號 QUW04963;SEQ ID NO: 87),但為反方向; -    Kozak 序列,但為反方向; -    具有突變之右反向重複 (FRT-RE;GAAGTTCCTATTCTCTAGAAAGTATATGAACTTC, SEQ ID NO: 61) 的 FRT 位點,但為反方向; -   順方向的 Kozak 序列;及 -    順方向之編碼增強型綠色螢光蛋白 (EGFP;GenBank 登錄號 AAB02572.1;SEQ ID NO: 88;26 bp) 之開讀框的 5'- 部分。
經由 DNA 合成產生相應的 DNA 片段並將其選殖到合適的穿梭質體中,該 DNA 片段側翼為 SalI (於 5' 端) 及 SgrAI (於 3' 端) 限制位點。
亦生成並選殖第二片段,該第二片段編碼股自 5'- 至 3'- 方向按以下順序包含:SalI 限制位點、編碼 EGFP 且包含內部 SgrAI 限制位點的開讀框、BGH poly A 訊號序列、HGT 序列及 MfeI 限制位點。
使用 SalI 及 SgrAI 限制酶從其穿梭質體中切下第一片段,並將該第一片段插入攜帶第二片段之質體的 SalI 與 SgrAI 位點之間,以產生最終質體,該質體適用於暫態轉染哺乳動物細胞。
圖 18 顯示第一片段與第二片段之組合 DNA 中元件的順序及方向。 實例 8 – 比較實例 產生根據本發明的 DNA 構建體,該 DNA 構建體代表在經由 RMCI FRT 重組酶介導同時活化 mCherry EGFP 開讀框後所獲得的 DNA 構型
產生第一 DNA 片段,其中 52 bp 的最小 CMV 啟動子 (SEQ ID NO: 85) 在其轉錄方向上按以下順序與以下組合: -    順方向之人類免疫球蛋白 5' UTR; -    順方向之 FRT 元件,該 FRT 元件具有突變之左反向重複及右反向重複 (FRT-LE-RE;GAAGTTCATATTCTCTAGAAAGTATATGAACTTC;SEQ ID NO: 89); -    順方向的 Kozak 序列; -    順方向之編碼 mCherry 螢光蛋白的開讀框 (GenBank 登錄號 QUW04963;SEQ ID NO: 87); -    順方向之牛生長激素多腺苷酸化訊號序列 (BGH poly A;SEQ ID NO: 31); -    順方向之人類胃泌素轉錄終止子序列 (HGT;SEQ ID NO: 32); -    SV40 早期啟動子的 417 bp 片段,該片段包括順方向的轉錄起始 (TS) 區 (SEQ ID NO: 86); -    SEQ ID NO: 36 的 FRT 位點,但為反方向; -   順方向的 Kozak 序列;及 -    順方向之編碼增強型綠色螢光蛋白 (EGFP;GenBank 登錄號 AAB02572.1;SEQ ID NO: 88;26 bp) 之開讀框的 5'- 部分。
經由 DNA 合成產生相應的 DNA 片段並將其選殖到合適的穿梭質體中,該 DNA 片段側翼為 SalI (於 5' 端) 及 SgrAI (於 3' 端) 限制位點。
使用 SalI 及 SgrAI 限制酶從其穿梭質體中切下第一片段,並將該第一片段插入如實例 7 所述之攜帶第二片段之質體的 SalI 與 SgrAI 位點之間,以產生用於暫態轉染哺乳動物細胞的質體。
圖 19 顯示第一片段與第二片段之組合 DNA 中元件的順序及方向。 實例 9 經由根據本發明之 FLP 介導的卡匣反轉 (RMCI) 同時活化兩個螢光基因 轉染
在 37℃、90% 相對濕度及 5% CO 2下,將 HEK293T 貼附細胞培養於 DMEM、高葡萄糖、GlutaMAX™ 補充劑、補充有 10% 胎牛血清 (Thermo Fisher Scientific) 的丙酮酸培養基 (Thermo Fisher Scientific) 中。轉染前二十四小時,將每孔 10,000 個細胞接種到 96 孔盤的孔中。根據製造商的建議,使用 1:2 比率之 DNA 與 PEI 的 PEI 混合物 (Polyscience),用每孔 100 ng 質體 DNA 的混合物轉染細胞。如下表 5 所示,每種實驗條件以三重複進行測試。
5:用於轉染之質體混合物的組成。每種實驗條件 (1 到 14) 的 DNA 量以每孔 ng 表示。
質體 \ 條件 1 2 3 4 5 6 7 8 9 10 11 12 13 14
FLPo (編碼 FPL 重組酶) 20 10 5 20 10 5 20 10 5
mCherry_EGFP_pre rec (根據實例 7 所獲得) 80 80 80 80
mCherry_EGFP_post rec (根據實例 8 所獲得) 80 80 80 80
仿 (Mock) DNA 100 20 20 80 90 95 20 20 10 15 10 15
參照組:EGFP_only 80
參照組:mCherry_only 80
為證實經由根據本發明之 FLP 重組酶介導的卡匣反轉同時活化 mCherry 及 EGFP 基因,將 80 ng 無活性構建體 mCherry_EGFP_pre rec (實 7,圖 18) 與不同數量之編碼 FPL 重組酶 FLPo 的質體混合,FLPo 為 FLP 重組酶的最佳化版本 (參見例如 Raymond. CS.及 Soriano, P.,PLoS ONE 2 (2007) e162)。視需要加入非編碼質體 (仿 DNA),使轉染混合物中的 DNA 總量保持在 100 ng。將相應條件應用於活性構建體 mCherry_EGFP_post rec (實例 8,圖 19),以測試 mCherry 及 EGFP 的表現是否受到共表現 FLPo 的影響。
將單獨轉染仿 DNA 作為陰性對照,而將表現 EGFP 或 mCherry 之單一基因的質體 (EGFP_only 及 mCherry_only) 作為陽性對照。將 FLPo 質體與仿 DNA 結合轉染,以排除任何由單獨之 FLPo 所直接誘導螢光。 流式 細胞術
暫態轉染兩天後,經由流式細胞術測量細胞內 EGFP 及 mCherry 的表現,以檢查 FLP 介導的卡匣反轉是否成功。為此,經由胰蛋白酶介導的脫離,自 96 孔盤中收穫 HEK293T 細胞。經由在磷酸鹽緩衝生理食鹽水中加入 2% 胎牛血清以終止反應。
使用 BD FACSCelesta™ Flow Cytometer (BD, Heidelberg, Germany) 進行流式細胞術。活細胞在前向散射 (FSC) 對側向散射 (SSC) 圖中閘控。為區分單細胞與細胞聚集體,選擇 FSC-H vs FASC-A 圖。紀錄每個樣品的一萬個事件。以經仿轉染之 HEK293T 細胞定義兩種閘門,並藉由使用 FlowJo v10.6.2 軟體 (TreeStar, Olten, Switzerland) 應用於所有樣品。在 FITC 通道中量化 GFP 的螢光 (激發波長為 488 nm ,檢測波長為 530 nm)。在 PE-CF594 通道中測量 mCherry (激發波長為 561 nm,檢測波長為 610 nm)。
為正確識別螢光細胞群並調整雷射,使用陽性對照樣品及陰性對照樣品。經 EGFP_only 質體轉染之細胞作為 EGFP 陽性對照,而經 mCherry_only 質體轉染之細胞作為 mCherry 陽性對照。經非編碼質體 (仿 DNA) 轉染之細胞作為陰性對照。
圖 20 顯示在每種實驗條件 1 到 14 中(如上表 5 所示),GFP 及 mCherry 陽性細胞的平均百分比。相應的標準偏差代表為誤差線。如所預期,當用 mCherry_EGFP_pre rec (條件 7) 單獨轉染細胞時,幾乎沒有檢測到任何螢光細胞 (< 2%),即沒有重組酶,而當用 mCherry_EGFP_post rec 轉染細胞時,約 60% 的細胞為 mCherry 及 EGFP 陽性 (條件 8)。此代表 mCherry 及 EGFP 基因在沒有重組酶的情況下,在重組前之配置為無活性的,而在重組後之配置具有活性。
當一起共轉染 FLPo 表現質體與 mCherry_EGFP_pre rec 質體時,EGFP 及 mCherry 陽性細胞的百分比增加到約 30% (條件 9、10 及 11),代表成功 RMCI 及活化雙基因。共轉染 FLPo 表現質體與 mCherry_EGFP_post rec 對表現 EGFP 及 mCherry 沒有影響 (條件 8 vs. 條件 12、13 及 14),代表在重組後之配置中抑制卡匣反轉。單獨轉染 FLPo 表現質體時未檢測到螢光細胞。
1根據本發明之 DNA 元件在 RMCI 之前 (左圖) 與在 RMCI 之後 (右圖) 的示意圖。 2根據本發明之 DNA 的方案,該 DNA包含根據本發明之兩種 DNA 元件。 3根據本發明之 DNA 在 RMCI 之前 (上圖) 與在 RMCI 之後 (下圖) 的方案。 4根據本發明之 DNA 之依序轉錄活化的方案。 5根據本發明之 DNA 的例示性用途,該 DNA 用於同時轉錄活化 E1A、E1B、E2A 及 E4 (ORF6) 之四種開讀框。 6根據本發明之 DNA 元件的例示性用途,該 DNA 元件用於同時轉錄活化 E2A 及 E4 (ORF6) 之兩種開讀框。 7根據本發明之 DNA 元件的例示性用途,該 DNA 元件用於同時轉錄活化 rep 及 cap (左圖)、rep78 及 rep52/40 (中圖),以及 rep78 及 rep52 (右圖) 之兩種開讀框。 8根據本發明之 DNA 元件的例示性用途,該 DNA 元件用於轉錄活化 VA RNA 基因的一個開讀框。 9根據本發明之 DNA 元件的例示性示意圖,在 RMCI 之前,該 DNA 元件用於同時轉錄活化 E1A 及 E1B 的開讀框。已顯示用於選殖的限制位點。 10根據本發明之反向 DNA 元件的例示性示意圖,在 RMCI 之後,該反向 DNA 元件具有 E1A 及 E1B 的轉錄活性開讀框。已顯示用於選殖的限制位點。 11根據本發明之 DNA 元件的例示性示意圖,在 RMCI 之前,該 DNA 元件用於同時轉錄活化 E2A 及 E4orf6 的開讀框。已顯示用於選殖的限制位點。 12根據本發明之反向 DNA 元件的例示性示意圖,在 RMCI 之後,該反向 DNA 元件具有 E2A 及 E4orf6 的轉錄活性開讀框。已顯示用於選殖的限制位點。 13根據本發明之 DNA 元件的例示性示意圖,該 DNA 元件用於在 RMCI 之前同時轉錄活化 Rep78 及 Rep52/40 的開讀框。已顯示用於選殖的限制位點。 14根據本發明之反向 DNA 元件的例示性示意圖,在 RMCI 之後,該反向 DNA 元件具有 Rep78及Rep52/40 的轉錄活性開讀框。已顯示用於選殖的限制位點。 15VA RNA 與 VA RNA G58T/G59T/C68A 變異體的比對。 16在 RMCI 之前,根據本發明之 VA RNA。 17在 RMCI 之後,根據本發明之 VA RNA。 18根據本發明之例示性、轉錄不活化 DNA 元件的示意圖,在 RMCI 之前,該 DNA 元件用於同時轉錄活化 mCherry 及 EGFP 的開讀框。已顯示用於選殖的限制位點。 19根據本發明圖 18之反向 DNA 元件的示意圖,在 RMCI 之後,該反向 DNA 元件具有 mCherry 及 EGFP 的轉錄活性開讀框。已顯示用於選殖的限制位點。 20在暫態轉染 HEK293T 細胞中,RMCI 的細胞計數分析。同時顯示 GFP 及 mCherry 表現細胞的平均百分比級標準差 (誤差線)。均以生物三重複進行測試每種條件。根據表 5 之編號。
<![CDATA[<110>  瑞士商赫孚孟拉羅股份公司 (F. Hoffmann-La Roche AG)]]>
          <![CDATA[<120>  用於同時基因活化的核酸構建體]]>
          <![CDATA[<130>  P36312]]>
          <![CDATA[<150>  EP20202009.5]]>
          <![CDATA[<151>  2020-10-15]]>
          <![CDATA[<160>  89    ]]>
          <![CDATA[<170>  PatentIn 第 3.5 版]]>
          <![CDATA[<210>  1]]>
          <![CDATA[<211>  8]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  Lx 位點間隔子序列]]>
          <![CDATA[<400>  1]]>
          agtttata                                                                 8
          <![CDATA[<210>  2]]>
          <![CDATA[<211>  8]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  Lx 位點反方向]]>
          <![CDATA[<400>  2]]>
          tataaact                                                                 8
          <![CDATA[<210>  3]]>
          <![CDATA[<211>  34]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  Lx-LE 突變體]]>
          <![CDATA[<400>  3]]>
          taccgttcgt ataagtttat atatacgaag ttat                                   34
          <![CDATA[<210>  4]]>
          <![CDATA[<211>  34]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  Lx-LE 突變體反方向]]>
          <![CDATA[<400>  4]]>
          ataacttcgt atatataaac ttatacgaac ggta                                   34
          <![CDATA[<210>  5]]>
          <![CDATA[<211>  34]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  Lx-RE 突變體]]>
          <![CDATA[<400>  5]]>
          ataacttcgt ataagtttat atatacgaac ggta                                   34
          <![CDATA[<210>  6]]>
          <![CDATA[<211>  34]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  Lx-RE 突變體反方向]]>
          <![CDATA[<400>  6]]>
          taccgttcgt atatataaac ttatacgaag ttat                                   34
          <![CDATA[<210>  7]]>
          <![CDATA[<211>  343]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  噬菌體 P1]]>
          <![CDATA[<400>  7]]>
          Met Ser Asn Leu Leu Thr Val His Gln Asn Leu Pro Ala Leu Pro Val 
          1               5                   10                  15      
          Asp Ala Thr Ser Asp Glu Val Arg Lys Asn Leu Met Asp Met Phe Arg 
                      20                  25                  30          
          Asp Arg Gln Ala Phe Ser Glu His Thr Trp Lys Met Leu Leu Ser Val 
                  35                  40                  45              
          Cys Arg Ser Trp Ala Ala Trp Cys Lys Leu Asn Asn Arg Lys Trp Phe 
              50                  55                  60                  
          Pro Ala Glu Pro Glu Asp Val Arg Asp Tyr Leu Leu Tyr Leu Gln Ala 
          65                  70                  75                  80  
          Arg Gly Leu Ala Val Lys Thr Ile Gln Gln His Leu Gly Gln Leu Asn 
                          85                  90                  95      
          Met Leu His Arg Arg Ser Gly Leu Pro Arg Pro Ser Asp Ser Asn Ala 
                      100                 105                 110         
          Val Ser Leu Val Met Arg Arg Ile Arg Lys Glu Asn Val Asp Ala Gly 
                  115                 120                 125             
          Glu Arg Ala Lys Gln Ala Leu Ala Phe Glu Arg Thr Asp Phe Asp Gln 
              130                 135                 140                 
          Val Arg Ser Leu Met Glu Asn Ser Asp Arg Cys Gln Asp Ile Arg Asn 
          145                 150                 155                 160 
          Leu Ala Phe Leu Gly Ile Ala Tyr Asn Thr Leu Leu Arg Ile Ala Glu 
                          165                 170                 175     
          Ile Ala Arg Ile Arg Val Lys Asp Ile Ser Arg Thr Asp Gly Gly Arg 
                      180                 185                 190         
          Met Leu Ile His Ile Gly Arg Thr Lys Thr Leu Val Ser Thr Ala Gly 
                  195                 200                 205             
          Val Glu Lys Ala Leu Ser Leu Gly Val Thr Lys Leu Val Glu Arg Trp 
              210                 215                 220                 
          Ile Ser Val Ser Gly Val Ala Asp Asp Pro Asn Asn Tyr Leu Phe Cys 
          225                 230                 235                 240 
          Arg Val Arg Lys Asn Gly Val Ala Ala Pro Ser Ala Thr Ser Gln Leu 
                          245                 250                 255     
          Ser Thr Arg Ala Leu Glu Gly Ile Phe Glu Ala Thr His Arg Leu Ile 
                      260                 265                 270         
          Tyr Gly Ala Lys Asp Asp Ser Gly Gln Arg Tyr Leu Ala Trp Ser Gly 
                  275                 280                 285             
          His Ser Ala Arg Val Gly Ala Ala Arg Asp Met Ala Arg Ala Gly Val 
              290                 295                 300                 
          Ser Ile Pro Glu Ile Met Gln Ala Gly Gly Trp Thr Asn Val Asn Ile 
          305                 310                 315                 320 
          Val Met Asn Tyr Ile Arg Asn Leu Asp Ser Glu Thr Gly Ala Met Val 
                          325                 330                 335     
          Arg Leu Leu Glu Asp Gly Asp 
                      340             
          <![CDATA[<210>  8]]>
          <![CDATA[<211>  1029]]>
          <![CDATA[<212>  RNA]]>
          <![CDATA[<213>  噬菌體 P1]]>
          <![CDATA[<400>  8]]>
          augagcaacc ugcugaccgu gcaccagaac cugcccgccc ugcccgugga cgccaccagc       60
          gacgagguga ggaagaaccu gauggacaug uucagggaca ggcaggccuu cagcgagcac      120
          accuggaaga ugcugcugag cgugugcagg agcugggccg ccuggugcaa gcugaacaac      180
          aggaaguggu uccccgccga gcccgaggac gugagggacu accugcugua ccugcaggcc      240
          aggggccugg ccgugaagac cauccagcag caccugggcc agcugaacau gcugcacagg      300
          aggagcggcc ugcccaggcc cagcgacagc aacgccguga gccuggugau gaggaggauc      360
          aggaaggaga acguggacgc cggcgagagg gccaagcagg cccuggccuu cgagaggacc      420
          gacuucgacc aggugaggag ccugauggag aacagcgaca ggugccagga caucaggaac      480
          cuggccuucc ugggcaucgc cuacaacacc cugcugagga ucgccgagau cgccaggauc      540
          agggugaagg acaucagcag gaccgacggc ggcaggaugc ugauccacau cggcaggacc      600
          aagacccugg ugagcaccgc cggcguggag aaggcccuga gccugggcgu gaccaagcug      660
          guggagaggu ggaucagcgu gagcggcgug gccgacgacc ccaacaacua ccuguucugc      720
          agggugagga agaacggcgu ggccgccccc agcgccacca gccagcugag caccagggcc      780
          cuggagggca ucuucgaggc cacccacagg cugaucuacg gcgccaagga cgacagcggc      840
          cagagguacc uggccuggag cggccacagc gccagggugg gcgccgccag ggacauggcc      900
          agggccggcg ugagcauccc cgagaucaug caggccggcg gcuggaccaa cgugaacauc      960
          gugaugaacu acaucaggaa ccuggacagc gagaccggcg ccauggugag gcugcuggag     1020
          gacggcgac                                                             1029
          <![CDATA[<210>  9]]>
          <![CDATA[<211>  7]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  猿猴病毒 40]]>
          <![CDATA[<400>  9]]>
          Pro Lys Lys Lys Arg Lys Val 
          1               5           
          <![CDATA[<210>  10]]>
          <![CDATA[<211>  16]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  猿猴病毒 40]]>
          <![CDATA[<400>  10]]>
          Lys Arg Pro Ala Ala Thr Lys Lys Ala Gly Gln Ala Lys Lys Lys Lys 
          1               5                   10                  15      
          <![CDATA[<210>  11]]>
          <![CDATA[<211>  25]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  秀麗隱桿線蟲]]>
          <![CDATA[<400>  11]]>
          Met Ser Arg Arg Arg Lys Ala Asn Pro Thr Lys Leu Ser Glu Asn Ala 
          1               5                   10                  15      
          Lys Lys Leu Ala Lys Glu Val Glu Asn 
                      20                  25  
          <![CDATA[<210>  12]]>
          <![CDATA[<211>  9]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  智人]]>
          <![CDATA[<400>  12]]>
          Pro Ala Ala Lys Arg Val Lys Leu Asp 
          1               5                   
          <![CDATA[<210>  13]]>
          <![CDATA[<211>  9]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  大腸桿菌]]>
          <![CDATA[<400>  13]]>
          Lys Leu Lys Ile Lys Arg Pro Val Lys 
          1               5                   
          <![CDATA[<210>  14]]>
          <![CDATA[<211>  13]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  噬菌體 P1]]>
          <![CDATA[<400>  14]]>
          ataacttcgt ata                                                          13
          <![CDATA[<210>  15]]>
          <![CDATA[<211>  13]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  噬菌體 P1]]>
          <![CDATA[<400>  15]]>
          tatacgaagt tat                                                          13
          <![CDATA[<210>  16]]>
          <![CDATA[<211>  8]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  噬菌體 P1]]>
          <![CDATA[<400>  16]]>
          atgtatgc                                                                 8
          <![CDATA[<210>  17]]>
          <![CDATA[<211>  8]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  L3 間隔子序列]]>
          <![CDATA[<400>  17]]>
          aagtctcc                                                                 8
          <![CDATA[<210>  18]]>
          <![CDATA[<211>  8]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  L2 反向間隔子序列]]>
          <![CDATA[<400>  18]]>
          gcatacat                                                                 8
          <![CDATA[<210>  19]]>
          <![CDATA[<211>  8]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  LoxFas 間隔子序列]]>
          <![CDATA[<400>  19]]>
          tacctttc                                                                 8
          <![CDATA[<210>  20]]>
          <![CDATA[<211>  8]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  Lox511 間隔子序列]]>
          <![CDATA[<400>  20]]>
          atgtatac                                                                 8
          <![CDATA[<210>  21]]>
          <![CDATA[<211>  8]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  Lox5171 間隔子序列]]>
          <![CDATA[<400>  21]]>
          atgtgtac                                                                 8
          <![CDATA[<210>  22]]>
          <![CDATA[<211>  8]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  Lox2272 間隔子序列]]>
          <![CDATA[<400>  22]]>
          aagtatcc                                                                 8
          <![CDATA[<210>  23]]>
          <![CDATA[<211>  8]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  Loxm2 間隔子序列]]>
          <![CDATA[<400>  23]]>
          agaaacca                                                                 8
          <![CDATA[<210>  24]]>
          <![CDATA[<211>  8]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  Loxm3 間隔子序列]]>
          <![CDATA[<400>  24]]>
          taatacca                                                                 8
          <![CDATA[<210>  25]]>
          <![CDATA[<211>  8]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  Loxm7 間隔子序列]]>
          <![CDATA[<400>  25]]>
          agatagaa                                                                 8
          <![CDATA[<210>  26]]>
          <![CDATA[<211>  22]]>
          <![CDATA[<212>  RNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  crRNA 重複]]>
          <![CDATA[<220>]]>
          <![CDATA[<221>  misc_feature]]>
          <![CDATA[<222>  (11)..(11)]]>
          <![CDATA[<223>  a 或 g]]>
          <![CDATA[<220>]]>
          <![CDATA[<221>  misc_feature]]>
          <![CDATA[<222>  (12)..(12)]]>
          <![CDATA[<223>  n 是 a、c、g 或 u]]>
          <![CDATA[<220>]]>
          <![CDATA[<221>  misc_feature]]>
          <![CDATA[<222>  (14)..(14)]]>
          <![CDATA[<223>  c 或 u]]>
          <![CDATA[<220>]]>
          <![CDATA[<221>  misc_feature]]>
          <![CDATA[<222>  (15)..(15)]]>
          <![CDATA[<223>  n 是 a、c、g 或 u]]>
          <![CDATA[<400>  26]]>
          guuuuagagc unugnuguuu ug                                                22
          <![CDATA[<210>  27]]>
          <![CDATA[<211>  5]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  FokI motiv]]>
          <![CDATA[<400>  27]]>
          ggatg                                                                    5
          <![CDATA[<210>  28]]>
          <![CDATA[<211>  608]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人類巨細胞病毒]]>
          <![CDATA[<400>  28]]>
          gttgacattg attattgact agttattaat agtaatcaat tacggggtca ttagttcata       60
          gcccatatat ggagttccgc gttacataac ttacggtaaa tggcccgcct ggctgaccgc      120
          ccaacgaccc ccgcccattg acgtcaataa tgacgtatgt tcccatagta acgccaatag      180
          ggactttcca ttgacgtcaa tgggtggagt atttacggta aactgcccac ttggcagtac      240
          atcaagtgta tcatatgcca agtacgcccc ctattgacgt caatgacggt aaatggcccg      300
          cctggcatta tgcccagtac atgaccttat gggactttcc tacttggcag tacatctacg      360
          tattagtcat cgctattagc atggtgatgc ggttttggca gtacatcaat gggcgtggat      420
          agcggtttga ctcacgggga tttccaagtc tccaccccat tgacgtcaat gggagtttgt      480
          tttggcacca aaatcaacgg gactttccaa aatgtcgtaa caactccgcc ccattgacgc      540
          aaatgggcgg taggcgtgta cggtgggagg tctatataag cagagctccg tttagtgaac      600
          gtcagatc                                                               608
          <![CDATA[<210>  29]]>
          <![CDATA[<211>  696]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人類巨細胞病毒]]>
          <![CDATA[<400>  29]]>
          gttgacattg attattgact agttattaat agtaatcaat tacggggtca ttagttcata       60
          gcccatatat ggagttccgc gttacataac ttacggtaaa tggcccgcct ggctgaccgc      120
          ccaacgaccc ccgcccattg acgtcaataa tgacgtatgt tcccatagta acgccaatag      180
          ggactttcca ttgacgtcaa tgggtggagt atttacggta aactgcccac ttggcagtac      240
          atcaagtgta tcatatgcca agtacgcccc ctattgacgt caatgacggt aaatggcccg      300
          cctggcatta tgcccagtac atgaccttat gggactttcc tacttggcag tacatctacg      360
          tattagtcat cgctattagc atggtgatgc ggttttggca gtacatcaat gggcgtggat      420
          agcggtttga ctcacgggga tttccaagtc tccaccccat tgacgtcaat gggagtttgt      480
          tttggcacca aaatcaacgg gactttccaa aatgtcgtaa caactccgcc ccattgacgc      540
          aaatgggcgg taggcgtgta cggtgggagg tctatataag cagagctccg tttagtgaac      600
          gtcagatcta gctctgggag aggagcccag cactagaagt cggcggtgtt tccattcggt      660
          gatcagcact gaacacagag gaagcttgcc gccacc                                696
          <![CDATA[<210>  30]]>
          <![CDATA[<211>  2125]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人類巨細胞病毒]]>
          <![CDATA[<400>  30]]>
          ctgcagtgaa taataaaatg tgtgtttgtc cgaaatacgc gttttgagat ttctgtcgcc       60
          gactaaattc atgtcgcgcg atagtggtgt ttatcgccga tagagatggc gatattggaa      120
          aaatcgatat ttgaaaatat ggcatattga aaatgtcgcc gatgtgagtt tctgtgtaac      180
          tgatatcgcc atttttccaa aagtgatttt tgggcatacg cgatatctgg cgatagcgct      240
          tatatcgttt acgggggatg gcgatagacg actttggtga cttgggcgat tctgtgtgtc      300
          gcaaatatcg cagtttcgat ataggtgaca gacgatatga ggctatatcg ccgatagagg      360
          cgacatcaag ctggcacatg gccaatgcat atcgatctat acattgaatc aatattggcc      420
          attagccata ttattcattg gttatatagc ataaatcaat attggctatt ggccattgca      480
          tacgttgtat ccatatcata atatgtacat ttatattggc tcatgtccaa cattaccgcc      540
          atgttgacat tgattattga ctagttatta atagtaatca attacggggt cattagttca      600
          tagcccatat atggagttcc gcgttacata acttacggta aatggcccgc ctggctgacc      660
          gcccaacgac ccccgcccat tgacgtcaat aatgacgtat gttcccatag taacgccaat      720
          agggactttc cattgacgtc aatgggtgga gtatttacgg taaactgccc acttggcagt      780
          acatcaagtg tatcatatgc caagtacgcc ccctattgac gtcaatgacg gtaaatggcc      840
          cgcctggcat tatgcccagt acatgacctt atgggacttt cctacttggc agtacatcta      900
          cgtattagtc atcgctatta ccatggtgat gcggttttgg cagtacatca atgggcgtgg      960
          atagcggttt gactcacggg gatttccaag tctccacccc attgacgtca atgggagttt     1020
          gttttggcac caaaatcaac gggactttcc aaaatgtcgt aacaactccg ccccattgac     1080
          gcaaatgggc ggtaggcgtg tacggtggga ggtctatata agcagagctc gtttagtgaa     1140
          ccgtcagatc gcctggagac gccatccacg ctgttttgac ctccatagaa gacaccggga     1200
          ccgatccagc ctccgcggcc gggaacggtg cattggaacg cggattcccc gtgccaagag     1260
          tgacgtaagt accgcctata gagtctatag gcccaccccc ttggcttctt atgcatgcta     1320
          tactgttttt ggcttggggt ctatacaccc ccgcttcctc atgttatagg tgatggtata     1380
          gcttagccta taggtgtggg ttattgacca ttattgacca ctcccctatt ggtgacgata     1440
          ctttccatta ctaatccata acatggctct ttgccacaac tctctttatt ggctatatgc     1500
          caatacactg tccttcagag actgacacgg actctgtatt tttacaggat ggggtctcat     1560
          ttattattta caaattcaca tatacaacac caccgtcccc agtgcccgca gtttttatta     1620
          aacataacgt gggatctcca cgcgaatctc gggtacgtgt tccggacatg ggctcttctc     1680
          cggtagcggc ggagcttcta catccgagcc ctgctcccat gcctccagcg actcatggtc     1740
          gctcggcagc tccttgctcc taacagtgga ggccagactt aggcacagca cgatgcccac     1800
          caccaccagt gtgccgcaca aggccgtggc ggtagggtat gtgtctgaaa atgagctcgg     1860
          ggagcgggct tgcaccgctg acgcatttgg aagacttaag gcagcggcag aagaagatgc     1920
          aggcagctga gttgttgtgt tctgataaga gtcagaggta actcccgttg cggtgctgtt     1980
          aacggtggag ggcagtgtag tctgagcagt actcgttgct gccgcgcgcg ccaccagaca     2040
          taatagctga cagactaaca gactgttcct ttccatgggt cttttctgca gtcaccgtcc     2100
          ttgacacggt ttaaacgccg ccacc                                           2125
          <![CDATA[<210>  31]]>
          <![CDATA[<211>  218]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  歐洲牛]]>
          <![CDATA[<400>  31]]>
          ttctagttgc cagccatctg ttgtttgccc ctcccccgtg ccttccttga ccctggaagg       60
          tgccactccc actgtccttt cctaataaaa tgaggaaatt gcatcgcatt gtctgagtag      120
          gtgtcattct attctggggg gtggggtggg gcaggacagc aagggggagg attgggaaga      180
          caatagcagg catgctgggg atgcggtggg ctctatgg                              218
          <![CDATA[<210>  32]]>
          <![CDATA[<211>  73]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  智人]]>
          <![CDATA[<400>  32]]>
          caggataata tatggtaggg ttcatagcca gagtaacctt tttttttaat ttttatttta       60
          ttttattttt gag                                                          73
          <![CDATA[<210>  33]]>
          <![CDATA[<211>  288]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  猿猴病毒 40]]>
          <![CDATA[<400>  33]]>
          agtcagcaac caggtgtgga aagtccccag gctccccagc aggcagaagt atgcaaagca       60
          tgcatctcaa ttagtcagca accatagtcc cgcccctaac tccgcccatc ccgcccctaa      120
          ctccgcccag ttccgcccat tctccgcccc atggctgact aatttttttt atttatgcag      180
          aggccgaggc cgcctctgcc tctgagctat tccagaagta gtgaggaggc ttttttggag      240
          gcctaggctt ttgcaaaaag ctcccgggag cttgtatatc cattttcg                   288
          <![CDATA[<210>  34]]>
          <![CDATA[<211>  129]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  猿猴病毒 40]]>
          <![CDATA[<400>  34]]>
          aacttgttta ttgcagctta taatggttac aaataaagca atagcatcac aaatttcaca       60
          aataaagcat ttttttcacc attctagttg tggtttgtcc aaactcatca atgtatctta      120
          tcatgtctg                                                              129
          <![CDATA[<210>  35]]>
          <![CDATA[<211>  798]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  綠色螢光蛋白編碼核酸]]>
          <![CDATA[<400>  35]]>
          atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac       60
          ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccacctac      120
          ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc      180
          ctcgtgacca ccctgaccta cggcgtgcag tgcttcagcc gctaccccga ccacatgaag      240
          cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg caccatcttc      300
          ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg      360
          gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac      420
          aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa gcagaagaac      480
          ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt gcagctcgcc      540
          gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc cgacaaccac      600
          tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga tcacatggtc      660
          ctgctggagt tcgtgaccgc cgccgggatc actctcggca tggacgagct gtacaagtcc      720
          ggactcagat ctcgagctca agcttcgaat tctgcagtcg acggtaccgc gggcccggga      780
          tccaccggat ctagatga                                                    798
          <![CDATA[<210>  36]]>
          <![CDATA[<211>  34]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  釀酒酵母菌]]>
          <![CDATA[<400>  36]]>
          gaagttccta ttctctagaa agtataggaa cttc                                   34
          <![CDATA[<210>  37]]>
          <![CDATA[<211>  13]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  釀酒酵母菌]]>
          <![CDATA[<400>  37]]>
          gaagttccta ttc                                                          13
          <![CDATA[<210>  38]]>
          <![CDATA[<211>  13]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  釀酒酵母菌]]>
          <![CDATA[<400>  38]]>
          gaataggaac ttc                                                          13
          <![CDATA[<210>  39]]>
          <![CDATA[<211>  8]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  釀酒酵母菌]]>
          <![CDATA[<400>  39]]>
          tctagaaa                                                                 8
          <![CDATA[<210>  40]]>
          <![CDATA[<211>  8]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  F3 位點間隔子序列]]>
          <![CDATA[<400>  40]]>
          ttcaaata                                                                 8
          <![CDATA[<210>  41]]>
          <![CDATA[<211>  8]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  F5 位點間隔子序列]]>
          <![CDATA[<400>  41]]>
          ttcaaaag                                                                 8
          <![CDATA[<210>  42]]>
          <![CDATA[<211>  32]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  roxP 位點]]>
          <![CDATA[<400>  42]]>
          taactttaaa taatgccaat tatttaaagt ta                                     32
          <![CDATA[<210>  43]]>
          <![CDATA[<211>  34]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  LoxLTR 位點]]>
          <![CDATA[<400>  43]]>
          acaacatcct attacaccct atatgccaac atgg                                   34
          <![CDATA[<210>  44]]>
          <![CDATA[<211>  34]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  LoxBTR 位點]]>
          <![CDATA[<400>  44]]>
          aacccactgc ttaagcctca ataaagcttg cctt                                   34
          <![CDATA[<210>  45]]>
          <![CDATA[<211>  34]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  LoxV 位點]]>
          <![CDATA[<400>  45]]>
          tcaatttctg agaactgtca ttctcggaaa ttga                                   34
          <![CDATA[<210>  46]]>
          <![CDATA[<211>  34]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  LoxFas 位點]]>
          <![CDATA[<400>  46]]>
          acaacttcgt atataccttt ctatacgaag ttgt                                   34
          <![CDATA[<210>  47]]>
          <![CDATA[<211>  8]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  Missirlis-1 間隔子序列]]>
          <![CDATA[<400>  47]]>
          gtatagta                                                                 8
          <![CDATA[<210>  48]]>
          <![CDATA[<211>  8]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  Missirlis-2 間隔子序列]]>
          <![CDATA[<400>  48]]>
          ggctatag                                                                 8
          <![CDATA[<210>  49]]>
          <![CDATA[<211>  8]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  Loxm11 間隔子序列]]>
          <![CDATA[<400>  49]]>
          tggtatcg                                                                 8
          <![CDATA[<210>  50]]>
          <![CDATA[<211>  5]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  LE 反向重複突變序列]]>
          <![CDATA[<400>  50]]>
          taccg                                                                    5
          <![CDATA[<210>  51]]>
          <![CDATA[<211>  5]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  RE 反向重複突變序列]]>
          <![CDATA[<400>  51]]>
          cggta                                                                    5
          <![CDATA[<210>  52]]>
          <![CDATA[<211>  34]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  Lox71 位點]]>
          <![CDATA[<400>  52]]>
          taccgttcgt atagcataca ttatacgaag ttat                                   34
          <![CDATA[<210>  53]]>
          <![CDATA[<211>  34]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  Lox66 位點]]>
          <![CDATA[<400>  53]]>
          ataacttcgt atagcataca ttatacgaac ggta                                   34
          <![CDATA[<210>  54]]>
          <![CDATA[<211>  34]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  LoxJTZ17 位點]]>
          <![CDATA[<400>  54]]>
          ataacttcgt atagcataca ttatagcaat ttat                                   34
          <![CDATA[<210>  55]]>
          <![CDATA[<211>  34]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  LoxKR1 位點]]>
          <![CDATA[<400>  55]]>
          ataacttcgt atagcataca ttataccaac tgtt                                   34
          <![CDATA[<210>  56]]>
          <![CDATA[<211>  34]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  LoxKR2  位點]]>
          <![CDATA[<400>  56]]>
          ataacttcgt atagcataca ttataccaac ttaa                                   34
          <![CDATA[<210>  57]]>
          <![CDATA[<211>  34]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  LoxKR3 位點]]>
          <![CDATA[<400>  57]]>
          ataacttcgt atagcataca ttataccttg ttat                                   34
          <![CDATA[<210>  58]]>
          <![CDATA[<211>  34]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  LoxKR4 位點]]>
          <![CDATA[<400>  58]]>
          ataacttcgt atagcataca ttattgcaag ttat                                   34
          <![CDATA[<210>  59]]>
          <![CDATA[<211>  34]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  LoxJT15 位點]]>
          <![CDATA[<400>  59]]>
          aattattcgt atagcataca ttatacgaag ttat                                   34
          <![CDATA[<210>  60]]>
          <![CDATA[<211>  34]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  FRT LE 突變體]]>
          <![CDATA[<400>  60]]>
          gaagttcata ttctctagaa agtataggaa cttc                                   34
          <![CDATA[<210>  61]]>
          <![CDATA[<211>  34]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  FRT RE 突變體]]>
          <![CDATA[<400>  61]]>
          gaagttccta ttctctagaa agtatatgaa cttc                                   34
          <![CDATA[<210>  62]]>
          <![CDATA[<211>  201]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  腺相關病毒 2]]>
          <![CDATA[<400>  62]]>
          gggcactctt ccgtggtctg gtggataaat tcgcaagggt atcatggcgg acgaccgggg       60
          ttcgaacccc ggatccggcc gtccgccgtg atccatgcgg ttaccgcccg cgtgtcgaac      120
          ccaggtgtgc gacgtcagac aacgggggag cgctcctttt ggcttccttc caggcgcggc      180
          ggctgctgcg ctagcttttt t                                                201
          <![CDATA[<210>  63]]>
          <![CDATA[<211>  201]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  腺相關病毒 2]]>
          <![CDATA[<400>  63]]>
          gggcactctt ccgtggtctg gtggataaat tcgcaagggt atcatggcgg acgaccgttg       60
          ttcgaacacc ggatccggcc gtccgccgtg atccatgcgg ttaccgcccg cgtgtcgaac      120
          ccaggtgtgc gacgtcagac aacgggggag cgctcctttt ggcttccttc caggcgcggc      180
          ggctgctgcg ctagcttttt t                                                201
          <![CDATA[<210>  64]]>
          <![CDATA[<211>  6]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  腺相關病毒 2]]>
          <![CDATA[<400>  64]]>
          gggcac                                                                   6
          <![CDATA[<210>  65]]>
          <![CDATA[<211>  6]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  智人]]>
          <![CDATA[<400>  65]]>
          tttttt                                                                   6
          <![CDATA[<210>  66]]>
          <![CDATA[<211>  157]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  腺相關病毒 2]]>
          <![CDATA[<400>  66]]>
          aggagcgctc ccccgttgtc tgacgtcgca cacctgggtt cgacacgcgg gcggtaaccg       60
          catggatcac ggcggacggc cggatccggt gttcgaacaa cggtcgtccg ccatgatacc      120
          cttgcgaatt tatccaccag accacggaag agtgccc                               157
          <![CDATA[<210>  67]]>
          <![CDATA[<211>  313]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  具 Lx-LE 及 Lx-RE 的 VA RNA 反向序列]]>
          <![CDATA[<400>  67]]>
          taccgttcgt ataagtttat atatacgaag ttatggacga aacaccgggc acttttttca       60
          gtggccaaaa aagctagcgc agcagccgcc gcgcctggaa ggaagccaaa aggagcgctc      120
          ccccgttgtc tgacgtcgca cacctgggtt cgacacgcgg gcggtaaccg catggatcac      180
          ggcggacggc cggatccggt gttcgaacaa cggtcgtccg ccatgatacc cttgcgaatt      240
          tatccaccag accacggaag agtgcccggt gtttcgtcct accgttcgta tatataaact      300
          tatacgaagt tat                                                         313
          <![CDATA[<210>  68]]>
          <![CDATA[<211>  12]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  填充序列]]>
          <![CDATA[<400>  68]]>
          ggacgaaaca cc                                                           12
          <![CDATA[<210>  69]]>
          <![CDATA[<211>  46]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  具填充序列的 Lx-LE 位點]]>
          <![CDATA[<400>  69]]>
          taccgttcgt ataagtttat atatacgaag ttatggacga aacacc                      46
          <![CDATA[<210>  70]]>
          <![CDATA[<211>  34]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  具突變之左反向重複的 L3 元件 (L3-LE)]]>
          <![CDATA[<400>  70]]>
          taccgttcgt ataaagtctc ctatacgaag ttat                                   34
          <![CDATA[<210>  71]]>
          <![CDATA[<211>  34]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  具突變之右反向重複的 L3 元件 (L3-RE)]]>
          <![CDATA[<400>  71]]>
          ataacttcgt ataaagtctc ctatacgaac ggta                                   34
          <![CDATA[<210>  72]]>
          <![CDATA[<211>  34]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  具突變之左反向重複的 L3 元件 (LoxFas-LE)]]>
          <![CDATA[<400>  72]]>
          taccgttcgt atataccttt ctatacgaag ttat                                   34
          <![CDATA[<210>  73]]>
          <![CDATA[<211>  34]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  具突變之右反向重複的 L3 元件 (LoxFas-RE)]]>
          <![CDATA[<400>  73]]>
          ataacttcgt atataccttt ctatacgaac ggta                                   34
          <![CDATA[<210>  74]]>
          <![CDATA[<211>  9]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  智人]]>
          <![CDATA[<400>  74]]>
          tttatatat                                                                9
          <![CDATA[<210>  75]]>
          <![CDATA[<211>  738]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  VP1 殼體]]>
          <![CDATA[<400>  75]]>
          Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 
          1               5                   10                  15      
          Glu Gly Ile Arg Glu Trp Trp Asp Leu Lys Pro Gly Ala Pro Lys Pro 
                      20                  25                  30          
          Lys Ala Asn Gln Gln Lys Gln Asp Asn Gly Arg Gly Leu Val Leu Pro 
                  35                  40                  45              
          Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro 
              50                  55                  60                  
          Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 
          65                  70                  75                  80  
          Gln Gln Leu Gln Ala Gly Asp Asn Pro Tyr Leu Arg Tyr Asn His Ala 
                          85                  90                  95      
          Asp Ala Glu Phe Gln Glu Arg Leu Gln Glu Asp Thr Ser Phe Gly Gly 
                      100                 105                 110         
          Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro 
                  115                 120                 125             
          Leu Gly Leu Val Glu Ser Pro Val Lys Thr Ala Pro Gly Lys Lys Arg 
              130                 135                 140                 
          Pro Val Glu Pro Ser Pro Gln Arg Ser Pro Asp Ser Ser Thr Gly Ile 
          145                 150                 155                 160 
          Gly Lys Lys Gly Gln Gln Pro Ala Lys Lys Arg Leu Asn Phe Gly Gln 
                          165                 170                 175     
          Thr Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Ile Gly Glu Pro 
                      180                 185                 190         
          Pro Ala Ala Pro Ser Gly Val Gly Pro Asn Thr Met Ala Ala Gly Gly 
                  195                 200                 205             
          Gly Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Ser 
              210                 215                 220                 
          Ser Ser Gly Asn Trp His Cys Asp Ser Thr Trp Leu Gly Asp Arg Val 
          225                 230                 235                 240 
          Ile Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His 
                          245                 250                 255     
          Leu Tyr Lys Gln Ile Ser Asn Gly Thr Ser Gly Gly Ser Thr Asn Asp 
                      260                 265                 270         
          Asn Thr Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn 
                  275                 280                 285             
          Arg Phe His Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn 
              290                 295                 300                 
          Asn Asn Trp Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn 
          305                 310                 315                 320 
          Ile Gln Val Lys Glu Val Thr Gln Asn Glu Gly Thr Lys Thr Ile Ala 
                          325                 330                 335     
          Asn Asn Leu Thr Ser Thr Ile Gln Val Phe Thr Asp Ser Glu Tyr Gln 
                      340                 345                 350         
          Leu Pro Tyr Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe 
                  355                 360                 365             
          Pro Ala Asp Val Phe Met Ile Pro Gln Tyr Gly Tyr Leu Thr Leu Asn 
              370                 375                 380                 
          Asn Gly Ser Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr 
          385                 390                 395                 400 
          Phe Pro Ser Gln Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Ser Tyr 
                          405                 410                 415     
          Asn Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser 
                      420                 425                 430         
          Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu 
                  435                 440                 445             
          Ser Arg Thr Gln Ser Thr Gly Gly Thr Ala Gly Thr Gln Gln Leu Leu 
              450                 455                 460                 
          Phe Ser Gln Ala Gly Pro Asn Asn Met Ser Ala Gln Ala Lys Asn Trp 
          465                 470                 475                 480 
          Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser 
                          485                 490                 495     
          Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His 
                      500                 505                 510         
          Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr 
                  515                 520                 525             
          His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met 
              530                 535                 540                 
          Phe Gly Lys Gln Gly Ala Gly Lys Asp Asn Val Asp Tyr Ser Ser Val 
          545                 550                 555                 560 
          Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr 
                          565                 570                 575     
          Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Gln Asn Ala Ala 
                      580                 585                 590         
          Pro Ile Val Gly Ala Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val 
                  595                 600                 605             
          Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile 
              610                 615                 620                 
          Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe 
          625                 630                 635                 640 
          Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val 
                          645                 650                 655     
          Pro Ala Asp Pro Pro Thr Thr Phe Asn Gln Ala Lys Leu Ala Ser Phe 
                      660                 665                 670         
          Ile Thr Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu 
                  675                 680                 685             
          Leu Gln Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr 
              690                 695                 700                 
          Ser Asn Tyr Tyr Lys Ser Thr Asn Val Asp Phe Ala Val Asn Thr Glu 
          705                 710                 715                 720 
          Gly Thr Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg 
                          725                 730                 735     
          Asn Leu 
          <![CDATA[<210>  76]]>
          <![CDATA[<211>  736]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  VP1 殼體]]>
          <![CDATA[<400>  76]]>
          Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Asn Leu Ser 
          1               5                   10                  15      
          Glu Gly Ile Arg Glu Trp Trp Ala Leu Gln Pro Gly Ala Pro Lys Pro 
                      20                  25                  30          
          Lys Ala Asn Gln Gln His Gln Asp Asn Ala Arg Gly Leu Val Leu Pro 
                  35                  40                  45              
          Gly Tyr Lys Tyr Leu Gly Pro Gly Asn Gly Leu Asp Lys Gly Glu Pro 
              50                  55                  60                  
          Val Asn Ala Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp 
          65                  70                  75                  80  
          Gln Gln Leu Lys Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala 
                          85                  90                  95      
          Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly 
                      100                 105                 110         
          Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Leu Leu Glu Pro 
                  115                 120                 125             
          Leu Gly Leu Val Glu Glu Ala Ala Lys Thr Ala Pro Gly Lys Lys Arg 
              130                 135                 140                 
          Pro Val Asp Gln Ser Pro Gln Glu Pro Asp Ser Ser Ser Gly Val Gly 
          145                 150                 155                 160 
          Lys Ser Gly Lys Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr 
                          165                 170                 175     
          Gly Asp Ser Glu Ser Val Pro Asp Pro Gln Pro Leu Gly Glu Pro Pro 
                      180                 185                 190         
          Ala Ala Pro Thr Ser Leu Gly Ser Asn Thr Met Ala Ser Gly Gly Gly 
                  195                 200                 205             
          Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser 
              210                 215                 220                 
          Ser Gly Asn Trp His Cys Asp Ser Gln Trp Leu Gly Asp Arg Val Ile 
          225                 230                 235                 240 
          Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu 
                          245                 250                 255     
          Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr 
                      260                 265                 270         
          Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His 
                  275                 280                 285             
          Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp 
              290                 295                 300                 
          Gly Phe Arg Pro Lys Lys Leu Ser Phe Lys Leu Phe Asn Ile Gln Val 
          305                 310                 315                 320 
          Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Thr Ile Ala Asn Asn Leu 
                          325                 330                 335     
          Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr 
                      340                 345                 350         
          Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp 
                  355                 360                 365             
          Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser 
              370                 375                 380                 
          Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser 
          385                 390                 395                 400 
          Gln Met Leu Arg Thr Gly Asn Asn Phe Gln Phe Ser Tyr Thr Phe Glu 
                          405                 410                 415     
          Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg 
                      420                 425                 430         
          Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr 
                  435                 440                 445             
          Gln Gly Thr Thr Ser Gly Thr Thr Asn Gln Ser Arg Leu Leu Phe Ser 
              450                 455                 460                 
          Gln Ala Gly Pro Gln Ser Met Ser Leu Gln Ala Arg Asn Trp Leu Pro 
          465                 470                 475                 480 
          Gly Pro Cys Tyr Arg Gln Gln Arg Leu Ser Lys Thr Ala Asn Asp Asn 
                          485                 490                 495     
          Asn Asn Ser Asn Phe Pro Trp Thr Ala Ala Ser Lys Tyr His Leu Asn 
                      500                 505                 510         
          Gly Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys 
                  515                 520                 525             
          Asp Asp Glu Glu Lys Phe Phe Pro Met His Gly Asn Leu Ile Phe Gly 
              530                 535                 540                 
          Lys Glu Gly Thr Thr Ala Ser Asn Ala Glu Leu Asp Asn Val Met Ile 
          545                 550                 555                 560 
          Thr Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln 
                          565                 570                 575     
          Tyr Gly Thr Val Ala Asn Asn Leu Gln Ser Ser Asn Thr Ala Pro Thr 
                      580                 585                 590         
          Thr Arg Thr Val Asn Asp Gln Gly Ala Leu Pro Gly Met Val Trp Gln 
                  595                 600                 605             
          Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His 
              610                 615                 620                 
          Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu 
          625                 630                 635                 640 
          Lys His Pro Pro Pro Gln Ile Met Ile Lys Asn Thr Pro Val Pro Ala 
                          645                 650                 655     
          Asn Pro Pro Thr Thr Phe Ser Pro Ala Lys Phe Ala Ser Phe Ile Thr 
                      660                 665                 670         
          Gln Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln 
                  675                 680                 685             
          Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn 
              690                 695                 700                 
          Tyr Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val 
          705                 710                 715                 720 
          Tyr Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu 
                          725                 730                 735     
          <![CDATA[<210>  77]]>
          <![CDATA[<211>  4]]>
          <![CDATA[<212>  RNA]]>
          <![CDATA[<213>  人類腺病毒第 2 型]]>
          <![CDATA[<400>  77]]>
          ccgg                                                                     4
          <![CDATA[<210>  78]]>
          <![CDATA[<211>  5]]>
          <![CDATA[<212>  RNA]]>
          <![CDATA[<213>  人類腺病毒第 2 型]]>
          <![CDATA[<400>  78]]>
          yccgg                                                                    5
          <![CDATA[<210>  79]]>
          <![CDATA[<211>  10]]>
          <![CDATA[<212>  RNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  VA RNA A 盒共通序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<221>  misc_feature]]>
          <![CDATA[<222>  (4)..(5)]]>
          <![CDATA[<223>  n 是 a、c、g 或 u]]>
          <![CDATA[<400>  79]]>
          rrynnarygg                                                              10
          <![CDATA[<210>  80]]>
          <![CDATA[<211>  9]]>
          <![CDATA[<212>  RNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  VA RNA B 盒共通序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<221>  misc_feature]]>
          <![CDATA[<222>  (7)..(8)]]>
          <![CDATA[<223>  n 是 a、c、g 或 u]]>
          <![CDATA[<400>  80]]>
          gwucrannc                                                                9
          <![CDATA[<210>  81]]>
          <![CDATA[<211>  225]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人類腺病毒第 2 型]]>
          <![CDATA[<400>  81]]>
          cgtgcaaaag gagagcctgt aagcgggcac tcttccgtgg tctggtggat aaattcgcaa       60
          gggtatcatg gcggacgacc ggggttcgaa ccccggatcc ggccgtccgc cgtgatccat      120
          gcggttaccg cccgcgtgtc gaacccaggt gtgcgacgtc agacaacggg ggagcgctcc      180
          ttttggcttc cttccaggcg cggcggctgc tgcgctagct ttttt                      225
          <![CDATA[<210>  82]]>
          <![CDATA[<211>  225]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人類腺病毒第 2 型]]>
          <![CDATA[<400>  82]]>
          cgtgcaaaag gagagcctgt aagcgggcac tcttccgtgg tctggtggat aaattcgcaa       60
          gggtatcatg gcggacgacc gttgttcgaa caccggatcc ggccgtccgc cgtgatccat      120
          gcggttaccg cccgcgtgtc gaacccaggt gtgcgacgtc agacaacggg ggagcgctcc      180
          ttttggcttc cttccaggcg cggcggctgc tgcgctagct ttttt                      225
          <![CDATA[<210>  83]]>
          <![CDATA[<211>  242]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人類腺病毒第 5 型]]>
          <![CDATA[<400>  83]]>
          tcgttgacgc tctagaccgt gcaaaaggag agcctgtaag cgggcactct tccgtggtct       60
          ggtggataaa ttcgcaaggg tatcatggcg gacgaccggg gttcgagccc cgtatccggc      120
          cgtccgccgt gatccatgcg gttaccgccc gcgtgtcgaa cccaggtgtg cgacgtcaga      180
          caacggggga gtgctccttt tggcttcctt ccaggcgcgg cggctgctgc gctagctttt      240
          tt                                                                     242
          <![CDATA[<210>  84]]>
          <![CDATA[<211>  466]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人類腺病毒第 5 型]]>
          <![CDATA[<400>  84]]>
          tcgttgacgc tctagaccgt gcaaaaggag agcctgtaag cgggcactct tccgtggtct       60
          ggtggataaa ttcgcaaggg tatcatggcg gacgaccggg gttcgagccc cgtatccggc      120
          cgtccgccgt gatccatgcg gttaccgccc gcgtgtcgaa cccaggtgtg cgacgtcaga      180
          caacggggga gtgctccttt tggcttcctt ccaggcgcgg cggctgctgc gctagctttt      240
          ttggccactg gccgcgcgca gcgtaagcgg ttaggctgga aagcgaaagc attaagtggc      300
          tcgctccctg tagccggagg gttattttcc aagggttgag tcgcgggacc cccggttcga      360
          gtctcggacc ggccggactg cggcgaacgg gggtttgcct ccccgtcatg caagaccccg      420
          cttgcaaatt cctccggaaa cagggacgag cccctttttt gctttt                     466
          <![CDATA[<210>  85]]>
          <![CDATA[<211>  52]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  52bp 最小 CMV 啟動子]]>
          <![CDATA[<400>  85]]>
          gtaggcgtgt acggtgggag gtctatataa gcagagctcc gtttagtgaa cg               52
          <![CDATA[<210>  86]]>
          <![CDATA[<211>  417]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  SV40 早期啟動子的 417 bp 片段,包括轉錄起始 (TS) 區]]>
          <![CDATA[<400>  86]]>
          atttcaggcc atggtgctgc aacctctgaa agaggaactt ggttaggttc cttctgaggc       60
          ggaaagaacc agctgtggaa tgtgtgtcag ttagggtgtg gaaagtcccc aggctcccca      120
          gcaggcagaa gtatgcaaag catgcatctc aattagtcag caaccaggtg tggaaagtcc      180
          ccaggctccc cagcaggcag aagtatgcaa agcatgcatc tcaattagtc agcaaccata      240
          gtcccgcccc taactccgcc catcccgccc ctaactccgc ccagttccgc ccattctccg      300
          ccccatggct gactaatttt ttttatttat gcagaggccg aggccgcctc ggcctctgag      360
          ctattccaga agtagtgagg aggctttttt ggaggactag gcttttgcaa aaagcta         417
          <![CDATA[<210>  87]]>
          <![CDATA[<211>  236]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  mCherry]]>
          <![CDATA[<400>  87]]>
          Met Val Ser Lys Gly Glu Glu Asp Asn Met Ala Ile Ile Lys Glu Phe 
          1               5                   10                  15      
          Met Arg Phe Lys Val His Met Glu Gly Ser Val Asn Gly His Glu Phe 
                      20                  25                  30          
          Glu Ile Glu Gly Glu Gly Glu Gly Arg Pro Tyr Glu Gly Thr Gln Thr 
                  35                  40                  45              
          Ala Lys Leu Lys Val Thr Lys Gly Gly Pro Leu Pro Phe Ala Trp Asp 
              50                  55                  60                  
          Ile Leu Ser Pro Gln Phe Met Tyr Gly Ser Lys Ala Tyr Val Lys His 
          65                  70                  75                  80  
          Pro Ala Asp Ile Pro Asp Tyr Leu Lys Leu Ser Phe Pro Glu Gly Phe 
                          85                  90                  95      
          Lys Trp Glu Arg Val Met Asn Phe Glu Asp Gly Gly Val Val Thr Val 
                      100                 105                 110         
          Thr Gln Asp Ser Ser Leu Gln Asp Gly Glu Phe Ile Tyr Lys Val Lys 
                  115                 120                 125             
          Leu Arg Gly Thr Asn Phe Pro Ser Asp Gly Pro Val Met Gln Lys Lys 
              130                 135                 140                 
          Thr Met Gly Trp Glu Ala Ser Ser Glu Arg Met Tyr Pro Glu Asp Gly 
          145                 150                 155                 160 
          Ala Leu Lys Gly Glu Ile Lys Gln Arg Leu Lys Leu Lys Asp Gly Gly 
                          165                 170                 175     
          His Tyr Asp Ala Glu Val Lys Thr Thr Tyr Lys Ala Lys Lys Pro Val 
                      180                 185                 190         
          Gln Leu Pro Gly Ala Tyr Asn Val Asn Ile Lys Leu Asp Ile Thr Ser 
                  195                 200                 205             
          His Asn Glu Asp Tyr Thr Ile Val Glu Gln Tyr Glu Arg Ala Glu Gly 
              210                 215                 220                 
          Arg His Ser Thr Gly Gly Met Asp Glu Leu Tyr Lys 
          225                 230                 235     
          <![CDATA[<210>  88]]>
          <![CDATA[<211>  239]]>
          <![CDATA[<212>  PRT]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  EGFP]]>
          <![CDATA[<400>  88]]>
          Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 
          1               5                   10                  15      
          Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 
                      20                  25                  30          
          Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 
                  35                  40                  45              
          Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 
              50                  55                  60                  
          Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 
          65                  70                  75                  80  
          Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 
                          85                  90                  95      
          Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 
                      100                 105                 110         
          Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly 
                  115                 120                 125             
          Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 
              130                 135                 140                 
          Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn 
          145                 150                 155                 160 
          Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 
                          165                 170                 175     
          Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly 
                      180                 185                 190         
          Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu 
                  195                 200                 205             
          Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 
              210                 215                 220                 
          Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 
          225                 230                 235                 
          <![CDATA[<210>  89]]>
          <![CDATA[<211>  34]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  FRT-LE-RE]]>
          <![CDATA[<400>  89]]>
          gaagttcata ttctctagaa agtatatgaa cttc                                   34
          
Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0005
Figure 12_A0101_SEQ_0006
Figure 12_A0101_SEQ_0007
Figure 12_A0101_SEQ_0008
Figure 12_A0101_SEQ_0009
Figure 12_A0101_SEQ_0010
Figure 12_A0101_SEQ_0011
Figure 12_A0101_SEQ_0012
Figure 12_A0101_SEQ_0013
Figure 12_A0101_SEQ_0014
Figure 12_A0101_SEQ_0015
Figure 12_A0101_SEQ_0016
Figure 12_A0101_SEQ_0017
Figure 12_A0101_SEQ_0018
Figure 12_A0101_SEQ_0019
Figure 12_A0101_SEQ_0020
Figure 12_A0101_SEQ_0021
Figure 12_A0101_SEQ_0022
Figure 12_A0101_SEQ_0023
Figure 12_A0101_SEQ_0024
Figure 12_A0101_SEQ_0025
Figure 12_A0101_SEQ_0026
Figure 12_A0101_SEQ_0027
Figure 12_A0101_SEQ_0028
Figure 12_A0101_SEQ_0029
Figure 12_A0101_SEQ_0030
Figure 12_A0101_SEQ_0031
Figure 12_A0101_SEQ_0032
Figure 12_A0101_SEQ_0033
Figure 12_A0101_SEQ_0034
Figure 12_A0101_SEQ_0035
Figure 12_A0101_SEQ_0036
Figure 12_A0101_SEQ_0037
Figure 12_A0101_SEQ_0038

Claims (11)

  1. 一種雙股 DNA 元件,其包含編碼股及模板股, 其特徵在於 該編碼股自 5'至 3'方向按以下順序包含 第一啟動子, 第一重組酶識別序列,其在左反向重複序列中包含突變, 第二啟動子,其相對於該編碼股為反向, 第一多腺苷酸化訊號序列及/或轉錄終止元件,其相對於該編碼股為反向, 第一開讀框,其相對於該編碼股為反向且其可操作地連接至該第一多腺苷酸化訊號序列及/或轉錄終止元件, 第二重組酶識別序列,其在右反向重複序列中包含突變,且其相對於該第一重組酶識別序列為反方向, 第二開讀框,及 第二多腺苷酸化訊號序列及/或轉錄終止元件,其可操作地連接至該第二開讀框。
  2. 一種雙股 DNA 元件,其包含編碼股及模板股,其中該編碼股自 5'至 3'方向按以下順序包含 第一啟動子, 第一重組酶識別序列,其在左反向重複序列中包含突變, Rep/Cap 開讀框,其包括用於表現 Rep 及 Cap 蛋白之其他啟動子,該 Rep/Cap 開讀框相對於該編碼股為反向, 第二重組酶識別序列,其在右反向重複序列中包含突變,且相對於該第一重組酶識別序列為反方向,及 多腺苷酸化訊號序列。
  3. 一種雙股 DNA 元件,其包含編碼股及模板股, a) 其中該編碼股自 5'至 3'方向按以下順序包含 第一啟動子, 第一重組酶識別序列,其在左反向重複序列中包含突變, 第二啟動子,其相對於該編碼股為反向, 第一多腺苷酸化訊號序列及/或轉錄終止元件,其相對於該編碼股為反向, 編碼序列, 其僅編碼 Rep78 蛋白或僅編碼 Rep68 蛋白,但不同時編碼兩者,其中 (i) 視情況地使內部 P40 啟動子為非活化的,及/或 (ii) Rep52/40 之起始密碼子係經突變成非起始密碼子,及/或 (iii) 剪接供體及受體位點係經移除, 其相對於該編碼股為反向,且 其可操作地連接至第一多腺苷酸化訊號序列及/或轉錄終止元件, 第二重組酶識別序列,其在右反向重複序列中包含突變,且其相對於該第一重組酶識別序列為反方向,及 Rep52/Rep40 及 Cap 開讀框,其包括可操作地連接至該等開讀框的多腺苷酸化訊號, 或 b) 其中該編碼股自 5'至 3'方向按以下順序包含 第一啟動子, 第一重組酶識別序列,其在左反向重複序列中包含突變, 第二啟動子,其相對於該編碼股為反向, 第一多腺苷酸化訊號序列及/或轉錄終止元件,其相對於該編碼股為反向, 編碼序列, 其僅編碼 Rep78 蛋白或僅編碼 Rep68 蛋白,但不同時編碼兩者,其中 (i) 視情況地內部啟動子為非活化的,及/或 (ii) 該 Rep52/40 開讀框之起始密碼子係經突變成非起始密碼子,及 (iii) 剪接供體及受體位點係經移除, 其相對於該編碼股為反向,且 其可操作地連接至該第一多腺苷酸化訊號序列及/或轉錄終止元件, 第二重組酶識別序列,其在右反向重複序列中包含突變,且其相對於該第一重組酶識別序列為反方向,及 該 Rep52 開讀框,視情況地其剪接供體及受體位點經移除,或該 Rep40 開讀框,其包括可操作地連接至該開讀框的多腺苷酸化訊號。
  4. 如請求項 2 至 3 中任一項之雙股 DNA 元件,其中該第一啟動子為 P5 啟動子。
  5. 如請求項 3 至 4 中任一項之雙股 DNA 元件,其中該第二啟動子為 P19 啟動子。
  6. 如請求項 3 至 5 中任一項之雙股 DNA 元件,其中 c) 中之該編碼股在其 3'-端進一步包含 第三啟動子、cap 開讀框及多腺苷酸化訊號序列及/或終止子序列,其中所有皆係可操作地連接。
  7. 一種雙股 DNA 分子,其包含 a) E1A 開讀框及 E1B 開讀框;及/或 b) E2A 開讀框及 E4orf6 開讀框; 其特徵在於 a) 或/及 b) 之第一開讀框及第二開讀框包含於雙股 DNA 元件中,該雙股 DNA 元件包含編碼股及模板股, 其中該編碼股自 5'至 3'方向按以下順序包含 第一啟動子, 第一重組酶識別序列,其在右反向重複序列中包含突變, 第二啟動子,其相對於該編碼股為反向, a) 或 b) 之該第一開讀框,其相對於該編碼股為反向, 第二重組酶識別序列,其在左反向重複序列中包含突變,且對於該第一重組酶識別序列為反方向,及 a) 或 b) 之該第二開讀框。
  8. 一種雙股 DNA 分子,其包含兩個或更多個選自如請求項 1 至 7 之雙股 DNA 元件或分子。
  9. 如請求項 2 之雙股 DNA 元件或雙股 DNA, 其中將該雙股 DNA 元件或分子與對該第一重組酶識別序列及該第二重組酶識別序列具有功能之重組酶培育,引起 介於該第一重組酶識別序列與該第二重組酶識別序列之間之序列的反轉,此後該第一啟動子可操作地連接至該第一開讀框,及 重組後在該第一啟動子與第一基因之間產生重組酶識別序列,其不再對該重組酶具有功能。
  10. 如請求項 1 及請求項 3 至 8 中任一項之雙股 DNA 元件或雙股 DNA, 其中將該雙股 DNA 元件或分子與對該第一重組酶識別序列及該第二重組酶識別序列具有功能之重組酶培育,引起 介於該第一重組酶識別序列與該第二重組酶識別序列之間之序列的反轉,此後該第一啟動子可操作地連接至該第一開讀框,且該第二啟動子可操作地連接至該第二開讀框,及 重組後在該第一啟動子與第一基因之間產生重組酶識別序列,其不再對該重組酶具有功能。
  11. 一種哺乳動物細胞,其包含: 一個或多個如請求項 1 之雙股 DNA 元件,或 至少一個如請求項 2 至 6 中任一項之雙股 DNA 元件,或 一個如請求項 2 至 6 中任一項之雙股 DNA 分子及一個如請求項 7 之雙股 DNA 分子,或 至少一個如請求項 7 之雙股 DNA 分子,或 一個或多個如請求項 8 之雙股 DNA。
TW110138077A 2020-10-15 2021-10-14 用於同時基因活化的核酸構建體 TW202229558A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20202009.5 2020-10-15
EP20202009 2020-10-15

Publications (1)

Publication Number Publication Date
TW202229558A true TW202229558A (zh) 2022-08-01

Family

ID=72964436

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110138077A TW202229558A (zh) 2020-10-15 2021-10-14 用於同時基因活化的核酸構建體

Country Status (12)

Country Link
US (1) US20220154223A1 (zh)
EP (1) EP4229204A1 (zh)
JP (1) JP2023546113A (zh)
KR (1) KR20230085170A (zh)
CN (1) CN116348607A (zh)
AR (1) AR123776A1 (zh)
AU (1) AU2021363098A1 (zh)
CA (1) CA3197726A1 (zh)
IL (1) IL302045A (zh)
MX (1) MX2023004178A (zh)
TW (1) TW202229558A (zh)
WO (1) WO2022079082A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024026302A2 (en) * 2022-07-26 2024-02-01 Asimov Inc. Compositions and methods for adeno-associated viral production

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797368A (en) 1985-03-15 1989-01-10 The United States Of America As Represented By The Department Of Health And Human Services Adeno-associated virus as eukaryotic expression vector
US5139941A (en) 1985-10-31 1992-08-18 University Of Florida Research Foundation, Inc. AAV transduction vectors
US6093699A (en) 1987-07-09 2000-07-25 The University Of Manitoba Method for gene therapy involving suppression of an immune response
ATE157012T1 (de) 1989-11-03 1997-09-15 Univ Vanderbilt Verfahren zur in vivo-verabreichung von funktionsfähigen fremden genen
US5279833A (en) 1990-04-04 1994-01-18 Yale University Liposomal transfection of nucleic acids into animal cells
WO1991018088A1 (en) 1990-05-23 1991-11-28 The United States Of America, Represented By The Secretary, United States Department Of Commerce Adeno-associated virus (aav)-based eucaryotic vectors
US5173414A (en) 1990-10-30 1992-12-22 Applied Immune Sciences, Inc. Production of recombinant adeno-associated virus vectors
WO1992008796A1 (en) 1990-11-13 1992-05-29 Immunex Corporation Bifunctional selectable fusion genes
US5587308A (en) 1992-06-02 1996-12-24 The United States Of America As Represented By The Department Of Health & Human Services Modified adeno-associated virus vector capable of expression from a novel promoter
CA2134773A1 (en) 1992-06-04 1993-12-09 Robert J. Debs Methods and compositions for in vivo gene therapy
WO1994017810A1 (en) 1993-02-12 1994-08-18 The Wistar Institute Of Anatomy And Biology Recombinant cytomegalovirus vaccine
WO1994023744A1 (en) 1993-04-16 1994-10-27 The Wistar Institute Of Anatomy And Biology Recombinant cytomegalovirus vaccine
CN1127527A (zh) 1993-05-17 1996-07-24 加利福尼亚大学董事会 人免疫缺陷型病毒感染和艾滋病的核酶基因治疗方法
WO1994028143A1 (en) 1993-05-21 1994-12-08 Targeted Genetics Corporation Bifunctional selectable fusion genes based on the cytosine deaminase (cd) gene
US5998205A (en) 1994-11-28 1999-12-07 Genetic Therapy, Inc. Vectors for tissue-specific replication
CN100569297C (zh) 1995-02-28 2009-12-16 加利福尼亚大学董事会 基因转移介导的血管形成疗法
US6001650A (en) 1995-08-03 1999-12-14 Avigen, Inc. High-efficiency wild-type-free AAV helper functions
EP0850313B8 (en) 1995-09-08 2009-07-29 Genzyme Corporation Improved aav vectors for gene therapy
US6004797A (en) 1995-11-09 1999-12-21 Avigen, Inc. Adenovirus helper-free recombinant AAV Virion production
US6228646B1 (en) 1996-03-07 2001-05-08 The Regents Of The University Of California Helper-free, totally defective adenovirus for gene therapy
JPH1033175A (ja) 1996-07-24 1998-02-10 Hisamitsu Pharmaceut Co Inc 組換えアデノ随伴ウイルスベクターの製造方法
US6274354B1 (en) 1996-09-06 2001-08-14 The Trustees Of The University Of Pennsylvania Methods using cre-lox for production of recombinant adeno-associated viruses
DE19650714A1 (de) 1996-12-06 1998-06-10 Melchner Harald Von Prof Dr Genfallen-Konstrukt zur Identifizierung und Isolierung von Genen
DE69738737D1 (de) 1996-12-16 2008-07-10 Eisai R&D Man Co Ltd Verfahren zur herstellung von retroviralen vektoren für die gentherapie
CA2269661A1 (en) 1996-12-18 1998-06-25 Targeted Genetics Corporation Recombinase-activatable aav packaging cassettes for use in the production of aav vectors
US6303302B1 (en) 1997-11-19 2001-10-16 The Whitehead Institute For Biomedical Research Regulation of fungal gene expression
DE19955558C2 (de) 1999-11-18 2003-03-20 Stefan Kochanek Permanente Amniozyten-Zelllinie, ihre Herstellung und Verwendung zur Herstellung von Gentransfervektoren
EP1134287A1 (en) 2000-03-08 2001-09-19 Universite De Geneve A system to control the expression of a given gene using another gene that encodes a polypeptide with recombinant activity
AU2001257611A1 (en) 2000-04-28 2001-11-12 Avigen, Inc. Polynucleotides for use in recombinant adeno-associated virus virion production
CA2416701A1 (en) 2000-07-21 2002-01-31 The United States Of America, As Represented By The Secretary Of Agricul Ture Methods for the replacement, translocation and stacking of dna in eukaryotic genomes
US6593123B1 (en) 2000-08-07 2003-07-15 Avigen, Inc. Large-scale recombinant adeno-associated virus (rAAV) production and purification
AU2002219841A1 (en) 2000-11-16 2002-05-27 Cornell Research Foundation Inc. Vectors for conditional gene inactivation
US7074611B2 (en) 2001-04-27 2006-07-11 Gie-Cerbn, Centre Europeen De Recherche En Biologie Et En Medecine (Gie) Method for the stable inversion of DNA sequence by site-specific recombination and DNA vectors and transgenic cells thereof
WO2003084977A1 (en) 2002-04-04 2003-10-16 Xiao Xiao Gene expression control system and its use in recombinant virus packaging cell lines
WO2004003180A1 (en) 2002-07-01 2004-01-08 E.I. Du Pont De Nemours And Company Method of controlling gene silencing using site-specific recombination
EP1546397A4 (en) 2002-09-27 2007-10-31 Cold Spring Harbor Lab CELL-BASED RNA INTERFERENCE AND METHODS AND COMPOSITIONS RELATING THERETO
ATE490307T1 (de) 2003-05-21 2010-12-15 Genzyme Corp Verfahren zur herstellung von präparationen rekombinanter aav-virionen, die weitgehend frei von leeren capsiden sind
US20060110390A1 (en) 2004-08-25 2006-05-25 Myogen, Inc. Inhibition of Ku as a treatment for cardiovascular diseases
WO2006099615A2 (en) 2005-03-16 2006-09-21 The Johns Hopkins University Adenoviral fiber exchange shuttle system
DE102005054628A1 (de) 2005-11-16 2007-05-24 Cevec Pharmaceuticals Gmbh Verfahren zur Herstellung von permanenten humanen Zelllinien
PT2529020T (pt) 2010-01-28 2018-07-30 Childrens Hospital Philadelphia Plataforma de fabrico escalável para purificação de vetor viral e vetores virais assim purificados para utilização na terapia génica
WO2011100250A1 (en) 2010-02-09 2011-08-18 The Trustees Of Columbia University In The City Of New York In vivo gene regulation by the combination of knock- in-teto sequence into the genome and tetracycline-controlled trans-suppressor (tts) protein
CA2842392C (en) 2011-07-27 2020-09-15 Genethon Improved baculovirus expression systems
US20130058871A1 (en) 2011-07-28 2013-03-07 Howard Hughes Medical Institute Method and system for mapping synaptic connectivity using light microscopy
EP3147295B2 (en) 2011-08-24 2023-11-22 The Board of Trustees of the Leland Stanford Junior University New avv capsid proteins for nucleic acid transfer
CN104487579B (zh) 2012-04-18 2022-01-18 费城儿童医院 使用aav衣壳变异体的高度有效的基因转移的组合物和方法
PE20160188A1 (es) 2013-07-22 2016-04-27 Philadelphia Children Hospital Variantes aav y composiciones, metodos y usos para transferencia de gen a celulas, organos y tejidos
WO2015038958A1 (en) 2013-09-13 2015-03-19 California Institute Of Technology Selective recovery
JPWO2015068411A1 (ja) 2013-11-05 2017-03-09 国立大学法人東北大学 遺伝子組み換え非ヒト動物
WO2016057800A1 (en) 2014-10-09 2016-04-14 The Regents Of The University Of California Targeted disruption of a csf1-dap12 pathway member gene for the treatment of neuropathic pain
MX2018006682A (es) 2015-12-01 2018-09-26 Spark Therapeutics Inc Metodos escalables para producir vector viral adenoasociado (aav) recombinante en un sistema de cultivo celular en suspension libre de suero adecuado para su uso clinico.
JP7066619B2 (ja) 2015-12-11 2022-05-13 カリフォルニア インスティチュート オブ テクノロジー アデノ随伴ウイルス(aav)を誘導するための標的指向性ペプチド
US10752904B2 (en) 2016-04-26 2020-08-25 Massachusetts Institute Of Technology Extensible recombinase cascades
WO2018096356A1 (en) 2016-11-28 2018-05-31 Horizon Discovery Limited Methods for conditional gene knock-out
JP2020507331A (ja) 2017-02-17 2020-03-12 ロンザ リミテッドLonza Limited アデノ随伴ウイルスを生産するための哺乳動物細胞
US20200165632A1 (en) 2017-06-07 2020-05-28 Spark Therapeutics, Inc. ENHANCING AGENTS FOR IMPROVED CELL TRANSFECTION AND/OR rAAV VECTOR PRODUCTION
US20200332278A1 (en) 2017-06-16 2020-10-22 Universite De Strasbourg Methods to generate conditional knock-in models
MX2020000216A (es) 2017-06-30 2020-09-03 Spark Therapeutics Inc Metodos de purificacion por columna de vectores aav.
KR20200039617A (ko) 2017-08-28 2020-04-16 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 아데노-연관 바이러스 캡시드 변이체 및 이의 사용 방법
GB201816919D0 (en) 2018-10-17 2018-11-28 Glaxosmithkline Ip Dev Ltd Adeno-associated viral vector producer cell lines

Also Published As

Publication number Publication date
AU2021363098A1 (en) 2023-05-18
CN116348607A (zh) 2023-06-27
EP4229204A1 (en) 2023-08-23
WO2022079082A1 (en) 2022-04-21
AR123776A1 (es) 2023-01-11
JP2023546113A (ja) 2023-11-01
MX2023004178A (es) 2023-05-03
CA3197726A1 (en) 2022-04-21
IL302045A (en) 2023-06-01
US20220154223A1 (en) 2022-05-19
KR20230085170A (ko) 2023-06-13

Similar Documents

Publication Publication Date Title
JP7463358B2 (ja) アデノ随伴ウイルスベクタープロデューサー細胞株
US9896665B2 (en) Proviral plasmids and production of recombinant adeno-associated virus
JP2023081975A (ja) アデノ随伴ウイルスベクターの産生方法
KR102499953B1 (ko) Aav 입자의 생산을 위한 벡터
US20130023033A1 (en) Pharmacologically induced transgene ablation system
TW202229558A (zh) 用於同時基因活化的核酸構建體
US20210032657A1 (en) Synthetic genetic elements for biomanufacture
KR20240025645A (ko) 아데노-연관된 바이러스 패키징 시스템
TW202223094A (zh) 用於 va rna 轉錄之核酸構建體
Wang et al. Large T antigen mediated target gene replication improves site-specific recombination efficiency
Kligman Establishing a stable cell-line for producing Adeno-Associated Virus using CRISPR-Cas9
CN117716042A (zh) 腺相关病毒包装系统