TW202205703A - 熱電變換模組 - Google Patents

熱電變換模組 Download PDF

Info

Publication number
TW202205703A
TW202205703A TW110110323A TW110110323A TW202205703A TW 202205703 A TW202205703 A TW 202205703A TW 110110323 A TW110110323 A TW 110110323A TW 110110323 A TW110110323 A TW 110110323A TW 202205703 A TW202205703 A TW 202205703A
Authority
TW
Taiwan
Prior art keywords
thermoelectric conversion
thermoelectric
conversion module
base material
substrate
Prior art date
Application number
TW110110323A
Other languages
English (en)
Inventor
森田亘
加藤邦久
関佑太
Original Assignee
日商琳得科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商琳得科股份有限公司 filed Critical 日商琳得科股份有限公司
Publication of TW202205703A publication Critical patent/TW202205703A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/857Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本發明係提供一種進一步提昇熱電性能之熱電變換模組者,為一種熱電變換模組,其係包含基材及由熱電半導體組成物所構成之熱電元件層的熱電變換模組,其特徵為前述熱電半導體組成物係包含熱電半導體材料、耐熱性樹脂A、以及離子液體及/或無機離子性化合物,前述基材的熱阻為0.35K/W以下。

Description

熱電變換模組
本發明係關於熱電變換模組。
自以往,作為將發生自於建築物、工廠等使用之化石燃料資源等之未利用的排熱能量作為熱源回收的有效利用手段之一,有使用具有賽貝克(Seebeck)效果或帕爾帖效應(Peltier effect)等之熱電效果的熱電變換材料,將熱能量直接變換成電氣能量的方式進行之熱電變換模組。 作為前述熱電變換模組,已知有所謂π型之熱電變換元件的構成。π型係將彼此分離之一對電極設置在基板上,例如,藉由以同樣以彼此分開於一個電極之上設置P型熱電元件,於另一個電極之上設置N型熱電元件,將兩側的熱電材料之上面連接在對向之基板的電極來構成。又,已知有所謂面內(in-plane)型之熱電變換元件的構成。面內(in-plane)型係P型熱電元件與N型熱電元件交替設置在基板之面內方向,例如藉由以將兩熱電元件間之接合部的下部介在電極連接成直列來構成。 近年來,包含熱電變換模組之彎曲性提昇、小型化及薄型化的觀點,有對熱電性能之進一步提昇的要求。於此等之要求當中,作為使用在熱電變換模組之支持體的基材,使用有樹脂材料(專利文獻1、2等)。 [先前技術文獻] [專利文獻]
[專利文獻1]國際公開第2016/104615號 [專利文獻2]日本特開2008-182160號公報
[發明欲解決之課題]
然而,於作為使用在專利文獻1之熱電變換模組的支持體之聚醯亞胺薄膜、聚醯胺薄膜等之樹脂基板,又,作為使用在構成專利文獻2之可撓性熱電變換元件的可撓性基板之基層的聚醯亞胺系樹脂、聚碸系樹脂等之絕緣性樹脂基板,雖具有耐熱性、彎曲性,但首先從源自樹脂之材料物性的觀點來看,熱傳導率低,例如即使將厚度薄化至熱電變換模組之機械性強度界限為止,亦無法充分抑制熱阻,成為妨礙熱電性能的進一步提昇。
本發明係鑑於上述,以提供一種進一步提昇熱電性能之熱電變換模組作為課題。 [用以解決課題之手段]
本發明者們為了解決上述課題,經重複努力研究的結果,作為構成熱電變換模組之熱電變換元件的支持體即基材(以下,有時稱為「基板」),藉由使用具有特定之熱阻的基材,發現進一步提昇熱電性能之熱電變換模組,而完成本發明。 亦即,本發明係提供以下之(1)〜(10)者。 (1)一種熱電變換模組,其係包含基材及由熱電半導體組成物所構成之熱電元件層的熱電變換模組,其特徵為前述熱電半導體組成物係包含熱電半導體材料、耐熱性樹脂A、以及離子液體及/或無機離子性化合物,前述基材的熱阻為0.35K/W以下。 (2)如上述(1)所記載之熱電變換模組,其中,前述基材係由絕緣體所構成。 (3)如上述(1)或(2)所記載之熱電變換模組,其中,前述基材係具有可撓性。 (4)如上述(1)〜(3)中任一項所記載之熱電變換模組,其中,前述基材之熱傳導率為0.5W/m・K以上。 (5)如上述(1)〜(4)中任一項所記載之熱電變換模組,其中,前述基材的厚度為5〜150μm。 (6)如上述(1)〜(5)中任一項所記載之熱電變換模組,其中,前述基材係包含玻璃布及耐熱性樹脂B。 (7)如上述(6)所記載之熱電變換模組,其中,前述玻璃布為玻璃織布。 (8)如上述(6)所記載之熱電變換模組,其中,前述耐熱性樹脂B為環氧樹脂或聚醯亞胺樹脂。 (9)如上述(1)〜(8)中任一項所記載之熱電變換模組,其中,前述熱電變換模組係以π型熱電變換元件或面內(in-plane)型熱電變換元件構成。 (10)如上述(9)所記載之熱電變換模組,其中,前述π型熱電變換元件或前述面內(in-plane)型熱電變換元件的構成係使用在冷卻。 [發明效果]
根據本發明,可提供一種進一步提昇熱電性能之熱電變換模組。
[熱電變換模組]
本發明之熱電變換模組,其係包含基材及由熱電半導體組成物所構成之熱電元件層的熱電變換模組,其特徵為前述熱電半導體組成物係包含熱電半導體材料、耐熱性樹脂A、以及離子液體及/或無機離子性化合物,前述基材的熱阻為0.35K/W以下。 於本發明之熱電變換模組,藉由將作為構成熱電變換模組之熱電變換元件的例如支持體之基材的熱阻定為0.35 K/W以下,可於熱電變換模組之兩面間表現更大的溫度差。 尚,所謂於本說明書之基材的熱阻,係藉由熱傳導之熱阻,將物質的熱傳導率定為λ[基材的熱傳導率](W/m・k),將熱傳導的熱流路的長度定為L[基材的厚度](m),將熱傳導的熱流路剖面積定為Ac[與基材的厚度方向垂直交差所得之剖面的面積](m2 )時,熱阻Rc作為Rc=L/λAc(K/W)表示。 在本說明書之基材的熱阻的評估,由於以具有同一的熱流路剖面積Ac的基材彼此進行,故熱阻成為依存在實質、基材的熱傳導率與基材的厚度者。
圖1係用以說明具有本發明所使用之基材的熱電變換模組之構成的一例之剖面構成圖。熱電變換模組1係作為所謂π型之熱電變換元件構成,配置第1基材2a及對向之第2基材2b、與前述第1基材2a及對向之前述第2基材2b之間所形成之P型熱電元件層4、N型熱電元件層5、與前述第1基材2a上所形成之第1電極3a、對向之前述第2基材2b上所形成之第2電極3b者。 同樣,圖2係用以說明具有本發明所使用之基材的熱電變換模組之構成的另一例之剖面圖。熱電變換模組11係作為所謂面內(in-plane)型之熱電變換元件構成,配置第1基材12a及對向之第2基材12b、與前述第1基材12a及對向之前述第2基材12b之間所形成之P型熱電元件層14、N型熱電元件層15、與前述第1基材12a上所形成之第1電極13者。
<基材> 本發明之熱電變換模組係包含基材。如前述,例如,作為π型之熱電變換元件構成時,較佳為包含與具有第1電極的第1基材對向之具有第2電極的第2基材。又,作為面內(in-plane)型之熱電變換元件構成時,與具有第1電極的第1基材對向之第2基材可包含亦可不包含基材。進而,前述第1基材和與該第1基材對向之前述第2基材可為相同亦可為相異,亦可複數使用。
本發明所使用之基材的熱阻為0.35K/W以下。熱阻超過0.35K/W時,降低在基材之放熱性,並導致熱電性能的低下。熱阻較佳為0.30K/W以下,更佳為0.20 K/W以下,再更佳為0.15K/W以下。熱阻為此範圍時,提高在基材之放熱性,並導致熱電性能的提昇。 尚,基材若可於其表面形成及支持熱電元件層、電極等,雖並未特別限制,但通常較佳為表背面皆為面內,作為形狀,雖可藉由用途適當選擇,但可列舉長方體狀、橢圓柱狀或圓柱狀等。
本發明所使用之基材的熱傳導率較佳為0.5 W/m・K以上,更佳為1.5W/m・K以上,再更佳為2.5〜30.0 W/m・K,特佳為3.0〜20.0W/m・K。熱傳導率為此範圍時,變成易將熱阻之值調整在本發明之規定的範圍,並且導致熱電性能的提昇。
本發明所使用之基材較佳為由絕緣體所構成。藉由基材為絕緣體,可抑制對熱電元件層、電極等之電氣的作用,可防止熱電性能的低下。 在本說明書,所謂絕緣體,係指具有體積電阻率為108 Ω・m以上者。
基材的厚度較佳為5〜150μm,更佳為8〜120 μm,再更佳為10〜100μm,特佳為10〜70μm。基材的厚度為此範圍時,對於熱電元件層等得到作為支持體之機械強度,並且可抑制熱電性能的低下,並導致熱電性能的提昇。
本發明所使用之基材從得到可撓性且耐熱性的觀點來看,較佳為包含玻璃布、耐熱性樹脂B。
作為玻璃布,可列舉玻璃織布(玻璃布)、玻璃不織布等。玻璃織布與不織布可併用。 其中,從提昇熱傳導性的觀點來看,更佳為玻璃織布。
玻璃織布係玻璃纖維之集合體,係編入捆綁玻璃纖維之紗線者。作為編織方法,可列舉藉由平織、斜子織、緞紋編織、斜紋編織等編入者。此等當中,從熱傳導性的觀點來看,較佳為平織。 作為構成玻璃織布之玻璃材料,例如可列舉E玻璃、C玻璃、A玻璃、S玻璃、T玻璃、D玻璃、NE玻璃、石英、低介電常數玻璃、高介電常數玻璃等。此等當中,從熱傳導性、電氣絕緣性的觀點來看,較佳為E玻璃。
作為耐熱性樹脂B,並未特別限制,可列舉具有結晶性或液晶性之環氧樹脂、聚醯胺醯亞胺樹脂、聚醯亞胺樹脂等。此等當中,從耐熱性或通用性的觀點來看,較佳為環氧樹脂、聚醯亞胺樹脂。更佳為環氧樹脂。環氧樹脂雖並非被限定者,但可列舉雙酚型、酚醛清漆型、二環戊二烯型、聯苯型、四官能型等。
於基材中可進一步包含無機填充材。從機械性強度、熱傳導率的控制等之觀點來看,作為無機填充劑,可列舉二氧化鈦、氫氧化鋁、氧化鋁、氧化鎂及二氧化矽等之氧化物、氫氧化鎂等之氫氧化物、氮化硼、氮化鋁、氮化矽等之氮化物、碳化矽及碳化硼等之碳化物等適當使用。
作為滿足本發明之熱阻的規定之市售的基材,可列舉貼附銅箔之高熱傳導性基板(利昌工業公司製、製品名:CS‐3295)等。作為高熱傳導性基板單質,係以玻璃織布與環氧樹脂構成,其熱傳導率為3.0W/m・K,具有高之值。
基材之製造雖並未特別限制,但例如將前述環氧樹脂等之高熱傳導性樹脂含浸在前述玻璃織布,進行預備乾燥所得之預浸料切斷成指定的尺寸後,重疊指定的枚數,為覆銅層合板時,可藉由於其外側放置銅箔,以指定的條件進行加熱加壓而成為成形一體化來製造。
基材係以熱重量分析測定之5%重量減少溫度較佳為250℃以上,更佳為400℃以上。依照JIS K7133 (1999),於200℃測定之加熱尺寸變化率較佳為0.5%以下,更佳為0.3%以下。依照JIS K7197(2012)所測定之平面方向的線膨脹係數為0.1ppm・℃-1 〜50ppm・℃-1 ,更佳為0.1 ppm・℃-1 〜30ppm・℃-1
<熱電元件層> 本發明所使用之熱電元件層係由包含熱電半導體材料、耐熱性樹脂A、以及離子液體及/或無機離子性化合物的熱電半導體組成物所構成。
(熱電半導體材料) 熱電元件層所使用之熱電半導體材料,較佳為例如藉由微粉碎裝置等,粉碎至指定的尺寸為止,作為熱電半導體粒子使用(以下,有時將熱電半導體材料稱為「熱電半導體粒子」)。
在本發明所使用之熱電元件層,作為構成P型熱電元件層及N型熱電元件層之熱電半導體材料,若為藉由賦予溫度差,可產生熱電動勢(Thermoelectromotive force)的材料,則並未特別限制,例如係使用P型碲化鉍、N型碲化鉍等之鉍-碲系熱電半導體材料;GeTe、PbTe等之碲化物系熱電半導體材料;銻-碲系熱電半導體材料;ZnSb、Zn3 Sb2 、Zn4 Sb3 等之鋅-銻系熱電半導體材料;SiGe等之矽-鍺系熱電半導體材料;Bi2 Se3 等之硒化鉍系熱電半導體材料;β-FeSi2 、CrSi2 、MnSi1.73 、Mg2 Si等之矽化物系熱電半導體材料;氧化物系熱電半導體材料;FeVAl、FeVAlSi、FeVTiAl等之休斯勒(Heusler)材料、TiS2 等之硫化物系熱電半導體材料等。
此等當中,本發明所使用之前述熱電半導體材料較佳為P型碲化鉍或N型碲化鉍等之鉍-碲系熱電半導體材料。 前述P型碲化鉍較佳為使用載體為電洞,且賽貝克係數為正值,例如使用以BiX Te3 Sb2-X 表示者。此情況下,X較佳為0<X≦0.8,更佳為0.4≦X≦0.6。X較0更大,且為0.8以下時,由於賽貝克係數與電導率變大,維持作為P型熱電變換材料之特性故較佳。 又,前述N型碲化鉍較佳為使用載體為電子,且賽貝克係數為負值,例如以Bi2 Te3-Y SeY 表示者。此情況下,Y較佳為0≦Y≦3(Y=0之時:Bi2 Te3 ),更佳為0.1<Y≦2.7。Y為0以上3以下時,由於賽貝克係數與電導率變大,維持作為N型熱電變換材料之特性故較佳。
熱電半導體粒子之前述熱電半導體組成物中的摻合量,較佳為30〜99質量%。更佳為50〜96質量%,再更佳為70〜95質量%。若熱電半導體粒子的摻合量為上述範圍內,較佳為得到賽貝克係數(帕爾帖係數之絕對值)大,且抑制電導率的低下,由於僅熱傳導率低下,故顯示高熱電性能,並且具有充分之皮膜強度、彎曲性的膜。
熱電半導體粒子的平均粒徑較佳為10nm〜200μm,更佳為10nm〜30μm,再更佳為50nm〜10μm,特佳為1〜6μm。若為上述範圍內,均一分散變容易,可提高電導率。 粉碎前述熱電半導體材料,而得到熱電半導體粒子之方法,則並未特別限制,藉由氣流式粉碎機、球磨機、珠磨機、膠體研磨機、圓錐磨機、盤磨機、磨邊機、磨粉機、錘擊式破碎機、製粒機、輪式磨粉機、輥磨機等之公知的微粉碎裝置等,粉碎至指定的尺寸為止即可。 尚,熱電半導體粒子的平均粒徑係藉由在雷射繞射式粒度分析裝置(Malvern公司製、Master Sizer 3000)測定所得,定為粒徑分布之中央值。
又,熱電半導體粒子較佳為經退火處理(以下,有時稱為「退火處理A」)者。藉由進行退火處理A,熱電半導體粒子由於提昇結晶性,進而,去除熱電半導體粒子的表面氧化膜,可增大熱電變換材料之賽貝克係數(帕爾帖係數之絕對值),可進一步提昇熱電性能指數。退火處理A雖並未特別限定,但較佳為於調製熱電半導體組成物之前,以不對熱電半導體粒子帶來不良影響的方式,於控制氣體流量之氮氣、氬氣等之惰性氣體環境下、於相同氫氣等之還原氣體環境下或真空條件下進行,更佳為於惰性氣體及還原氣體之混合氣體環境下進行。具體的溫度條件雖依存所使用之熱電半導體粒子,但較佳為通常於粒子的熔點以下的溫度,且於100〜1500℃進行數分鐘〜數十小時。
(耐熱性樹脂A) 本發明所使用之耐熱性樹脂A係作為熱電半導體粒子間之黏結劑,用以提高熱電元件層之彎曲性者。該耐熱性樹脂A雖並非被特別限定者,但將由熱電半導體組成物所構成之薄膜藉由退火處理等,於使熱電半導體粒子結晶成長時,係使用不損害並維持作為樹脂之機械性強度及熱傳導率等之諸物性的耐熱性樹脂A。 作為前述耐熱性樹脂A,例如可列舉聚醯胺樹脂、聚醯胺醯亞胺樹脂、聚醯亞胺樹脂、聚醚醯亞胺樹脂、聚苯并噁唑樹脂、聚苯并咪唑樹脂、環氧樹脂,及具有此等之樹脂的化學構造之共聚物等。前述耐熱性樹脂A可單獨或組合2種以上使用。此等當中,從耐熱性更高,且不會對薄膜中之熱電半導體粒子的結晶成長帶來不良影響的點來看,較佳為聚醯胺樹脂、聚醯胺醯亞胺樹脂、聚醯亞胺樹脂、環氧樹脂,從彎曲性優異的點來看,更佳為聚醯胺樹脂、聚醯胺醯亞胺樹脂、聚醯亞胺樹脂。作為前述之支持體,使用聚醯亞胺薄膜時,從與該聚醯亞胺薄膜的密著性等之點來看,作為耐熱性樹脂A,更佳為聚醯亞胺樹脂。尚,在本發明所謂聚醯亞胺樹脂,總稱為聚醯亞胺及其前驅體。
前述耐熱性樹脂A較佳為分解溫度為300℃以上。若分解溫度為上述範圍,如後述,即使為退火處理由熱電半導體組成物所構成之薄膜的情況,作為黏結劑不會失去機能,可維持熱電元件層之彎曲性。
又,前述耐熱性樹脂A藉由熱重量測定(TG)之在300℃之質量減少率,較佳為10%以下,更佳為5%以下,再更佳為1%以下。若質量減少率為上述範圍,如後述,即使為退火處理由熱電半導體組成物所構成之薄膜的情況下,作為黏結劑不會失去機能,可維持熱電元件層之彎曲性。
前述耐熱性樹脂A之前述熱電半導體組成物中之摻合量,較佳為0.1〜40質量%,更佳為0.5〜20質量%,再更佳為1〜20質量%。若前述耐熱性樹脂A的摻合量為上述範圍內,得到兼具高熱電性能與皮膜強度之膜。
(離子液體) 可包含在熱電半導體組成物之離子液體係組合陽離子與陰離子而成之熔融鹽,係指在-50℃以上且未滿400℃中之任一種的溫度區域,可以液體存在之鹽。換言之,離子液體係熔點為-50℃以上且未滿400℃的範圍之離子性化合物。離子液體的熔點較佳為-25℃以上200℃以下,更佳為0℃以上150℃以下。離子液體由於具有蒸氣壓極為低且為不揮發性、具有優異之熱安定性及電氣化學安定性、黏度低、且離子傳導度高等之特徵,故作為導電輔助劑,可有效果地抑制熱電半導體材料間之電導率的減低。又,由於離子液體根據非質子性之離子構造顯示高極性,且與耐熱性樹脂A之相溶性優異,故可使熱電變換材料的電導率成為均一。
離子液體可使用公知或市售者。例如可列舉由吡啶鎓、嘧啶鎓、吡唑鎓、吡咯烷鎓、哌啶鎓、咪唑鎓等之含有氮之環狀陽離子化合物及該等之衍生物;四烷基銨系之胺系陽離子及該等之衍生物;鏻、三烷基鋶、四烷基鏻等之膦系陽離子及該等之衍生物;鋰陽離子及其衍生物等之陽離子成分、與Cl- 、Br- 、I- 、AlCl4 - 、Al2 Cl7 - 、BF4 - 、PF6 - 、ClO4 - 、NO3 - 、CH3 COO- 、CF3 COO- 、CH3 SO3 - 、CF3 SO3 - 、(FSO2 )2 N- 、(CF3 SO2 )2 N- 、(CF3 SO2 )3 C- 、AsF6 - 、SbF6 - 、NbF6 - 、TaF6 - 、F(HF)n - 、(CN)2 N- 、C4 F9 SO3 - 、(C2 F5 SO2 )2 N- 、C3 F7 COO- 、(CF3 SO2 )(CF3 CO)N- 等之陰離子成分所構成者。
上述之離子液體當中,從高溫安定性、與熱電半導體材料及樹脂之相溶性、熱電半導體材料間隙之電導率的低下抑制等之觀點來看,較佳為離子液體之陽離子成分為包含選自吡啶鎓陽離子及其衍生物、咪唑鎓陽離子及其衍生物中之至少1種。
陽離子成分作為包含吡啶鎓陽離子及其衍生物之離子液體的具體的例,可列舉4-甲基-丁基氯化吡啶鎓、3-甲基-丁基氯化吡啶鎓、4-甲基-己基氯化吡啶鎓、3-甲基-己基氯化吡啶鎓、4-甲基-辛基氯化吡啶鎓、3-甲基-辛基氯化吡啶鎓、3、4-二甲基-丁基氯化吡啶鎓、3、5-二甲基-丁基氯化吡啶鎓、4-甲基-丁基吡啶鎓四氟硼酸鹽、4-甲基-丁基吡啶鎓六氟磷酸鹽、1-丁基溴化吡啶鎓、1-丁基-4-甲基溴化吡啶鎓、1-丁基-4-甲基吡啶鎓六氟磷酸鹽等。其中,較佳為1-丁基-4-甲基溴化吡啶鎓、1-丁基溴化吡啶鎓、1-丁基-4-甲基吡啶鎓六氟磷酸鹽。
又,陽離子成分作為包含咪唑鎓陽離子及其衍生物之離子液體的具體的例,可列舉[1-丁基-3-(2-羥基乙基)溴化咪唑鎓]、[1-丁基-3-(2-羥基乙基)咪唑鎓四氟硼酸鹽]、1-乙基-3-甲基氯化咪唑鎓、1-乙基-3-甲基溴化咪唑鎓、1-丁基-3-甲基氯化咪唑鎓、1-己基-3-甲基氯化咪唑鎓、1-辛基-3-甲基氯化咪唑鎓、1-癸基-3-甲基氯化咪唑鎓、1-癸基-3-甲基溴化咪唑鎓、1-十二烷基-3-甲基氯化咪唑鎓、1-十四烷基-3-甲基氯化咪唑鎓、1-乙基-3-甲基咪唑鎓四氟硼酸鹽、1-丁基-3-甲基咪唑鎓四氟硼酸鹽、1-己基-3-甲基咪唑鎓四氟硼酸鹽、1-乙基-3-甲基咪唑鎓六氟磷酸鹽、1-丁基-3-甲基咪唑鎓六氟磷酸鹽、1-甲基-3-丁基咪唑鎓甲基硫酸鹽、1、3-二丁基咪唑鎓甲基硫酸鹽等。其中,較佳為[1-丁基-3-(2-羥基乙基)溴化咪唑鎓]、[1-丁基-3-(2-羥基乙基)咪唑鎓四氟硼酸鹽]。
上述之離子液體較佳為電導率為10-7 S/cm以上。若離子傳導率為上述範圍,作為導電輔助劑,可有效果地抑制熱電半導體材料間之電導率的減低。
又,上述之離子液體較佳為分解溫度為300℃以上。若分解溫度為上述範圍,如後述,即使是退火處理由熱電半導體組成物所構成之薄膜的情況下,亦可維持作為導電輔助劑的效果。
又,上述之離子液體,藉由熱重量測定(TG)之在300℃之質量減少率,較佳為10%以下,更佳為5%以下,再更佳為1%以下。若質量減少率為上述範圍,如後述,即使為退火處理由熱電半導體組成物所構成之薄膜的情況下,亦可維持作為導電輔助劑的效果。
離子液體之熱電半導體組成物中之摻合量,較佳為0.01〜50質量%,更佳為0.5〜30質量%,再更佳為1.0〜20質量%。若離子液體的摻合量為上述範圍內,可有效果地抑制電導率的低下,得到具有高熱電性能之膜。
(無機離子性化合物) 於本發明使用之無機離子性化合物係至少由陽離子與陰離子所構成之化合物。由於具有無機離子性化合物在室溫為固體、於400〜900℃的溫度區域中之任一個溫度具有熔點、離子傳導度高等之特徵,作為導電輔助劑,可抑制熱電半導體粒子間之電導率的減低。
前述無機離子性化合物之前述熱電半導體組成物中之摻合量較佳為0.01〜50質量%,更佳為0.5〜30質量%,再更佳為1.0〜10質量%。若前述無機離子性化合物之摻合量為上述範圍內,可有效果地抑制電導率的低下,作為結果得到提昇熱電性能之膜。 尚,在併用無機離子性化合物與離子液體的情況下,在前述熱電半導體組成物中之無機離子性化合物及離子液體的含量的總量,較佳為0.01〜50質量%,更佳為0.5〜30質量%,再更佳為1.0〜10質量%。
熱電元件層的厚度並非被特別限定者,從熱電性能與皮膜強度的點來看,較佳為100nm〜1000μm,更佳為300nm〜600μm,再更佳為5〜400μm。
作為由熱電半導體組成物所構成之薄膜的P型熱電元件層及N型熱電元件層,較佳為進一步進行退火處理(以下,有時稱為「退火處理B」)。藉由進行該退火處理B,可安定化熱電性能,並且可使薄膜中之熱電半導體粒子結晶成長,可進一步提昇熱電性能。退火處理B雖並未特別限定,但通常於控制氣體流量之氮氣、氬氣等之惰性氣體環境下、還原氣體環境下或真空條件下進行,雖依存所使用之樹脂及離子性化合物之耐熱溫度等,但於100〜500℃進行數分鐘〜數十小時。
<電極> 本發明之熱電變換模組較佳為包含第1電極。作為π型之熱電變換元件構成時,較佳為進一步於與具有第1電極的第1基材對向之第2基材包含第2電極。前述第1電極、和與前述第1基材對向之前述第2基材的前述第2電極可為相同,亦可為相異。又,作為面內(in-plane)型之熱電變換元件構成時,若為第1電極,可為亦可不為第2電極。 作為第1電極及第2電極所使用之金屬材料,雖並未特別限制,但較佳為分別獨立為銅、金、鎳、鋁、銠、鉑、鉻、鈀、不鏽鋼、鉬或包含此等之任一種金屬的合金。又,不僅單層亦可組合複數個而成為多層構成。 前述第1電極及第2電極之層的厚度可分別獨立,較佳為10nm〜200μm,更佳為30nm〜150μm,再更佳為50nm〜120μm。若第1電極及第2電極之層的厚度為上述範圍內,電導率高並成為低電阻,且作為電極,得到充分之強度。
第1電極及第2電極的形成係使用前述之金屬材料進行。作為形成第1電極及第2電極之方法,可列舉於基材上設置未形成圖型之電極後,藉由將光微影法作為主體之公知之物理性處理或是化學性處理,或併用該等等,加工成指定的圖型形狀之方法,或藉由絲網印刷法、噴墨法等形成直接電極的圖型之方法等。 作為未形成圖型之電極的形成方法,可列舉真空蒸鍍法、濺鍍法、離子電鍍法等之PVD(物理氣相成長法)或是熱CVD、原子層蒸鍍(ALD)等之CVD(化學氣相成長法)等之乾式製程或浸塗法、旋塗法、噴塗法、凹版塗佈法、模具塗佈法、刮刀法等之各種塗佈或電鍍法等之濕式製程、銀鹽法、電解鍍敷法、無電解鍍敷法、金屬箔之層合等,可因應電極的材料適當選擇。 從熱電性能的觀點來看,為了求出高導電性、高熱傳導性,故較佳為使用以鍍敷法或真空成膜法成膜之電極。由於可輕易實現高導電性、高熱傳導性,故較佳為真空蒸鍍法、濺鍍法等之真空成膜法及電解鍍敷法、無電解鍍敷法。雖因形成圖型之尺寸、尺寸精度的要求而異,但亦可介在金屬掩模等之硬掩模,並可輕易形成圖型。
本發明之熱電變換模組雖並未特別限制,但較佳為以π型熱電變換元件或面內(in-plane)型熱電變換元件構成。又,作為一態樣,較佳為以π型熱電變換元件,或面內(in-plane)型熱電變換元件的構成使用在冷卻用途。進而,作為另一態樣,較佳為以π型熱電變換元件,或面內(in-plane)型熱電變換元件的構成使用在發電用途。
(熱電變換模組之製造方法) 本發明之熱電變換模組可藉由包含:於基材上形成電極之步驟(以下,有時稱為「電極形成步驟」)、塗佈前述熱電半導體組成物,並乾燥,而形成熱電元件層之步驟(以下,有時稱為「熱電元件層形成步驟」)、接著,退火處理該熱電元件層之步驟(以下,有時稱為「退火處理步驟」)、進而將經退火處理之基材與其他基材貼合之步驟(以下,有時稱為「貼合步驟」)之方法製造。 以下,針對包含在本發明之熱電變換模組之製造方法之步驟,依序進行說明。
(電極形成步驟) 電極形成步驟係例如於第1基材上,形成由前述之金屬材料所構成之圖型之步驟,針對形成在基材上之方法及圖型之形成方法,係如前述。又,尤其是製造前述之π型之熱電變換模組等時,係包含於與前述第1基材上對向之第2基材上,形成由前述之金屬材料所構成之圖型之步驟。
(熱電元件層形成步驟) 熱電元件層形成步驟係將熱電半導體組成物例如塗佈在電極上之步驟。作為將熱電半導體組成物塗佈在第1基材上之電極上之方法,可列舉絲網印刷法、柔版印刷法、凹版印刷法、旋塗法、浸塗法、模具塗佈法、噴塗法、棒塗法、刮刀法等之公知的方法,並未特別限制。將塗佈膜形成圖型狀時,較佳為使用:使用具有所期望的圖型之絲網版,可簡便地形成圖型的絲網印刷法、縫模塗佈法等。 接著,藉由乾燥所得之塗佈膜,雖形成熱電元件層,但作為乾燥方法,可採用熱風乾燥法、熱輥乾燥法、紅外線照射法等以往公知之乾燥方法。加熱溫度通常為80〜150℃,加熱時間雖因加熱方法而異,但通常為數秒〜數十分鐘。 又,在熱電半導體組成物的調製,使用溶劑時,加熱溫度若為可乾燥經使用之溶劑的溫度範圍,則並未特別限制。 尚,將熱電半導體組成物塗佈在第2基材上之電極上的情況亦相同。
作為熱電元件層形成步驟之另一例,可列舉於事前將熱電元件層作為熱電變換材料之晶片製作所得之複數個晶片,載置在基材上之指定的電極上,並進行接合之方法。 作為熱電變換材料之晶片之製造方法,例如,可藉由以下之方法,製造由熱電半導體組成物所構成之熱電變換材料的晶片。 首先,於玻璃、氧化鋁、矽等之基板上形成犧牲層,於所得之犧牲層上以前述之方法形成熱電元件層(以下,有時稱為「熱電變換材料之晶片」)。接著,藉由退火處理(依照退火處理B的條件)所得之熱電變換材料的晶片,從基板上之犧牲層,剝離熱電變換材料的晶片,作為個片,製造熱電變換材料的晶片。 作為犧牲層,係使用聚甲基丙烯酸甲酯或是聚苯乙烯等之樹脂,或氟系脫模劑或是聚矽氧系脫模劑等之脫模劑。
(退火處理步驟) 退火處理步驟係以例如依於上述所得之第1基材、電極及熱電元件層此順序具有之形態,退火處理熱電元件層步驟。退火處理係以上述之退火處理B進行。
(貼合步驟) 貼合步驟係將例如具有於前述退火處理步驟所得之電極及熱電元件層的第1基材,與對向之前述第2基材或具有第2電極的第2基材貼合,製作熱電變換模組之步驟。 作為前述貼合所使用之貼合劑,為具有第2電極之第2基材時,可列舉導電膏等。作為導電膏,可列舉銅膏、銀膏、鎳膏等,使用黏結劑時,可列舉環氧樹脂、丙烯酸樹脂、胺基甲酸酯樹脂等。 又,為不具有第2電極之第2基材時,可使用樹脂材料。作為樹脂材料,較佳為包含聚烯烴系樹脂、環氧系樹脂或丙烯酸系樹脂者。進而,前述樹脂材料較佳為具有黏接著性、低水蒸氣透過率性或絕緣性。在本說明書,所謂具有黏接著性,係意指樹脂材料在黏著性、接著性及貼附之初期,具有可藉由感壓接著之感壓性的黏著性。 作為將貼合劑塗佈在基材上之方法,可列舉絲網印刷法、配料(Dispensing)法等之公知的方法。
在貼合步驟,於與電極之接合使用焊料材料層時,為了提昇接合強度,可使用焊料受理層。 例如,於前述之製造方法所得之熱電變換材料的晶片形成焊料受理層之方法係如以下。 於具有上面、下面及側面之熱電變換材料的晶片全部的面形成焊料受理層後,藉由所得之焊料受理層當中,全部去除或去除一部分熱電變換材料的晶片之側面所形成之焊料受理層,而形成焊料受理層。 焊料受理層較佳為包含金屬材料。金屬材料較佳為選自金、銀、銠、鉑、鉻、鈀、錫、鎳及包含此等之任一種金屬材料的合金中之至少1種。此等當中,更佳為金、銀、鎳或、錫及金、鎳及金之2層構成,從材料成本、高熱傳導性、接合安定性的觀點來看,更佳為銀。 焊料受理層中,從維持熱電性能的觀點來看,尋求高導電性、高熱傳導性,且從可縮小於與熱電變換材料的晶片的界面之接觸電阻的觀點來看,較佳為使用以鍍敷法或真空成膜法成膜之焊料受理層。 作為構成前述焊料材料層之焊料材料,考量樹脂薄膜、熱電變換材料的晶片所包含之耐熱性樹脂A之耐熱溫度等,又,考量導電性、熱傳導性,適當選擇即可,可列舉Sn、Sn/Pb合金、Sn/Ag合金、Sn/Cu合金、Sn/Sb合金、Sn/In合金、Sn/Zn合金、Sn/In/Bi合金、Sn/In/Bi/Zn合金、Sn/Bi/Pb/Cd合金、Sn/Bi/Pb合金、Sn/Bi/Cd合金、Bi/Pb合金、Sn/Bi/Zn合金、Sn/Bi合金、Sn/Bi/Pb合金、Sn/Pb/Cd合金、Sn/Cd合金等之既知的材料。考量無鉛及/或無鎘、熔點、導電性、熱傳導性的觀點來看,較佳為如43Sn/57Bi合金、42Sn/58Bi合金、40Sn/56Bi/4Zn合金、48Sn/52In合金、39.8Sn/52In/7Bi/1.2Zn合金之合金。 作為將焊料材料塗佈在基材的電極上之方法,可列舉絲網印刷法、配料法等之公知的方法。
根據本發明之熱電變換模組之製造方法,可輕易得到提昇具有彎曲性之熱電性能的熱電變換模組。 [實施例]
接著,雖藉由實施例進一步詳細說明本發明,但本發明並非因此等之例而有任何限定者。
於實施例、比較例使用之基材的評估及製作之熱電變換模組的熱電性能的評估係用以下之方法進行。
<基材評估> (a)基材的熱傳導率、熱阻 將基材的熱傳導率使用熱傳導率測定裝置(ADVANCE理工公司製、定常法熱傳導率測定裝置GH-1),依照ASTM E1530,藉由圓板熱流計法,於23℃測定。從所得之基材的熱傳導率λ(W/m・K)、以及基材的厚度L(m)及基材的剖面積(熱傳導的熱流路剖面積)Ac(m2 ),算出熱阻Rc[=L/λAc(K/W)]。
<熱電性能評估> (b)熱電變換模組之電阻評估 將所得之熱電變換模組的取出之電極間的電阻(模組電阻)使用低電阻測定裝置(日置電機公司製、型名:RM3545),於25℃×50%RH的環境下測定。 (c)熱電變換模組之冷卻特性評估 使用冷卻特性評估單位,進行所得之熱電變換模組的冷卻特性評估。 圖3係用以說明於實施例使用之熱電變換模組的冷卻特性評估單位之剖面構成圖。 冷卻特性評估單位21係藉由由於熱電變換模組22之兩面插入K熱電對之測溫板23及24與溫度控制器25及26所構成,在真空下(真空度:0.1Pa以下)進行斷熱化,並以熱電變換模組的吸熱面27及放熱面28的溫度成為85℃的方式,藉由溫度控制器25及26調整。然後,對熱電變換模組22施加電流,測定吸熱面27及放熱面28的溫度差。尚,於施加電流時,以吸熱面27側的溫度如維持85℃般的溫度控制器控制。
(實施例1) (1)熱電半導體組成物的製作 (熱電半導體粒子的製作) 藉由將鉍-碲系熱電半導體材料之P型碲化鉍Bi0.4 Te3 Sb1.6 (高純度化學研究所製、粒徑:90μm),使用行星式球磨機(Fritsch Japan公司製、Premium line P-7),氮氣體環境下進行粉碎,製作平均粒徑2.0μm的熱電半導體粒子T1。 又,將鉍-碲系熱電半導體材料之N型碲化鉍Bi2 Te3 (高純度化學研究所製、粒徑:90μm)與上述同樣進行粉碎,製作平均粒徑2.8μm的熱電半導體粒子T2。 關於進行粉碎所得之熱電半導體粒子T1及T2,藉由雷射繞射式粒度分析裝置(Malvern公司製、Master Sizer 3000),進行粒度分布測定。 (熱電半導體組成物之塗工液的調製) 塗工液(P) 調製混合分散於上述所得之P型碲化鉍Bi0.4 Te3.0 Sb1.6 之粒子T1 72.0質量份、作為耐熱性樹脂A之聚醯胺醯亞胺(荒川化學工業公司製、COMPOCERAN AI301、溶劑:N-甲基吡咯烷酮、固體成分濃度:19質量%)15.5質量份,及作為離子液體之N-丁基溴化吡啶鎓12.5質量份的由熱電半導體組成物所構成之塗工液(P)。 塗工液(N) 調製混合分散所得之N型碲化鉍Bi2 Te3 之粒子T2 78.9質量份、作為耐熱性樹脂A之聚醯胺醯亞胺(荒川化學工業公司製、COMPOCERAN AI301、溶劑:N-甲基吡咯烷酮、固體成分濃度:19質量%)17.0質量份,及作為離子液體之N-丁基溴化吡啶鎓4.1質量份的由熱電半導體組成物所構成之塗工液(N)。 (2)熱電變換材料之薄膜的形成 於厚度0.7mm之玻璃基板(河村久藏商店公司製、商品名:青板玻璃)上,作為犧牲層,係將聚甲基甲基丙烯酸甲酯樹脂(PMMA)(Sigma-Aldrich公司製、商品名:聚甲基丙烯酸甲酯)溶解在甲苯之固體成分濃度10質量%之聚甲基甲基丙烯酸甲酯樹脂溶液藉由旋塗法,以乾燥後的厚度成為3.0μm的方式進行成膜。 接著,介在金屬掩模,於犧牲層上將於上述(1)調製之塗工液(P)藉由絲網印刷法塗佈,並於溫度125℃,於氬氣環境下乾燥15分鐘,形成厚度為270μm之薄膜。接著,對於所得之薄膜,於氫氣與氬氣之混合氣體(氫氣:氬氣=3體積%:97體積%)環境下,以加溫速度5K/min進行昇溫,於450℃保持1小時,退火處理前述薄膜,使熱電半導體材料之粒子結晶成長,而得到包含P型碲化鉍Bi0.4 Te3 Sb1.6 之上下面分別為1.65mm×1.65mm且厚度為200μm之長方體狀的P型熱電變換材料的晶片。 又,除了變更於上述(1)調製之塗工液(N),於125℃氬氣環境下乾燥7分鐘之外,同樣,得到包含N型碲化鉍Bi2 Te3 之上下面分別為1.65mm×1.65mm且厚度為250μm之長方體狀的N型熱電變換材料的晶片。
(3)焊料受理層之形成 將退火處理後之P型及N型熱電變換材料的晶片從玻璃基板上剝離,藉由無電解鍍敷法,於P型及N型熱電變換材料的晶片之全部的面,設置焊料受理層[於Ni(厚度:2μm)層合Au(厚度:30nm)]。 接著,以晶片成為1.5mm×1.5mm之尺寸的方式,將P型及N型熱電變換材料的晶片之側面的焊料受理層使用機械研磨法,亦即砂紙(編號2000)去除,而得到僅上下面具有焊料受理層之P型及N型熱電變換材料的晶片。尚,為了完全去除焊料受理層,亦包含研磨側面之牆壁的一部分。
<熱電變換模組的製作> 使用僅所得之上下面具有焊料受理層之P型及N型熱電變換材料的晶片,將P型及N型熱電變換材料的晶片分別由18對所構成之π型之熱電變換元件如以下般製作。 首先,準備於兩面貼附銅箔之高熱傳導性基板(利昌工業公司製、製品名:CS‐3295;10mm×20mm、厚度:60 μm;銅箔、厚度:35μm),於該高熱傳導性基板之銅箔上,藉由無電解鍍敷,依鎳層(厚度:3μm)及金層(厚度:40nm)此順序層合,接著僅於單面形成電極圖型(1.5×3.2 mm、相鄰之電極間距離:0.2mm、6列×3行),製作具有電極之基板(下部電極基板)。然後,於該電極上,作為焊料材料,使用焊錫膏42Sn/57Bi/Ag合金(日本焊料公司製、品名:PF141-LT7H0),模版印刷(加熱前厚度:50μm)焊料材料層。 接著,藉由於焊料材料層上,載置於上述所得之P型及N型熱電變換材料的晶片之個別的焊料受理層之一側的面,於180℃加熱1分鐘後,進行冷卻(焊料材料層之加熱冷卻後厚度:30μm),將P型及N型熱電變換材料的晶片分別配置在電極上。 進而,藉由於P型及N型熱電變換材料的晶片之個別的焊料受理層之另一側的面上,作為焊料材料層,印刷(加熱前厚度:50μm)前述焊錫膏,貼合所得之焊料材料層、與上部電極基板(於與下部電極基板貼合時,如得到π型之熱電變換模組般圖型配置電極之電極基板;基板、電極之材料、厚度等與下部電極基板相同)之電極,於190℃加熱2分鐘,而得到P型及N型熱電變換材料的晶片分別由18對所構成之π型之熱電變換模組。 針對所得之熱電變換模組,以前述之評估條件,評估模組電阻(電阻)、吸熱面與放熱面的溫度差ΔT。包含熱傳導率及熱阻,將評估結果示於表1。
(比較例1) 除了在實施例1,將高熱傳導性基板變更為聚醯亞胺薄膜基板(東麗杜邦公司製、商品名「Kapton」;10mm×20mm、厚度:12.5μm)之外,其他與實施例1同樣進行,製作比較例1之熱電變換模組。 針對所得之熱電變換模組,與實施例1相同,以前述之評估條件,評估模組電阻(電阻)、吸熱面與放熱面的溫度差ΔT。包含熱傳導率及熱阻,將評估結果示於表1。
Figure 02_image001
瞭解到將熱電變換模組之基材作為具備彎曲性之高熱傳導性的基材之實施例1之熱電變換模組,與將該基材作為以往之基材即低熱傳導性之聚醯亞胺薄膜的比較例1之熱電變換模組相比較,由於所得之溫度差較大,而得到更優異之冷卻性能。 [產業上之可利用性]
本發明之熱電變換模組由於具有彎曲性,且熱電性能優異,可使用在抑制例如在電子機器等之小型化、薄型化所產生之儲熱的用途。 具體而言,可列舉智慧型手機、平板型PC等所搭載之CPU(Central Processing Unit)之冷卻,又,半導體元件即CMOS (Complementary Metal Oxide Semiconductor Image Sensor)、CCD(Charge Coupled Device)等之影像感應器所代表之各種傳感器的溫度控制等。 進而,亦可適用在來自工廠或廢棄物燃燒爐、水泥燃燒爐等之各種燃燒爐之排熱、將汽車之燃燒氣體排熱及電子機器的排熱變換成電氣之發電用途。
1:熱電變換模組 2a:第1基材 2b:第2基材 3a:第1電極 3b:第2電極 4:P型熱電元件層 5:N型熱電元件層 11:熱電變換模組 12a:第1基材 12b:第2基材 13:第1電極 14:P型熱電元件層 15:N型熱電元件層 21:冷卻特性評估單位 22:熱電變換模組 23,24:測定板 25,26:溫度控制器 27:吸熱面 28:放熱面
[圖1]用以說明具有本發明所使用之基材的熱電變換模組之構成的一例之剖面構成圖。 [圖2]用以說明具有本發明所使用之基材的熱電變換模組之構成的另一例之剖面構成圖。 [圖3]用以說明於本發明之實施例製作之熱電變換模組的冷卻特性評估單位之剖面構成圖。

Claims (10)

  1. 一種熱電變換模組,其係包含基材及由熱電半導體組成物所構成之熱電元件層的熱電變換模組,其特徵為前述熱電半導體組成物係包含熱電半導體材料、耐熱性樹脂A、以及離子液體及/或無機離子性化合物,前述基材的熱阻為0.35K/W以下。
  2. 如請求項1之熱電變換模組,其中,前述基材係由絕緣體所構成。
  3. 如請求項1或2之熱電變換模組,其中,前述基材係具有可撓性。
  4. 如請求項1〜3中任一項之熱電變換模組,其中,前述基材的熱傳導率為0.5W/m・K以上。
  5. 如請求項1〜4中任一項之熱電變換模組,其中,前述基材的厚度為5〜150μm。
  6. 如請求項1〜5中任一項之熱電變換模組,其中,前述基材係包含玻璃布及耐熱性樹脂B。
  7. 如請求項6之熱電變換模組,其中,前述玻璃布為玻璃織布。
  8. 如請求項6之熱電變換模組,其中,前述耐熱性樹脂B為環氧樹脂、聚醯胺醯亞胺樹脂或聚醯亞胺樹脂。
  9. 如請求項1〜8中任一項之熱電變換模組,其中,前述熱電變換模組係以π型熱電變換元件或面內(in-plane)型熱電變換元件構成。
  10. 如請求項9之熱電變換模組,其中,前述π型熱電變換元件或前述面內(in-plane)型熱電變換元件的構成係使用在冷卻。
TW110110323A 2020-03-27 2021-03-23 熱電變換模組 TW202205703A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020058852 2020-03-27
JP2020-058852 2020-03-27

Publications (1)

Publication Number Publication Date
TW202205703A true TW202205703A (zh) 2022-02-01

Family

ID=77890283

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110110323A TW202205703A (zh) 2020-03-27 2021-03-23 熱電變換模組

Country Status (5)

Country Link
US (1) US11882766B2 (zh)
JP (1) JPWO2021193358A1 (zh)
CN (1) CN115428174A (zh)
TW (1) TW202205703A (zh)
WO (1) WO2021193358A1 (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326394A (ja) * 2000-05-12 2001-11-22 Tokyo Gas Co Ltd 電気絶縁膜を有する熱電発電素子モジュール
JP2003174203A (ja) * 2001-12-07 2003-06-20 Sony Corp 熱電変換装置
WO2005124882A1 (ja) * 2004-06-17 2005-12-29 Aruze Corp. 熱電変換モジュール
JP4895293B2 (ja) 2007-01-26 2012-03-14 新日鐵化学株式会社 フレキシブル熱電変換素子及びその製造方法
JP2009141079A (ja) 2007-12-05 2009-06-25 Jr Higashi Nippon Consultants Kk 熱電素子モジュール
JP5778971B2 (ja) * 2011-04-18 2015-09-16 日本シイエムケイ株式会社 パワーモジュール用絶縁放熱基板
WO2016104615A1 (ja) 2014-12-26 2016-06-30 リンテック株式会社 ペルチェ冷却素子及びその製造方法
CN110431676A (zh) * 2017-03-16 2019-11-08 琳得科株式会社 热电转换模块用电极材料及使用其的热电转换模块

Also Published As

Publication number Publication date
WO2021193358A1 (ja) 2021-09-30
US20230105392A1 (en) 2023-04-06
US11882766B2 (en) 2024-01-23
JPWO2021193358A1 (zh) 2021-09-30
CN115428174A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
TWI744465B (zh) 可撓性熱電變換元件及其製造方法
JP7406756B2 (ja) 熱電変換モジュール及びその製造方法
JP7486949B2 (ja) 熱電変換モジュール用電極材料及びそれを用いた熱電変換モジュール
JP7149476B2 (ja) 熱電変換モジュール
WO2021065670A1 (ja) 熱電変換モジュール
JP7348192B2 (ja) 半導体素子
JP7207858B2 (ja) 熱電変換モジュール
US20210098672A1 (en) Thermoelectric conversion module
US11974504B2 (en) Thermoelectric conversion body, thermoelectric conversion module, and method for manufacturing thermoelectric conversion body
US20230200240A1 (en) Thermoelectric conversion module and manufacturing method therefor
TW202205703A (zh) 熱電變換模組
WO2021200264A1 (ja) 熱電変換モジュール
TWI816899B (zh) 熱電變換材料之晶片
WO2023013590A1 (ja) 熱電変換材料層及び熱電変換モジュール
TWI853834B (zh) 半導體元件
WO2020203611A1 (ja) 熱電変換材料のチップへのハンダ受理層形成方法
TWI855195B (zh) 熱電變換體、熱電變換模組、及熱電變換體之製造方法
WO2021200265A1 (ja) 熱電変換モジュール
JP2024143431A (ja) ペルチェ冷却熱電変換モジュール
KR20240147546A (ko) 펠티에 냉각 열전 변환 모듈
WO2024204850A1 (ja) 熱電変換モジュール
JP2024146619A (ja) 熱電変換モジュール
JP2024146617A (ja) 熱電変換モジュール
CN118742180A (zh) 帕尔贴冷却热电转换模块
JP2021192409A (ja) 熱電変換モジュール用電極