TW202217828A - 用於監測及管理記憶體裝置之系統及方法 - Google Patents
用於監測及管理記憶體裝置之系統及方法 Download PDFInfo
- Publication number
- TW202217828A TW202217828A TW110140453A TW110140453A TW202217828A TW 202217828 A TW202217828 A TW 202217828A TW 110140453 A TW110140453 A TW 110140453A TW 110140453 A TW110140453 A TW 110140453A TW 202217828 A TW202217828 A TW 202217828A
- Authority
- TW
- Taiwan
- Prior art keywords
- address
- bisr
- mapping table
- memory
- page
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/16—Error detection or correction of the data by redundancy in hardware
- G06F11/1666—Error detection or correction of the data by redundancy in hardware where the redundant component is memory or memory area
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/1201—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details comprising I/O circuitry
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/18—Address generation devices; Devices for accessing memories, e.g. details of addressing circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/38—Response verification devices
- G11C29/42—Response verification devices using error correcting codes [ECC] or parity check
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/44—Indication or identification of errors, e.g. for repair
- G11C29/4401—Indication or identification of errors, e.g. for repair for self repair
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/52—Protection of memory contents; Detection of errors in memory contents
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/70—Masking faults in memories by using spares or by reconfiguring
- G11C29/72—Masking faults in memories by using spares or by reconfiguring with optimized replacement algorithms
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/70—Masking faults in memories by using spares or by reconfiguring
- G11C29/74—Masking faults in memories by using spares or by reconfiguring using duplex memories, i.e. using dual copies
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/70—Masking faults in memories by using spares or by reconfiguring
- G11C29/76—Masking faults in memories by using spares or by reconfiguring using address translation or modifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C2029/0407—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals on power on
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C2029/1202—Word line control
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Techniques For Improving Reliability Of Storages (AREA)
- For Increasing The Reliability Of Semiconductor Memories (AREA)
Abstract
本發明尤其係關於一種管理一記憶體裝置之方法。在一些態樣中,該方法包含:判定一第一記憶體區域中之一頁面之一第一位址是否被映射在一映射表中;將一目標位址設定為在該映射表中被識別為映射至該第一位址之一第二位址;將該目標位址設定為該第一位址;判定該目標位址之複數個第一層錯誤校正碼(ECC)字中之每一字中出現故障之一位元數量;及將該目標位址添加至該映射表、將內容自該目標位址寫回至該第一記憶體區域中之一修復位址、及藉由將該目標位址映射至該修復位址來更新該映射表。
Description
本發明之實施例尤其係關於管理健康狀況及/或延長或以其他方式延展記憶體裝置之使用壽命。更具體言之,在一個態樣中,本發明之實施例係關於使用一內建自我修復(BISR)特徵來管理記憶體裝置之健康狀況。
引言
一般而言,一記憶體系統可包含用於儲存資料之一記憶體裝置及用於控制記憶體裝置之操作之一主機(或控制器)。記憶體裝置可被分類為例如揮發性記憶體(例如,諸如DRAM或SRAM)及非揮發性記憶體(諸如EEPROM、FRAM (鐵電RAM)、PRAM (相變記憶體)、MRAM (磁阻式記憶體)、RRAM/ReRAM (電阻式記憶體)及快閃記憶體)。
在本發明之記憶體裝置(例如,MRAM)中使用之磁阻式堆疊包含安置在一「固定」磁性區域與一「自由」磁性區域之間的至少一個非磁性層(例如,至少一個介電層或一非磁性但導電之層),每一區域包含一層或多層鐵磁材料。資訊藉由切換、程式化及/或控制自由磁性區域之磁性層中磁化向量之方向而儲存在磁阻式記憶體堆疊中。可藉由鄰近於或穿過磁阻式記憶體堆疊施加一寫入信號(例如,一或多個電流脈衝)來切換及/或程式化(例如,透過自旋軌道扭矩(SOT)及/或自旋傳遞扭矩(STT))自由磁性區域之磁化向量之方向。
藉由在STT-MRAM晶片中使用BISR特徵,可藉由將不可再用之位址內部映射至一新位置以供後續存取來延長一記憶體部分之一可用壽命。可使用一計數器(其可對每一頁面之寫入或讀取存取之次數進行計數) 來判定一記憶體之哪一頁面可能具有不可再用之位址。然而,使用一計數器可能增加一記憶體裝置之複雜性,且可能增加記憶體存取時間。此外,計數器值可能需要在記憶體裝置之一壽命期間保存在非揮發性記憶體中,此需要記憶體裝置之大量空間。
本發明係關於記憶體裝置(例如,包含磁阻式堆疊之裝置)及用於使用一內建自我修復(BISR)特徵來管理記憶體裝置之健康狀況而不使用計數器之方法,以及藉由使用一磁穿隧接面(MTJ)微型陣列來儲存一映射表以映射不可再用之位址而改良一記憶體裝置之耐久性之方法。然而,本發明之範疇由所附申請專利範圍定義,而非由所得裝置或方法之任何特性定義。
相關申請案之交叉參考
本申請案主張於2020年10月29日申請之美國臨時專利申請案第63/107,173號之權利,其全部內容以引用方式併入本文。
本文揭示詳細之說明性態樣。然而,本文揭示之具體結構及功能細節僅代表描述本發明之例示性實施例之目的。本發明可以多種替代形式體現且不應被解釋為僅限於本文闡述之實施例。此外,本文使用之術語僅出於描述特定實施例之目的,且不意欲限制本文描述之例示性實施例。
當說明書提及「一個實施例」或「一實施例」時,其意欲意指結合所論述之實施例描述之一特定特徵、結構、特性或功能包含在本發明之至少一個預期實施例中。因此,在說明書中不同位置出現片語「在一個實施例中」或「在一實施例中」不構成對本發明之一單個實施例之複數個引用。
如本文所使用,單數形式「一(a/an)」及「該」亦意欲包含複數形式,除非上下文另有明確指示。亦應注意,在一些替代實施方案中,所描述之特徵及/或步驟可能不以圖中繪示或本文論述之順序發生。舉例而言,根據所涉及之功能/動作,連續展示之兩個步驟或圖可替代地基本上同時執行或有時可以相反順序執行。在一些態樣中,取決於所涉及之功能/動作,在不脫離本文描述之實施例之範疇之情況下,可完全省略一或多個所描述之特徵或步驟,或者可以其間之一中間步驟來執行。
在一個態樣中,本發明係針對動態監測及管理記憶體裝置之健康狀況之技術及實施方案,包含例如能夠在一電源供應器被停用時保持資料之非揮發性或「永久性」記憶體(例如,磁性記憶體或磁性隨機存取記憶體或MRAM)。儘管下文之描述參考磁阻式記憶體裝置(例如,MRAM),但本發明可在其他記憶體裝置中實施,包含但不限於:EEPROM、FRAM、PRAM、RRAM/ReRAM及/或快閃記憶體。
現在參考圖1,繪示用於一記憶體裝置之一記憶體組100之一例示性方塊圖。一記憶體裝置可具有一或多個記憶體組。一記憶體組100可包含具有常規頁面102及修復頁面103之一第一記憶體區101。常規頁面102及修復頁面103中之每一者可具有彼此相同之位元數量。作為一實例,記憶體組區101在部分之整個壽命中可具有用於替換之96個修復頁面。第一記憶體區101可透過一通信鏈路106連接至具有ECC 105之一資料路徑。每個記憶體組中之資料路徑可具有兩層正交ECC,該兩層正交ECC在讀取及/或寫入操作期間對一頁面進行操作。另外,一映射表104可透過一通信鏈路107連接至具有ECC 105之資料路徑。映射表104對於記憶體組區101可為本地的,且映射表104可用於將一位址自變得不可用之一常規頁面映射至修復頁面上之一位址。
BISR特徵可在一讀取操作及/或一寫入操作期間觸發。在一讀取操作期間,BISR可能由一第一層中之一不可校正之ECC故障觸發。舉例而言,當一單字中之三個位元出現故障時,可能會發生一不可校正之ECC故障。當BISR由一不可校正之ECC故障觸發時,不可校正之故障可由ECC之第二層使用下文描述之裝置及方法來校正。
在一寫入操作期間,一寫入命令可能發生在一整個頁面或一部分頁面。儘管寫入操作可能僅適用於一頁面之一部分,但一ECC計算適用於整個頁面。因此,可使用一讀取-修改-寫入命令來確保存取一整個頁面,且可在讀取-修改-寫入之讀取階段期間觸發BISR。
圖2繪示圖解說明根據本發明之一例示性實施例之使用正交ECC之一BISR觸發之一例示性圖式200。本文揭示之一或多個組件可為BISR控制邏輯電路之一部分且可用於實施BISR功能。如在圖2頂部所圖解說明,可讀取一記憶體陣列中之位元單元(例如,256個位元=1頁)。根據一例示性實施例,256個資料位元可包含16個資料字,每一字中有16個位元。然而,例示性實施例不限於256個位元。如區段201中所圖解說明,256個資料位元可包含雙重錯誤校正(DEC)及單錯誤校正(SEC)。
ECC位元在圖2之區段202、203及204中進行圖解說明。ECC位元可能在記憶體裝置內部,且使用者可能永遠不會察覺到ECC位元。第一層ECC位元在區段202 (例如,具有DEC保護之176個ECC位元)及204 (例如,具有DEC保護之55個ECC位元)中進行圖解說明,且第二層ECC位元在區段203 (例如,具有DEC保護及SEC保護之80個ECC位元)中進行圖解說明。根據一例示性實施例,第一層ECC可具有11個位元之一字大小。然而,例示性實施例不限於此字大小。第一層ECC可由DEC保護且可包含臨限值錯誤偵測(TED),諸如一雙重錯誤偵測、三重錯誤偵測或任何其他大於1之值,例如DEC至TED。第一層ECC可能不需要SEC,因為一使用者可能永遠不會察覺到故障且可能永遠不會察覺到BISR觸發。
若第一層ECC包含對應於三重錯誤偵測之TED,則BISR可由複數個字(例如,21個單元字)中之任一者中之3位元故障觸發。當BISR由一個3位元故障觸發時,該故障可能在第二層中得到校正。第二層ECC位元在區段203中進行圖解說明。第二層ECC可包含單錯誤校正SEC及DEC。第二層可自第一層之每一字中取出一單個位元來進行校正。若任何一個字出現故障,則第二層可校正該字。第二層ECC位元可能需要兩層保護以便降低位元錯誤率。
圖3繪示根據一例示性實施例之用於一BISR觸發之一例示性表視圖300。如上文關於圖2所描述,若第一層ECC包含TED,例如,DEC-TED,則BISR可由21個單元字(例如,列301及行302)中之任一者之一個3位元故障觸發。當BISR由一個3位元故障觸發時,該故障可能在第二層中得到校正。故障可藉由使用修復頁面103來校正。例如,第二層ECC可將故障位址添加至一映射表,使得當一使用者請求存取故障位址(例如,存取第一組MTJ)時,該請求將被重定向,使得將替代地存取位於修復頁面103中之一組不同MTJ。下文描述將故障位址添加至一映射表之一例示性方法。
一個2層ECC在一第一階段中可被組織DEC且在第二階段中可被組織為DEC。根據本文揭示之實施方案,BISR可由第一階段在TED處被觸發。
圖4繪示用於為一記憶體裝置執行BISR之一例示性方法400之一流程圖。在步驟401中,該方法可包含打開一MRAM記憶體組中之一頁面。在步驟402中,該方法可包含判定一第一記憶體區域中之一頁面之一第一位址是否被映射在一BISR映射表中。第一記憶體區域可為包含記憶體之常規頁面102及記憶體之修復頁面103之一記憶體區。
若第一位址未被映射在BISR映射表中,其指示第一位址先前尚未被識別為需要修復(例如,402 (否)),則一目標位址可以被設定為BISR映射表中之第一位址(例如,步驟403)。若第一位址被映射在BISR表中,其指示第一位址先前已被識別為故障(例如,402 (是)),則一目標位址可被設定為BISR映射表中之位址(例如,步驟404)。在步驟405中,該方法可包含判定目標位址之複數個第一層ECC字中之每一字中出現故障之位元數量。若判定出現故障之位元數量大於一預定臨限值(例如,步驟405 (是)),則可將目標位址添加至BISR映射表(例如,步驟406)。例如,根據一例示性實施例,若判定在任一字中三個位元出現故障,則可觸發BISR,且可將目標位址添加至BISR映射表中。
在步驟407中,該方法可包含將內容自目標位址寫回至第一記憶體區域之一修復位址。在步驟408中,可利用目標位址至修復位址之映射來更新BISR映射表。步驟407及408可並行執行,以減少時延。舉例而言,該方法可包含將內容自目標位址寫回至修復位址,同時更新將目標位址映射至修復位址之BISR映射表。若判定出現故障之位元數量小於或等於預定臨限值(例如,步驟405 (否)),則該方法可包含將內容寫回至目標位址(例如,步驟409)。
根據一例示性實施例,映射表可儲存在非揮發性記憶體中,且映射表可在記憶體裝置之一開啟電源期間被更新。另外,可在一讀取操作及/或一寫入操作期間執行判定出現故障之位元數量。
根據一例示性實施例,ECC可被提供為一單層多位元校正ECC。若ECC係n位元校正,則當n-1個位元出現故障時可觸發BISR特徵。例如,ECC可被提供為一單層4位元校正ECC,且當3個位元出現故障時可觸發BISR。
根據一例示性實施例,在限制存取時間及/或限制區並非一重要考慮因素之一情況下,BISR映射表可儲存在熔絲組中。
圖5A繪示圖解說明在一頁面中基於一MTJ原始位元錯誤率(RBER)之一BISR觸發之一機率之一例示性圖表500。例如,一BISR觸發臨限值可指BISR被觸發時之MTJ RBER。如上所述,在第一層ECC中,可能有21個字,且若該21個字中之任何一列包含3個位元故障,則可觸發BISR。如圖5A之區段501中所圖解說明,當對應RBER接近並通過一給定RBER時,一頁面中BISR觸發之機率接近1。舉例而言,在一RBER大於或等於給定RBER之情況下,BISR之觸發可能更頻繁地發生。
圖5B繪示一例示性圖表510,其圖解說明基於記憶體之寫入循環次數之RBER。如區段512中所圖解說明,BISR觸發臨限值可能發生在一給定RBER附近。因此,區段511及512之交叉點係經常觸發BISR之區。線513表示RBER與循環次數之一例示性曲線。當BISR被觸發時,存取一頁面之一請求將被映射(例如,重定向)至一修復頁面處之一組不同之MTJ。當修復頁面被存取時,循環次數被重設為零,且如圖5B中所圖解說明之曲線使用修復頁面被再次寫入。因此,增加記憶體耐久性壽命。舉例而言,在具有96個修復頁面之情況下,任何單個頁面存取皆可被修復96次,從而將一耐久性壽命延長大約兩個數量級。
圖6繪示根據本發明之一例示性實施例之一記憶體裝置600之一方塊圖。如圖6所圖解說明,記憶體裝置600可包含一主陣列601、一微型陣列602、具有ECC之一資料路徑603、資料路徑603與主陣列601之間的一通信介面610、具有ECC之一資料路徑604、及資料路徑604與微型陣列602之間的一通信介面609。
主陣列可包含具有多個修復頁面(例如,96個修復頁面)之主記憶體605。主陣列可包含一非揮發性組態位元陣列606及一個一次可程式化(OTP)陣列607,這兩者皆可不包含一BISR功能。主陣列可包含具有1e10個記憶體循環之一耐久性之連續使用者存取。主陣列可為使用者可存取的,且可包含具有DEC-TED及SEC之ECC。
根據一例示性實施例,微型陣列602可為用於儲存一BISR映射表608之一MTJ微型陣列。微型陣列602可與主陣列分開。例如,微型陣列可包含與主陣列分開之一資料路徑、與主陣列分開之一ECC、與主陣列分開之字線驅動器及/或與主陣列分開之寫入驅動器等。藉由向分開之組件提供微型陣列,若一BISR被觸發,則微型陣列602可與主陣列601將內容自一目標位址寫回至一修復位址之操作並行地執行映射表之更新。
根據一例示性實施例,使用者可能無法存取微型陣列602。因此,微型陣列之ECC可能不具有修復能力,且可能不包含兩層校正。當BISR映射表被更新時,BISR映射表之每一列皆可被更新。因此,為了減少時延,微型陣列602 (例如,BISR映射表608)可儲存在非揮發性記憶體中,且可僅在記憶體裝置之一開啟電源期間被讀取及校正。因為微型陣列602僅在一開啟電源期間被讀取及校正,故微型陣列602之耐久性可能不需要與主陣列601一樣高。
圖7繪示用於一微型陣列之一例示性驅動電路700。例如,微型陣列可包含一字線驅動器701,以及感測放大器及寫入驅動器702、703、704、705、706 及707。感測放大器及寫入驅動器可並行操作。微型陣列可能具有用於時間0修復之冗餘。舉例而言,可能有8條字線,且可判定出於效能原因應使用8條字線中之哪一條。當BISR在正常操作期間被觸發時,微型陣列中之一條字線可被啟動以更新BISR映射表中之一個項目。一個項目可對應於使用DEC-TED為修復頁面映射之一個修復位址。對於每一修復列,BISR映射表中可能有一個項目。例如,若BISR映射表中有96個項目,則可能有96個修復列。
圖8繪示用於一BISR映射表搜尋功能801之一例示性方法。BISR映射表搜尋功能之輸入可包含來自一MTJ微型陣列之一映射表及一常規記憶體頁面中之一第一位址。在為一記憶體裝置開啟電源時,來自MTJ微型陣列之映射表可被讀取至複數個暫存器中。當執行一讀取或寫入操作時,BISR映射表搜尋功能可搜尋一MTJ微型陣列以判定一第一位址是否被映射在BISR映射表中。若第一位址被映射在BISR映射表中,則BISR映射表搜尋功能可輸出第一位址被映射至之修復位址。
圖9繪示用於一記憶體裝置之BISR之一例示性方法之一例示性時序圖900。該時序圖之頂列可指在未觸發BISR之一情況下記憶體裝置之一時序。方塊901圖解說明BISR被觸發時之一例示性方法。例如,若BISR被觸發,則步驟903可包含使用ECC微型陣列來進行映射項目更新(例如,2 ns),且步驟904可包含與微型陣列字線啟動並行發生之修復字線啟動(例如,3 ns)。BISR驅動之對修復頁面之寫回可與用於BISR映射表更新之微型陣列寫入並行發生(例如,20 ns),且然後可關閉字線(WL) (例如,2 ns)。此外,步驟902可包含一BISR映射表搜尋功能(例如,3 ns)。因此,根據一例示性方法,若BISR被觸發,則程序比在BISR未被觸發之情況下多花費大約8 ns。因此,本發明之一例示性BISR方法之一優點係可藉由使用微型陣列及映射表更新功能實現並行操作來最小化額外時間。另外,可最小化晶粒大小加法器(例如,5%至10%晶粒大小加法器),此乃因微型陣列、BISR映射表搜尋及ECC可為加法器。
圖10繪示根據一例示性實施例之用於一記憶體裝置之BISR之一初始化程序之一例示性方法1000。例如,在步驟1001中,該方法可包含開始一記憶體裝置之一開啟電源序列。在步驟1002中,該方法可包含自微型陣列讀取BISR映射表並加載至暫存器中。
在步驟1003中,該方法可包含判定在來自BISR映射表之任何BISR項目中是否存在故障。若判定在任何字中沒有位元故障,則該方法可包含判定該部分已準備好進行正常操作(例如,步驟1004)。若判定在來自BISR映射表之任何BISR項目中存在一位元或兩位元故障,則可藉由寫回項目來校正錯誤而校正故障(例如,步驟1005)且該部分可準備好進行正常操作(例如,步驟1006)。若判定在來自BISR映射表之任何BISR項目中存在一個三位元故障,則已偵測到一不可恢復之錯誤(例如,步驟1007),且該方法可包含通知一使用者BISR映射表存在一問題並針對故障安全模式觸發一部分恢復。可針對故障安全模式觸發一部分恢復之例示性事件可包含一磁場干擾或過熱。
BISR映射表(例如,回流或外部磁鐵)可能發生一不可恢復之ECC故障。記憶體可在故障安全模式下開啟電源以允許恢復及部分初始化。恢復部分之程序可包含設定一初始化位元(例如,在組態暫存器中)。例如,若初始化位元設定為1,則在寫入一記憶體背景時BISR可能被暫時禁用。可重設BISR暫存器且可在BISR微型陣列中寫回零(例如,步驟1008)。儘管儲存之資料丟失,但可保持BISR能力。恢復可包含將組態位元重設為一已知狀態及BISR映射表(例如,步驟1009),從而判定部分在一恢復狀態下準備好進行正常操作(例如,步驟1010)。在步驟1011中,若沒有BISR觸發,即工廠初始化位元=1,則記憶體可被程式化為零及/或記憶體可被抹除。
在某些情況下,由於軟錯誤位元或耐久性故障位元,可能發生BISR頁面替換。軟錯誤位元可為可被校正(例如,使用ECC)或被誤識別為耐久性故障位元之位元。耐久性故障位元可能由無法被校正之硬故障(例如,使用ECC)引起。在記憶體裝置在高於一臨限值溫度下操作期間,軟錯誤位元可能被誤識別為耐久性故障位元。例如,當與低於臨限值溫度之溫度相比時,在高於一臨限值溫度(例如,50℃)下操作一記憶體裝置可能導致錯誤之錯誤偵測。
基於軟錯誤位元之BISR頁面替換可能浪費替換頁面。軟錯誤位元可被校正且可能被不正確地識別為耐久性故障位元。浪費之替換頁面可能降低一記憶體裝置之整體效能及壽命,因為在可用替換頁面之數量減少至零之後,記憶體裝置可能無法操作或具有有限之操作。因此,本文揭示之技術係針對減少替換頁面浪費。
根據一實施方案,一給定頁面之TED可被設定為一臨限值,使得減少由於軟錯誤位元而引起之BISR頁面替換。例如,一給定頁面之多個讀取或寫入循環期間之TED數量可為大於1之一值,且可為2、3或更大,使得在多個讀取或寫入循環期間,在偵測到兩個、三個或更多個不可校正之錯誤時觸發BISR。使用此技術,在基於位元錯誤啟動BISR之前,可將一位元錯誤機率性地驗證為耐久性故障位元。藉由增加臨限值(例如,增加至二、三或更大),可降低位元錯誤係一軟錯誤位元之機率。
圖11繪示一例示性圖表1100,其圖解說明用於錯誤偵測之變化臨限值。多個替換頁面(例如,96個) 1102可在對應於圖表1100之一給定記憶體裝置處可用。修復頁面可在多個寫入循環1104中被機率性地使用。使用一單錯誤偵測1106A TED之多個替換頁面可能機率性地輸入一浪費之冗餘頁面量。因此,藉由使用單錯誤偵測1106A TED,在給定記憶體裝置 之一使用壽命(例如,10年)內之多個寫入循環可能需要超出在給定記憶體裝置中可用之頁面之數量之多個冗餘頁面。如圖所示,使用一單錯誤偵測1106A TED可能在給定記憶體裝置之預期使用壽命 (例如,10年)之前越界進入浪費之冗餘頁面區。
基於單錯誤偵測1106A TED之冗餘頁面可能在一裝置使用壽命(例如,10年)之前越界進入浪費之冗餘頁面區,因為藉由設定在一單個錯誤之後產生一冗餘頁面之臨限值,可基於軟錯誤及耐久性故障位元兩者來產生冗餘頁面。因此,與使用一雙重、三重或更多重偵測相比,當使用單錯誤偵測時,產生一冗餘頁面之可能性可能更高。由於一軟錯誤可能在一第一錯誤偵測循環期間出現,但在一後續錯誤偵測循環期間可能自行解決,因此可藉由使用一雙重、三重或更多重錯誤偵測來降低該可能性。因此,藉由要求更多數量之偵測到之錯誤,可降低將一軟錯誤識別為一耐久性故障之機率。
如圖11所示,雙重錯誤偵測1106B TED可能需要比單錯誤偵測1106A TED更少之替換頁面。如上文所論述,藉由實施雙重錯誤偵測1106B TED,被識別為耐久性故障之軟錯誤之數量可少於單錯誤偵測1106A TED。類似地,如圖11所示,三重錯誤偵測1106C TED可能需要比單錯誤偵測1106A TED及/或雙重錯誤偵測1106B TED更少之替換頁面。如上文所論述,一較高TED值可能導致較少之軟錯誤被指定為耐久性故障。因此,基於一較高TED值產生之替換頁面之數量可少於基於一相對較低之TED值產生之替換頁面之數量。如圖11所示,使用雙重錯誤偵測1106B TED或三重錯誤偵測1106C TED所需之替換頁面之數量可能少於浪費之冗餘頁面量。另外,在一記憶體裝置之預期使用壽命(例如,10年)期間使用雙重錯誤偵測1106B TED或三重錯誤偵測1106C TED所需之替換頁面之數量可能少於浪費之冗餘頁面量。
如上文所論述,在一記憶體裝置在高於一臨限值溫度下操作期間,軟錯誤位元可能被誤識別為耐久性故障位元。例如,當與低於臨限值溫度之溫度相比時,在高於一臨限值溫度(例如,50℃)下操作一記憶體裝置可能導致錯誤之錯誤偵測。高於一臨限值溫度(例如,25℃、50℃等)之溫度可能導致更高之感測錯誤率,使得可能不必要地使用替換頁面來解決感測錯誤。此類感測錯誤及由此產生之替換頁面之使用可能縮短一給定記憶體裝置之使用壽命,因為可用數量之替換頁面可能在記憶體裝置之預期使用壽命之前耗盡,包含由於在高溫環境中感測錯誤而使用之彼等替換頁面。
圖12繪示圖解說明溫度對錯誤偵測之影響之一例示性圖表1200。圖表1200包含寫入循環1204中之一頁面替換機率1202。如圖所示,在高溫1206A期間作為寫入循環1204之一因素之頁面替換機率1202高於在相對低溫1206B期間作為寫入循環1204之一因素之頁面替換機率1202。應理解,在一特定溫度(例如,臨限值溫度)下之頁面替換機率可在寫入循環1204中保持恆定,使得在特定溫度或低於特定溫度下,可顯著降低基於溫度之感測錯誤之可能性,例如,該可能性降低至零或接近零。
因此,根據所揭示之標的之實施方案,可在錯誤偵測期間應用溫度臨限值。可應用溫度臨限值,使得在高於一臨限值溫度之溫度期間之錯誤偵測(例如,TED)可與處於或低於臨限值溫度之溫度期間之錯誤偵測以不同方式對待。在錯誤偵測期間使用之溫度可對應於晶片溫度、電路溫度、環境溫度等。
根據一實施方案,在溫度高於一臨限值溫度期間之錯誤偵測可暫停一段時間,直至溫度降低至處於或低於臨限值溫度。舉例而言,一溫度感測器可產生指示一晶片溫度高於50℃之一溫度臨限值之一信號。因此,當溫度高於50℃之溫度臨限值時識別之任何耐久性故障位元可能不被記錄為耐久性故障位元。在溫度感測器指示溫度低於溫度臨限值之後,可進行偵測耐久性故障位元之一後續檢查。
根據一實施方案,可基於一溫度臨限值來調整TED之一臨限值。TED之臨限值可基於一所感測溫度高於溫度臨限值而增加。例如,一溫度感測器可產生指示一電路溫度高於25℃之一溫度臨限值之一信號。因此,可基於溫度高於溫度臨限值來將一當前雙重TED配置(例如,在產生一替換頁面之前需要兩個錯誤之一配置)更新為一個三重TED配置(例如,在產生一替換頁面之前需要三個錯誤之一配置)。根據此實施方案,誤識別錯誤(例如,一軟錯誤)之可能性可因可實施一更高級別之確認(例如,三重偵測而非雙重偵測)而降低。因此,藉由在溫度高於一臨限值溫度時停用錯誤偵測及/或增加TED類別,可應用一溫度臨限值來降低由於軟錯誤而產生替換頁面之可能性。
圖13A及圖13B繪示基於臨限值之BISR之例示性流程圖。圖13A展示具有與MRAM陣列1330通信之一單獨TED表1332及BISR映射表1334之一雙重TED實施方案。如圖13A之流程圖1300中所展示,在1302處,可打開一MRAM組中之一頁面。在1304處,可判定在1302處打開之頁面是否具有映射在BISR映射表1334中之一頁面位址。若頁面位址被映射在BISR映射表1334中,則實際頁面位址對應於該頁面之映射列,且在1308處被讀取。若頁面位址未被映射在BISR映射表1334中,則實際頁面位址對應於該頁面之常規(例如,原始)列,且在1306處被讀取。
在1310處,判定是否偵測到ECC故障來進行修復。若未偵測到ECC故障,則在1312處,在MRAM陣列1330中之常規(例如,原始)列處完成一寫回操作。若在1310處偵測到一ECC故障,則在1314處判定故障位址是否已在TED表1332中。若故障位址不在TED表1332中,則在1316處,將故障位址記錄在TED表1332中,且在1312處,在MRAM陣列1330中之常規(例如,原始)列處完成一寫回操作。因此,在TED表1332中已不存在一故障位址之情況下,故障位址無法滿足雙重TED要求,且因此不產生修復列。
若故障位址在TED表1332中,則在1318處,故障位址亦記錄在BISR映射表1334暫存器中。BISR映射表1334可包含一微型MRAM陣列及一或多個暫存器。來自BISR映射表1334微型MRAM陣列之資訊可被加載至BISR映射表1334暫存器中,使得兩者可保持相同資訊。BISR映射表1334微型MRAM陣列可為非揮發性且BISR映射表1334暫存器可為揮發性。TED表1332亦可包含一微型MRAM陣列及TED暫存器。另外,在1320處,基於BISR映射表1334來將故障位址內容寫回至一新之修復列。另外,在1322處,BISR映射表更新被寫回至在1332處之BISR映射表1334微型MRAM陣列。因此,在圖13A之雙重TED實施方案中,若一故障位址已記錄在TED表1332中,則可理解,故障位址滿足雙重TED要求(即,導致故障位址被記錄在TED表1332中之一原始故障及一後續(例如,當前)故障)。由於出現了故障,因此故障位址之內容被寫入一替換頁面中。TED表1332可包含經歷TED之頁面位址。TED表1332可不包含其他頁面位址,從而減少TED表1332所需之存儲器空間量。
圖13B展示具有與MRAM陣列1330通信之一聯合TED及BISR映射表1374之一多TED實施方案。聯合TED及BISR映射表1374可用一個2位元TED計數器儲存頁面位址(例如,原始及/或修復頁面位址)。如圖13B之流程圖1340中所展示,在1342處,可打開MRAM組中之一頁面。在1344處,可判定在1342處打開之頁面是否具有映射在聯合TED及BISR映射表1374中之一頁面位址。若頁面位址被映射在聯合TED及BISR映射表1374中,則實際頁面位址對應於該頁面之映射列,且在1348處被讀取。若頁面位址未被映射在聯合TED及BISR映射表1374中,則實際頁面位址對應於該頁面之常規(例如,原始)列,且在1346處被讀取。
在1350處,判定是否偵測到ECC故障來進行修復。若未偵測到ECC故障,則在1352處,在MRAM陣列1330中之常規(例如,原始)列處完成一寫回操作。若在1350處偵測到一ECC故障,則在1354處判定故障位址是否已在聯合TED及BISR映射表1374中。若故障位址不在聯合TED及BISR映射表1374中,則在1356處將故障位址記錄在聯合TED及BISR映射表1374中,且在1352處,在MRAM陣列1330中之常規(例如,原始)列處完成一寫回操作。因此,在聯合TED及BISR映射表1374中已不存在一故障位址之情況下,故障位址無法滿足多重TED要求,且因此不產生修復列。
若故障位址在聯合TED及BISR映射表1374中,則在1358處,判定故障位址被記錄在聯合TED及BISR映射表1374中之次數是否滿足或超過一臨限值錯誤值。若在聯合TED及BISR映射表1374中記錄故障位址之次數不滿足或未超過臨限值錯誤值,則在1356處,在聯合TED及BISR映射表1374中記錄故障位址且將內容寫回至MRAM陣列1330中之常規(例如,原始)列。
若在聯合TED及BISR映射表1374中記錄故障位址之次數滿足或超過臨限值錯誤值,則在1360處,基於MRAM陣列1330中之聯合TED及BISR映射表1374將故障位址內容寫回至一新之修復列。此外,在1362處,將BISR映射表暫存器更新寫回至BSIR映射表1374微型MRAM陣列。因此,在圖13B之多重TED實施方案中,若已在聯合TED及BISR映射表1374中記錄一故障位址達臨限值錯誤值次數,則可理解,該故障位址滿足多重TED要求(即,導致在聯合TED及BISR映射表1374中記錄故障位址之一臨限值錯誤值故障次數,包含當前故障)。由於出現了故障,因此故障位址之內容被寫入一替換頁面中。
根據所揭示之標的之實施方案,STT-MRAM記憶體可藉由在封裝大小限制內提供高密度記憶體並支援差異化特徵來應對擴展挑戰。本文提供之技術以中點及/或自參考感測改良位元效率。此種效率可提供比NOR更好之耐久性及/或接近或處於無限耐久性。
根據實施方案,一記憶體陣列(例如,STT-MRAM陣列)可被組織成包含複數個字(例如,ECC字)之頁面。每一字可進一步包含一反轉位元,該反轉位元指示一給定字中之所有位元係以一真實狀態還是一反轉狀態儲存在記憶體陣列或對應之快取(為簡單起見,各者在本文中皆稱為一記憶體陣列)中。如本文所論述,記憶體陣列可包含一修復陣列,使得若一BISR操作被觸發,則來自一主陣列之頁面可被重新定位至修復陣列。例如,在於一字中偵測到一不可校正之錯誤時,一重寫操作可在一修復陣列頁面中重寫該字,且一映射表可將該字指向經修復之字以進行讀取及/或寫入操作。
根據一基於反轉位元之實施方案,回應於一讀取命令,可實施一快速讀取時延操作。可使用中點感測及/或自感測(即,自參考感測)來實施該方法。中點感測可包含識別清楚地辨別一給定MTJ係處於一高狀態還是一低狀態之一電壓值。可藉由判定為比低狀態電壓值高一臨限值量及/或比一高狀態電壓值低一臨限值量的一電壓值來實施中點感測。可實施中點感測,其中臨限值電壓可被清楚地識別,使得一高狀態低於臨限值電壓之機率及/或一低狀態高於臨限值電壓之機率實質上為零。自感測可為一種用於對一小型位元單元進行讀取之變化容忍技術,其中對MTJ Rsigma及電晶體變化沒有嚴格要求。對於自感測,一MTJ磁阻 (MR)要求可能低於100%。在自感測中,一修復陣列中之未使用之頁面可在開啟電源期間被寫入為一低狀態。
如本文所揭示,一中點感測或自感測讀取命令可補充有ECC校正。儘管一錯誤可能觸發記錄(例如,在TED表中),但根據一實施方案,任何BISR皆不會由於一讀取命令而被觸發。
根據基於反轉位元之實施方案,可接收一寫入命令。寫入命令可與一位址(例如,一ECC字位址)相關聯。接收寫入命令可觸發一寫入動作以將與位址相關聯之所有MTJ偏壓至一高狀態。該等MTJ中之每一者可用一電壓偏壓,使得其電阻值中之每一者經組態以進入一高狀態。
一感測操作可藉由感測與位址相關聯之MTJ中之每一者之狀態(舉例而言,使用一可微調之參考電壓來識別低電阻MTJ)來實施。為簡單起見,如本文所引用,一MTJ可為連接在一起之一MTJ群組。由於導致重疊之高及低狀態MTJ電阻分佈之大變化,因此可能存在低電阻MTJ (例如,不可校正之錯誤位元)。替代地或另外,由於重複之循環、電阻漂移及/或崩潰,可能存在低電阻MTJ。感測操作可在沒有ECC校正之情況下進行,使得經感測輸出係一真實輸出。若感測操作之結果係該等MTJ中之每一者皆處於一高狀態(例如,不處於一低狀態),則可判定不需要進行錯誤校正(例如,基於反轉位元之錯誤校正)。MTJ中之每一者處於一高狀態可指示該等MTJ中每一者正在按預期操作。在此情況下,可設定反轉位元以指示一真實狀態。另外,在此情況下,可藉由寫入位址來完成寫入命令。
若由於感測操作識別一或多個低電阻MTJ (例如,不可校正之MTJ),則可將經識別之低電阻MTJ之數量與低電阻MTJ之臨限值數量進行比較。低電阻MTJ之臨限值數量可為例如一個MTJ、兩個MTJ或更多個。臨限MTJ數量可基於一給定裝置之ECC能力(例如,ECC之級別)來判定。為簡單起見,本文進一步論述之低電阻MTJ之臨限值數量係一單個低電阻MTJ。然而,應理解,本文提供之基於反轉位元之揭示內容可使用任何臨限值數量之低電阻MTJ來實施。
因此,若由於感測操作識別一單個低電阻MTJ (或低於臨限值量之多個低電阻MTJ),則該單個MTJ可被指定為一不可校正之耐久性故障位元。因此,反轉位元可經寫入使得單個低電阻MTJ始終被寫入為一低狀態。例如,若一寫入命令包含要求單個低電阻MTJ處於一高狀態(例如,1)之資料,則系統可將整個寫入命令資料逆轉,使得寫入命令資料被反轉,且因此,單個低電阻MTJ可保持在低狀態,同時表示經逆轉資料。另外,反轉位元可經組態以指示一反轉狀態而非真實狀態。藉由將整個寫入命令資料逆轉且對反轉位元進行組態以指示反轉狀態,可藉由結合單個低電阻MTJ來實施寫入命令。例如,一後續讀取命令可偵測指示一反轉狀態之反轉位元,且基於識別,可輸出反轉寫入資料之一經校正(例如,經重新逆轉)之版本。
因此,藉由應用一反轉位元,一單個低電阻MTJ可能不引起或不需要一BISR觸發,因為單個低電阻MTJ可與反轉位元結合使用。藉由應用ECC及/或反轉位元,位元效率得以改良。例如,藉由使用中點感測及一更簡單之ECC (例如,單位元錯誤校正),可減少用於校正之位元數量。這種減少可增加一記憶體封裝中之記憶體密度,同時允許快速讀取時延,比NOR寫入時延更快,及/或增加耐用性。
根據一自感測讀取操作,可接收一讀取命令。可基於讀取命令來為待讀取頁面中之MTJ觸發自感測。在自感測程序期間,MTJ可被寫入為一低狀態。ECC可應用於所讀取資料。若存在不可校正之錯誤或可校正錯誤之數量滿足或超過一臨限值(例如,一雙重錯誤校正ECC字中有兩位元錯誤),則可觸發BISR。基於BISR被觸發,給定頁面可被寫回至一修復陣列中之一未使用之位置。
若存在小於臨限值之一可校正錯誤,則可不觸發任何BISR。因此,可在一主陣列內用任何經校正資料寫入給定頁面。若BISR被觸發或未被觸發,則可使用對對應之MTJ之一寫入1操作來執行寫回。如本文所揭示,在一給定寫回期間,可使用一反轉位元來最小化任何ECC字中之寫入1之數量。
根據一自感測寫入操作,可接收一寫入命令。基於寫入命令,可為待寫入頁面中之MTJ觸發自感測。在自感測程序期間,MTJ可被寫入為一低狀態。ECC可應用於所讀取資料。若存在不可校正之錯誤或可校正錯誤之數量滿足或超過一臨限值(例如,一雙重錯誤校正ECC字中有兩位元錯誤),則可觸發BISR。基於BISR被觸發,對應於寫入命令之資料可被寫入一修復陣列中之一未使用之位置。
若存在小於臨限值之一可校正錯誤,則可不觸發任何BISR。因此,可在一主陣列內用來自寫入命令之資料對給定頁面進行寫入。若BISR被觸發或未被觸發,則可使用對對應之MTJ之一寫入1操作來執行寫入。如本文所揭示,在一給定寫入命令期間,可使用一反轉位元來最小化任何ECC字中之寫入1之數量。
在自感測期間,一未使用之修復陣列可在開啟電源期間重設為低狀態,且處於最大臨限值之可校正錯誤之數量可用於觸發BISR。這種技術可使BISR能夠在自參考讀取或寫入操作之時延內執行。
圖14繪示具有一反轉位元之一資料頁面1400。如頁面1400中所展示,每一單元字(例如,對於單元0至單元5)可包含一對應之反轉位元。如本文所揭示,反轉位元可指示資料字(例如,資料字0至資料字5)中之值係處於其真實狀態還係處於反轉狀態。
根據一實例,可接收一寫入命令以將資料寫入單元2字。基於寫入命令,可針對單元2字中之資料字0至5發起將一高狀態寫入至MTJ中之每一者中之一寫入操作。寫入操作可藉由用足以將MTJ中之每一者置於一低電阻狀態之一電壓對MTJ中之每一者進行偏壓來實施。可實施一感測操作(例如,中點感測或自感測)以驗證與單元2字相關聯之MTJ中之每一者處於一高狀態。若MTJ中之每一者皆處於一高狀態,則可滿足寫入命令且可更新MTJ以反映對應於寫入命令之真實值。
若感測操作偵測到多於一個低電阻MTJ (或多於臨限值數量之低電阻MTJ),則可觸發一BISR操作。BISR操作可能被觸發,因為使用反轉位元可能無法完全校正具有多於一個低電阻MTJ之一字中之真值或反轉值。例如,在具有兩個不可校正之位元之單元字中,使用一單個反轉位元可能無法寫入要求兩個位元中之一者為一高值而另一者為一低值之資料。單個反轉位元可提供真值或反轉值之一指示,且因此不可容納同時要求一第一不可校正之位元為一高值且第二不可校正之位元為一低值之資料。當第一不可校正之位元表示一高值時,反轉位元必須處於一反轉狀態,因為第一不可校正之位元處於一低電阻狀態。然而,當反轉位元指示一反轉狀態時,第二不可校正之位元亦自動表示一高狀態,因為其亦處於一低電阻狀態。因此,兩個不可校正之位元無法藉由使用一單個位元反轉位元來表示兩種不同狀態。
若感測操作偵測到一單個低電阻MTJ,諸如字1402之MTJ 1404,則寫入命令資料可被寫入至單元2字。寫入命令資料可經寫入使得MTJ 1404始終處於一低狀態。因此,若寫入命令包含預設情況下要求MTJ 1404處於一低狀態之資料,則寫入命令按原樣寫入且反轉位元被設定為指示單元2字之真值。然而,若寫入命令包含預設情況下要求MTJ 1404處於一高狀態之資料,則寫入命令以一反轉方式寫入(例如,1s (高狀態)被轉換為0s (低狀態)且0s被轉換為1s)。另外,反轉位元經設定以指示單元2字之反轉值。因此,若反轉位元指示一真狀態(例如,若反轉位元指示一高狀態或1),則一後續讀取命令可將MTJ 1404輸出為一低狀態(例如,0)。相反地,若反轉位元指示一反轉狀態(例如,若反轉位元指示一低狀態或0),則一後續讀取命令可將MTJ 1404輸出為一高狀態(例如,1)。
圖15繪示可用於實施一反轉位元之一方塊圖1500。儘管展示兩個MRAM組1504A及1504B,但應理解,本文揭示之技術可使用任意數量之存儲器組來實施。MRAM組1504A及1504B可分別包含主陣列1506A及1506B、修復陣列1508A及1508B、感測電路1512A及1512B、ECC資料路徑1514A及1514B、快取1516A及1516B頁面(例如,256位元頁面)、位址解碼器1510A及1510B、以及控制狀態機(STM) 1518A及1518B。
MRAM組1504A及1504B可連接至一偏壓系統1502,且其組件可自控件1520接收控制信號。控件1520可與串列介面1522通信(例如,可彼此耦合)。讀取及寫入/程式化命令可經由串列介面1522接收且可以由控件1520處理。
偏壓系統1502可向主陣列1506A及1506B以及微調設定提供備用電壓。微調設定可在偏壓系統處之電子熔絲/反熔絲塊中予以程式化。備用電壓可在一備用模式下啟用操作,使得主陣列1506A及1506B在經由控件1520接收到讀取或寫入命令時不從關閉狀態啟動。位址解碼器1510A及1510B可經組態以對一讀取或寫入請求進行解碼以識別對應於讀取或寫入請求之一記憶體位置(例如,一位址)。如本文所論述,修復陣列1508A及1508B可包含BISR之替換頁面。如本文所揭示,ECC資料路徑1514A及1514B可用於提供修復路徑及/或TED值。
快取1516A及1516B可用於臨時儲存讀取及/或寫入資料以用於更快通信。如圖15中所展示,快取1516B可對應於圖14之資料頁面1400。應理解,儘管圖15展示對應於快取1516B之資料頁面1400,但資料頁面1400可對應於1516A、主陣列1506A及/或1506B、修復陣列1508A及/或1508B等或其之一組合。記憶體陣列1506A及1506B存取可經組織成頁面,其中至少一個頁面(例如,256位元)之位元可儲存在快取1516A或1516B中。快取1516A及/或1516B可包含複數個ECC字且每一ECC字可包含資料位元、同位位元及/或反轉位元中之一或多者。
感測電路1512A及1512B可用於感測MTJ之高及/或低狀態且可在一基於反轉位元之測試及/或讀取操作期間使用。感測電路1512A及1512B可包含用於中點感測、自參考電路及/或微調暫存器之組件以保持與電壓或電流相關聯之複數個參考電平。
方塊圖1500中所展示之系統可用於藉由使用具有低開銷ECC (例如,單或雙重位元校正)之中點感測或自參考感測來提供位元效率改良,如本文所揭示。
圖16繪示用於使用一記憶體裝置之一反轉位元之一例示性方法之一流程圖1600。流程圖1600係基於中點感測,但應理解,本文揭示之自感測操作可用於一反轉位元實施方案。在流程圖1600之1602處,可接收一寫入命令。寫入命令可包含一待寫入頁面或字之一位址。
基於在1602處接收到寫入命令,可在1604處將一給定字之所有MTJ寫入一高狀態。如本文所揭示,可藉由將MTJ加偏壓至一高電阻狀態來將MTJ寫入至高狀態。在1606處,在一給定字之MTJ在1604處被寫入至一高狀態之後,可識別低電阻MTJ。若低電阻MTJ之數量低於一臨限值,則在1608處,可藉由更新反轉位元來完成來自1602之寫入命令,使得低電阻MTJ與一低電阻寫入MTJ對準。如本文所揭示,低電阻MTJ可與一低電阻寫入MTJ對準,使得若寫入命令要求低電阻MTJ處於一低狀態,則寫入命令按原樣寫入且反轉位元指示真值。若寫入命令要求低電阻MTJ處於一高狀態,則寫命令被反轉寫入,且反轉位元指示反轉值。
在一個實施例中,一種用於管理一記憶體裝置之方法可包含:判定一第一記憶體區域中之一頁面之一第一位址是否被映射在一映射表中;回應於判定第一記憶體中之頁面之第一位址是否被映射在映射表中,將一目標位址設定為(i)在映射表中被識別為映射至第一位址之第二位址或(ii)第一個位址;判定目標位址之複數個第一層錯誤校正碼(ECC)字之每一字中出現故障之位元數量;以及回應於判定目標位址之一第一層ECC字中出現故障之位元數量滿足一預定臨限值,而將目標位址添加至映射表、將來自目標位址之內容寫回至第一記憶體區域中之一修復位址、及藉由將目標位址映射至修復位址來更新映射表。
該方法之各種實施例可包含:其中並行執行將內容自目標位址寫回至修復位址及更新映射表;在記憶體裝置之一開啟電源期間執行更新映射表;其中映射表儲存在非揮發性記憶體中;其中回應於一讀取操作及/或一寫入操作而執行判定目標位址之複數個第一層ECC字中之每一字中出現故障之位元數量之步驟;其中映射表儲存在與第一記憶體區域分開之一第二記憶體區域中;其中第二記憶體區域係一磁穿隧接面(MTJ)微型陣列;其中MTJ微型陣列包含複數個陣列電路及包含ECC字線驅動器及ECC寫入驅動器之一資料路徑;進一步包含:在為記憶體裝置開啟電源之同時,自MTJ微型陣列中讀取映射表至複數個暫存器,且回應於一不可恢復之ECC故障發生,而以一故障安全模式為記憶體開啟電源;其中判斷第一記憶體區域中頁面之第一位址是否被映射在映射表中之步驟包含:在為記憶體裝置開啟電源之同時,將映射表自MTJ微型陣列讀取至複數個暫存器中;以及搜尋複數個暫存器以判定第一位址是否對應於映射表中之一修復位址。
在一個實施例中,一種記憶體裝置可包含一第一記憶體區域;及一映射表,其中該記憶體裝置經組態以判定第一記憶體區域中之一頁面之一第一位址是否被映射在映射表中;回應於判定第一位址映射在映射表中,而將一目標位址設定為在映射表中被識別為映射至第一位址之一第二位址;回應於判定第一位址未映射在映射表中,而將目標位址設定為第一位址;判定目標位址之複數個第一層錯誤校正碼(ECC)字中之每一字中出現故障之位元數量;及回應於判定目標位址之一第一層ECC字中出現故障之位元數量滿足一預定臨限值,而將目標位址添加至映射表、將內容自目標位址寫回至第一記憶體區域中之一修復位址、及藉由將目標位址映射至修復位址來更新映射表。
該記憶體裝置之各種實施例可包含:其中該記憶體裝置經進一步組態以並行執行將內容自目標位址寫回至修復位址及更新映射表;其中該記憶體裝置經進一步組態以在記憶體裝置之一開啟電源期間執行更新映射表;其中映射表儲存在非揮發性記憶體中;其中該記憶體裝置經進一步組態以回應於一讀取操作及/或一寫入操作而判定目標位址之複數個第一層ECC字中之每一字中出現故障之位元數量;其中映射表儲存在與第一記憶體區域分開之一第二記憶體區域中;其中第二記憶體區域係一磁穿隧接面(MTJ)微型陣列;其中MTJ微型陣列包含複數個陣列電路及包含ECC字線驅動器及ECC寫入驅動器之一資料路徑;其中該記憶體裝置經進一步組態以:在為記憶體裝置開啟電源之同時,將映射表自MTJ微型陣列中讀取至複數個暫存器,且回應於一不可恢復之ECC故障發生映射表,而以一故障安全模式為記憶體開啟電源;其中該記憶體裝置經進一步組態以:判斷第一記憶體區域中之頁面之第一位址是否被映射在映射表中包含:在為記憶體裝置開啟電源之同時,將映射表自MTJ微型陣列讀取至複數個暫存器中;且搜尋複數個暫存器以判定第一位址是否對應於映射表中之一修復位址。
在一個實施例中,一種用於管理一記憶體裝置之方法可包含接收一寫入命令以在一儲存體組中之一頁面處寫入,該頁面具有一頁面位址;接收一寫入命令以在一記憶體組中寫入一頁面,該頁面具有一頁面位址;識別一實際頁面位址,其中實際頁面位址為一常規頁面位址,或實際頁面位址為一映射頁面位址;在實際頁面位址處偵測一錯誤校正碼(ECC)故障;識別實際頁面位址包含在一臨限值錯誤偵測 (TED) 表中;判定實際頁面位址包含在TED表中值錯誤值次數;基於判定TED表中包含實際頁面位址值錯誤值次數,來產生一新之修復列並在新之修復列中寫入該寫入命令;及更新一BISR映射表以包含新之修復列。
記憶體裝置之各種實施例可包含:其中基於來自一晶片溫度、一電路溫度或一環境溫度中之至少一者之一溫度滿足一臨限值溫度值來判定臨限值錯誤值;基於在實際頁面位址處偵測到ECC故障,來更新TED表以指示實際頁面位址之一額外錯誤實例; 判定一晶片溫度、一電路溫度或一環境溫度中之至少一者高於臨限值溫度值;及基於判定晶片溫度、電路溫度或環境溫度中之至少一者高於臨限值溫度值,來禁止新之修復列之產生;其中BISR映射表及TED表是一單個表。
在一個實施例中,一種用於管理一記憶體裝置之方法可包含接收在位址處寫入一字之一寫入命令;將與位址相關聯之複數個磁穿隧接面(MTJ)寫入為一高電阻狀態;基於一參考電壓感測複數個MTJ中之每一者之狀態;基於感測複數個MTJ之狀態來識別一單個低電阻MTJ;及藉由組態反轉位元來完成寫入命令,使得若寫入命令要求單個低電阻MTJ處於一高寫入電阻狀態,則以一反轉格式寫入字且反轉位元經組態以指示一反轉,及使得若寫入命令要求單個低電阻MTJ處於一低寫入電阻狀態,則以一真實格式寫入字且反轉位元經組態以指示真實格式。
記憶體裝置之各種實施例可包含:基於感測複數個MTJ之狀態來識別一額外低電阻MTJ;基於識別單個低電阻MTJ及額外低電阻MTJ來觸發一內建自我修復(BISR)程序;及為ECC字產生一修復頁面;其中參考電壓係一中點電壓,使得高於中點電壓之一所偵測電壓對應於一高狀態,而處於或低於中點電壓之一所偵測電壓對應於一低狀態;其中高寫入電阻狀態對應於一個二進制真,且低寫入電阻狀態對應於一個二進制假;接收位址之一讀取命令;使用中點感測來執行讀取命令;及基於偵測到錯誤來偵測錯誤校正碼(ECC)校正。
在一個實施例中,揭示一種醫療裝置,其用於接收位址之一讀取命令、使用中點感測來執行讀取命令、偵測一錯誤及基於偵測到錯誤來執行錯誤校正碼(ECC)校正。
記憶體裝置之各種實施例可包含一個三重錯誤偵測表。BISR控制邏輯電路與溫度感測器連接且經組態以基於溫度讀數啟動或停用一BISR功能。
已出於清楚及理解之目的描述了本發明之前述描述。其不意欲將本發明限於所揭示之精確形式。在本申請案之範疇及等效物內可進行各種修改。
100:記憶體組
101:第一記憶體區/記憶體組區
102:常規頁面
103:修復頁面
104:寫入循環
105:ECC
106:通信鏈路
107:通信鏈路
200:例示性圖式
201:區段
202:區段
203:區段
204:區段
300:例示性表視圖
301:列
302:行
400:例示性方法
401:步驟
402:步驟
403:步驟
404:步驟
405:步驟
406:步驟
407:步驟
408:步驟
409:步驟
500:例示性圖表
501:區段
510:例示性圖表
511:區段
512:區段
513:線
600:記憶體裝置
601:主陣列
602:微型陣列
603:資料路徑
604:資料路徑
605:主記憶體
606:非揮發性組態位元陣列
607:一次可程式化(OTP)陣列
608:BISR映射表
609:通信介面
610:通信介面
700:例示性驅動電路
701:字線驅動器
702:感測放大器及寫入驅動器
703:感測放大器及寫入驅動器
704:感測放大器及寫入驅動器
705:感測放大器及寫入驅動器
706:感測放大器及寫入驅動器
707:感測放大器及寫入驅動器
801:BISR映射表搜尋功能
900:例示性時序圖
901:方塊
902:步驟
903:步驟
904:步驟
1000:例示性方法
1001:步驟
1002:步驟
1003:步驟
1004:步驟
1005:步驟
1006:步驟
1007:步驟
1008:步驟
1009:步驟
1010:步驟
1011:步驟
1100:例示性圖表/圖表
1102:替換頁面
1104:寫入循環
1106A:單錯誤偵測
1106B:雙重錯誤偵測
1106C:三重錯誤偵測
1200:例示性圖表/圖表
1202:頁面替換機率
1204:寫入循環
1206A:高溫
1206B:低溫
1300:流程圖
1302:步驟
1304:步驟
1306:步驟
1308:步驟
1310:步驟
1312:步驟
1314:步驟
1316:步驟
1318:步驟
1320:步驟
1322:步驟
1330:MRAM陣列
1332:TED表
1334:BISR映射表
1340:流程圖
1342:步驟
1344:步驟
1346:步驟
1348:步驟
1350:步驟
1352:步驟
1354:步驟
1356:步驟
1358:步驟
1360:步驟
1362:步驟
1374:聯合TED及BISR映射表/BSIR映射表
1400:資料頁面/頁面
1402:字
1404:MTJ
1500:方塊圖
1502:偏壓系統
1504A:MRAM組
1504B:MRAM組
1506A:主陣列/記憶體陣列
1506B:主陣列/記憶體陣列
1508A:修復陣列
1508B:修復陣列
1510A:位址解碼器
1510B:位址解碼器
1512A:感測電路
1512B:感測電路
1514A:ECC資料路徑
1514B:ECC資料路徑
1516A:快取
1516B:快取
1518A:控制狀態機(STM)
1518B:控制狀態機(STM)
1520:控件
1522:串列介面
1600:流程圖
1602:步驟
1604:步驟
1606:步驟
1608:步驟
在以下詳細描述之過程中,將參考隨附圖式。圖式展示本發明之不同態樣,且在適當之情況下,類似地標記在不同圖中圖解說明類似結構、組件、材料及/或元件之元件符號。應當理解,除了具體展示之彼等之外的結構、組件及/或元件之各種組合係預期的且在本發明之範疇內。
此外,本文描述且圖解說明本發明之許多實施例。本發明既不限於任何單個態樣或其實施例,亦不限於此等態樣及/或實施例之任何組合及/或排列。此外,本發明之該等態樣及/或其實施例中之每一者可單獨使用或與本發明之其他態樣及/或其實施例中之一者或多者組合使用。為簡潔起見,本文未單獨論述及/或圖解說明某些排列及組合;然而,所有排列及組合皆被認為落入本發明之範疇內。
圖1繪示根據本發明之一態樣之用於一記憶體裝置之一記憶體組100之一方塊圖。
圖2繪示圖解說明根據本發明之一態樣之使用正交錯誤校正碼(ECC)之一BISR觸發之一例示性圖式。
圖3繪示根據本發明之一態樣之一BISR觸發之例示性表視圖。
圖4繪示根據本發明之一態樣之用於為一記憶體裝置執行BISR之一例示性方法之一流程圖。
圖5A繪示圖解說明根據本發明之一態樣之一頁面中基於一MTJ原始位元錯誤率(RBER)之一BISR觸發之一機率之一例示性圖表。
圖5B繪示圖解說明根據本發明之一態樣之基於記憶體之循環次數之一RBER之一例示性圖表。
圖6繪示根據本發明之一態樣之一記憶體裝置之一方塊圖。
圖7繪示根據本發明之一態樣之用於一微型陣列之一例示性驅動電路。
圖8繪示根據本發明之一態樣之用於一BISR映射表搜尋功能之一例示性方法。
圖9繪示根據本發明之一態樣之用於一記憶體裝置之BISR之一例示性方法之一例示性時序圖式。
圖10繪示根據本發明之一態樣之用於一記憶體裝置之BISR之一初始化程序之一例示性方法。
圖11繪示圖解說明根據本發明之一態樣之用於錯誤偵測之變化臨限值之一例示性圖表。
圖12繪示圖解說明根據本發明之一態樣之溫度對錯誤偵測之影響之一例示性圖表。
圖13A繪示根據本發明之一態樣之基於臨限值之BISR之一例示性流程圖。
圖13B繪示根據本發明之一態樣之基於臨限值之BISR之另一例示性流程圖。
圖14描繪根據本發明之一態樣之具有反轉位元之一資料頁面。
圖15繪示根據本發明之一態樣之一記憶體裝置之一方塊圖。
圖16繪示根據本發明之一態樣之用於為一記憶體裝置使用一反轉位元之一例示性方法之一流程圖。
同樣,本文描述且圖解說明許多實施例。本發明既不限於任何單個態樣或其實施例,亦不限於此等態樣及/或實施例之任何組合及/或排列。本發明之該等態樣及/或其實施例中之每一者可單獨使用或與本發明之其他態樣及/或其實施例中之一者或多者組合使用。為簡潔起見,本文沒有單獨論述彼等組合及排列中之許多。
如本文所使用,術語「包括(comprises/comprising)」或其任何其他變體意欲涵蓋一非排他性包含,使得包括一要素清單之一程序、方法、製品或設備不僅包含彼等要素,而且可包含未明確列出或此類程序、方法、製品或設備固有之其他要素。術語「例示性」係在「實例」之意義上使用,而非「理想的」。
400:例示性方法
401:步驟
402:步驟
403:步驟
404:步驟
405:步驟
406:步驟
407:步驟
408:步驟
409:步驟
Claims (23)
- 一種用於管理一記憶體裝置之方法,該方法包括: 判定一第一記憶體區域中之一頁面之一第一位址是否被映射在一映射表中; 回應於判定第一記憶體中之該頁面之該第一位址是否被映射在該映射表中,而將一目標位址設定為(i)在該映射表中被識別為映射至該第一位址之一第二位址或(ii)該第一位址; 判定該目標位址之複數個第一層錯誤校正碼(ECC)字中之每一字中出現故障之一位元數量;及 回應於判定該目標位址之一第一層ECC字中出現故障之一位元數量滿足一預定臨限值,而將該目標位址添加至該映射表、將內容自該目標位址寫回至該第一記憶體區域中之一修復位址、及藉由將該目標位址映射至該修復位址來更新該映射表。
- 如請求項1之方法,其中並行執行將內容自該目標位址寫回至該修復位址及更新該映射表。
- 如請求項1之方法,其中在該記憶體裝置之一開啟電源期間執行更新該映射表。
- 如請求項1之方法,其中該映射表儲存在非揮發性記憶體中。
- 如請求項1之方法,其中回應於一讀取操作及/或一寫入操作而執行判定該目標位址之該複數個第一層ECC字中之每一字中出現故障之該位元數量之步驟。
- 如請求項1之方法,其中該映射表儲存在與該第一記憶體區域分開之一第二記憶體區域中。
- 如請求項6之方法,其中該第二記憶體區域係一磁穿隧接面(MTJ)微型陣列。
- 如請求項7之方法,其中該MTJ微型陣列包括複數個陣列電路及包括ECC字線驅動器及ECC寫入驅動器之一資料路徑。
- 如請求項7之方法,其進一步包括: 在為該記憶體裝置開啟電源之同時,將該映射表自該MTJ微型陣列讀取至複數個暫存器,及回應於一不可恢復之ECC故障發生,而以一故障安全模式為記憶體開啟電源。
- 如請求項7之方法,其中判定該第一記憶體區域中之該頁面之該第一位址是否被映射在該映射表中之步驟包括: 在為該記憶體裝置開啟電源之同時,將該映射表自該MTJ微型陣列讀取至複數個暫存器;及 搜尋該複數個暫存器以判定該第一位址是否對應於該映射表中之一修復位址。
- 一種用於管理一記憶體裝置之方法,該方法包括: 接收一寫入命令以在一記憶體組中寫入一頁面,該頁面具有一頁面位址; 識別一實際頁面位址,其中該實際頁面位址為一常規頁面位址,或該實際頁面位址為一所映射頁面位址; 在該實際頁面位址處偵測一錯誤校正碼(ECC)故障; 識別該實際頁面位址包含在一臨限值錯誤偵測(TED)表中; 判定該實際頁面位址包含在該TED表中達一臨限值錯誤值次數; 基於判定該實際頁面位址包含在該TED表中達一臨限值錯誤值次數,來產生一新之修復列並在該新之修復列中寫入該寫入命令;及 更新一內建自我修復(BISR)映射表以包含該新之修復列。
- 如請求項11之方法,其中基於來自一晶片溫度、一電路溫度或一環境溫度中之至少一者之一溫度滿足一臨限值溫度值來判定該臨限值錯誤值。
- 如請求項11之方法,其進一步包括:基於在該實際頁面位址處偵測到該ECC故障,來更新該TED表以指示該實際頁面位址之一額外錯誤實例。
- 如請求項11之方法,其進一步包括: 判定一晶片溫度、一電路溫度或一環境溫度中之至少一者高於一臨限值溫度值;及 基於判定該晶片溫度、該電路溫度或該環境溫度中之至少一者高於該臨限值溫度值來禁止該新之修復列之產生。
- 如請求項11之方法,其中該BISR映射表及該TED表是一單個表。
- 一種用於管理一記憶體裝置之方法,該方法包括: 接收一寫入命令以在一位址處寫入一字; 將與該位址相關聯之複數個磁穿隧接面(MTJ)寫入為一高電阻狀態; 基於一參考電壓感測該複數個MTJ中之每一者之狀態; 基於感測出該複數個MTJ之該狀態來識別一單個低電阻MTJ;及 藉由組態一反轉位元來完成該寫入命令,使得若該寫入命令要求該單個低電阻MTJ處於一高寫入電阻狀態,則以一反轉格式寫入該字且該反轉位元經組態以指示一反轉,及使得若該寫入命令要求該單個低電阻MTJ處於一低寫入電阻狀態,則以一真實格式寫入該字且該反轉位元經組態以指示該真實格式。
- 如請求項16之方法,其進一步包括: 基於感測出該複數個MTJ之該狀態來識別一額外低電阻MTJ;及 基於識別出該單個低電阻MTJ及該額外低電阻MTJ來觸發一內建自我修復(BISR)程序;及 為該字產生一修復頁面。
- 如請求項16之方法,其中該參考電壓係一中點電壓,使得高於該中點電壓之一所偵測電壓對應於一高狀態,而處於或低於該中點電壓之一所偵測電壓對應於一低狀態。
- 如請求項16之方法,其該高寫入電阻狀態對應於一個二進制真,且該低寫入電阻狀態對應於一個二進制假。
- 如請求項16之方法,其進一步包括: 接收該位址之一讀取命令; 使用中點感測來執行該讀取命令; 偵測一錯誤;及 基於偵測到該錯誤來執行錯誤校正碼(ECC)校正。
- 一種記憶體裝置,其包括: 一記憶體陣列,其包含一個兩層錯誤校正碼(ECC); 一內建自我修復(BISR)映射表; BISR控制邏輯電路;及 一溫度感測器,其經組態以輸出一溫度讀數。
- 如請求項21之記憶體裝置,其進一步包括一個三重錯誤偵測表。
- 如請求項21之記憶體裝置,其中該BISR控制邏輯電路與該溫度感測器連接且經組態以基於該溫度讀數啟動或停用一BISR功能。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063107173P | 2020-10-29 | 2020-10-29 | |
US63/107,173 | 2020-10-29 | ||
US17/512,392 US11798646B2 (en) | 2020-10-29 | 2021-10-27 | Systems and methods for monitoring and managing memory devices |
US17/512,392 | 2021-10-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202217828A true TW202217828A (zh) | 2022-05-01 |
Family
ID=81379104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110140453A TW202217828A (zh) | 2020-10-29 | 2021-10-29 | 用於監測及管理記憶體裝置之系統及方法 |
Country Status (4)
Country | Link |
---|---|
US (2) | US11798646B2 (zh) |
EP (1) | EP4237949A2 (zh) |
TW (1) | TW202217828A (zh) |
WO (1) | WO2022094047A2 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI857467B (zh) | 2023-01-19 | 2024-10-01 | 世界先進積體電路股份有限公司 | 記憶體裝置以及記憶體裝置的控制方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4487978B2 (ja) | 2006-06-28 | 2010-06-23 | セイコーエプソン株式会社 | 半導体記憶装置管理システム、プログラム、半導体記憶装置の管理方法 |
TW201220186A (en) | 2010-11-04 | 2012-05-16 | Inventec Corp | Data protection method for damaged memory cells |
US10146601B2 (en) | 2013-06-12 | 2018-12-04 | Everspin Technologies, Inc. | Methods and devices for healing reset errors in a magnetic memory |
JP2016114958A (ja) * | 2014-12-10 | 2016-06-23 | 株式会社東芝 | 記憶媒体管理装置、記憶媒体管理方法、コンピュータプログラム及び記憶媒体管理システム |
US10303536B2 (en) * | 2015-10-28 | 2019-05-28 | Via Technologies, Inc. | Non-volatile memory device and control method thereof |
US10671298B2 (en) * | 2018-03-06 | 2020-06-02 | Micron Technology, Inc. | Storing page write attributes |
KR20200065489A (ko) * | 2018-11-30 | 2020-06-09 | 에스케이하이닉스 주식회사 | 데이터 처리 시스템 내 자원 사용에 대응하여 데이터 패스를 동적 할당하는 방법 및 장치 |
US11734175B2 (en) * | 2019-08-22 | 2023-08-22 | SK Hynix Inc. | Storage device and method of operating the same |
KR20220103378A (ko) * | 2021-01-15 | 2022-07-22 | 에스케이하이닉스 주식회사 | 메모리 시스템에 저장된 데이터를 처리하는 장치 및 방법 |
-
2021
- 2021-10-27 US US17/512,392 patent/US11798646B2/en active Active
- 2021-10-28 EP EP21819633.5A patent/EP4237949A2/en active Pending
- 2021-10-28 WO PCT/US2021/057008 patent/WO2022094047A2/en unknown
- 2021-10-29 TW TW110140453A patent/TW202217828A/zh unknown
-
2023
- 2023-09-15 US US18/467,996 patent/US20240006011A1/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI857467B (zh) | 2023-01-19 | 2024-10-01 | 世界先進積體電路股份有限公司 | 記憶體裝置以及記憶體裝置的控制方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2022094047A3 (en) | 2022-06-02 |
US20240006011A1 (en) | 2024-01-04 |
US11798646B2 (en) | 2023-10-24 |
US20220139488A1 (en) | 2022-05-05 |
EP4237949A2 (en) | 2023-09-06 |
WO2022094047A2 (en) | 2022-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101793368B1 (ko) | 비휘발성 메모리에서의 오류를 검출 및 정정하기 위한 방법 및 시스템 | |
US9483348B2 (en) | Memory module, memory system having the same, and methods of reading therefrom and writing thereto | |
TWI587297B (zh) | 半導體儲存裝置 | |
JP6209646B2 (ja) | 不揮発性メモリのデータ管理方法およびシステム | |
KR101649395B1 (ko) | 비휘발성 메모리에 대한 리프레시 아키텍처 및 알고리즘 | |
US10659081B2 (en) | Preprogrammed data recovery | |
US20180060194A1 (en) | Semiconductor Memory Devices with Error Correction and Methods of Operating the Same | |
US9747159B2 (en) | MRAM smart bit write algorithm with error correction parity bits | |
US10338835B2 (en) | Memory device | |
US8040713B2 (en) | Bit set modes for a resistive sense memory cell array | |
US9082495B2 (en) | Nonvolatile memory module, memory system including nonvolatile memory module, and controlling method of nonvolatile memory module | |
US20160132388A1 (en) | Semiconductor memory device and ecc method thereof | |
TWI768787B (zh) | 記憶體裝置以及感測放大器修整方法 | |
US9947380B2 (en) | Adjustable read reference voltage to reduce errors in memory devices | |
JP6131313B2 (ja) | 不揮発性メモリのリフレッシュ | |
TW202217828A (zh) | 用於監測及管理記憶體裝置之系統及方法 | |
US10943949B2 (en) | Semiconductor storage device |