EP2156448B1 - Elektrischer transformator mit gleichfluss-kompensation - Google Patents

Elektrischer transformator mit gleichfluss-kompensation Download PDF

Info

Publication number
EP2156448B1
EP2156448B1 EP07730062.2A EP07730062A EP2156448B1 EP 2156448 B1 EP2156448 B1 EP 2156448B1 EP 07730062 A EP07730062 A EP 07730062A EP 2156448 B1 EP2156448 B1 EP 2156448B1
Authority
EP
European Patent Office
Prior art keywords
magnetic field
transformer
compensation
core
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07730062.2A
Other languages
English (en)
French (fr)
Other versions
EP2156448A1 (de
Inventor
Peter Hamberger
Albert Leikermoser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2156448A1 publication Critical patent/EP2156448A1/de
Application granted granted Critical
Publication of EP2156448B1 publication Critical patent/EP2156448B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/38Auxiliary core members; Auxiliary coils or windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/343Preventing or reducing surge voltages; oscillations
    • H01F27/345Preventing or reducing surge voltages; oscillations using auxiliary conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/38Auxiliary core members; Auxiliary coils or windings
    • H01F27/385Auxiliary core members; Auxiliary coils or windings for reducing harmonics

Definitions

  • the invention relates to an electrical transformer with DC compensation.
  • the undesirable saturation effect could basically be counteracted by increasing the cross section of the magnetic circuit and thus keeping the magnetic flux density B lower, or by inserting a (replacement) air gap into the magnetic circuit, as in the US Pat DE 198 54 902 A1 proposed. But the former leads to an increased construction volume of the transformer, the latter to a larger magnetizing current; both are disadvantageous.
  • JP 59 013313A is an electrical transformer with Gleichmannkompensation according to the preamble of claim 1, in which the magnetic field in the core of the transformer is measured and from a compensation current is derived.
  • the specification of the compensation current in the compensation winding takes place in accordance with a magnetic field measured variable which supplies a magnetic field measuring device.
  • a magnetic field measured variable which supplies a magnetic field measuring device.
  • known magnetic field sensors are suitable, which either measure the field in the core of the transformer, or the stray magnetic field, which closes outside the core via the air path.
  • the basic operating principle of these sensors can be, for example, the induction in a measuring coil, the Hall effect or the magneto-resistive effect.
  • the magnetic field measured variable can also be determined by using a magnetometer (fluxgate or Förster probe).
  • the magnetic field measuring device is formed from a signal processing unit which is signal-conducting with at least two magnetic field detectors.
  • the determination of two DC components may be sufficient, since the total flux must be zero.
  • the signal processing unit is set up to determine harmonics from a respective measurement signal provided by the magnetic field detector and to form the control signal therefrom.
  • the harmonic analysis can be done electronically or computer-aided.
  • the first harmonic (2nd harmonic) whose amplitude is functionally related to the magnetic direct flux which it is to be compensated for.
  • two magnetic field detectors are arranged outside the core so that they detect a leakage flux of the transformer. The stray flux increases very strongly in the case of the magnetic saturation of the core, which is favorable for the determination of the control signal.
  • the magnetic field detector is simply designed as an induction probe, which detects the leakage flux change and converts it into an electrical measurement signal, from which the even harmonics, according to the invention the second harmonic, can be filtered out.
  • the induction probe is designed as an air-core coil. Compared to a semiconductor-based transmitter, the electrical measurement signal from this air-core coil is independent of long-term and temperature drift and is also cost-effective.
  • a blocking circuit (according to the invention a reactance dipole) is connected in the current path to the current control device.
  • a blocking circuit according to the invention a reactance dipole
  • a two-pole network for example, formed from an LC parallel circuit, which blocks the mains frequency, but hardly represents a resistance with respect to the compensation DC.
  • a favorable spatial arrangement of the magnetic field detector is most easily done by trial or numerical field simulation. Particularly favorable is a measuring location at which the magnetic fields caused by the primary and secondary load currents largely compensate each other. According to the invention this is an arrangement in which an air coil in a gap formed of an outer peripheral surface of a transformer leg and the concentrically enclosing compensating winding or secondary winding, approximately in the middle leg height, is arranged.
  • a preferred arrangement of the compensation winding may be the yoke in a three-arm transformer or the yoke in a five-arm transformer; As a result, a compensation winding can be retrofitted to an existing transformer in a simple manner.
  • FIG. 1 an electrical transformer 20 with a housing 7 can be seen, which has a transformer core 4.
  • the design of the core 4 corresponds to the known three-limb design with three legs 21, 22, 23 and a transverse yoke 32.
  • On each of the legs 21, 22, 23 is as usual a primary winding 1 and a secondary winding. 2 ,
  • a compensation winding 3 is additionally provided on the outer legs 21 and 23.
  • a magnetic "DC” indicated in the drawing of the FIG. 1 is in the region of the first leg 21 with an arrow 5, a magnetic "DC” indicated.
  • This magnetic "direct current” 5 is assumed to be caused by a “direct current component” (DC component) flowing on the primary side or the secondary side.
  • the “direct flow” can also be interspersed by the earth's magnetic field.
  • direct current or “direct current” is here to be understood a physical quantity, which, seen in time compared to 5o Hz cycles, varies only very slowly, if this is the case at all.
  • this DC component are in FIG. 1 two controlled current sources 12 and 13 are provided. These current sources 12, 13 respectively feed a compensating current 16 or 17 in the sense of a compensation into an associated compensation winding 3, whose magnitude and direction are dimensioned such that the magnetic direct flux 5 in the core 4 is compensated. (In the FIG. 1 This is indicated by means of the control signals 14, 15, which are supplied as control variable to the current sources 12 and 13 by means of the lines 9, 10.
  • control variables 14, 15 provide a signal processing unit 11, which will be explained in more detail below.
  • each approximately centrally a magnetic field detector 8 is arranged between the compensation winding 3 and an outer leg 21 and 23 of the core 4 .
  • Each of these magnetic field detectors 8 is located outside the magnetic circuit and measures a stray field of the transformer 20. In the stray field, in particular, that half-wave of the magnetizing current occurs, which is controlled to saturation, so that the DC component in the core can be determined well.
  • the measuring signal of the detectors 8 is fed to the signal processing unit 11 by means of the lines 9, 10.
  • the two magnetic field detectors 8 each consist of a measuring coil (several hundred turns, diameter about 25 mm).
  • a measuring coil hundreds of turns, diameter about 25 mm.
  • FIG. 2 differs from FIG. 1 merely in that here the compensation winding arrangement 3 is not arranged on a main leg 21, 22, 23 but on the yoke 32 of the core 4. At each main leg 21, 22, 23 is again in a gap between the core 4 and the secondary winding 2, a magnetic field detector 8 is arranged (here for redundancy reasons a total of three).
  • the FIG. 3 shows a five-limb transformer, in which at each conclusion legs 31 each have a compensation winding 3 is arranged.
  • the core flux does not split in half when entering the yoke to two sides; on the basis of the law of continuity, the respective direct flow component flowing back from the return leg 31 must correspond to the direct flow in the main legs 21, 22, 23, so that each return leg 31 carries 1.5 times the direct flow component.
  • Each leg 21, 22, 23 is again associated with a magnetic field detector 8 arranged outside the core 4.
  • Each measurement signal of these three magnetic field detectors 8 is again supplied to the signal processing unit 11, which provides the output side, the control variables 14, 15 for the controlled current sources 12 and 13, so that the compensation current 16 and 17 can compensate for the DC component in the yoke legs 31.
  • FIG. 4 is a variant of the embodiment according to FIG. 3 shown.
  • the compensation windings 3 on the main legs 21, 22 and 23.
  • Each of these compensation windings 3 is again assigned to one of three current control device.
  • the specification of the compensation current takes place as described above by the signal processing unit 11.
  • FIG. 5 shows in a schematic block diagram a possible embodiment of the signal processing unit 11, which acts as a DC compensation controller.
  • the signal processing unit 11 determines the second harmonic from the spectrum of the harmonics, which is a direct image of the DC component.
  • a sensor coil 8 detects leakage flux of the transformer 20.
  • the measuring signal of the sensor coil 8 is supplied to a differential amplifier 19.
  • a notch filter 24 which filters out the fundamental (50 Hz component).
  • the measurement signal is applied to an integrator 27.
  • the magnetic flux change in the measuring coil 8 proportional voltage signal, which is a very selective bandpass filter 26 is supplied to the second harmonic, the DC Share figures, filter out.
  • This voltage signal passes after a sample-and-hold circuit 28 and a low-pass filter 25 via line 16 to the controlled current source 12 with integrated control device.
  • This current source 12 and control device is connected in a closed circuit 33 with a compensation winding 3. She gives in the Compensation winding 3 before a DC, which counteracts the DC component in the core 4. Since the direction of the DC component to be compensated is not known a priori, a bipolar current regulator, in the present experiment with IGBT transistors in a full bridge, is used. An integrator 27 causes a phase lag of 99 degrees with respect to the 2nd harmonic. The Reaktanzzweipol 18, consisting of a parallel resonant circuit, blocks the network feedback of the power-frequency components.
  • the signal is fed to the sample-hold circuit 28 via filters and rectification. It serves in the illustrated circuit for conditioning the scanning signal, so that a phase-related sampling of the second harmonic of the measuring signal is possible.
  • this sample and hold circuit ultimately only for the phase-related sampling of the provided by the induction probe 8 measuring signal (second harmonic 100 Hz) is used.
  • the current control variable 14, 15 could also be obtained by a suitable digital calculation method in a microcomputer or a freely programmable logic device (FPGA), which determines the second harmonic (100 Hz) from the Fourier transform.
  • FPGA freely programmable logic device
  • FIG. 6 an experimental arrangement is shown in which the in FIG. 5 illustrated and discussed above signal conditioning unit 11 was used in a 4-MVA power transformer to determine the relationship between the DC component and the first harmonic (2nd harmonic) under real conditions by measurement.
  • the 4 MVA power transformer in this experiment was idle at a primary voltage of 6 KV and 30 KV, respectively.
  • a DC component between 0.2 and 2 A.
  • a magnetic field detector 8 was a sensor coil with 200 turns, which was located outside the core of the transformer and detects the leakage flux.
  • FIG. 7 and in FIG. 8 is in each case in a diagram, the measurement result of the experimental arrangement according to FIG. 6 logged.
  • the DC component (IDC) fed in the star point is plotted on the ordinate; on the abscissa the rms value of the first harmonic (U100Hz) is plotted.
  • the diagram in FIG. 7 shows the connection at a primary voltage of 6 kV, that diagram in FIG. 8 effective at a primary voltage of 30 KV.
  • the two diagrams in FIGS. 7 and 8 show that the relationship between the DC component (IDC) and the associated distortion (second harmonic U100Hz) can be considered with sufficient accuracy as linear.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

    Technisches Gebiet
  • Die Erfindung betrifft einen elektrischen Transformator mit Gleichfluss-Kompensation.
  • Stand der Technik
  • Es ist bekannt, dass bei einem elektrischen Transformator, der in Verbindung mit einem Stromrichter betrieben wird, auf Grund von Ungenauigkeiten bei der Ansteuerung der Leistungs-Halbleiterschalter, eine Stromkomponente entstehen kann, die sich dem Betriebsstrom des Transformators überlagert. Diese Stromkomponente, die bezüglich des Netzes als Gleichstrom angesehen werden kann, wird im Folgenden auch als "Gleichstromanteil" oder "DC-Anteil" bezeichnet. Sie beträgt meist nur einige Promille des Transformator-Nennstroms, bewirkt aber im Kern des Transformators einen magnetischen Gleichfluss, der sich dem primären bzw. sekundären Wechselfluss überlagert und eine unsymmetrische Aussteuerung der BH-Kennlinie des ferromagnetischen Kernwerkstoffs bewirkt. Bereits ein geringer Gleichfluss-Anteil kann auf Grund der hohen Permeabilität des ferromagnetischen Kernwerkstoffs eine Sättigung des Kerns hervorrufen und starke Verzerrungen des Magnetisierungsstroms zur Folge haben. Auch das geostationäre Magnetfeld kann zu einem Gleichfluss-Anteil im Kern beitragen. Folge dieser unsymmetrischen Aussteuerung sind erhöhte magnetische Verluste und damit eine erhöhte Erwärmung des Kerns, sowie Magnetisierungs-Stromspitzen, die eine erhöhte Emission von Betriebsgeräuschen verursachen.
  • Dem unerwünschten Sättigungseffekt könnte man grundsätzlich dadurch entgegen treten, indem man den Querschnitt des magnetischen Kreises vergrößert und damit die magnetische Flussdichte B geringer hält, oder in den magnetischen Kreis einen (Ersatz) Luftspalt einfügt, wie beispielsweise in der DE 198 54 902 A1 vorgeschlagen. Ersteres führt aber zu einem erhöhten Bauvolumen des Transformators, Letzteres zu einem größeren Magnetisierungsstrom; beides ist von Nachteil.
  • Um die Geräuschemission eines elektrischen Transformators zu mindern, werden in der US 5,726,617 und in der DE 699 01 596 T2 jeweils Aktuatoren vorgeschlagen, welche das Öl in einem Transformatorgehäuse so anregen, dass die Fluiddruckwellen, die bei Betrieb des Transformators vom Blechpaket des Kerns und von den Transformator-Wicklungen ausgehen, abgeschwächt werden. Diese Aktuatoren verbrauchen aber bei Betrieb ein nicht unerhebliches Maß an Energie; sie sind außerdem störanfällig und aufwändig.
  • Aus der JP 59 013313A ist ein elektrischer Transformator mit Gleichflusskompensation gemäß des Oberbegriffs von Anspruch 1 bekannt, bei dem das Magnetfeld im Kern des Transformators gemessen wird und daraus ein Kompensationsstrom abgeleitet wird.
  • Darstellung der Erfindung
  • Es ist eine Aufgabe der vorliegenden Erfindung, den Stand der Technik weiterzuentwickeln.
  • Die Lösung dieser Aufgabe erfolgt durch die Merkmale des Patentanspruchs 1. Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen definiert.
  • Die Erfindung geht von dem Gedanken aus, nicht die unerwünschten Auswirkungen der Vormagnetisierung zu bekämpfen, sondern deren Ursache zu beseitigen. Der erfindungsgemäße Transformator ist wie folgt gekennzeichnet:
    • Der Transformator weist einen weichmagnetischen Kern auf, auf dem zusätzlich zu einer primären und einer sekundären Wicklungsanordnung eine Kompensations-Wicklungsanordnung angeordnet ist.
    • Die Kompensations-Wicklungsanordnung ist mit einer Strom-Steuereinrichtung verbunden, welche nach Maßgabe einer Steuergröße, die eine Magnetfeld-Messeinrichtung aus einer Messung eines mit einem Strom in der primären oder sekundären Wicklungsanordnung verketteten magnetischen Flusses bereit stellt, in die Kompensations-Wicklungsanordnung einen Kompensationsstrom so einspeist, dass dessen Wirkung im Kern einem magnetischen Gleichfluss entgegen gerichtet ist.
  • Dadurch wird erreicht, dass ein magnetischer Gleichfluss-Anteil im Kern eines Transformators, auf einfache Weise messtechnisch erfasst und durch einen Ausregelungsvorgang kompensiert werden kann. Wenn der Gleichfluss-Anteil eliminiert ist, ist die Aussteuerung der BH-Kennlinie symmetrisch. Der ferromagnetische Werkstoff des Kerns wird nicht mehr in die Sättigung getrieben. Die Magnetostriktion des Werkstoffs ist dadurch geringer, infolgedessen sinkt auch die Emission von Betriebsgeräuschen. Die Transformator-Wicklungen werden weniger stark thermisch belastet, da die magnetischen Verluste und damit die Betriebstemperatur im Kern geringer sind.
  • Erfindungsgemäß erfolgt die Vorgabe des Kompensationsstroms in der Kompensationswicklung nach Maßgabe einer Magnetfeld-Messgröße, die eine Magnetfeld-Messeinrichtung liefert. Zur Bestimmung der Magnetfeld-Messgröße sind an sich bekannte Magnetfeldsensoren geeignet, die entweder das Feld im Kern des Transformators messen, oder das Streumagnetfeld, das sich außerhalb des Kerns über den Luftweg schließt. Das grundlegende Wirkprinzip dieser Sensoren kann beispielsweise, die Induktion in einer Messspule, der Hall-Effekt oder der magneto-resistive Effekt sein. Die Magnetfeld-Messgröße kann auch durch Verwendung eines Magnetometers (Fluxgate oder Förster-Sonde) ermittelt werden. Im Vergleich zu einer genauen Messung des Gleichstrom-Anteils (der insbesondere bei einem Großtransformator viel kleiner als der Nennstrom ist und daher schwierig zu erfassen ist), ist der messtechnische Aufwand für die Ermittlung der Magnetfeld-Messgröße geringer. Erfindungsgemäß ist die Magnetfeld-Messeinrichtung aus einer Signalverarbeitungseinheit, die mit zumindest zwei Magnetfeld-Detektoren signalleitend verbunden ist, gebildet. Bei einem Dreiphasen-Transformator herkömmlicher Bauart kann die Bestimmung von zwei Gleichfluss-Anteilen genügen, da der Gesamtfluss null ergeben muss. Dabei ist die Signalverarbeitungseinheit dazu eingerichtet, aus jeweils einem vom Magnetfeld-Detektor bereitgestellten Messsignal Oberschwingungen zu ermitteln und daraus das Steuersignal zu bilden. Dadurch kann mit vergleichsweise geringem schaltungstechnischem Aufwand eine, zur Kompensation des Gleichfluss-Anteils geeignete Steuergröße gewonnen werden. Die harmonische Analyse kann elektronisch oder rechnergestützt erfolgen.
  • Besonders geeignet sind hierbei geradzahlige Harmonische, erfindungsgemäß die erste Oberschwingung (2. Harmonische), deren Amplitude mit dem magnetischen Gleichfluss, den es zu kompensieren gilt, funktional zusammenhängt. Erfindungsgemäß sind zwei Magnetfeld-Detektoren außerhalb des Kerns so angeordnet, dass sie einen Streufluss des Transformators erfassen. Der Streufluss steigt im Fall der magnetischen Sättigung des Kerns sehr stark an, was für die Ermittlung des Steuersignals günstig ist.
  • Der Magnetfeld-Detektor ist einfach als Induktionssonde ausgebildet, welche die Streuflussänderung erfasst und in ein elektrisches Messsignal umformt, aus welchem dann die geradzahligen Harmonischen, erfindungsgemäß die 2. Harmonische, heraus gefiltert werden können. Erfindungsgemäß ist die Induktionssonde als Luftspule ausgebildet. Im Vergleich zu einem Messumformer auf Halbleiterbasis ist das elektrische Messsignal dieser Luftspule unabhängig von Langzeit- und Temperaturdrift und zudem kostengünstig.
  • Um Auswirkungen des Netzes auf die Kompensationswicklung möglichst gering zu halten, kann es günstig sein, wenn im Strompfad zur Strom-Steuereinrichtung ein Sperrkreis (Erfindungsgemäß ein Reaktanzzweipol) geschaltet ist. Dadurch kann die Spannungsbürde der gesteuerten Stromquelle, die den Kompensationsstrom in die Kompensationswicklung einspeist, gering gehalten werden. Geeignet ist hierfür beispielsweise ein zweipoliges Netzwerk, z.B. gebildet aus einer L-C-Parallelschaltung, das die Netzfrequenz sperrt, bezüglich des Kompensations-Gleichstroms aber kaum einen Widerstand darstellt.
  • Eine günstige räumliche Anordnung des Magnetfeld-Detektors erfolgt am einfachsten durch Versuch oder numerische Feldsimulation. Insbesondere günstig ist ein Messort, an dem sich die durch die primären und sekundären Lastströme verursachten magnetischen Felder weitgehend kompensieren. Erfindungsgemäß ist dies eine Anordnung, bei der eine Luftspule in einem Spalt, gebildet aus einer Außenumfangsfläche eines Transformator-Schenkels und der konzentrisch umschließenden Kompensations-Wicklung bzw. Sekundärwicklung, etwa in mittlerer Schenkelhöhe, angeordnet ist.
  • Eine bevorzugte Anordnung der Kompensationswicklung kann bei einem Dreischenkel-Transformator das Joch oder bei einem Fünfschenkel-Transformator der Rückschluss-Schenkel sein; dadurch kann eine Kompensationswicklung an einem vorhandenen Transformator auf einfache Weise nachgerüstet werden.
  • Kurzbeschreibung der Zeichnungen
  • Zur weiteren Erläuterung der Erfindung wird im nachfolgenden Teil der Beschreibung auf die Zeichnungen Bezug genommen aus denen weitere vorteilhafte Ausgestaltungen, Einzelheiten und Weiterbildungen der Erfindung zu entnehmen sind.
  • Es zeigen:
  • Figur 1
    einen erfindungsgemäßen Drehstromtransformator (Dreischenkel-Transformator) mit Gleichfluss-Kompensation, bei dem die Kompensations-Wicklungsanordnung auf den Hauptschenkeln angeordnet ist;
    Figur 2
    einen erfindungsgemäßen Drehstromtransformator (Dreischenkel-Transformator) mit Gleichfluss-Kompensation, bei dem die Kompensations-Wicklungsanordnung auf dem Joch angeordnet ist;
    Figur 3
    einen erfindungsgemäßen Drehstromtransformator mit Gleichfluss-Kompensation, bei dem die Kompensations-Wicklungsanordnung auf einem Rückschlussjoch angeordnet ist;
    Figur 4
    einen erfindungsgemäßen Drehstromtransformator (Fünfschenkel-Transformator) mit Gleichfluss-Kompensation, bei dem die Kompensations-Wicklungsanordnung auf den Hauptschenkeln angeordnet ist;
    Figur 5
    ein Blockschaltbild der erfindungsgemäßen Signalaufbereitung zur Ausregelung der Gleichfluss-Komponente;
    Figur 6
    ein Blockschaltbild eines Messversuchs, zur Messung des Gleichfluss-Anteils an einem 4-MVA Leistungstransformator, wobei die Signalaufbereitung gemäß Figur 5 verwendet wird;
    Figur 7
    ein Diagramm, das als Ergebnis des Messversuchs gemäß Figur 6 den linearen Zusammenhang zwischen DC-Anteil und 2. Harmonischer bei einer Primärspannung von 6 kV zeigt;
    Figur 8
    ein Diagramm, das als Ergebnis des Messversuchs gemäß Figur 6 den linearen Zusammenhang zwischen DC-Anteil und 2. Harmonischer bei einer Primärspannung von 30 kV zeigt.
    Ausführung der Erfindung
  • In der Figur 1 ist ein elektrischer Transformator 20 mit einem Gehäuse 7 zu sehen, der einen Transformatorkern 4 aufweist. Die Bauform des Kerns 4 entspricht der an sich bekannten Dreischenkel-Bauform mit drei Schenkel 21, 22, 23 und einem quer liegenden Joch 32. Auf jedem der Schenkel 21, 22, 23 befindet sich wie üblich eine primäre Wicklung 1 und eine sekundäre Wicklung 2.
  • Gemäß der Erfindung ist zusätzlich an den äußeren Schenkeln 21 und 23 eine Kompensationswicklung 3 vorgesehen. In der Zeichnung der Figur 1 ist im Bereich des ersten Schenkels 21 mit einem Pfeil 5 ein magnetischer "Gleichfluss" angedeutet. Von diesem magnetischen "Gleichfluss" 5 sei angenommen, dass er durch einen "Gleichstromanteil" (DC-Anteil), der primärseitig oder sekundärseitig fließt, hervorgerufen wird. Der "Gleichfluss" kann aber auch vom Erdmagnetfeld eingestreut werden. Unter "Gleichfluss" oder "Gleichstrom" soll hier eine physikalische Größe verstanden werden, die zeitlich im Vergleich zu 5o Hz Wechselgrößen gesehen, nur sehr langsam schwankt, - sofern dies überhaupt der Fall ist. Dieser magnetische Gleichfluss 5, der dem Wechselfluss im Schenkel 21 überlagert ist, bewirkt eine Vormagnetisierung, die eine unsymmetrische Aussteuerung des magnetischen Werkstoffs und damit ein erhöhte Geräuschemission hervorruft. Zur erfindungsgemäßen Kompensation dieses Gleichfluss-Anteils sind in Figur 1 zwei gesteuerte Stromquellen 12 und 13 vorgesehen. Diese Stromquellen 12, 13 speisen jeweils im Sinne einer Ausregelung in eine zugeordnete Kompensationswicklung 3 einen Kompensationsstrom 16 bzw. 17 ein, dessen Größe und Richtung so bemessen ist, dass der magnetische Gleichfluss 5 im Kern 4 kompensiert ist. (In der Figur 1 ist dies durch einen gleich großen, dem Pfeil 5 entgegengesetzt gerichteten Pfeil 6 angedeutet.) Diese Ausregelung erfolgt mittels der Steuersignale 14, 15, die als Stellgröße den Stromquellen 12 bzw. 13 mittels der Leitungen 9, 10 zugeführt sind.
  • Die Steuergrößen 14, 15 stellt ein Signalverarbeitungseinheit 11 bereit, die weiter unten näher erläutert wird.
  • Wie in der Figur 1 zu sehen ist, ist zwischen der Kompensationswicklung 3 und einem Außenschenkel 21 bzw. 23 des Kerns 4 jeweils etwa mittig ein Magnetfeld-Detektor 8 angeordnet. Jeder dieser Magnetfeld-Detektoren 8 befindet sich außerhalb des magnetischen Kreises und misst ein Streufeld des Transformators 20. Im Streufeld tritt insbesondere jene Halbwelle des Magnetisierungsstroms signifikant hervor, die in die Sättigung gesteuert wird, so dass der Gleichflussanteil im Kern gut ermittelbar ist. Das Messsignal der Detektoren 8 ist mittels der Leitungen 9, 10 der Signalverarbeitungseinheit 11 zugeleitet.
  • Im vorliegenden Beispiel bestehen die beiden Magnetfeld-Detektoren 8 jeweils aus einer Messspule (mehrere hundert Windungen, Durchmesser etwa 25 mm). Bereits zwei Detektoren 8 können wie im vorliegenden Beispiel eines Dreischenkel-Transformators gezeigt, ausreichend sein, da die Summe der Gleichflussanteile über alle Schenkel Null ergeben muss.
  • Wie oben bereits erwähnt, kommt für die Magnetfeldmessung grundsätzlich eine Vielzahl von Sensorprinzipien in Frage. Entscheidend ist lediglich, dass eine Magnetfeld-Kenngröße des Transformators gemessen wird, aus der der DC-Anteil bzw. der Gleichflussanteil signaltechnische ermittelbar und in weitere Folge ausregelbar ist.
  • Die Figur 2 unterscheidet sich von Figur 1 lediglich dadurch, dass hier die Kompensations-Wicklungsanordnung 3 nicht an einem Hauptschenkel 21, 22, 23, sondern am Joch 32 des Kerns 4 angeordnet. An jedem Hauptschenkel 21, 22, 23 ist wieder in einem Spalt zwischen dem Kern 4 und der Sekundärwicklung 2 ein Magnetfeld-Detektor 8 angeordnet (hier aus Redundanzgründen insgesamt drei).
  • Die Figur 3 zeigt einen Fünfschenkel-Transformator, bei dem an jedem Rückschluss-Schenkel 31 jeweils eine Kompensationswicklung 3 angeordnet ist. Bei diesem Aufbau teilt sich der Kernfluss bei Eintritt in das Joch nicht hälftig nach zwei Seiten; auf Grund des Kontinuitätsgesetzes muss der jeweils aus den Rückschluss-Schenkel 31 zurück fließende Gleichfluss-Anteil dem Gleichfluss in den HauptSchenkeln 21, 22, 23 entsprechen, so dass jeder Rückschluss-Schenkel 31 den 1,5-fachen Gleichfluss-Anteil führt. Jedem Schenkel 21, 22, 23 ist wieder jeweils ein außerhalb des Kerns 4 angeordneter Magnetfeld-Detektor 8 zugeordnet. Jedes Messsignal dieser drei Magnetfeld-Detektoren 8 ist wieder der Signalverarbeitungseinheit 11 zugeführt, welche ausgangsseitig die Steuergrößen 14, 15 für die gesteuerten Stromquellen 12 und 13 bereitstellt, so dass der Kompensationsstrom 16 bzw. 17 den Gleichflussanteil in den Rückschluss-Schenkeln 31 kompensieren kann.
  • In der Figur 4 ist eine Variante des Ausführungsbeispiels gemäß Figur 3 dargestellt. Hier befinden sich die Kompensationswicklungen 3 auf den Hauptschenkeln 21, 22 und 23. Jeder dieser Kompensationswicklungen 3 ist wieder eine von drei Strom-Steuereinrichtung zugeordnet. Die Vorgabe des Kompensationsstroms erfolgt wie oben dargestellt durch die Signalverarbeitungseinheit 11.
  • Die Figur 5 zeigt in einer schematischen Blockdarstellung eine mögliche Ausführungsform der Signalverarbeitungseinheit 11, die als DC-Kompensationsregler wirkt. Wie oben bereits dargestellt, ermittelt die Signalverarbeitungseinheit 11 aus dem Spektrum der Oberschwingungen die zweite Harmonische, welche ein direktes Abbild des Gleichfluss-Anteils (DC-Komponente) ist.
  • Im Folgenden wird dies anhand der dargestellten Funktionsblöcke näher erläutert: Eine Sensorspule 8 erfasst einen Streufluss des Transformators 20. Das Messsignal der Sensorspule 8 ist einem Differenzverstärker 19 zugeführt. Im dargestellten Signalpfad folgend gelangt das Ausgangssignal des Differenzverstärkers 19 auf ein Kerbfilter (Notchfilter) 24, das die Grundschwingung (50 Hz-Komponente) ausfiltert. Über eine Tiefpass 25 und einem Bandpass 26 gelangt das Messsignal auf einen Integrator 27. Durch Integration entsteht ein, der magnetischen Flussänderung in der Messspule 8 proportionales Spannungssignal, das einem sehr selektiven Bandpass-Filter 26 zugeführt wird, um die zweite Harmonische, die den Gleichfluss-Anteil abbildet, herauszufiltern. Dieses Spannungssignal gelangt nach einem Abtast-Haltekreis 28 und einem Tiefpass 25 über Leitung 16 zur gesteuerten Stromquelle 12 mit integrierter Regeleinrichtung. Diese Stromquelle 12 und Regeleinrichtung ist in einem geschlossenen Stromkreis 33 mit einer Kompensationswicklung 3 verbunden. Sie gibt in der Kompensationswicklung 3 einen Gleichstrom vor, der dem Gleichfluss-Anteil im Kern 4 entgegenwirkt. Da die Richtung des zu kompensierenden DC-Anteils a priori nicht bekannt ist, wird ein bipolarer Stromregler, im vorliegenden Experiment mit IGBT-Transistoren in einer Vollbrücke, eingesetzt. Ein Integrator 27 bewirkt bezüglich der 2. Harmonischen ein Nacheilen der Phase um 99 Grad. Der Reaktanzzweipol 18, bestehend aus einem Parallelschwingkreis, blockt die Netzrückwirkung der netzfrequenten Anteile.
  • In der Figur 5 ist noch eine Hilfswicklung 29 zu sehen, deren Signal über Filter und Gleichrichtung dem Abtast-Haltekreis 28 zugeführt ist. Sie dient in der dargestellten Schaltung zur Konditionierung des Abtastsignals, so dass ein phasenbezogenes Abtasten der zweiten harmonischen des Messsignals möglich ist. An dieser Stelle sei angemerkt, dass diese Abtast-Halteschaltung letztlich nur für das phasenbezogene Abtasten des von der Induktionssonde 8 bereitgestellten Messsignals (zweite Harmonische 100 Hz) dient.
  • Die in Figur 5 dargestellte Signalaufbereitung zeigt nur beispielhaft eine mögliche Messmethode der zweiten Harmonischen auf. Dem kundigen Fachmann steht hierfür eine Reihe von analogen wie digitalen Funktionsbausteinen zur Verfügung. So könnte die Strom-Steuergröße 14, 15 beispielsweise auch durch ein geeignetes digitales Berechnungsverfahren in einem Mikrorechner oder einem frei programmierbaren Logikbaustein (FPGA), welches aus der Fourier-Transformierten die zweite Harmonische (100 Hz) ermittelt, gewonnen werden.
  • In der Figur 6 ist eine Versuchsanordnung gezeigt, bei der die in Figur 5 dargestellte und oben erläuterte Signalaufbereitungseinheit 11 bei eine 4-MVA-Leistungstransformator dazu verwendet wurde, um den Zusammenhang zwischen dem Gleichfluss-Anteil und der ersten Oberschwingung (2. Harmonische) unter Realbedingungen messtechnisch zu ermitteln. Der 4-MVA-Leistungstransformator befand sich bei diesem Experiment im Leerlauf bei einer primären Spannung von 6 KV bzw. 30 KV. In den Sternenpunkten der primären bzw. sekundären Wicklungsanordnung (Figur 6) wurde mittels einer Stromquelle ein DC-Anteil zwischen 0,2 und 2 A eingespeist. Als Magnetfeld-Detektor 8 diente eine Sensorspule mit 200 Windungen, die außen am Kern des Transformators angeordnet war und den Streufluss erfasst.
  • In Figur 7 und in Figur 8 ist jeweils in einem Diagramm das Messergebnis der Versuchsanordnung gemäß Figur 6 protokolliert. In den Diagrammen der Figur 7 und 8 ist der im Sternpunkt eingespeiste Gleichstromanteil (IDC) auf der Ordinate aufgetragen; auf der Abszisse ist der Effektivwert der ersten Oberschwingung (U100Hz) aufgetragen. Das Diagramm in Figur 7 zeigt den Zusammenhang bei einer Primärspannung von 6 KV, dass Diagramm in Figur 8 bei einer Primärspannung von 30 KV effektiv. Die beiden Diagramme in Figur 7 und 8 zeigen, dass der Zusammenhang zwischen dem Gleichstromanteil (IDC) und der damit einhergehenden Verzerrung (zweite harmonische U100Hz) mit hinreichender Genauigkeit als linear angesehen werden kann.
  • Im Ergebnis bedeutet dies, das die aus einer MagnetfeldMessung eines Leistungstransformators ermittelte Kenngröße sehr gut geeignet ist, um eine Steuergröße zu bilden, die einen Gleichfluss-Anteil - unbeschadet seiner Ursache, d.h. auch wenn das Erdmagnetfeld daran beteiligt ist - messtechnisch zu erfassen und zu kompensieren, so dass Betriebsgeräusche und Erwärmung des Transformators gering gehalten werden können.
  • Zusammenstellung der verwendeten Bezugszeichen
  • 1
    Primärwicklung
    2
    Sekundärwicklung
    3
    Kompensationswicklung
    4
    Weichmagnetischen Kern
    5
    magnetischer Gleichfluss
    6
    magnetischer Kompensationsflussss
    7
    Transformatorgehäuse
    8
    Magnetfeld-Detektor
    9
    Messleitung, -signal
    10
    Messleitung, -signal
    11
    Signalverarbeitungseinheit
    12
    Strom-Steuereinrichtung
    13
    Strom-Steuereinrichtung
    14
    Steuersignal
    15
    Steuersignal
    16
    Kompensationsstroms
    17
    Kompensationsstroms
    18
    Reaktanzzweipol
    19
    Differenzverstärker
    20
    Transformator
    21
    erster Schenkel des Transformators
    22
    zweiter Schenkel des Transformators
    23
    dritter Schenkel des Transformators
    24
    Kerbfilter
    25
    Tiefpass
    26
    Bandpass
    27
    Integrator
    28
    Abtast-Haltekreis
    29
    Hilfswicklung
    30
    Magnetfeld-Messeinrichtung
    31
    Rückschluss-Schenkel
    32
    Joch
    33
    Strompfad

Claims (3)

  1. Elektrischer Transformator mit Gleichfluss-Kompensation, mit folgenden Merkmalen:
    a) der Transformator (20) weist einen weichmagnetischen Kern (4) auf, auf dem zusätzlich zu einer primären und einer sekundären Wicklungsanordnung (1, 2) eine Kompensations-Wicklungsanordnung (3) angeordnet ist,
    b) eine Magnetfeld- Messeinrichtung (30) misst einen mit einem Strom in der primären oder sekundären Wicklungsanordnung verketteten Fluss und stellt ein Steuersignal (14, 15) bereit,
    c) das Steuersignal (14, 15) ist einer Strom-Steuereinrichtung (12, 13) zugeführt,
    d) die Strom-Steuereinrichtung (12, 13) ist über einen Strompfad (33), der einen Reaktanzzweipol (18) enthält, mit der Kompensations-Wicklungsanordnung (3) verbunden und speist in diese nach Maßgabe des Steuersignals (14, 15) einen Kompensationsstrom (16, 17) so ein, dass dessen Wirkung im Kern (4) einem magnetischen Gleichfluss (5) entgegengerichtet ist,
    e) die Magnetfeld-Messeinrichtung (30) ist aus einer Signalverarbeitungseinheit (11) gebildet, die mit zumindest zwei Magnetfeld-Detektoren (8) signalleitend verbunden ist,
    f) die Signalverarbeitungseinheit (11) ist dazu eingerichtet, aus jeweils einem vom Magnetfeld-Detektor (8) bereitgestellten Messsignal Oberschwingungen zu ermitteln, um daraus das Steuersignal (14, 15) für eine Ausregelung des Gleichflusses (5) zu ermitteln,
    g) das Steuersignal (14, 15) ist aus der ersten Oberschwingung (2. Harmonischen) gebildet,
    h) der Kern (4) weist drei Schenkel (21, 22, 23) auf, von denen insbesondere zumindest zwei Schenkel (21, 23) mit einer Kompensations-Wicklung (3) versehen sind,
    dadurch gekennzeichnet, dass
    i) die Magnetfeld-Messeinrichtung (30) zur Bereitstellung des Steuersignals das Streumagnetfeld, das sich außerhalb des Kerns (4) über den Luftweg schließt, misst
    j) jeder der zumindest zwei Magnetfeld-Detektoren (8) außerhalb des Kerns (4) angeordnet ist, um einen Streufluss des Transformators (20) zu erfassen,
    k) dass jeder Magnetfeld-Detektor (8) als Induktionssonde ausgebildet ist,
    l) dass jede Induktionssonde (8) eine Luftspule ist,
    m) dass jede Luftspule (8) jeweils in einem Spalt, gebildet aus einer Außenumfangsfläche eines Schenkels und einer umschließenden Kompensations-Wicklung (3) oder einer Wicklung (2), etwa in mittlerer Schenkelhöhe, angeordnet ist.
  2. Transformator nach Anspruch 1, dadurch gekennzeichnet, dass der Kern (4) drei Schenkel (21, 22, 23) und zwei Rückschluss-Schenkel (31), auf denen jeweils eine Kompensations-Wicklung (3) angeordnet ist, aufweist.
  3. Transformator nach Anspruch 1 dadurch gekennzeichnet, dass die Kompensations-Wicklungsanordnung (3) am Joch (32) des Transformators angeordnet ist.
EP07730062.2A 2007-06-12 2007-06-12 Elektrischer transformator mit gleichfluss-kompensation Active EP2156448B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2007/055728 WO2008151661A1 (de) 2007-06-12 2007-06-12 Elektrischer transformator mit gleichfluss-kompensation

Publications (2)

Publication Number Publication Date
EP2156448A1 EP2156448A1 (de) 2010-02-24
EP2156448B1 true EP2156448B1 (de) 2017-08-16

Family

ID=39032325

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07730062.2A Active EP2156448B1 (de) 2007-06-12 2007-06-12 Elektrischer transformator mit gleichfluss-kompensation

Country Status (5)

Country Link
US (1) US8314674B2 (de)
EP (1) EP2156448B1 (de)
CN (1) CN101681716A (de)
ES (1) ES2647679T3 (de)
WO (1) WO2008151661A1 (de)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5044188B2 (ja) * 2006-10-16 2012-10-10 株式会社東芝 静止誘導電気機器の磁束測定装置、磁束測定方法および遮断器の同期開閉制御装置
BR112012026073B1 (pt) * 2010-04-14 2019-10-22 Siemens Ag Oesterreich método e aparelho para a detecção de um parâmetro magnético e suas aplicações
US9046901B2 (en) 2010-09-29 2015-06-02 Siemens Aktiengesellschaft Device and method for reducing a magnetic unidirectional flux fraction in the core of a transformer
CN103270562B (zh) * 2010-09-29 2017-03-01 西门子公司 补偿变压器铁芯中的单向磁通的装置和方法
EP2639800B1 (de) * 2012-03-14 2014-10-15 Siemens Aktiengesellschaft Transformator für ein elektrisch angetriebenes Fahrzeug
CN102637513B (zh) * 2012-05-07 2015-05-13 上海电机学院 可改善输出波形的变压器及其改善输出波形的方法
US9159487B2 (en) 2012-07-19 2015-10-13 The Boeing Company Linear electromagnetic device
US9389619B2 (en) * 2013-07-29 2016-07-12 The Boeing Company Transformer core flux control for power management
US9455084B2 (en) 2012-07-19 2016-09-27 The Boeing Company Variable core electromagnetic device
US9568563B2 (en) 2012-07-19 2017-02-14 The Boeing Company Magnetic core flux sensor
US9947450B1 (en) 2012-07-19 2018-04-17 The Boeing Company Magnetic core signal modulation
US9651633B2 (en) 2013-02-21 2017-05-16 The Boeing Company Magnetic core flux sensor
BR112015029477B8 (pt) * 2013-05-28 2023-04-25 Siemens Ag Aparelho para a redução de um componente de fluxo magnético unidirectional no núcleo de um transformador
CN103337342A (zh) * 2013-06-20 2013-10-02 山东电力设备有限公司 一种应用在三主柱并联变压器上的消磁线圈结构
US10068698B2 (en) 2013-12-10 2018-09-04 Siemens Aktiengesellschaft Device and method for reducing a magnetic unidirectional flux component of a transformer core
WO2015086047A1 (de) * 2013-12-10 2015-06-18 Siemens Aktiengesellschaft Vorrichtung und verfahren zur verringerung eines magnetischen gleichfluss-anteils im kern eines dreiphasentransformators
EP2905792B1 (de) * 2014-02-06 2016-09-21 Siemens Aktiengesellschaft Vorrichtung zur Verringerung eines magnetischen Gleichfluss-Anteils im Kern eines Transformators
US10032556B2 (en) * 2014-03-19 2018-07-24 Siemens Aktiengesellschaft DC compensation for high DC current in transformer
EP2952997B1 (de) * 2014-06-06 2017-02-01 Siemens Aktiengesellschaft Messanordnung zum Erfassen eines magnetischen Gleichflusses im Kern eines Transformators
EP3021335B1 (de) * 2014-11-11 2018-12-26 Siemens Aktiengesellschaft Anordnung und Verfahren zur Verringerung eines magnetischen Gleichfluss-Anteils im Kern eines Transformators
EP3065150B1 (de) * 2015-03-05 2017-11-29 Siemens Aktiengesellschaft Transformator
EP3076411B1 (de) * 2015-04-01 2017-11-29 Siemens Aktiengesellschaft Schaltungsanordnung zum verringern eines magnetischen gleichfluss-anteils im kern eines transformators
US10403429B2 (en) * 2016-01-13 2019-09-03 The Boeing Company Multi-pulse electromagnetic device including a linear magnetic core configuration
EP3196902B1 (de) 2016-01-25 2019-04-24 Siemens Aktiengesellschaft Schaltungsanordnung zur verringerung eines gleichfluss-anteils im weichmagnetischen kern eines transformators
CN106411203B (zh) * 2016-11-07 2019-03-01 西安交通大学 一种磁控式分时复用集成型智能配电变压器
AT519338A1 (de) * 2016-11-15 2018-05-15 Siemens Ag Schaltungsanordnung zur Verringerung eines Gleichfluss-Anteils im weichmagnetischen Kern eines Transformators
DE102018222183A1 (de) * 2018-12-18 2020-06-18 Siemens Aktiengesellschaft Magnetisch regelbare Drosselspule in Reihenschaltung
US11418031B2 (en) * 2020-05-08 2022-08-16 Raytheon Company Actively-controlled power transformer and method for controlling
EP4290538A1 (de) * 2022-06-08 2023-12-13 Hitachi Energy Ltd Transformator mit tertiärwicklung

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1412782A (en) * 1921-01-26 1922-04-11 Gen Electric Stationary induction apparatus
US2297673A (en) * 1940-08-31 1942-09-29 Bell Telephone Labor Inc Voltage regulator
US2297672A (en) * 1940-08-31 1942-09-29 Bell Telephone Labor Inc Voltage regulator
US2617973A (en) * 1950-08-12 1952-11-11 Jr John L Wolff Regulating system
US2761097A (en) * 1953-07-17 1956-08-28 Tourneau Robert G Le Voltage regulating system
US2895103A (en) * 1955-03-12 1959-07-14 Stin Magnetic testing apparatus
US3140439A (en) * 1961-05-16 1964-07-07 Atlas Engineering Co Inc Magnetic amplifier controlled voltage regulating circuit
US3398292A (en) * 1965-07-19 1968-08-20 North Electric Co Current supply apparatus
US3546565A (en) * 1968-10-29 1970-12-08 Sangamo Electric Co Compensation of input direct current component in a current transformer
US3688301A (en) * 1970-10-13 1972-08-29 Takeda Riken Ind Co Ltd Digital-analog converting apparatus
US4339706A (en) * 1975-05-29 1982-07-13 Jodice Controls Corporation Current controlling
GB2013000A (en) * 1978-01-20 1979-08-01 Hitachi Ltd Dc D.C. magnetic field cancellation circuit
US4346340A (en) 1980-04-30 1982-08-24 Hackett Jones Francis C Method and means for controlling the flux density in the core of an inductor
US4602212A (en) * 1982-06-14 1986-07-22 Sumitomo Metal Industries, Ltd. Method and apparatus including a flux leakage and eddy current sensor for detecting surface flaws in metal products
JPS5913313A (ja) * 1982-07-13 1984-01-24 Mitsubishi Electric Corp 変圧器の直流偏磁矯正方法
JPH0640696B2 (ja) * 1987-09-22 1994-05-25 三菱電機株式会社 変圧器の直流偏磁検出方法
US4975649A (en) * 1989-12-18 1990-12-04 Albar, Inc. Method and apparatus for sensing loss of regulation in a ferroresonant transformer
US5225784A (en) * 1991-02-25 1993-07-06 National Research Council Of Canada DC Current comparator circuit for generating an adjustable output proportional to an input signal
US5416458A (en) * 1991-04-25 1995-05-16 General Signal Corporation Power distribution transformer for non-linear loads
US5726617A (en) 1995-07-31 1998-03-10 General Electric Company Electrical transformer with reduced core noise
US6073493A (en) * 1997-01-10 2000-06-13 Nippon Steel Corporation Method of diagnosing fatigue life of structural steelwork and a member of steelwork having life diagnostic function
US5912553A (en) * 1997-01-17 1999-06-15 Schott Corporation Alternating current ferroresonant transformer with low harmonic distortion
DE19854902A1 (de) 1998-11-27 2000-02-17 Siemens Ag Transformator mit von einer Gleichstromkomponente beaufschlagten Wicklung
ATE218243T1 (de) 1999-03-29 2002-06-15 Abb T & D Tech Ltd Geräuscharmer transformator
SE527406C2 (sv) * 2004-05-10 2006-02-28 Forskarpatent I Syd Ab Förfarande och DC-avledare för skydd av kraftsystem mot geomagnetiskt inducerade strömmar
CN100505120C (zh) * 2004-11-01 2009-06-24 王如璋 具有光信号输出的干式互感器
RU2343623C1 (ru) 2007-12-11 2009-01-10 Общество с ограниченной ответственностью "АТС-КОНВЕРС" Мостовой инвертор напряжения с защитой трансформатора от одностороннего насыщения

Also Published As

Publication number Publication date
US8314674B2 (en) 2012-11-20
US20100194373A1 (en) 2010-08-05
ES2647679T3 (es) 2017-12-26
WO2008151661A1 (de) 2008-12-18
CN101681716A (zh) 2010-03-24
EP2156448A1 (de) 2010-02-24

Similar Documents

Publication Publication Date Title
EP2156448B1 (de) Elektrischer transformator mit gleichfluss-kompensation
EP2558875B1 (de) Verfahren und vorrichtung zum detektieren einer magnetischen kenngrösse in einem kern
EP2044446A2 (de) Stromerfassungsvorrichtung und verfahren zur stromerfassung
DE102008030411A1 (de) Integrierter Hybrid-Stromsensor
EP2331980B1 (de) Verfahren und vorrichtung zur detektion von kurzschlüssen im stator-blechpaket von elektromaschinen
DE102015100924B3 (de) Magnetfeldsensorvorrichtung zur Messung des Stromes durch einen stromführenden Leiter
EP1873543B1 (de) Magnetfeldkompensationssystem mit erhöhter Bandbreite
DE102012021364A1 (de) Gerät zur isolierten Messung von Strom und Verfahren zur isolierten Ermittlung von Strom
DE102012104348A1 (de) Berührungsloses, hochgenaues Stromsensorsystem
DE102007032299B4 (de) Sensor, insbesondere zur Magnetfeldmessung
WO1998045670A1 (de) Magnetisch-induktives durchflussmessgerät für strömende medien
DE10041672C2 (de) Magnetanordnung mit einem zusätzlichen stromführenden Spulensystem und Verfahren zu deren Dimensionierung
DE102007032300A1 (de) Stromsensor zur Gleich- oder Wechselstrommessung
WO2015071102A1 (de) Vorrichtung, anordnung und verfahren zur messung einer stromstärke in einem stromdurchflossenen primärleiter
DE1959406A1 (de) Wirbelstrommessvorrichtung
EP3571703B1 (de) Verfahren und anordnung zur bestimmung der ankerposition eines elektromagneten
DE102023108386B3 (de) Teilentladungssensor, Verfahren zum Steuern eines Spalts eines Magnetkerns und Steuerungsvorrichtung
EP2992337B1 (de) Verfahren und vorrichtung zur überwachung und strommessung an einer magnetisch vorgespannten drossel
CH704267A2 (de) Vorrichtung zur messung der flussdichte im magnetkreis von mittelfrequenz-hochleistungstransformatoren.
DE102016110187B4 (de) Messvorrichtung und Messverfahren zur Strommessung
AT157633B (de) Verfahren und Einrichtung zur Messung von magnetischen Feldern.
DE3918100C2 (de)
AT517672B1 (de) Schaltungsanordnung zur Erfassung von mindestens einem Stromanstieg
WO2022253822A1 (de) Magnetkern für stromsensoren
EP2315044B1 (de) Differenzmagnetometersonde

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090930

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AG OESTERREICH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20160628

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170313

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 919819

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007015818

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: PCOW

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2647679

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171226

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171116

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171216

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007015818

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180612

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180612

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180612

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180612

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20200611

Year of fee payment: 14

Ref country code: FI

Payment date: 20200622

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200507

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200909

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007015818

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210612

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 919819

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210612

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210613

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20221220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230626

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230626

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240627

Year of fee payment: 18