TW202223121A - 沉積方法 - Google Patents

沉積方法 Download PDF

Info

Publication number
TW202223121A
TW202223121A TW110132481A TW110132481A TW202223121A TW 202223121 A TW202223121 A TW 202223121A TW 110132481 A TW110132481 A TW 110132481A TW 110132481 A TW110132481 A TW 110132481A TW 202223121 A TW202223121 A TW 202223121A
Authority
TW
Taiwan
Prior art keywords
additive
sccm
optionally
flow rate
aluminum nitride
Prior art date
Application number
TW110132481A
Other languages
English (en)
Inventor
史考特 海摩爾
艾迪芮恩 湯瑪士
東尼 維爾拜
Original Assignee
英商Spts科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英商Spts科技公司 filed Critical 英商Spts科技公司
Publication of TW202223121A publication Critical patent/TW202223121A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0602Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with two or more other elements chosen from metals, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0042Controlling partial pressure or flow rate of reactive or inert gases with feedback of measurements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0094Reactive sputtering in transition mode
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/079Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing using intermediate layers, e.g. for growth control
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • H10N30/708Intermediate layers, e.g. barrier, adhesion or growth control buffer layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • H03H9/02031Characteristics of piezoelectric layers, e.g. cutting angles consisting of ceramic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

根據本發明,提供一種自一靶濺射沉積含有一添加劑元素之一含添加劑氮化鋁膜之方法,該添加劑元素選自:鈧(Sc)、釔(Y)、鈦(Ti)、鉻(Cr)、鎂(Mg)及鉿(Hf),該方法包括以下步驟: 在一腔室中提供其上具有一金屬層之一半導體基板;及 藉由該靶之脈衝DC反應性濺射將該含添加劑氮化鋁膜沉積至該金屬層上; 其中沉積該含添加劑氮化鋁膜之該步驟包括依以sccm為單位之一流速將包括氮氣及一惰性氣體之一氣體混合物引入至該腔室中,其中以sccm為單位之該氣體混合物之該流速包括以sccm為單位之一氮氣流速,且其中以sccm為單位之該氮氣流速小於或等於以sccm為單位之該氣體混合物之該流速之約50%,且亦足以使該靶完全中毒。

Description

沉積方法
本發明係關於一種濺射沉積一含添加劑氮化鋁膜之方法。特定言之,本發明係關於自一靶將含有一添加劑元素之一含添加劑氮化鋁膜濺射沉積至一基板之一金屬層上,該添加劑元素選自:鈧、釔、鈦、鉻、鎂及鉿。
體聲波(BAW)裝置用於手機及其他無線應用中,以允許接收及/或發射一特定射頻(RF)。BAW裝置利用壓電效應來自一電輸入產生一機械共振;或自一機械共振產生一電輸出。
已知BAW裝置通常包括在矽(Si)基板上沉積並圖案化之若干層。例如,一BAW裝置可包括兩個金屬電極,其層之間具有一壓電介電層(例如AlN或AlScN)。
隨著無線應用已朝向使用更高頻帶發展,壓電層已變得更薄。期望改良(即,增加)在更高頻帶下使用所需之較薄之膜之壓電耦合性質。含添加劑氮化鋁(例如Al 100‑xSc xN)薄膜係展現出良好之壓電耦合之有前景的候選者。
為了改良此等材料之耦合性質,期望增加添加劑元素之摻雜度(例如增加Sc含量)。例如,當Al 100‑xSc xN在4G應用中使用時,Sc含量通常係約6至12 at.%(即,x通常係約6至12)。然而,預期5G及未來幾代網路應用將需要甚至更高濃度之添加劑元素(例如,x=15至20)。因此,期望開發一種用於沉積含添加劑氮化鋁膜(諸如Al 100‑xSc xN)之一方法,該膜具有一更高含量之添加劑元素(例如>12 at.%,且較佳地≥15 at.%)。
含添加劑氮化鋁亦可應用於壓電微機械系統(壓電MEMS)裝置,諸如麥克風、矽時序裝置、能量採集器及壓電微機械超音換能器(pMUT)。預期此等應用可受益於膜中之一高添加劑元素(例如Sc)含量,以提供改良之性質(諸如一改良之壓電回應)。
物理氣相沉積(PVD)可用於將含添加劑氮化鋁膜濺射沉積至一基板上。然而,此等已知方法通常導致所得膜中之不需要之微晶缺陷之形成。例如,當藉由SEM觀察時,此等微晶缺陷表現為三角形之異常或未對準晶粒。此等缺陷在較高濃度之添加劑元素之情況下變得更普遍。此等微晶缺陷充當具有較差之壓電性質之壓電「死區」,此整體上減小膜之壓電耦合能力。期望開發一種沉積一含添加劑氮化鋁膜之改良方法,其特定言之在該膜包括一高添加劑元素濃度(例如約x >12,且較佳地≥15)之情況下在該膜中具有一降低之缺陷位準。
當在矽基板上沉積含添加劑氮化鋁膜(例如Al 100‑xSc xN膜)時,預處理矽表面可有助於減小缺陷密度(如使用膜之SEM影像及分析判定)。合適之預處理可包含在本體沉積之前之一預蝕刻、一預清潔或沉積一晶種層。圖1展示使用一已知之方法(a)在無沉積步驟之前之一預蝕刻,及(b)在具有沉積步驟之前之一預蝕刻之情況下在矽基板上沉積之Al 100-xSc xN膜。圖1中之白色方塊對應於一10 μm×10 μm區域,其可用於判定一100 μm 2區域中之缺陷密度。圖2展示使用一已知之方法:(a)在一無晶種層,(b)在具有一壓縮AlScN晶種層,及(c)在具有一AlN晶種層之情況下在矽基板上沉積之Al 100-xSc xN膜。圖2(a)至(c)展示當在矽基板上沉積一AlScN膜時,使用一晶種層可如何改良(即,減小)缺陷密度。然而,未知此預處理在減小金屬表面(諸如電極結構)上之缺陷密度方面有效。期望開發一種方法以減小沉積在金屬表面(例如,包括一金屬塗層之矽基板)上之含添加劑氮化鋁膜之缺陷密度。
本發明在其實施例之至少一些中尋求解決上文描述之問題、期望及需求之至少一些。特定言之,在至少一些實施例中,本發明尋求減小含添加劑氮化鋁膜中之缺陷之普遍性(即,減小缺陷密度)。特定言之,為了減小含有一高濃度之添加劑元素(例如約>12%,且較佳地≥15 at.%)之含添加劑氮化鋁膜中之缺陷密度。
根據本發明之一第一態樣,提供一種自一靶濺射沉積含有一添加劑元素之一含添加劑氮化鋁膜之方法,該添加劑元素選自:鈧(Sc)、釔(Y)、鈦(Ti)、鉻(Cr)、鎂(Mg)及鉿(Hf),該方法包括以下步驟: 在一腔室中提供其上具有一金屬層之一半導體基板;及 藉由該靶之脈衝DC反應性濺射將該含添加劑氮化鋁膜沉積至該金屬層上; 其中沉積該含添加劑氮化鋁膜之步驟包括按以sccm為單位之一流速將包括氮氣及一惰性氣體之一氣體混合物引入至該腔室中,其中以sccm為單位之該氣體混合物之該流速包括以sccm為單位之一氮氣流速,且其中以sccm為單位之該氮氣流速小於或等於以sccm為單位之該氣體混合物之該流速之約50%,且亦足以使該靶完全中毒。
使用以sccm為單位之小於或等於以sccm為單位之該氣體混合物之該流速之約50%,且亦足以使該靶完全中毒(即,以一中毒臨限值百分比或高於一中毒臨限值百分比之一比例存在)之一氮氣流速減小沉積在該基板之該金屬層上之含添加劑氮化鋁膜之缺陷密度。此可導致展現改良之壓電性質(諸如改良之壓電耦合)之改良之膜。
該中毒臨限值百分比係依照以sccm為單位之該氣體混合物之該流速之一百分比之以sccm為單位之該氮氣流速足以使該靶完全中毒所依之最小百分比。該中毒臨限值百分比對應於該脈衝DC反應性濺射程序在一「金屬濺射模式」中操作與一「中毒濺射模式」中操作之間之轉變之一轉變點。
使用包括呈足以使該靶完全中毒(即,處於或高於該中毒臨限值百分比)之一比例之一氮氣流量(以sccm為單位)之該氣體混合物之一流速(以sccm為單位)使該脈衝DC反應性濺射步驟在該中毒濺射模式(亦稱為一「化合物模式」或「反應性模式」)中操作。不希望受到任何理論或猜測之約束,據信當氮氣之比例處於或高於該中毒臨限值百分比時,該氮氣流量在該靶之表面上形成氮化物層,以使該靶完全中毒。足以使該靶完全中毒之氮氣之百分比(即,該中毒臨限值百分比)通常取決於程序參數。足以使該靶完全中毒之氮氣之百分比(即,該中毒臨限值百分比)可藉由量測依據該氣體混合物之總流速(以sccm為單位)中之氮氣百分比(以sccm為單位)而變化之靶電壓(在一恆定功率下)來判定,即該靶電壓中之一階躍變化(在恆定功率下)指示該中毒臨限值百分比。例如,當沉積Al 100-xSc xN(針對一固定功率)時,高於該中毒臨限值百分比之該靶電壓之量值比低於該中毒臨限值百分比之該靶電壓低。在高於該中毒臨限值百分比之情況下,該靶電壓通常保持基本上恆定。有鑑於此,及有鑑於下文提供之進一步解釋,對於熟練之讀者將顯而易見的是,該中毒臨限值百分比,以及因此足以使該靶完全中毒之最小氮氣流速可在沒有過度負擔之情況下容易地判定。
該添加劑元素可係鈧(Sc)或釔(Y)。較佳地,該添加劑元素係鈧(Sc)。該含添加劑氮化鋁膜可係一三元合金。
該含添加劑氮化鋁可對應於Al 100-xX xN,其中X係添加劑元素。例如,含添加劑氮化鋁可係Al 100-xSc xN或Al 100-xY xN。應理解,當組合物以Al 100-xX xN形式表達時,值「100-x」及「x」被表達為膜之金屬含量之原子百分比,且作為一百分比之「x」在化學計量化學術語中可等同於「0.0x」。該添加劑元素(依照鋁之一原子百分比及該含添加劑氮化鋁膜之添加劑元素含量)可以在0.5 at.%至40 at.%之範圍內,視情況地在8 at.%至40 at.%之範圍內,視情況地在10 at.%至40 at.%之範圍內,視情況地在12 at.%至35 at.%之範圍內,視情況地在15 at.%至30 at.%之範圍內,或視情況地在20 at.%至25 at.%之範圍內之一量存在。亦即,x可在0.5至40之範圍內,視情況地在8至40之範圍內,視情況地在10至40之範圍內,視情況地在12至35之範圍內,視情況地在15至30之範圍內,或視情況地在20至25之範圍內。該添加劑元素可以>8 at.%,>10 at.%,>12 at.%,>15 at.%,>20 at.%,>25 at.%或約30 at.%之一量存在。該添加劑元素可以小於或等於40 at.%之一量存在。該添加劑元素可以上文提供之上限與下限之任何組合存在。本發明之方法可對於沉積具有一高濃度之添加劑元素(例如,高於12 at.%,較佳地≥15 at.%)之含添加劑氮化鋁膜,同時改良或維持缺陷密度、結晶度及紋理之可接受位準特別有效。在此等濃度下,化合物可被視為一合金而非一經摻雜AlN。可使用能量色散X射線(EDAX)分析來判定含添加劑氮化鋁膜之元素組成,包含膜中存在之添加劑元素之量。例如,本發明可用於沉積具有小於約30個缺陷/100  μm 2,較佳地小於約20個缺陷/100 μm 2之一缺陷密度(如使用SEM影像之分析判定)之一含添加劑氮化鋁膜,其中該添加劑元素(依照膜之金屬含量之一百分比)以>12 at.%,視情況地≥15 at.%,視情況地≥20 at.%,視情況地≥25 at.%,或視情況地約30 at.%之一量存在。
以sccm為單位之氮氣流速可小於以sccm為單位之該氣體混合物之流速之約45%,視情況地小於約40%,視情況地小於約35%,且視情況地約30%。
以sccm為單位之該氮氣流速可大於該中毒臨限值百分比,且大於以sccm為單位之該氣體混合物之流速之約15%,視情況地≥20%,視情況地≥25%,或視情況地≥30%。
在沉積該含添加劑氮化鋁膜之步驟期間使用之以sccm為單位之該氮氣流速可在25至250 sccm、視情況地30至200 sccm、視情況地40至150 sccm、視情況地45至100 sccm之範圍內或視情況地係約50 sccm。
以sccm為單位之該氣體混合物之流速進一步包括以sccm為單位之一惰性氣體流速。在沉積該含添加劑氮化鋁膜之步驟期間使用之以sccm為單位之該惰性氣體流速可在25至250 sccm、視情況地30至200 sccm、視情況地40至150 sccm、視情況地45至100 sccm或視情況地50至90 sccm之範圍內。
該氣體混合物可由或基本上由氮氣及惰性氣體組成。流速可由或基本上由氮氣流量及惰性氣體流量組成。
該惰性氣體可係氬氣、氪氣、氙氣或其等之一混合物。較佳地,該惰性氣體由或基本上由氬氣組成。
在沉積該含添加劑氮化鋁膜之步驟期間,腔室可具有在1至10 mTorr,視情況地約2至6 mTorr之範圍內,或視情況地約4 mTorr之一壓力。
該含添加劑氮化鋁膜可具有約2 μm或更小、視情況地約1.5 μm或更小、視情況地約1 μm或更小或視情況地約0.5 μm或更小之一厚度。
該含添加劑氮化鋁膜可具有約0.2 μm或更大、視情況地約0.3 μm或更大或視情況地約0.5 μm或更大之一厚度。
沉積該含添加劑氮化鋁膜之步驟可包括向該基板施加一電偏壓功率。該電偏壓功率可係一RF電偏壓功率。
在沉積該含添加劑氮化鋁膜之步驟期間,該基板可具有約150至300℃,視情況地係約200℃之一溫度。
該半導體基板可係矽晶圓。
該金屬層可選自:鎢(W)、鉬(Mo)、鋁(Al)、鉑(Pt)及釕(Ru)。該金屬層可係一電極結構。該金屬層可係一鎢底層。
該方法可視情況地進一步包括在沉積該含添加劑氮化鋁膜之步驟之前蝕刻該金屬層之一步驟。
該方法可視情況地進一步包括在沉積該含添加劑氮化鋁膜之步驟之前將一晶種層沉積至該金屬層上,使得將該含添加劑氮化鋁膜沉積至該晶種層上之一步驟。僅舉例而言,該晶種層可係氮化鋁(AlN)晶種層或一含添加劑氮化鋁晶種層(諸如AlScN)。
在沉積該含添加劑氮化鋁膜之步驟之前預處理該金屬層可進一步有助於減小缺陷密度,同時有助於保持足夠之膜紋理及結晶度。
根據本發明之一第二態樣,在使用根據第一態樣之方法生產之一半導體基板之一金屬層上存在一含添加劑氮化鋁膜。
雖然本發明已在上文中描述,然其擴展至上文或下文描述、附圖及技術方案中所陳述之特徵之任何組合。例如,關於本發明之一個態樣揭示之任何特徵可與本發明之任何其他態樣之任何特徵相結合。
為避免疑問,當提及諸如「包括(comprsing、comprise及comprises)」之「開放式」術語時,本發明被理解為亦係關於其中開放式術語被諸如「由…組成」及「基本上由…組成」之「封閉式」術語替換之實施例。
發明者已發現一種用於將一含添加劑氮化鋁膜(例如Al 100‑xX xN)濺射沉積至一基板之一金屬層上之一有利程序。該方法可有助於減小含添加劑氮化鋁膜中之微晶缺陷。當添加劑元素(X)以高濃度(例如,x>12,較佳地x≥15)存在時,本發明之方法具有特定應用。含添加劑氮化鋁膜含有一添加劑元素。添加劑元素可係鈧(Sc)、釔(Y)、鈦(Ti)、鉻(Cr)、鎂(Mg)或鉿(Hf)。下文呈現之結果與氮化鋁鈧(Al 100‑xSc xN)膜有關。然而,該方法可容易地應用至上文提及之任何添加劑元素,即Sc、Y、Ti、Cr、Mg及Hf。例如,該方法亦適用於沉積氮化鋁釔(Al 100‑xY xN)膜。
申請人之歐洲專利申請EP2871259、EP3153603中描述關於可在本發明中使用或容易地經調適以在本發明中使用之設備之一般細節,其全部內容以引用之方式併入本文中。
使用一SPTS Sigma fxP AlN PVD工具(其可購自英國南威爾士紐波特之SPTS技術有限公司)來沉積以下實例之含添加劑氮化鋁膜。該設備包括安置在一腔室中之一基板支撐件。在一沉積程序中,其上具有一金屬層之一半導體基板經定位在基板支撐件上。例如,基板可係其上具有一金屬塗層之矽晶圓。金屬層具有一金屬表面。金屬層可係一電極結構,例如一壓電裝置(諸如一體聲波(BAW)裝置)之一電極。僅舉例而言,金屬層可由鎢(W)、鉬(Mo)、鋁(Al)、鉑(Pt)或釕(Ru)製成。
該設備進一步包括安置在腔室內之一靶。靶係由鋁及添加劑元素形成之一複合靶。多個靶之使用係可能的,然在經濟上可能不太有吸引力。脈衝DC濺射包括在沉積程序期間向靶(陰極)施加DC功率之脈衝。
該方法包含以一流速將一氣體混合物引入至腔室中,且隨後使用脈衝DC反應性濺射來將材料自靶反應性地濺射沉積至金屬層之金屬表面上。
氣體混合物包括氮氣(N 2)及一惰性氣體。惰性氣體可係氬氣、氪氣或氙氣或其等之任何混合物。通常,惰性氣體係氬氣。惰性氣體充當一共濺射非反應性物種,且可改良電漿穩定性。
氣體混合物中N 2氣體之比例可影響沉積程序。不希望受到任何理論或猜測之約束,據信在一非常低之N 2氣體濃度下(或在無N 2氣體之情況下),脈衝DC濺射程序將在一「金屬模式」中運行。在金屬模式中,靶材料將被濺射,與N 2氣體反應很少或沒有反應。隨著N 2氣體之比例增加,一些氮被併入靶之表面,且靶開始中毒。當氣體混合物中之氮之比例足夠高時,氮化物層將形成在靶上,靶將完全中毒,且濺射程序將在一「中毒模式」(亦稱為一「化合物模式」或「反應性模式」)中操作。此在靶之表面完全轉化為氮化物,且靶完全中毒時發生。
「金屬模式」與「中毒模式」之間之轉變在一「轉變點」(或氮氣之「中毒臨限值百分比」)處發生,此對應於氣體混合物中之氮氣比例足夠高以使靶完全中毒(即,導致濺射沉積在「中毒模式」中操作)之點。藉由量測依據氮氣百分比而變化之靶電壓(在恆定靶功率下),可判定特定一組程序條件之中毒臨限值百分比,如圖7中所繪示(如下面更詳細討論)。
所屬領域中普遍接受之看法係在遠離轉變點之一「中毒模式」中操作脈衝DC反應性濺射程序(即,在反應性氣體混合物中使用一非常高百分比之N 2氣體)。例如,在一個已知程序中,N 2氣體對Ar氣體之流速(以sccm為單位)比係50:10 (即,83% N 2氣體)。
然而,與所屬領域中此接受之看法相反,本發明者已意外地發現,使用氣體混合物之總流速之≤50%之一N 2流量(同時仍在「中毒模式」中操作)可減小藉由脈衝DC反應性濺射沉積至一金屬表面上之一含添加劑氮化鋁膜之缺陷密度。此等效應在其中缺陷通常更為普遍之高濃度添加劑元素(例如,>12 at.%,較佳地≥15 at.%)之情況下特別有益。
在一個實例中,藉由脈衝DC反應性濺射將Al 100-xSc xN膜(x=30)沉積至一紋理化鎢(W)底層上。氣體混合物包括N 2氣體與氬氣。氣體混合物中N 2氣體之比例發生變化,同時所有其他程序參數(諸如腔室壓力及靶功率)保持恆定。本實例中使用之例示性程序參數在表1中展示。 表1
   Al 100‑xSc xN
脈衝DC功率(kW) 6
脈衝頻率(kHz) 100
脈衝寬度(μs) 4
Ar流速(sccm) 0至90
N 2流速(sccm) 50
壓板RF偏壓功率(W) 針對所需應力調整
壓板溫度(℃) 200
圖3、4、5及6展示在氣體混合物中之N 2氣體之百分比分別為100%、83%、67%及36%之情況下沉積之Al 70Sc 30N膜之SEM影像。結果在下面之表2中總結,且如圖7中圖形展示。 表2
總流量之N 2% 每100 μm 2之缺陷數目 002 FWHM (°)
100 >>100 1.58
83 >50 1.62
67 <30 1.57
36 <20 1.63
圖7包含依據總氣體流量中N 2氣體百分比而變化之靶電壓之一標繪圖。當N 2氣體流量占總氣體流速之約25%時,轉變點(即,中毒臨限值百分比) 72發生。由於靶電壓(在恆定靶功率下)之一陡峭變化,可判定轉變點72。在此實例中,當N 2氣體流量占總氣體流量之比例小於約25%時,設備在一「金屬模式」70中操作。當N 2氣體流量占總氣體流量之比例大於約25%時,靶完全中毒,且設備在一「中毒模式」74中操作。
改變N 2氣體之量(依照總氣體流量之一百分比,以sccm為單位)未顯著影響膜紋理。所有Al 100‑xSc xN膜均展現良好之晶體定向。然而,出乎意料的是,缺陷密度(即,如藉由分析膜之SEM影像判定之每100 μm 2之缺陷數目)隨著N 2氣體量(依照總氣體流量之一百分比,以sccm為單位)減小而降低。
不希望受到任何理論或猜測之約束,據信在較低N 2氣體比例下,由於惰性氣體(即,此實例中之Ar氣體)之相對較高比例,存在增加之膜轟擊。惰性氣體充當一非反應性共濺射元素,且相對較高比例之惰性氣體具有增加基板表面上之離子轟擊之量之效應。再次,在不受任何理論或猜測約束之情況下,據信增加之膜轟擊對膜成核可能至關重要,且可有助於提供用於具有良好定向之晶體生長之模板。仍在不受任何理論或猜測之約束之情況下,另外據信在膜生長期間,增加之膜轟擊可將足夠之能量轉移至添加劑元素(例如,此實例中相對較重之Sc原子)以克服能障,並將添加劑元素移動至晶體結構內之一更有利位置。因此,作為微晶缺陷被觀察到之未對準晶粒之數目減小。
再次,在不受任何理論或猜測約束之情況下,亦據信一富氮環境促進沉積膜內不同相之形成,此與塊體材料相比具有不同之生長機制。此等不同相表現為未對準之晶粒。然而,減小氣體混合物中氮氣之相對比例使平衡遠離形成此等不同相移動。
因此,本發明之方法可用於沉積具有一高添加劑元素含量之高品質含添加劑氮化鋁膜,同時將缺陷密度減小至可接受位準。由於改良之缺陷密度,改良膜之壓電性質。使用本方法生產之含添加劑氮化鋁膜非常適合於用作壓電裝置中(諸如體聲波(BAW)裝置中)之一壓電層。
70:金屬模式 72:轉變點 74:中毒模式
現在將參考附圖,僅舉例而言描述本發明之實施例,其中:
圖1係(a)在無一預蝕刻;及(b)在具有一預蝕刻之情況下沉積在矽基板上之一Al 100-xSc xN膜之一SEM影像;
圖2係(a)在無一晶種層;(b)在具有一壓縮AlScN晶種層;及(c)在具有一AlN晶種層之情況下在矽基板上沉積之一Al 100-xSc xN膜之一SEM影像;
圖3係在氣體混合物中之氮氣之百分比係100%之情況下沉積之一Al 100‑xSc xN膜之一SEM影像;
圖4係在氣體混合物中之氮氣之百分比係83%之情況下沉積之一Al 100‑xSc xN膜之一SEM影像;
圖5係在氣體混合物中之氮氣之百分比係67%之情況下沉積之一Al 100‑xSc xN膜之一SEM影像;
圖6係在氣體混合物中之氮氣之百分比係36%之情況下沉積之一Al 100‑xSc xN膜之一SEM影像;及
圖7展示依據氣體混合物中之氮氣百分比而變化之靶電壓(在恆定功率下)及缺陷密度(每100 μm 2)之標繪圖。
70:金屬模式
72:轉變點
74:中毒模式

Claims (15)

  1. 一種自一靶濺射沉積含有一添加劑元素之一含添加劑氮化鋁膜之方法,該添加劑元素選自:鈧(Sc)、釔(Y)、鈦(Ti)、鉻(Cr)、鎂(Mg)及鉿(Hf),該方法包括以下步驟: 在一腔室中提供其上具有一金屬層之一半導體基板;及 藉由該靶之脈衝DC反應性濺射將該含添加劑氮化鋁膜沉積至該金屬層上; 其中沉積該含添加劑氮化鋁膜之該步驟包括依以sccm為單位之一流速將包括氮氣及一惰性氣體之一氣體混合物引入至該腔室中,其中以sccm為單位之該氣體混合物之該流速包括以sccm為單位之一氮氣流速,且其中以sccm為單位之該氮氣流速小於或等於以sccm為單位之該氣體混合物之該流速之約50%,且亦足以使該靶完全中毒。
  2. 如請求項1之方法,其中該添加劑元素係鈧或釔,較佳地係鈧。
  3. 如請求項1或2之方法,其中該添加劑元素,依照鋁之一原子百分比及該含添加劑氮化鋁膜之添加劑元素含量,以在0.5 at.%至40 at.%之範圍內,視情況地在8 at.%至40 at.%之範圍內,視情況地在10 at.%至40 at.%之範圍內,視情況地在12 at.%至35 at.%之範圍內,視情況地在15 at.%至30 at.%之範圍內,或視情況地在20 at.%至25 at.%之範圍內之一量存在。
  4. 如請求項1或2之方法,其中以sccm為單位之該氮氣流速小於以sccm為單位之該氣體混合物之該流速之約45%,視情況地小於約40%,視情況地小於約35%,及視情況地約30%。
  5. 如請求項1或2之方法,其中以sccm為單位之該氮氣流速大於以sccm為單位之該氣體混合物之該流速之約15%,視情況地≥20%,視情況地≥25%,或視情況地≥30%。
  6. 如請求項1或2之方法,其中在沉積該含添加劑氮化鋁膜之該步驟期間使用之以sccm為單位之該氮氣流速在25至250 sccm、視情況地30至200 sccm、視情況地40至150 sccm、視情況地45至100 sccm之範圍內或視情況地為約50 sccm。
  7. 如請求項1或2之方法,其中該惰性氣體係氬氣、氪氣、氙氣或其等之一混合物。
  8. 如請求項1或2之方法,其中該含添加劑氮化鋁膜具有約2 μm或更小、視情況地約1.5 μm或更小、視情況地約1 μm或更小或視情況地約0.5 μm或更小之一厚度。
  9. 如請求項1或2之方法,其中該含添加劑氮化鋁膜具有約0.2 μm或更大、視情況地約0.3 μm或更大或視情況地約0.5 μm或更大之一厚度。
  10. 如請求項1或2之方法,其中沉積該含添加劑氮化鋁膜之該步驟包括向該基板施加一電偏壓功率。
  11. 如請求項1或2之方法,其中該半導體基板係矽晶圓。
  12. 如請求項1或2之方法,其中該金屬層選自:鎢(W)、鉬(Mo)、鋁(Al)、鉑(Pt)及釕(Ru)。
  13. 如請求項1或2之方法,其進一步包括在沉積該含添加劑氮化鋁膜之該步驟之前蝕刻該金屬層之一步驟。
  14. 如請求項1或2之方法,其進一步包括在沉積該含添加劑氮化鋁膜之該步驟之前將一晶種層沉積至該金屬層上,使得將該含添加劑氮化鋁膜沉積至該晶種層上之步驟。
  15. 一種使用如請求項1至14中任一項之方法生產之一半導體基板之一金屬層上之含添加劑氮化鋁膜。
TW110132481A 2020-09-16 2021-09-01 沉積方法 TW202223121A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB2014592.6 2020-09-16
GBGB2014592.6A GB202014592D0 (en) 2020-09-16 2020-09-16 Deposition method

Publications (1)

Publication Number Publication Date
TW202223121A true TW202223121A (zh) 2022-06-16

Family

ID=73149765

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110132481A TW202223121A (zh) 2020-09-16 2021-09-01 沉積方法

Country Status (7)

Country Link
US (1) US20220085275A1 (zh)
EP (1) EP3971318A1 (zh)
JP (1) JP2022049679A (zh)
KR (1) KR20220036855A (zh)
CN (1) CN114262867A (zh)
GB (1) GB202014592D0 (zh)
TW (1) TW202223121A (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11999615B2 (en) * 2019-02-22 2024-06-04 National Institute Of Advanced Industrial Science And Technology Nitride piezoelectric body and MEMS device using same
WO2024084664A1 (ja) * 2022-10-20 2024-04-25 京セラ株式会社 半導体基板、テンプレート基板、並びにテンプレート基板の製造方法および製造装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445928A (zh) * 2002-08-08 2009-06-03 株式会社神户制钢所 α型晶体结构为主体的氧化铝被膜相关技术
JP2009123718A (ja) * 2007-01-16 2009-06-04 Showa Denko Kk Iii族窒化物化合物半導体素子及びその製造方法、iii族窒化物化合物半導体発光素子及びその製造方法、並びにランプ
DE102008025691B4 (de) * 2007-05-31 2011-08-25 National Institute Of Advanced Industrial Science And Technology Piezoelektrischer Dünnfilm, piezoelektrisches Material und Herstellungsverfahren für piezoelektrischen Dünnfilm
US20140246305A1 (en) * 2010-01-22 2014-09-04 Avago Technologies General Ip (Singapore) Pte. Ltd. Method of fabricating rare-earth element doped piezoelectric material with various amounts of dopants and a selected c-axis orientation
US9856556B2 (en) * 2010-04-23 2018-01-02 Oerlikon Surface Solutions Ag, Pfaeffikon PVD coating for metal machining
EP2540858B1 (en) * 2011-06-30 2014-12-17 Lamina Technologies SA Cathodic arc deposition
US20180240656A1 (en) * 2011-09-07 2018-08-23 Vladimir Gorokhovsky Hybrid Filtered Arc-Magnetron Deposition Method, Apparatus And Applications Thereof
GB201319654D0 (en) 2013-11-07 2013-12-25 Spts Technologies Ltd Deposition of silicon dioxide
US20150311046A1 (en) * 2014-04-27 2015-10-29 Avago Technologies General Ip (Singapore) Pte. Ltd. Fabricating low-defect rare-earth doped piezoelectric layer
GB201517879D0 (en) 2015-10-09 2015-11-25 Spts Technologies Ltd Method of deposition
JP6500791B2 (ja) * 2016-01-22 2019-04-17 信越化学工業株式会社 ハーフトーン位相シフト型フォトマスクブランク及びその製造方法
CN107227441B (zh) * 2017-05-11 2019-02-22 中国科学院力学研究所 一种基于反应溅射迟滞效应的TiAlSiN涂层制备方法
EP3670042A4 (en) * 2017-08-15 2021-03-24 Mitsubishi Hitachi Tool Engineering, Ltd. COATED CUTTING TOOL
GB201815216D0 (en) * 2018-09-18 2018-10-31 Spts Technologies Ltd Apparatus and a method of controlling thickness variation in a material layer formed using physical vapour deposition

Also Published As

Publication number Publication date
US20220085275A1 (en) 2022-03-17
KR20220036855A (ko) 2022-03-23
CN114262867A (zh) 2022-04-01
JP2022049679A (ja) 2022-03-29
EP3971318A1 (en) 2022-03-23
GB202014592D0 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
US20090246385A1 (en) Control of crystal orientation and stress in sputter deposited thin films
KR20170044035A (ko) 증착 방법
EP1124270B1 (en) Method for producing piezoelectric films with rotating magnetron sputtering system
TW202223121A (zh) 沉積方法
US20040092107A1 (en) Perovskite-type material forming methods, capacitor dielectric forming methods, and capacitor constructions
JP2892231B2 (ja) Ti−Si−N系複合硬質膜及びその製造方法
US20040137158A1 (en) Method for preparing a noble metal surface
CN110541153A (zh) 一种沉积制备膜的方法及镀膜机
WO1994019509A1 (en) Film forming method and film forming apparatus
EP3739077B1 (en) Method of deposition an additive-containing aluminium nitride film
WO2023223815A1 (ja) 圧電積層体、圧電素子、および圧電積層体の製造方法
Felmetsger Sputter technique for deposition of AlN, ScAlN, and Bragg reflector thin films in mass production
Felmetsger et al. Reactive sputtering of highly c-axis textured Ti-doped AlN thin films
Felmetsger et al. Deposition of smooth and highly (111) textured Al bottom electrodes for AlN-based electroacoustic devices
JP2001332514A (ja) 配向性金属薄膜の成膜方法及び配向性金属薄膜を有する機能素子
Yanagisawa et al. Epitaxial growth of (001) ZrN thin films on (001) Si by low temperature process
JP2768364B2 (ja) 半導体装置の製造方法
JPH10275896A (ja) メモリ素子
JP2004270035A (ja) タングステン又はタングステン含有薄膜を形成する方法
TW202303763A (zh) 通過pvd法控制低電阻材料的電阻率和結晶度的方法
JPH0967671A (ja) TiN膜製造方法
Prasad et al. Optimization of AlN deposition parameters for a high frequency 1D pMUT Array
Lin et al. The characteristics and residual stress of aluminum nitride films grown by two-stage sputtering of mid-frequency power
Lan et al. Thermionic electron emission enhancement of PZT thin films sputter deposition
JP2024000432A (ja) 成膜方法及び弾性波デバイス