TW202211270A - 主動控制式電力變壓器及控制方法 - Google Patents
主動控制式電力變壓器及控制方法 Download PDFInfo
- Publication number
- TW202211270A TW202211270A TW110113977A TW110113977A TW202211270A TW 202211270 A TW202211270 A TW 202211270A TW 110113977 A TW110113977 A TW 110113977A TW 110113977 A TW110113977 A TW 110113977A TW 202211270 A TW202211270 A TW 202211270A
- Authority
- TW
- Taiwan
- Prior art keywords
- transformer
- current
- power
- amplifier
- signal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/01—Arrangements for reducing harmonics or ripples
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/38—Auxiliary core members; Auxiliary coils or windings
- H01F27/385—Auxiliary core members; Auxiliary coils or windings for reducing harmonics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/40—Structural association with built-in electric component, e.g. fuse
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/0115—Frequency selective two-port networks comprising only inductors and capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Electrical Variables (AREA)
- Dc-Dc Converters (AREA)
- Paper (AREA)
- Inverter Devices (AREA)
- Regulation Of General Use Transformers (AREA)
- Rectifiers (AREA)
Abstract
一變壓器包括具有多個臂之一磁芯。該變壓器亦包括圍繞該等臂中之一指定者纏繞的一直流(DC)偏壓繞組。該變壓器進一步包括一DC放大器,其係電氣地連接至該DC偏壓繞組。該DC放大器係組配來接收一與一負載輸出電流或電壓相關聯之一第一信號。該DC放大器亦係被組配來基於該第一信號來判定用於該DC偏壓繞組的一電流量。該DC放大器係進一步組配來發送該經判定量之電流通過該DC偏壓繞組。
Description
本揭露內容大體上係針對電力系統。更具體言之,本揭露內容係針對一主動控制式電力變壓器及用於控制該電力變壓器之一方法。
許多現有電力系統,諸如用於雷達系統中之彼等電力系統,係使用重型外電裝備將電流湧入及諧波濾波限制於一主電力變壓器。不幸地,習知被動濾波器一般致使輸入線電力被過度補償,其可能在一電力系統上之一負載輕時,致使系統電壓位準上升至高於正常位準。
本揭露內容係關於一主動控制式電力變壓器及一種用於控制該電力變壓器之方法。
在一第一實施例中,一變壓器包括具有多個臂之一磁芯。該變壓器亦包括圍繞該等臂中之一指定者纏繞的一直流(DC)偏壓繞組。該變壓器進一步包括一DC放大器,其係電氣地連接至該DC偏壓繞組。該DC放大器係組配來接收與一負載輸出電流、電壓、諧波位準或輸出電力相關聯之一第一信號。該DC放大器亦係被組配來基於該第一信號來判定用於該DC偏壓繞組的一電流量。該DC放大器係進一步組配來發送該經判定量之電流通過該DC偏壓繞組。
在一第二實施例中,一方法包括:在一DC放大器處,接收與一電源輸入電流、電壓、電力或諧波位準相關聯之一第一信號。該方法亦包括基於該第一信號來判定用於一DC偏壓繞組之一電流量。該方法進一步包括:藉由該DC放大器,發送經判定量之電流通過該DC偏壓繞組以改善電力調節、電流湧入或諧波位準。該DC偏壓繞組係電氣地連接該DC放大器。一磁芯具有多個臂,且該DC偏壓繞組係圍繞該等臂中之一指定者纏繞。
從下文的圖式、說明及請求項,其他技術特徵對熟習此藝者而言可為顯易可見。
下文說明之圖1至9以及用以在此專利文件中說明本發明之原理的各種實施例僅為例示,且不應被解釋為限制本發明之範圍。熟習此藝者將理解,本發明之原理可實行於任何類型的合適配置之裝置或系統中。
為簡化及清晰起見,一些特徵及組件未在每一圖式中明確顯示,包括關連其他圖式所例示之彼等特徵及組件。應理解的是,圖式中所例示的所有特徵可於所說明之實施例之任一者中採用。自一特定圖式省略一特徵或組件係出於簡化及清晰之目的,且不意謂隱含該特徵或組件不能在關連該圖式所說明之實施例中採用。
如上文所提及,雷達電力系統或其他電力系統通常使用重型外電裝備將電流湧入及諧波濾波限制於一主電力變壓器。一範例系統使用一用於將湧入電流限制於一主雷達變壓器之單獨子系統,其需要超過300立方英呎之空間且具有大約一噸之一重量。因此,任何減小重量或大小之選項都是受歡迎的。一些電流限制系統利用一三相電阻器排組,其針對一2 MW雷達有超過100 kW的後續消耗。這些系統可包括針對高電壓側輸入所設計的被動諧波濾波器。然而,這些系統不使用電流反饋來主動控制湧入或峰值電流。此外,這些濾波器系統使用獨立於負載之固定L-C網路,意謂輸入線路功率因數通常被過度補償。
為了解決這些或其他問題,本揭露內容提供主動控制式電力變壓器及用於控制該等電力變壓器的方法。所揭露之變壓器的特徵為整合且可調整的電流限制能力,其等係內建於變壓器磁件中,且還允許主動調諧磁性地耦接至該等變壓器的L-C被動濾波器。結果在行動及陸基雷達電力系統及其他電力系統之大型設施的重量、大小及成本上為一顯著節省。
圖1例示根據本揭露內容之一範例主動控制式電力變壓器100。如下文所述,變壓器100係為包括整合湧入電流限制及整合諧波濾波之一主動控制式電力變壓器。雖然變壓器100係被說明為一二相自動變壓器,但此處所說明之原理可應用於一相單元或具有兩個以上之相位的單元,諸如一三相電流隔離單元。
如圖1中所示,變壓器100包括具有多個臂之一磁芯102,該等臂包括外部臂104-105及一中央臂106。外部臂104-105各別包括主繞組108-109,該等主繞組各自與一線路輸入及提供電力給一負載(諸如一雷達系統)之一線路輸出相關聯。舉例而言,變壓器100之輸出可饋給一陣列的交流/直流(AC/DC)電源,該等電源提供雷達脈衝。在一些實施例中,對變壓器100之輸入電壓為大約4160伏特,且變壓器100將該電壓減小至大約480伏特之一輸出。當然,其他輸入及輸出電壓係可能的,且在本揭露內容之範圍內。
變壓器100為一二相自動變壓器,其具有自外部臂104-105流動至中央臂106之中央磁芯通量116-117。圍繞中央臂106所纏繞者係一DC偏壓繞組110。雖然圖1中僅顯示一DC偏壓繞組110,但其他實施例可包括在額外臂上之額外DC偏壓繞組。通量116-117係藉由DC偏壓繞組110之DC磁化位準而被控制在飽和位準。
DC偏壓繞組110係電氣地連接至一DC放大器112。DC放大器112控制流過DC偏壓繞組110的DC電流,以控制變壓器100中之通量位準。在一些實施例中,DC放大器112直接響應於基於一雷達或其他負載之一輸出電流所產生的一反饋信號114,可直接饋給DC偏壓繞組110電流。DC放大器112包括組配來接收一或多個信號及提供偏壓電流之任何合適結構,諸如一或多個處理裝置、記憶體、控制電路系統及類似者。在某些情況下,反饋信號114係藉由一信號處理系統產生,其可採取一脈衝雷達輸出電流波形或其他波形,及將該波形整流及積分到反饋信號114中。在其他情況下,反饋信號114係基於一負載輸出之一電壓波形而非一電流波形。下文提供一範例信號處理系統之進一步細節。
在操作中,DC放大器112針對相位(諸如功率因數)及振幅資訊而接收且取樣反饋信號114。基於對反饋信號114之分析,DC放大器112判定用於激勵DC偏壓繞組110的一電流量以控制變壓器100之飽和,其直接與變壓器負載相關。舉例而言,當負載輕時(如由一高於常態之通過磁芯102之通量所指出),DC飽和控制電流可增加。DC放大器112接著以該經判定之量發送電流通過DC偏壓繞組110。
DC放大器112能夠快速(諸如在5-10毫秒內)偵測負載上之一變化,且響應於負載上之該變化,主動控制DC偏壓繞組110處之電流。此與習知變壓器形成對比,該等習知變壓器可包括一偏壓繞組,但該繞組係藉由一固定值來設定且不動態地受控制。在一些實施例中,DC放大器112可恰對自負載輸出電流量值及相位角導出之反饋信號114作出響應。在其他實施例中,對DC放大器112之反饋信號114可更精巧,且另外響應於負載輸出電流之諧波。下文會更詳細地說明此等實施例的範例。
雖然圖1例示一主動控制式電力變壓器100之一範例,但可對圖1作出各種改變。舉例而言,圖1中之各種組件可經組合、進一步細分、複製、省略或置放於任何其他合適配置中,且可根據特定需要添加額外的組件。通常,電力變壓器具有廣泛多種組配,且圖1並不限制本揭露內容於任何特定之電力變壓器的組配。又,雖然圖1例示可使用一主動控制式電力變壓器的一範例操作環境,但此功能性可用於任何其他合適系統中。
圖2例示根據本揭露內容之另一範例主動控制式電力變壓器200。如下文所描述,變壓器200為包括整合湧入電流限制及整合諧波濾波之一主動控制式多相電力變壓器。雖然變壓器200係被說明為一二相自動變壓器,但此處所說明之原理可應用於一相單元或具有兩個以上之相位的單元,諸如一三相電流隔離單元。
如圖2中所示,變壓器200包括可與圖1之變壓器100中之對應組件相同或相似的各種組件。舉例而言,變壓器200包括具有外部臂104-105及一中央臂106之一磁芯102。外部臂104-105分別包括主繞組108-109,且中央臂106包括一DC偏壓繞組110。DC偏壓繞組110係電氣地連接至一DC放大器112。
在變壓器200中,中央臂106包括一磁間隙202,其為中央臂106中之一實體空隙區。磁間隙202被提供來幫助控制變壓器200中之通量飽和。在一些實施例中,磁間隙202的厚度可為約3 mm - 5 mm,然而磁間隙202可更小或更大。
變壓器200也包括安置於磁間隙202中或其附近的一通量感測器204。通量感測器204係組配來感測跨磁間隙202的通量。通量感測器204亦係電氣地連接至DC放大器112,且可將關於通過磁間隙202之該通量之量值及相位的資訊提供至DC放大器112。在操作期間,通量感測器204(連續地、週期性地或在其他合適時間)偵測且量測通過磁間隙202之該通量且將一反饋信號206提供至DC放大器112指出該通量。此可為有用的,因為該通量非常取決於整體磁性條件且可迅速改變。通量感測器204係代表任何經組配來量測通量且產生一反饋信號的合適感測裝置。在一些實施例中,通量感測器204可為一霍爾效應探針或有纏繞磁場線圈之一磁性感測器。
在變壓器200中,DC放大器112接收來自通量感測器204之反饋信號206及來自負載輸出電流之反饋信號114兩者。DC放大器112使用任何合適之常式或演算法來處理信號206及114兩者以判定要施加至DC偏壓繞組110之電流,以便控制變壓器200中之飽和。反饋信號206有助於調變前進DC偏壓繞組110之電流,以避免過度驅動DC偏壓繞組110。此有助於確保快速控制在任何所施加輸入電壓位準下之電流限制。在一些實施例中,反饋信號114被認為是主要信號,且反饋信號206被認為是次要信號,以使得DC放大器112在至DC偏壓繞組110之電流之判定上,對反饋信號114給予更多權重。反饋信號114一般因為輸出整流而含有最大位準的非所欲諧波,且反饋信號206一般含有一較低位準的諧波,但此位準可超過針對線路諧波之可接受的產業標準。因此,藉由比較信號114與206,DC放大器112能夠判定該變壓器固有地提供給諸如第5、第7、第11、第13、第19及第21諧波之較高諧波的衰減量。然而,在其他實施例中,更多優先度可被給予反饋信號206,或者信號114及206可被給予相等的優先度。
在具有多個輸出之多相變壓器中,該系統可含有來自每一相位之一個反饋輸出電流信號,且該控制系統可含有輸出電流信號之一加法接合點以判定最佳DC偏壓電流。在一實施例中,變壓器200具有各自有其自身的磁芯間隙之多個臂,及一般配置成每個相位有一偏壓線圈的多個偏壓線圈。
雖然圖2例示一主動控制式電力變壓器200之另一範例,但可對圖2作出各種改變。舉例而言,圖2中之各種組件可經組合、進一步細分、複製、省略或置放於任何其他合適配置中,且可根據特定需要添加額外的組件。同樣,電力變壓器具有廣泛多種組配,且圖2並不限制本揭露內容於任何特定之電力變壓器的組配。又,雖然圖2例示可使用一主動控制式電力變壓器的另一範例操作環境,但此功能性可用於任何其他合適系統中。
圖3例示根據本揭露內容之又另一範例主動控制式電力變壓器300。如下文所述,變壓器300係為包括整合湧入電流限制及整合諧波濾波之一主動控制式電力變壓器。雖然變壓器300係被說明為一二相自動變壓器,但此處所說明之原理可應用於一相單元或具有兩個以上之相位的單元,諸如一三相電流隔離單元。
如圖3中所示,變壓器300包括可與圖1之變壓器100或圖2之變壓器200中之對應組件相同或相似的各種組件。舉例而言,變壓器300包括具有外部臂104-105及一中央臂106之一磁芯102。外部臂104-105分別包括主繞組108-109,且中央臂106包括一DC偏壓繞組110。DC偏壓繞組110係電氣地連接至一DC放大器112。中央臂106包括一磁間隙202,且一通量感測器204安置於磁間隙202中或其附近。
變壓器300亦包括一電力濾波器繞組302,其係電氣地連接至變壓器300外部之一電力濾波器304。電力濾波器繞組302圍繞磁芯102纏繞且與主繞組108-109電氣隔離。如圖3中所示,電力濾波器繞組302係包繞中央臂106與外部臂105之間的磁芯102之一部分。在其他實施例中,電力濾波器繞組302可包繞中央臂106,諸如從DC偏壓繞組110跨磁間隙202或在磁芯102之任何其他合適位置中。
電力濾波器304可代表一寬頻譜諧波濾波器,其能夠允許獨立於輸入或輸出電壓位準之一諧波濾波位準。在一些實施例中,電力濾波器304係一被動L-C多相網路電力諧波濾波器。L及C組件可連接以用於串聯或者並聯諧振電路。電力濾波器304提供負載電力之主要諧波的高效濾波。舉例而言,在六脈衝整流輸出電力系統中,電力濾波器304可對第五、第七、第十一、第十三、第十九及二十一諧波進行濾波。在其他系統中,諸如十二脈衝或二十四脈衝電力系統,電力濾波器304可提供濾波以用於其他或額外諧波。電力濾波器304在不需要汲取額外輸出負載電流的情況下操作,其減小有問題的變壓器I2
R加熱。
電力濾波器304可與主要負載輸入及輸出電流隔離,且因此可具有針對電力濾波器304最佳化的一電壓位準;其電壓係獨立於負載或電源。電力濾波器304此處係透過電力濾波器繞組302直接耦接至變壓器300之磁芯102。變壓器300主動控制注入至AC主線路之「超前功率因數」之量(VAR),其係藉由減小電力濾波器304之VAR輸出。此在不需要高功率電子切換之情況下限制過度補償。此與一般大型電力濾波器形成對比,其等在負載輕時傾向於以超前VAR過度補償AC輸入線路。此類過度補償可致使主要系統電壓上升超過正常位準。
電力濾波器304可藉由電力濾波器繞組302之組配對一或多個主要諧波調諧。在一些實施例中,電力濾波器繞組302可包括多個獨立繞組,其中每一繞組係針對一不同諧波而調諧。在一些實施例中,第十一、第十三及第十九諧波可引起最顯著的問題。因此,電力濾波器繞組302可包括各別對彼等諧波調諧之三個獨立分路連接繞組,其之一範例係顯示在表1中。在一些實施例中,針對一2500 kVA主輸入,總濾波器無功功率為大約230 kVAR。當然,其他實施例,包括彼等具有其他總濾波器無功功率量者,及彼等具有更多、更少或不同諧波者,係可能的。
表1:使用變壓器300之諧波濾波器繞組
設計參數 | 第11諧波 | 第13諧波 | 第19諧波 |
頻率(Hz) | 660 | 780 | 1140 |
無功功率/Ǿ kVAR | 33.3 | 26.7 | 16.6 |
電容(uF) | 34.85 | 23.6 | 10.1 |
電感(mH) | 1.67 | 1.76 | 1.93 |
電流(A) | 69.4 | 55.5 | 34.7 |
藉由將電力濾波器繞組302組配來對不同諧波調諧電力濾波器304,有可能將一不昂貴的商用現成(COTS)濾波器(諸如一480 V諧波濾波器)使用於電力濾波器304,而不用具有一或多個昂貴的特化濾波器(諸如11 kV、13.8 kV或4160 V濾波器)。此減小電力系統之整體大小、重量及成本。
為了使變壓器300就電力濾波器304提供主動控制,電力濾波器304可提供一反饋信號306至DC放大器112。反饋信號306可指出如在電力濾波器304感測到的一諧波位準。在變壓器300中,除了來自負載輸出電流或負載電壓之反饋信號114以及來自通量感測器204之反饋信號206之外,還有反饋信號306。這些信號114、206、306被輸入至DC放大器112,其可使用任何合適之常式或演算法來處理信號114、206、306以判定給DC偏壓繞組110之電流,以控制通量位準。在一些實施例中,信號114、206、306存在一階層,其中每一信號具有與每一輸入相關聯之一電氣積分器電路。舉例來說,信號114可為優勢反饋信號且具有最短內部時間延遲(滯後),信號206可具有第二優先度及一中等積分器時間延遲,且信號306可具有信號處理方案中最後優先度及最長積分器時間延遲。
操作時,DC放大器112就相位(諸如功率因數)及振幅,監測來自負載輸出電流的反饋信號114,以調整DC偏壓繞組110之激勵位準。當負載輕,如由一高於常態之通過磁芯102之通量所指出者,DC放大器112增加給DC偏壓繞組110之飽和控制電流,諸如在一60 Hz系統上係於5-10毫秒內。若系統處於諸如400 Hz之一較高頻率,則響應時間係基於一四分之一週期響應時間。此DC控制電流之增加減小了電力濾波器電路中之感應電壓,且減小了電力濾波器304中之諧振電流。DC飽和位準亦改變電力濾波器304之電感。隨著給DC偏壓繞組110之控制電流增加,每一濾波器級之AC電感減小且電容保持恆定,因此解調諧(de-tuning)被動電力濾波器304。
雖然圖3例示一主動控制式電力變壓器300之又另一範例,但可對圖3作出各種改變。舉例而言,圖3中之各種組件可經組合、進一步細分、複製、省略或置放於任何其他合適配置中,且可根據特定需要添加額外的組件。同樣,電力變壓器具有廣泛多種組配,且圖3並不限制本揭露內容於任何特定之電力變壓器的組配。又,雖然圖3例示可使用一主動控制式電力變壓器的又另一範例操作環境,但此功能性可用於任何其他合適系統中。
圖4例示根據本揭露內容之與一主動控制式電力變壓器一起使用的一範例信號處理系統400。為了易於解釋,系統400被說明為與圖3之變壓器300一起使用。然而,系統400之至少一些部分可與任何其他合適裝置或系統一起使用,包括圖1之變壓器100及圖2之變壓器200。
如圖4中所示,系統400包括一負載電流脈衝感測裝置402、一整流器及濾波器404以及一積分器406。負載電流脈衝感測裝置402感測一脈衝負載及一高上升率(di/dt)輸出電流410(諸如來自一雷達之一子陣列電源供應),且產生輸入至整流器及濾波器404之一波形信號。整流器及濾波器404整流該波形信號且將一低通濾波施加至該信號。在輸出至DC放大器112之前,該信號接著藉由積分器406積分進反饋信號114中。圖4中亦顯示來自通量感測器204發送至DC放大器112之反饋信號206以及來自電力濾波器304發送至DC放大器112之反饋信號306。DC放大器112在其輸入處具有這三個反饋信號114、206、306的一加法接合點,由此每一信號具有一特異的滯後-超前網路及特異的時間常數。系統400之一進一步目標為防止高di/dt或高突波負載電流在變壓器主要繞組上出現,且因此相對高峰值負載緩衝電源電力。
雖然圖4例示與一主動控制式雷達電力變壓器一起使用的一信號處理系統400之一範例,但可對圖4作出各種改變。舉例而言,圖4中之各種組件可經組合、進一步細分、複製、省略或置放於任何其他合適配置中,且可根據特定需要添加額外的組件。作為一特定範例,負載輸出電流410可改為一負載輸出電壓。在此一實施例中,負載電流脈衝感測裝置402可由一負載電壓感測裝置替代。電壓感測裝置之一進一步目標係排除高dv/dt負載突波出現在變壓器輸入繞組處。一般而言,信號處理系統具有廣泛多種組配,且圖4並不限制本揭露內容於信號處理系統的任何特定組配。又,雖然圖4例示可使用一信號處理系統的一範例操作環境,但此功能性可用於任何其他合適系統中。
圖5例示根據本揭露內容之又另一範例主動控制式電力變壓器500。如下文所述,變壓器500係為包括整合湧入電流限制及整合諧波濾波之一主動控制式電力變壓器。雖然變壓器500係被說明為一二相自動變壓器,但此處所說明之原理可應用於一相單元或具有兩個以上之相位的單元,諸如一三相電流隔離單元。
如圖5中所示,變壓器500係非常相似於圖3之變壓器300。然而,變壓器500包括耦接至一額外的電力繞組502的一額外的電力濾波器504,而非耦接至一電力濾波器繞組302的一電力濾波器304。電力濾波器繞組502圍繞磁芯102纏繞且與主繞組108-109電氣隔離。如圖5中所示,電力濾波器繞組502係包繞中央臂106與外部臂104之間的磁芯102之一部分。在其他實施例中,電力濾波器繞組502可包繞中央臂106,諸如從DC偏壓繞組110跨磁間隙202或在磁芯102之任何其他合適位置中。
如同電力濾波器304,電力濾波器504可代表能夠允許獨立於輸入或輸出電壓位準之一諧波濾波位準的一寬頻譜諧波濾波器。在一些實施例中,電力濾波器504係一被動L-C多相網路電力諧波濾波器。L及C組件可連接以用於串聯或者並聯諧振電路。相似於電力濾波器304,電力濾波器504亦可提供一反饋信號306給DC放大器112。
雖然圖5例示一主動控制式電力變壓器500之又另一範例,但可對圖5作出各種改變。舉例而言,圖5中之各種組件可經組合、進一步細分、複製、省略或置放於任何其他合適配置中,且可根據特定需要添加額外的組件。圖5並不限制本揭露內容於任何特定之電力變壓器的組配。又,雖然圖5例示可使用一主動控制式電力變壓器的又另一範例操作環境,但此功能性可用於任何其他合適系統中。
圖6例示根據本揭露內容之與一主動控制式電力變壓器一起使用的一範例三級電力濾波器600的示意圖。為了易於解釋,濾波器600可代表圖3之電力濾波器304或圖5之電力濾波器504。然而,電力濾波器600可與任何其他合適裝置或系統一起使用,包括圖1之變壓器100及圖2之變壓器200。
如圖6中所示,電力濾波器600可為如表1中所說明之一230 kVAR電力濾波器,藉此利用L-C組件之三個分支,包括L組件601-603及C組件604-606,來實現濾波器600之選擇性調諧至第十一、第十三及第十九諧波。在一些實施例中,每一分支具有一單獨電流感測器,其透過一加法接合點來提供反饋給一主控控制器以形成反饋信號306。電力濾波器600係耦接至一電力濾波器繞組610,其可為置放於變壓器(諸如,變壓器300)之一或多個臂上之一單相同心式繞組。
雖然圖6例示與一主動控制式電力變壓器一起使用的一電力濾波器600之一範例,但可對圖6作出各種改變。舉例而言,圖6中之各種組件可經組合、進一步細分、複製、省略或置放於任何其他合適配置中,且可根據特定需要添加額外的組件。又,雖然電力濾波器600係被說明為針對第十一、第十三及第十九諧波予以調諧,電力濾波器600仍可針對其他諧波進行調諧。
圖7例示顯示1000 kVA額定值之一二相4160伏特400 Hz電力變壓器之實驗結果的一圖表700,該變壓器相似於圖1中之變壓器100,其在有一0-100 Amp之偏壓電流的中央臂上配適有一DC偏壓繞組。在圖表700中,跡線701顯示AC輸入電流,且跡線702顯示AC繞組之自阻抗。當偏壓電流為零時,AC繞組之自阻抗的最大值為6961歐姆,且當偏壓電流為100安培時,AC繞組之自阻抗被減小至250歐姆,指示出一因改變偏壓之28:1變化。變壓器明顯是在正常飽和區內及外被操作。實驗結果顯示在廣泛範圍之偏壓電流上阻抗或電感之非線性變化,其係一連續DC磁化改變而非一脈衝磁化。
圖8例示根據本揭露內容之可使用一主動控制式電力變壓器的一範例電力系統800。在一些實施例中,電力系統800(或一相似系統)可與一或多個本文所說明之變壓器一起使用。
如圖8中所示,電力系統800包括一相移變壓器802,其自一AC電源804接收三相AC電力。在一些實施例中,電力系統800係在變壓器802內具有諧波電流濾波之一48脈衝系統。在一些實施例中,相移變壓器802可代表(或可由以下來代表):變壓器100、變壓器200、變壓器300或變壓器500。變壓器802變換所接收的AC電力,且輸出六相電力至多個負載806-809。變壓器802內之飽和係受一DC偏壓控制器812所控制,其可相似於DC放大器112。
雖然圖8例示一電力系統800之一個範例,但可對圖8作出各種改變。舉例而言,圖8中之各種組件可經組合、進一步細分、複製、省略或置放於任何其他合適配置中,且可根據特定需要添加額外的組件。
圖9例示根據本揭露內容之用於控制一電力變壓器之一範例方法900。為了易於解釋,圖9之方法900可被說明為使用圖1之變壓器100、圖2之變壓器200或圖3之變壓器300來執行。然而,方法900可涉及任何其他合適裝置或系統之使用。
如圖9中所示,在步驟902處,一變壓器之一DC放大器接收與一負載輸出電流或電壓相關聯之一第一信號。此可包括,例如,DC放大器112接收反饋信號114。DC放大器112係電氣地連接至圍繞變壓器100、200、300之磁芯102之一指定臂106纏繞的一DC偏壓繞組110。磁芯102具有包括指定臂106之多個臂104-106。
在步驟904,DC放大器可任擇地自電氣地連接至該DC放大器之一通量感測器接收一第二信號。此可包括,例如,DC放大器112自通量感測器204接收反饋信號206。該第二信號可藉由通量感測器204響應於跨指定臂106中之一間隙202的通量之量的一量測來產生。
在步驟906處,DC放大器可任擇地自耦接至圍繞磁芯纏繞之一電力濾波器繞組的一電力濾波器接收一第三信號。此可包括,例如,DC放大器112自電力濾波器304接收反饋信號306。
在步驟908,DC放大器基於該第一信號以及任擇地該第二信號及該第三信號來判定用於DC偏壓繞組之一電流量。此可包括,例如,DC放大器112基於反饋信號114、反饋信號206及反饋信號306,來判定用於DC偏壓繞組110之電流量。
在步驟910,DC放大器發送經判定量之電流通過DC偏壓繞組。此可包括,例如,DC放大器112以標示-間隔脈衝或一連續流發送電流通過DC偏壓繞組110。通過DC偏壓繞組110之電流係組配來控制變壓器100、200、300之磁芯102中之通量飽和,且變更組件磁性臂之磁導率。
雖然圖9例示用於控制一電力變壓器之一方法900之一範例,但可對圖9作出各種改變。舉例而言,雖然被顯示為一系列的步驟,但圖9中之各種步驟可重疊、並行地發生、以不同順序發生或以任何次數發生。
如上文所說明,所揭露之實施例提供能夠電流限制且亦允許L-C濾波器之主動調諧的主動控制式電力變壓器。此對於許多應用係有利的,諸如目前需要大型濾波器排組或具有重型湧入電流限制裝置的大型電力變壓器之行動或陸基雷達系統,以及目前需要大規模電流限制及諧波濾波之船舶電力系統。該等所揭露之實施例減小整體電力系統大小及重量(諸如在某些系統中大約係20%之一重量減少)且避免使輸入功率因高超前功率因數負載而過度補償。該等所揭露之實施例可應用於低電壓或高電壓設計之自動變壓器及電流隔離變壓器兩者。
闡述此專利文件中通篇使用的某些語詞及短語的定義,可為有利的。用語「包括」及「包含」以及其衍生詞係意謂內含而不限制。用語「或」係包含性的,意謂及/或。短語「與……相關聯」以及其衍生說法可意謂:包括、包括於……內、與……互連、含有、含於……之內、連接至……或與……連接、耦接至……或與……耦接、可與……連通、與……合作、交錯、對照、相近於、結合至……或與……結合、具有、具有……的一性質、與……具有一關係或具有與……的一關係或類似者。短語「……中至少一者」,當與一項目列表一起使用時,意謂可使用一或多個所列項目的不同組合,且可僅需該清單中的一個項目。舉例而言,「下列中至少一者:A、B及C」包括以下組合中之任一者:A、B、C、A與B、A與C、B與C、以及A與B與C。
本申請案中之說明不應被解讀為隱含任何特定元件、步驟或功能係必須包括於申請專利範圍中的必要或關鍵元件。專利標的之範圍僅由所核准之請求項定義。此外,除非在特定請求項中明確使用準確語詞「用以……之構件」或「用以……之步驟」,其中接著用識別一功能的一動作短語,否則請求項中無一者就任一所附請求項或請求項元件造成援用35 U.S.C. § 112(f)。在請求項中使用諸如(但不限於)「機構」、「模組」、「裝置」、「單元」、「組件」、「元件」、「構件」、「設備」、「機器」、「系統」、「處理器」或「控制器」之用語係理解成且意欲指相關領域中熟習此藝者已知之結構,如藉由請求項自身之特徵進一步修改或強化者,且不意欲造成援用35 U.S.C. § 112(f)。
雖然本揭露內容已說明某些實施例及大體上相關聯的方法,但這些實施例及方法的變更及變序對熟習此藝者將顯易可見。據此,範例實施例的上文說明不定義或約束本揭露內容。其他變化、替代以及變更亦為可能的,而不脫離如藉由以下申請專利範圍所定義之本揭露內容的精神及範圍。
100,200,300,500:主動控制式電力變壓器,變壓器
102:磁芯
104,105:外部臂,臂
106:中央臂,指定臂,臂
108,109:主繞組
110:DC偏壓繞組
112:DC放大器
114,206,306:反饋信號,信號
116,117:中央磁芯通量,通量
202:磁間隙,間隙
204:通量感測器
302,502,610:電力濾波器繞組
304,504:電力濾波器
400:信號處理系統,系統
402:負載電流脈衝感測裝置
404:整流器及濾波器
406:積分器
410:負載輸出電流,輸出電流
600:電力濾波器,濾波器
601,602,603:L組件
604,605,606:C組件
700:圖表
701,702:跡線
800:電力系統
802:相移變壓器,變壓器
804:AC電源
806,807,808,809:負載
812:DC偏壓控制器
900:方法
902,904,906,908,910:步驟
為更全面理解本揭露內容,現協同隨附圖式參考以下說明,其中:
圖1例示根據本揭露內容之一範例主動控制式電力變壓器;
圖2例示根據本揭露內容之另一範例主動控制式電力變壓器;
圖3例示根據本揭露內容之又另一範例主動控制式電力變壓器;
圖4例示根據本揭露內容之與一主動控制式電力變壓器一起使用的一範例信號處理系統;
圖5例示根據本揭露內容之又另一範例主動控制式電力變壓器;
圖6例示根據本揭露內容之與一主動控制式電力變壓器一起使用的一範例三級電力濾波器的示意圖;
圖7例示顯示根據本揭露內容之一二相電力變壓器之實驗結果的圖表;
圖8例示根據本揭露內容之可使用一主動控制式電力變壓器的一範例電力系統;以及
圖9例示根據本揭露內容之用於控制一電力變壓器之一範例方法。
100:主動控制式電力變壓器,變壓器
102:磁芯
104,105:外部臂,臂
106:中央臂,指定臂,臂
108,109:主繞組
110:DC偏壓繞組
112:DC放大器
114:反饋信號,信號
116,117:中央磁芯通量,通量
Claims (22)
- 一種變壓器,其包含: 一磁芯,其具有多個臂; 一直流(DC)偏壓繞組,其圍繞該等臂中之一指定臂纏繞;以及 一DC放大器,其電氣地連接至該DC偏壓繞組,該DC放大器係組配來: 接收與一負載輸出電流或電壓相關聯之一第一信號; 基於該第一信號來判定用於該DC偏壓繞組的一電流之一量;以及 發送經判定量的電流通過該DC偏壓繞組。
- 如請求項1之變壓器,其中該經判定量的電流係組配來控制該磁芯中之通量飽和。
- 如請求項1之變壓器,其中該指定臂係為該磁芯之一中央臂。
- 如請求項1之變壓器,其中該第一信號係基於該負載輸出電流或電壓之一積分值所產生。
- 如請求項1之變壓器,其進一步包含: 一通量感測器,其安置於該指定臂中之一間隙中,該通量感測器經電氣連接至該DC放大器且經組配來感測跨該間隙之一通量之量。
- 如請求項5之變壓器,其中,該DC放大器係組配來基於該第一信號及來自該通量感測器的一第二信號,來判定用於該DC偏壓繞組的該電流之該量。
- 如請求項6之變壓器,其中該通量感測器係組配來響應於跨該指定臂中之該間隙的該通量之量的一量測來產生該第二信號。
- 如請求項5之變壓器,其進一步包含: 一電力濾波器,其係耦接至圍繞該磁芯纏繞之一電力濾波器繞組。
- 如請求項8之變壓器,其中該DC放大器係組配來基於該第一信號、來自該通量感測器的一第二信號以及來自該電力濾波器之一第三信號,來判定用於該DC偏壓繞組的該電流之該量。
- 如請求項8之變壓器,其中該電力濾波器係與一主要負載輸入及輸出在電流上隔離。
- 如請求項8之變壓器,其中該電力濾波器包含一多相電力諧波濾波器。
- 如請求項8之變壓器,其中該電力濾波器繞組包含多個繞組,每一繞組係針對一不同諧波調諧。
- 一種方法,其包含: 在一直流(DC)放大器處接收與一負載輸出電流或電壓相關聯之一第一信號; 基於該第一信號來判定用於一DC偏壓繞組的一電流之一量;以及 藉由該DC放大器發送經判定量的電流通過該DC偏壓繞組; 其中該DC偏壓繞組係電氣地連接至該DC放大器;以及 其中一磁芯具有多個臂,該DC偏壓繞組係圍繞該等臂中之一指定臂纏繞。
- 如請求項13之方法,其中該經判定量的電流係組配來控制該磁芯中之通量飽和。
- 如請求項13之方法,其中該第一信號係基於該負載輸出電流或電壓之一積分值所產生。
- 如請求項13之方法,其進一步包含以下步驟: 藉由一通量感測器感測跨該指定臂中之一間隙的一通量之量,該通量感測器係安置在該間隙中且電氣地連接至該DC放大器。
- 如請求項16之方法,其中判定用於該DC偏壓繞組之該電流之該量係基於該第一信號及來自該通量感測器之一第二信號。
- 如請求項16之方法,其進一步包含以下步驟: 使用耦接至圍繞該磁芯纏繞之一電力濾波器繞組的一電力濾波器。
- 如請求項18之方法,其中判定用於該DC偏壓繞組之該電流之該量係基於該第一信號、來自該通量感測器之一第二信號以及來自該電力濾波器之一第三信號。
- 如請求項18之方法,其中該電力濾波器繞組包含多個繞組,每一繞組係針對一不同諧波調諧。
- 如請求項18之方法,其中該電力濾波器繞組具有獨立於一線路電壓或一負載電壓的一電壓位準。
- 如請求項18之方法,其中該電力濾波器繞組包括每個相位有至少一電容元件及每個相位有至少一電感濾波元件。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/929,541 US11418031B2 (en) | 2020-05-08 | 2020-05-08 | Actively-controlled power transformer and method for controlling |
US15/929,541 | 2020-05-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202211270A true TW202211270A (zh) | 2022-03-16 |
Family
ID=75690729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110113977A TW202211270A (zh) | 2020-05-08 | 2021-04-19 | 主動控制式電力變壓器及控制方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US11418031B2 (zh) |
EP (1) | EP4147254A1 (zh) |
JP (1) | JP7520146B2 (zh) |
AU (1) | AU2021267096A1 (zh) |
CA (1) | CA3177447A1 (zh) |
IL (1) | IL297821B2 (zh) |
TW (1) | TW202211270A (zh) |
WO (1) | WO2021225750A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11632021B2 (en) | 2021-04-05 | 2023-04-18 | Raytheon Company | Dynamo-electric machine |
Family Cites Families (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1646823A (en) | 1925-09-28 | 1927-10-25 | Gen Electric | Regulation of dynamo-electric machines |
US2149082A (en) | 1937-10-29 | 1939-02-28 | Gen Electric | Electric circuit |
US2740510A (en) | 1952-12-19 | 1956-04-03 | Western Electric Co | Acceleration and deceleration control for machines |
US3004381A (en) | 1956-04-06 | 1961-10-17 | Jr Edmund O Schweitzer | Electrical system |
US3024298A (en) | 1958-07-10 | 1962-03-06 | Raytheon Co | Evaporative-gravity cooling systems |
US3183431A (en) | 1961-01-23 | 1965-05-11 | Sundstrand Corp | Constant frequency brushless generating system |
US3187250A (en) | 1961-09-11 | 1965-06-01 | American Brake Shoe Co | Frequency control system for a. c. generating apparatus |
US3315148A (en) | 1963-10-31 | 1967-04-18 | Gen Precision Inc | A.-c. generator power supply |
US3452229A (en) | 1966-09-16 | 1969-06-24 | John Rex Pimlott | Modular inductor alternator |
US3571693A (en) | 1968-11-21 | 1971-03-23 | Nasa | Constant frequency output two-stage induction machine systems |
US3667012A (en) | 1970-07-31 | 1972-05-30 | Westinghouse Electric Corp | Electrical apparatus with frequency controlled load compensation |
US4001666A (en) | 1975-04-03 | 1977-01-04 | General Electric Company | Load peak shaver power regulating system |
US4011535A (en) | 1976-07-09 | 1977-03-08 | General Electric Company | Vaporization cooled transformer |
US4048603A (en) | 1976-12-27 | 1977-09-13 | General Electric Company | Vaporization cooled transformer |
US4393964A (en) | 1979-03-23 | 1983-07-19 | Ipanema Company | Hybrid power system and method for operating same |
US4439720A (en) | 1981-01-23 | 1984-03-27 | Societe Aman | Units for generating constant-frequency alternating electric energy with substitute driving means |
FR2511558B1 (fr) | 1981-08-17 | 1987-04-30 | Aerospatiale | Equipement pour le stockage de l'energie sous forme cinetique et la restitution de celle-ci sous forme electrique, et procede de mise en oeuvre de cet equipement |
JPS58130772A (ja) * | 1982-01-26 | 1983-08-04 | Matsushita Electric Ind Co Ltd | 定電圧電源装置 |
JPS5913313A (ja) * | 1982-07-13 | 1984-01-24 | Mitsubishi Electric Corp | 変圧器の直流偏磁矯正方法 |
US4581573A (en) * | 1984-01-13 | 1986-04-08 | Bbc Brown, Boveri & Company, Limited | Static converter transformer with harmonic filter |
JPS60152238A (ja) | 1984-01-18 | 1985-08-10 | 三菱電機株式会社 | フライホイ−ル式エネルギ−貯蔵装置 |
US4926107A (en) | 1986-07-31 | 1990-05-15 | The Boeing Company | Variable inertia energy storage system |
FR2624617B1 (fr) * | 1987-12-11 | 1990-05-11 | Europ Agence Spatiale | Appareil de mesure de courants electriques a couplage magnetique |
US4971522A (en) | 1989-05-11 | 1990-11-20 | Butlin Duncan M | Control system and method for AC motor driven cyclic load |
US5109185A (en) | 1989-09-29 | 1992-04-28 | Ball Newton E | Phase-controlled reversible power converter presenting a controllable counter emf to a source of an impressed voltage |
US5097194A (en) | 1990-09-12 | 1992-03-17 | Randal Walton | Motor with plural generators set |
US5313381A (en) * | 1992-09-01 | 1994-05-17 | Power Integrations, Inc. | Three-terminal switched mode power supply integrated circuit |
US5737203A (en) * | 1994-10-03 | 1998-04-07 | Delco Electronics Corp. | Controlled-K resonating transformer |
JPH09129450A (ja) * | 1995-10-26 | 1997-05-16 | Nagano Japan Radio Co | 誘導性素子 |
US5646458A (en) | 1996-02-22 | 1997-07-08 | Atlas Energy Systems, Inc. | Uninterruptible power system with a flywheel-driven source of standby power |
JPH09251918A (ja) * | 1996-03-18 | 1997-09-22 | Meidensha Corp | 変圧器の偏磁防止装置 |
US5921505A (en) | 1996-12-02 | 1999-07-13 | Trw Inc. | System and method for reducing mechanical disturbances from energy storage flywheels |
DE19715468C1 (de) | 1997-04-14 | 1998-10-01 | Piller Gmbh | System zur Stabilisierung eines Stromversorgungsnetzes |
JP3381769B2 (ja) * | 1997-10-17 | 2003-03-04 | 株式会社村田製作所 | 自励発振型スイッチング電源装置 |
US6078119A (en) | 1997-11-26 | 2000-06-20 | Ebara Corporation | Bearingless rotary machine |
US6118678A (en) | 1999-06-10 | 2000-09-12 | Limpaecher; Rudolf | Charge transfer apparatus and method therefore |
ES2237170T3 (es) | 1999-10-08 | 2005-07-16 | Rwe Piller Gmbh | Dispositivo para el suministro de corriente sin interrupciones con una maquina electrica y un volante. |
US6239513B1 (en) | 2000-02-24 | 2001-05-29 | Design Power Solutions International | Emergency supplemental power supply for outage protection of critical electric loads |
DE10047755B4 (de) | 2000-09-27 | 2011-03-31 | Daimler Ag | Starter-Generator-Vorrichtung für Verbrennungskraftmaschinen und Verfahren zum Betreiben der Vorrichtung |
US6480401B2 (en) * | 2001-03-13 | 2002-11-12 | Astec International Limited | Method and apparatus for reducing standby power in power supplies |
JP2006509489A (ja) | 2002-12-06 | 2006-03-16 | エレクトリック パワー リサーチ インスチテュート インコーポレイテッド | 無停電源及び発電システム |
JP3672034B2 (ja) | 2002-12-25 | 2005-07-13 | ローム株式会社 | 直流−交流変換装置、及びそのコントローラic |
US8030787B2 (en) | 2003-06-06 | 2011-10-04 | Beaver Aerospace And Defense, Inc. | Mbackup flywheel power supply |
US7348845B2 (en) | 2005-05-19 | 2008-03-25 | Roberto Michele Giovannotto | System and method for employing variable magnetic flux bias in an amplifier |
US7710081B2 (en) | 2006-10-27 | 2010-05-04 | Direct Drive Systems, Inc. | Electromechanical energy conversion systems |
EP2156448B1 (de) * | 2007-06-12 | 2017-08-16 | Siemens Aktiengesellschaft | Elektrischer transformator mit gleichfluss-kompensation |
WO2009039305A2 (en) | 2007-09-18 | 2009-03-26 | Flyback Energy, Inc. | Current waveform construction to generate ac power with low harmonic distortion from localized energy sources |
US7663328B2 (en) | 2007-12-12 | 2010-02-16 | The Boeing Company | Multi-phase, multi-frequency controller |
WO2010145021A1 (en) | 2009-06-15 | 2010-12-23 | Universite Laval | Energy storage system and method |
FR2950751B1 (fr) | 2009-09-30 | 2012-05-04 | Converteam Technology Ltd | Rotor de moteur electrique optimise pour les grandes puissances |
EP2367265A1 (en) | 2010-03-17 | 2011-09-21 | Converteam Technology Ltd | Electrical machines |
US8319556B2 (en) * | 2010-11-09 | 2012-11-27 | Raytheon Company | Transformer coupled distributed amplifier |
EP2479871B1 (en) | 2011-01-19 | 2016-06-15 | GE Energy Power Conversion Technology Limited | Electrical machines |
US9261890B2 (en) | 2011-02-25 | 2016-02-16 | Ut-Battelle, Llc | Power flow control using distributed saturable reactors |
US8803384B2 (en) | 2011-05-10 | 2014-08-12 | The Boeing Company | Stators with reconfigurable coil paths |
US9729025B2 (en) | 2012-04-03 | 2017-08-08 | The Boeing Company | Open-core flywheel architecture |
US8816543B2 (en) | 2012-04-03 | 2014-08-26 | The Boeing Company | Flexible magnet directional stiffening methods |
US8922081B2 (en) | 2012-04-03 | 2014-12-30 | The Boeing Company | Nested-rotor open-core flywheel |
US9531289B2 (en) | 2012-04-27 | 2016-12-27 | Raytheon Company | Electro-mechanical kinetic energy storage device and method of operation |
US9118289B1 (en) * | 2012-05-10 | 2015-08-25 | Arkansas Power Electronics International, Inc. | High temperature magnetic amplifiers |
US9373963B2 (en) | 2013-05-24 | 2016-06-21 | Raytheon Company | Energy transfer and storage apparatus for delivery of pulsed power |
US9531247B2 (en) | 2014-04-04 | 2016-12-27 | Raytheon Company | Inertial energy storage system and hydro-fluoro-ether power transformer scheme for radar power systems and large PFN charging |
US9819274B2 (en) * | 2014-11-20 | 2017-11-14 | Microchip Technology Incorporated | Start-up controller for a power converter |
US9837996B2 (en) | 2015-01-07 | 2017-12-05 | Raytheon Company | Method and apparatus for control of pulsed power in hybrid energy storage module |
US9667232B2 (en) | 2015-05-13 | 2017-05-30 | Raytheon Company | System and method for parallel configuration of hybrid energy storage module |
US10650959B1 (en) * | 2016-05-06 | 2020-05-12 | Universal Lighting Technologies, Inc. | Inductor with flux path for high inductance at low load |
US10050533B2 (en) * | 2016-07-26 | 2018-08-14 | Raytheon Company | High voltage high frequency transformer |
US10277141B2 (en) | 2016-09-15 | 2019-04-30 | Psemi Corporation | Current protected integrated transformer driver for isolating a DC-DC convertor |
ES2684108B1 (es) * | 2017-03-30 | 2019-06-13 | Univ Catalunya Politecnica | Transformador Activo Acondicionador de Potencia |
EP3633814B1 (en) * | 2018-10-01 | 2021-05-12 | Siemens Energy Global GmbH & Co. KG | Harmonic mitigation arrangement for an electromagnetic device |
US10763756B2 (en) * | 2018-12-13 | 2020-09-01 | Power Integrations, Inc. | Apparatus and methods for sensing resonant circuit signals to enhance control in a resonant converter |
-
2020
- 2020-05-08 US US15/929,541 patent/US11418031B2/en active Active
-
2021
- 2021-04-09 WO PCT/US2021/026692 patent/WO2021225750A1/en active Application Filing
- 2021-04-09 CA CA3177447A patent/CA3177447A1/en active Pending
- 2021-04-09 AU AU2021267096A patent/AU2021267096A1/en active Pending
- 2021-04-09 EP EP21722087.0A patent/EP4147254A1/en active Pending
- 2021-04-09 IL IL297821A patent/IL297821B2/en unknown
- 2021-04-09 JP JP2022567461A patent/JP7520146B2/ja active Active
- 2021-04-19 TW TW110113977A patent/TW202211270A/zh unknown
Also Published As
Publication number | Publication date |
---|---|
EP4147254A1 (en) | 2023-03-15 |
IL297821A (en) | 2023-01-01 |
JP7520146B2 (ja) | 2024-07-22 |
JP2023525029A (ja) | 2023-06-14 |
IL297821B1 (en) | 2023-04-01 |
WO2021225750A1 (en) | 2021-11-11 |
US11418031B2 (en) | 2022-08-16 |
US20210351588A1 (en) | 2021-11-11 |
IL297821B2 (en) | 2023-08-01 |
CA3177447A1 (en) | 2021-11-11 |
AU2021267096A1 (en) | 2022-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6274851B1 (en) | Electric arc furnace controller | |
US6178102B1 (en) | Regulated DC output power supply for amplifiers | |
WO2009107066A2 (en) | Reactive power compensation circuit | |
TW202211270A (zh) | 主動控制式電力變壓器及控制方法 | |
US5982648A (en) | Three-phase ac-dc converter | |
KR20050086045A (ko) | 전자식 무효전력 보상장치 | |
Gauger et al. | A three-phase off-line switching power supply with unity power factor and low TIF | |
US7091632B2 (en) | Stabilization circuit for compensating fluctuations in a voltage at a user | |
US5424626A (en) | Tuned A.C. power systems compensator having variable reflective impedance for linear and non-linear reactive load compensation | |
SE515458C2 (sv) | Styrbar reaktor med återkopplad styrlindning | |
US11670447B2 (en) | Autotransformer rectifier unit system | |
RU2658347C1 (ru) | Устройство для регулирования тока шунтирующего реактора | |
US10424435B2 (en) | Apparatus for reducing a magnetic unidirectional flux component in the core of a transformer | |
CN110880769B (zh) | 静止无功补偿控制装置及系统 | |
KR20050018931A (ko) | 정전압 전력절감장치 | |
KR100650608B1 (ko) | 대용량 자동전압 전력 제어 장치 | |
US3022426A (en) | Regulator | |
KR101087209B1 (ko) | 트로이달 트랜스를 이용한 직류전원공급장치 | |
Zhu et al. | Multi-output power supply with series voltage compensation capability for Magnetic Resonance Imaging system | |
Satish et al. | PI and FLC (triangular and Gaussian MF) based SHAF under load variation using SRF method | |
SU113417A1 (ru) | Устройство дл равномерной нагрузки фаз в трехфазной сети | |
JPH04150774A (ja) | 低リプル電源装置 | |
WO2006041313A2 (en) | Load symmetrization with controllable inductor | |
Yarema | A Four-Quadrant Magnet Trim Power SUPPlY | |
JPH04161072A (ja) | 低リップル電源装置 |