TW202144384A - 用於檢測、預防和治療新型冠狀病毒(covid-19)疾病的設計胜肽及蛋白質 - Google Patents

用於檢測、預防和治療新型冠狀病毒(covid-19)疾病的設計胜肽及蛋白質 Download PDF

Info

Publication number
TW202144384A
TW202144384A TW110105685A TW110105685A TW202144384A TW 202144384 A TW202144384 A TW 202144384A TW 110105685 A TW110105685 A TW 110105685A TW 110105685 A TW110105685 A TW 110105685A TW 202144384 A TW202144384 A TW 202144384A
Authority
TW
Taiwan
Prior art keywords
seq
rbd
peptide
cov
sars
Prior art date
Application number
TW110105685A
Other languages
English (en)
Other versions
TWI818236B (zh
Inventor
長怡 王
丰 林
双 丁
彭文君
Original Assignee
美商聯合生物醫學公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商聯合生物醫學公司 filed Critical 美商聯合生物醫學公司
Publication of TW202144384A publication Critical patent/TW202144384A/zh
Application granted granted Critical
Publication of TWI818236B publication Critical patent/TWI818236B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1002Coronaviridae
    • C07K16/1003Severe acute respiratory syndrome coronavirus 2 [SARS‐CoV‐2 or Covid-19]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/485Exopeptidases (3.4.11-3.4.19)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/17Metallocarboxypeptidases (3.4.17)
    • C12Y304/17023Angiotensin-converting enzyme 2 (3.4.17.23)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • A61K2039/541Mucosal route
    • A61K2039/543Mucosal route intranasal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/575Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/53Hinge
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20021Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/08RNA viruses
    • G01N2333/165Coronaviridae, e.g. avian infectious bronchitis virus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2469/00Immunoassays for the detection of microorganisms
    • G01N2469/20Detection of antibodies in sample from host which are directed against antigens from microorganisms

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Communicable Diseases (AREA)
  • Urology & Nephrology (AREA)
  • Pulmonology (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Oncology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)

Abstract

本揭露是關於用於有效檢測、預防和治療COVID-19的救濟系統(relief system),其包括(1) 用以檢測病毒感染和流行病學監測的血清學診斷分析,(2) 用於預防SARS-CoV-2感染的高精密度、位點特異性的胜肽免疫原結構,(3) 在受感染的患者中用以治療疾病的基於受體的抗病毒療法,以及(4) 含有S1-RBD-sFc的專門設計的蛋白質疫苗。揭露的救濟系統利用來自SARS-CoV-2蛋白和人類受體的胺基酸序列來設計和製造最佳SARS-CoV-2抗原性胜肽、胜肽免疫原結構、CHO衍生的蛋白質免疫原結構、長效CHO衍生的ACE2蛋白及其製劑,用於診斷、疫苗和抗病毒療法,以檢測、預防和治療COVID-19。

Description

用於檢測、預防和治療新型冠狀病毒(COVID-19)疾病的設計胜肽及蛋白質
本揭露是關於冠狀病毒疾病2019 (COVID-19)的救濟系統(relief system),其用於檢測、預防和治療由病毒SARS-CoV-2引起的COVID-19。揭露的救濟系統利用病毒和宿主受體胺基酸序列來製造最佳SARS-CoV-2抗原性胜肽、胜肽免疫原結構、CHO衍生的蛋白質免疫原結構、長效CHO衍生的ACE2蛋白及其製劑,用於診斷、疫苗和抗病毒療法,以檢測、預防和治療COVID-19。
在2019年12月,一種人畜共通的冠狀病毒跨越物種感染人群,此為近幾十年以來第三次。由病毒SARS-CoV-2引起的疾病已被世界衛生組織(WHO)正式命名為“COVID-19”,表示2019年冠狀病毒疾病,因為此疾病於2019年底首次被發現。SARS-CoV-2病毒最初在中國武漢被辨識,並感染曝露於海鮮批發市場的人們,在此地也販售其他活體動物。SARS-CoV-2病毒在人與人之間傳播,並引起嚴重的呼吸道疾病,其類似於其他兩種病原性人類呼吸道冠狀病毒(即,嚴重急性呼吸道症候群相關冠狀病毒(SARS-CoV)和中東呼吸道症候群冠狀病毒(MERS-CoV))引起的暴發。
冠狀病毒(網巢病毒目冠狀病毒科)是大型、有外套膜的正股RNA病毒,具有典型的冠狀外觀(網站: en.wikipedia.org/wiki/Coronavirus)。它們的病毒基因組(26至32 kb)有些是所有RNA病毒中已知最大的。冠狀病毒最初基於棘狀(S)、外套膜(E)、膜(M)和核鞘(N)蛋白質的抗原關係而被分為四個亞組(甲型冠狀病毒屬、乙型冠狀病毒屬、丙型冠狀病毒屬和丁型冠狀病毒屬)。乙型冠狀病毒屬亞組包括HCoV-OC43、HCoV-HKU1、SARS-CoV、MERS-CoV和SARS-CoV-2。在相同和不同亞組的成員之間容易發生遺傳重組,其為增加遺傳多樣性提供機會。
Zhu,N.等人於2020年的研究辨識出SARS-CoV-2並描述其特徵,並對來自臨床樣本(支氣管肺泡灌洗液)和人類呼吸道上皮細胞病毒分離株的病毒基因組進行定序。發現此序列與先前公開的蝙蝠SARS樣CoV基因組(bat-SL-CoVZC45, MG772933.1)具有86.9%的核苷酸序列一致性。其他文章(Chen, Y., et al., 2020和Perlman, S., 2020)進一步描述新興的冠狀病毒(包括SARS-CoV、MERS-CoV和SARS-CoV-2)的基因組結構、複製和發病機制的特徵。SARS-CoV-2結構的示意圖如第1圖所示。病毒表面蛋白(S、E、M和N蛋白)嵌入由宿主細胞產生的脂質雙層外套膜中,且單股正義病毒RNA與核鞘蛋白結合。與其他乙型冠狀病毒不同,SARS-CoV-2不具有血凝素酯酶醣蛋白。
SARS-CoV-2可以在用於生長SARS-CoV和MERS-CoV的相同細胞中繁殖。然而,SARS-CoV-2在初代人類呼吸道上皮細胞中生長更好,而SARS-CoV和MERS-CoV感染肺內上皮細胞的程度均高於上呼吸道細胞。此外,SARS-CoV和MERS-CoV的傳播主要來自表現出疾病已知徵兆和症狀的患者,而SARS-CoV-2可以從無症狀患者或具有輕度或非特異性徵兆的患者傳播。相較於SARS-CoV和MERS-CoV,這些差異可能有助於SARS-CoV-2的更快和更廣泛的傳播。
據報導,SARS-CoV-2利用細胞受體hACE2 (人類血管收縮素轉化酶2)進入細胞,其與SARS-CoV使用的受體相同,但與MERS-CoV使用的CD26受體不同(Zhou, P., et al, 2020 and Lei, C., 2020)。因此,已經建議僅在下呼吸道疾病的徵兆出現後才預期SARS-CoV-2的傳播。
SARS-CoV在2002-2004年的流行中發生突變,以更好地結合其細胞受體並優化在人類細胞中的複製,從而增強其致病性。由于冠狀病毒具有容易出錯的RNA依賴性RNA聚合酶,因此很容易發生適應,從而使突變和重組事件頻繁發生。相比之下,自2012年被發現以來,尚未發現MERS發生明顯突變以增強人類感染力。SARS-CoV-2的行為可能更像SARS-CoV,並利用對hACE2的結合力增強以進一步適應人類宿主。
在SARS-CoV和MERS-CoV流行之後,人們致力於開發針對冠狀病毒蛋白酶、聚合酶、MTase和進入蛋白的新型抗病毒劑。然而,它們在臨床試驗中均未顯示有效(Chan, JFW, et al., 2013; Cheng, KW, et al., 2015; Wang, Y., et al., 2015)。在緊急情況下,已經使用從恢復期患者獲得的血漿和抗體來治療具有嚴重臨床症狀的患者(Mair‐Jenkins, J., et al., 2015)。此外,已開發出針對SARS-CoV和MERS-CoV的各種疫苗策略(例如不活化病毒、減毒活病毒、基於病毒載體的疫苗、次單位疫苗、重組蛋白和DNA疫苗),但迄今為止僅在動物中進行評估(Graham, RL, et al., 2013; de Wit, E., et al., 2016)。
因為面對COVID-19的悲劇性爆發但目前尚無有效的療法或疫苗,因此,目前最好是減少病毒傳播和避免不必要的社會恐慌所造成巨大的經濟損失,措施就是透過(1) 透過RT-PCR分析進行早期偵測;(2) 將與已確診陽性個體接觸的患者進行病例報告和隔離,並嚴格遵守衛生保健機構中的普遍預防措施;(3) 支持性治療;以及(4) 及時發布流行病資訊。個人還可透過良好的個人衛生、戴好口罩並避免出入擁擠的地方以幫助減少SARS-CoV-2的傳播。
迫切需要開發(a) 有效且快速檢測和監測SARS-CoV-2的血清學檢測方法,(b) 防止未感染個體感染SARS-CoV-2的疫苗,以及(c) 可有效治療感染SARS-CoV-2的個體的抗病毒療法,以控制疫情並減少由此帶來的痛苦,包括死亡。
參考文獻:
在本申請中引用的以下文件以及其中引用的其他參考文獻透過引用將整體併入本文,如同在此完全揭露。 1.    AHMED, S.F., et al., “Preliminary identification of potential vaccine targets for 2019-nCoV based on SARS-CoV immunological studies.” DOI: 10.1101/2020.02.03.933226 (2020) 2.    ARENDSE, L.B., et al., “Novel therapeutic approaches targeting the Renin-Angiotensin system and associated peptides in hypertension and heart failure.”Pharmacol. Rev ., 71, 539-570 (2019) 3.    BLUMBERG, R.S., et al., “Receptor specific transepithelialus transport of therapeutics.” US Patent Nos. 6,030,613 (2000), 6,086,875 (2000), and 6,485,726 (2002) 4.    BLUMBERG, R.S., et al., “Central airway administration for systemic delivery of therapeutics.” WO 03/077834 (2002) and US Patent Publication US2003-0235536A1 (2003) 5.    BRAUN, J., et al.,“SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19.”Nature , 587, 270–274 (2020). 6.    CAPON, D.J., et al., “Designing CD4 immunoadhesins for AIDS therapy.”Nature , 337:525 (1989) 7.    CAPON, D.J., et al., “Hybrid immunoglobulins.” US Patent No. 5,116,964 (1992) 8.    CHAN, J.F.W., et al., “Broad‐spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus.”J. Infect. , 67(6):606‐ 616 (2013) 9.    CHANG, J.C.C., et al., “Adjuvant activity of incomplete Freund’s adjuvant.” Advanced Drug Delivery Reviews, 32(3):173-186 (1998) 10.            CHEN, Y., et al., “Emerging coronaviruses: Genome structure, replication, and pathogenesis.”J Med Virol . DOI: 10.1002/jmv.25681 (2020) 11.            CHENG, K.W., et al., “Thiopurine analogs and mycophenolic acid synergistically inhibit the papain‐like protease of Middle East respiratory syndrome coronavirus.”Antiviral Res ., 115: 9‐16 (2015) 12.            DE WIT,E., et al., “SARS and MERS: recent insights into emerging coronaviruses.”Nat. Rev. Microbiol ., 14(8):523‐534 (2016) 13.            FERRETTI, A.P., et al.,“Unbiased Screens Show CD8(+) T Cells of COVID-19 Patients Recognize Shared Epitopes in SARS-CoV-2 that Largely Reside outside the Spike Protein.”Immunity , (2020) doi:10.1016/j.immuni.2020.10.006. 14.            FIELDS, G.B., et al., Chapter 3 in Synthetic Peptides: A User’s Guide, ed. Grant, W.H. Freeman & Co., New York, NY, p.77 (1992) 15.            GOEBL, N.A., et al., “Neonatal Fc Receptor Mediates Internalization of Fc in Transfected Human Endothelial Cells.”Mol. Biol. Cell , 19(12):5490-5505 (2008) 16.            GRAHAM, R.L., et al.,“A decade after SARS: strategies for controlling emerging coronaviruses.”Nat. Rev. Microbiol. , 11(12):836‐ 848 (2013) 17.            JUNGHANS, R.P., et al., “The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor.”Proc. Natl. Acad. Sci. USA , 93(11):5512-5516 (1996) 18.            LE BERT, N., et al.,“SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls.”Nature , 584, 457–462 (2020). 19.            LEI, C., et al., “Potent neutralization of 2019 novel coronavirus by recombinant ACE2-Ig.” DOI: 10.1101/2020.02.01.929976 (2020) 20.            LIU, H., et al.,“Fc Engineering for Developing Therapeutic Bispecific Antibodies and Novel Scaffolds.”Frontiers in Immunology ., 8, 38 (2017). 21.            LONG, Q.-X., et al.,“Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections.”Nat. Med . 26, 1200–1204 (2020). 22.            MAIR‐JENKINS, J., et al.,“The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta‐analysis.”J. Infect. Dis ., 211(1):80‐90 (2015) 23.            NG, O.-W., et al.,“Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection.”Vaccine , 34, 2008–2014 (2016). 24.            OSBORN, B.L., et al., “Pharmacokinetic and pharmacodynamic studies of a human serum albumin-interferon-alpha fusion protein in cynomolgus monkeys.”J.Pharmacol. Exp.Ther. , 303(2):540-8 (2002) 25.            PERLMAN, S., “Another decade, another coronavirus.”N. Engl. J. Med. , DOI: 10.1056/NEJMe2001126 (2020) 26.            SHUBIN, Z., et al.,“An HIV Envelope gp120-Fc Fusion Protein Elicits Effector Antibody Responses in Rhesus Macaques.”Clin. Vaccine Immunol. , 24, (2017). 27.            SUI, J., et al. “Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association.”Proc. Natl. Acad. Sci. USA , 101, 2536-2541 (2004). 28.            WANG, C.Y., et al.,“UB-311, a novel UBITh(®) amyloid β peptide vaccine for mild Alzheimer’s disease.”Alzheimer’s Dement ., 3, 262–272 (2017). 29.            WANG, C.Y., “Artificial promiscuous T helper cell epitopes as immune stimulators for synthetic peptide immunogens.” PCT Publication No. WO 2020/132275A1 (2020). 30.            WANG, Y., et al.,“Coronavirus nsp10/nsp16 methyltransferase can be targeted by nsp10‐derived peptide in vitro and in vivo to reduce replication and pathogenesis.”J. Virol ., 89(16):8416‐8427 (2015) 31.            WIKIPEDIA,The free encyclopedia , “Coronavirus” available at website: en.wikipedia.org/wiki/Coronavirus (accessed February 17, 2020). 32.            WYLLIE, D., et al.,“SARS-CoV-2 responsive T cell numbers are associated with protection from COVID-19: A prospective cohort study in keyworkers.”medRxiv 2020.11.02.20222778 (2020) doi:10.1101/2020.11.02.20222778. 33.            ZHAO, B., et al.,“Immunization With Fc-Based Recombinant Epstein-Barr Virus gp350 Elicits Potent Neutralizing Humoral Immune Response in a BALB/c Mice Model.”Front. Immunol ., 9, 932 (2018). 34.            ZHOU, P., et al., “Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin.” DOI:10.1101/2020.01.22.914952 (2020) 35.            ZHU, N., et al., “A novel coronavirus from patients with pneumonia in China, 2019.”N. Engl. J. Med ., DOI: 10.1056/NEJMoa2001017 (2020)
本揭露是關於用於有效檢測、預防和治療COVID-19的救濟系統(relief system),其包括(1) 用以檢測病毒感染和流行病學監測的血清學診斷分析,(2) 用於預防SARS-CoV-2感染的高精密度、位點特異性的胜肽免疫原結構,(3) 在受感染的患者中用以治療疾病的基於受體的抗病毒療法,以及(4) 含有S1-RBD-sFc的專門設計的蛋白質疫苗。揭露的救濟系統利用來自SARS-CoV-2蛋白和人類受體的胺基酸序列來設計和製造最佳SARS-CoV-2抗原性胜肽、胜肽免疫原結構、CHO衍生的蛋白質免疫原結構、長效CHO衍生的ACE2蛋白及其製劑,用於診斷、疫苗和抗病毒療法,以檢測、預防和治療COVID-19。
更具體地,本發明是關於一種系統化的方法來開發(1) 使用衍生自M蛋白(例如SEQ ID NOs:4和5)、N蛋白(例如SEQ ID NOs: 17和18、259、261、263、265、266和270)以及S蛋白(例如SEQ ID NOs: 23、24、26-34、37、38、281、308、321、322、323、324)之經修飾的SARS-CoV-2抗原性胜肽,以用於檢測病毒感染和流行病學監測或監測在感染及/或接種疫苗的個體中的血清中和抗體;(2) 高精密度S-RBD (來自SARS-CoV-2的S蛋白的受體結合結構域,也稱為S1-RBD)衍生的B細胞抗原決定位免疫原結構(SEQ ID NOs: 107-144、20、226、227、239、240、241、246、247)、SARS-CoV-2衍生的CTL抗原決定位胜肽(SEQ ID NOs: 145-160)、衍生自病原體蛋白之T輔助細胞(Th)抗原決定位(例如SEQ ID NOs: 49-100)、衍生自SARS-CoV-2的Th抗原決定位胜肽(例如SEQ ID NOs: 161-165),(3) CHO-表現的S1-RBD-單鏈Fc (s-Fc)融合蛋白(SEQ ID NOs:235和236)和CHO-表現的ACE2-ECD-單鏈Fc融合蛋白(ACE2的細胞外結構域) (SEQ ID NOs: 237和238)作為抗病毒療法以用於治療COVID-19;以及(4) 專門設計的蛋白質疫苗,其含有S1-RBD-sFc (例如SEQ ID NOs: 235和236);利用生物資訊(包括SARS-CoV-2病毒和受體胺基酸序列)來設計和製造SARS-CoV-2抗原性胜肽、胜肽免疫原結構和長效ACE2受體蛋白及其製劑。
本揭露是關於用於有效檢測、預防和治療COVID-19的救濟系統(relief system),其包括(1) 用以檢測病毒感染和流行病學監測的血清學診斷分析,(2) 用於預防SARS-CoV-2感染的高精密度、位點特異性的胜肽免疫原結構,(3) 在受感染的患者中用以治療疾病的基於受體的抗病毒療法,以及(4) 含有S1-RBD-sFc蛋白的專門設計的蛋白質疫苗。揭露的救濟系統利用來自SARS-CoV-2蛋白和人類受體的胺基酸序列來設計和製造最佳SARS-CoV-2抗原性胜肽、胜肽免疫原結構、CHO衍生的蛋白質免疫原結構、長效CHO衍生的ACE2蛋白及其製劑,用於診斷、疫苗和抗病毒療法,以檢測、預防和治療COVID-19。
揭露的救濟系統的每一方面於下文作進一步詳細討論。通則
本文使用的章節標題僅用於組織的目的,不應被理解為限制所述主題。本申請中引用的所有參考文獻或參考文獻的部分出於任何目的透過引用明確地將整體併入本文。
除非特別說明,在此使用的所有技術和科學用語如本發明所屬技術領域中具有通常知識者的通常理解具有相同意義。除非上下文清楚地指出,否則單詞“一(a)”、“一(an)”和“該(the)”包括複數形式。類似地,單詞“或(or)”是意指包括“和(and)”,除非上下文另有明確說明。因此,術語“包含A或B”是指包括A,或B,或A和B。更應被理解的是,用於給定多胜肽之所有的胺基酸大小和所有分子量或分子質量值是近似的,並且被提供作為描述之用。然而類似或等同於在此描述者的方法和材料可被用於以下所述之揭露的方法、合適的方法和材料的實踐或測試中。在此提及的所有出版物、專利申請、專利和其它參考文獻透過引用整體併入本文。在衝突的情況下,以本說明書(包括術語的解釋)為準。此外,本文揭露的材料、方法和實施例僅是說明性的而非意指加以限制。
本文使用術語“SARS-CoV-2”是指2019年在中國武漢首次辨識出的新型冠狀病毒株,其感染曝露於海鮮批發市場的人們,此市場還出售其他活體動物。SARS-CoV-2也被稱為第2型嚴重急性呼吸道症候群冠狀病毒(SARS-CoV-2),是2019年冠狀病毒疾病(COVID-ID)的病因。
本文使用術語“COVID-19”是指由SARS-CoV-2病毒株引起的人類傳染性疾病。COVID-19最初被稱為SARS-CoV-2急性呼吸道疾病。此疾病最初可能幾乎沒有或沒有任何症狀,或者可能發展為發燒、咳嗽、呼吸急促、肌肉疼痛和疲倦。併發症可能包括肺炎和急性呼吸窘迫症候群。A. 用以檢測病毒感染和流行病學監測的血清學診斷分析 1. 理論基礎
揭露的救濟系統的第一範疇是關於用以檢測病毒感染和流行病學監測的血清學診斷分析。
在兩個或更多個時間點檢測來自受感染患者的血清樣本中的抗體對於證明感染後的血清轉化現象狀態很重要。從高危人群中收集和分析血清學數據將有助於醫療保健專業人員構建疾病監測四面體(surveillance pyramid),以指導對SARS-CoV-2所引起COVID-19爆發的反應。目前,尚不知道SARS-CoV-2在人與人之間的傳播的程度為何。在正式宣布武漢爆發SARS-CoV-2疫情後的一個月內,發現此病毒相較於SARS-CoV和MERS-CoV更容易傳播,其致病力似乎較低,因此在個人層次上對於健康的威脅較低。但是,疫情暴發透過超級傳播者導致大規模擴散,並在人口層次上引起前所未有的高度風險,這導致全球公共衛生系統的破壞和經濟損失。
以追踪和診斷受感染的個體並監測處於危險中的個體為目標的積極反應,用以打破SARS-CoV-2的傳播鏈,需要採取一項快速、準確且易於執行的血清學檢測,以在來自個體的生物樣本中檢測針對SARS-CoV-2的抗體。優選地,可以使用自動化血液篩查操作來處理這種血清學測試。快速、準確且易於執行的血清學檢測對於針對SARS-CoV-2抗體的檢測具有重要價值,用以辨識、控制和消除SARS-CoV-2。
本揭露的一範疇是關於一種或多種SARS-CoV-2抗原性胜肽或其片段,用於免疫測定分析及/或診斷試劑盒中作為免疫吸附物以檢測和診斷SARS-CoV-2感染。含有一種或多種抗原性胜肽或其片段的免疫測定及/或診斷試劑盒可用於辨識和檢測由感染或疫苗接種所誘導的抗體。此類測試可用於篩查在臨床中是否存在SARS-CoV-2感染,用於流行病學監測以及測試疫苗的功效。2. 用於檢測在感染個體中針對 SARS-CoV-2 M N S 蛋白的抗體的抗原性胜肽
揭露的血清學診斷分析利用SARS-CoV-2的全長膜(M)、核鞘(N)和棘狀(S)蛋白或其片段。在一些實施例中,診斷分析利用衍生自來自SARS-CoV-2的M、N和S蛋白的胺基酸序列的抗原性胜肽。此種抗原性胜肽對應位於M、N和S蛋白中的胺基酸序列的一部分,其形成用於抗體辨識的抗原決定位。優選地,抗原性胜肽是來自SARS-CoV-2的B細胞抗原決定位,患有COVID-19的患者已經產生針對其的抗體。可以使用已知感染SARS-CoV-2的COVID-19患者的樣本憑經驗確定此種抗原決定位。使用抗原性胜肽之本領域已知的任何免疫測定法(例如ELISA、免疫墨點法(immunodot)、免疫印漬術(immunoblot)等)可用於檢測來自受試者的生物樣本中SARS-CoV-2抗體的存在。
抗原性胜肽的長度差異可以是從M蛋白(SEQ ID NO: 1)、N蛋白(SEQ ID NO: 6)或S蛋白(SEQ ID NO: 20)的約15個胺基酸殘基到全長胺基酸序列。優選地,本發明的抗原性胜肽為約20至約70個胺基酸殘基。
利用生物資訊和利用來自SARS-CoV的相應蛋白質序列進行序列比對,從SARS-CoV-2的M、N和S蛋白得到抗原性胜肽。為了使抗原性胜肽具有被這些患者血清結合的能力,它們最初被設計、合成,並利用一大批來自COVID-19患者的血清進行廣泛測試。使用此方法辨識出來自SARS-CoV-2的幾種抗原性胜肽,它們被認為對SARS-CoV-2陽性血清組具有最顯著和最一致的抗原性和結合親和力: M蛋白:胺基酸殘基1-23 (SEQ ID NO: 4); N蛋白:胺基酸殘基355-419 (SEQ ID NO: 17、259、261、263、265、266、270);以及 S蛋白:胺基酸殘基785-839 (SEQ ID NO: 37、281、308、321、322、323、324)。
透過在其氨基端添加三個離胺酸殘基(KKK),進一步優化這三種抗原性胜肽,提高溶解度和微量盤塗覆效率,以分別產生優化的抗原性胜肽SEQ ID NOs: 5、18和38。包含氨基端離胺酸尾部的優化的抗原性胜肽(SEQ ID NOs: 5、18和38),其可以個別地使用於血清學診斷分析,或者可以將它們結合於一個混合物中以產生最佳的抗體捕獲相以用於檢測針對SARS-CoV-2的抗體。
在一些實施例中,血清學診斷分析及/或診斷試劑盒利用優化的抗原性胜肽的混合物,其為選自SEQ ID NOs: 5、18、259、261、263、265、266、270、38、281、308、321、322、323和324的那些優化的抗原性胜肽,作為抗體捕獲相,用於檢測針對SARS-CoV-2的抗體。在某些實施例中,使用ELISA檢測結合至優化的抗原性胜肽的抗體。3. 用以在接受免疫接種的個體中檢測抗體的抗原性胜肽
除了檢測和診斷患者是否已感染SARS-CoV-2以外,評估SARS-CoV-2疫苗免疫患者的功效也很重要,將其於本文揭露。利用在疫苗組成物中使用的抗原性胜肽進行血清學分析可用以確定疫苗免疫接種的功效。
針對受體結合結構域(RBD) (SEQ ID NO: 226)或來自SARS-CoV-2的S蛋白的中和位點周圍進行B細胞簇抗原性胜肽的辨識和設計,其可用於檢測接受疫苗接種的個體產生的抗體。在表3、11和13中顯示代表性數目的B細胞簇抗原性胜肽,其來自S1蛋白的RBD (例如SEQ ID NOs: 23-24、26-27、29-34、226、227和319)。這些B細胞抗原決定位胜肽中的幾種包含由位於半胱胺酸殘基之間的雙硫鍵所產生的環式/環狀結構,從而允許局部限制以保留構形。
在一些實施例中,用以檢測在受感染的個體和接受疫苗接種的個體(接受疫苗接種的個體是接受本文所述S-RBD胜肽免疫原結構)中所產生的SARS-CoV-2抗體的血清學分析利用B細胞抗原決定位胜肽SEQ ID NO: 26、38、226、227、281、315-319和322作為抗體捕獲相。在某些實施例中,使用ELISA檢測與B細胞抗原決定位胜肽結合的抗體。4. 用以檢測針對 SARS-CoV-2 的抗體的兩種血清學檢測
本揭露是關於用於檢測針對SARS-CoV-2的抗體的兩種血清學測試。在一個實施例中,血清學測試涉及利用選自SEQ ID NOs: 5、18和38、259、261、263、265、266、270、281、308、321、322、323和324的那些胜肽塗覆的固相,以用於辨識感染SARS-CoV-2的個體。在可以與第一測試區分的第二測試中,固相是利用胜肽SEQ ID NO: 26、226、227或319塗覆,以評估中和抗體的效價。包含SARS-CoV-2胜肽((例如SEQ ID NOs: 5、18和38、259、261、263、265、270、38、281、308、321、322、323和324)和(SEQ ID NO: 26、226、227或319))的診斷測試試劑盒的生產和使用在本揭露的各種示例性實施例的範圍內。
在特定實施例中,抗原性胜肽或B細胞抗原決定位胜肽可用於檢測來自患者的生物樣本中的SARS-CoV-2抗體,以診斷COVID-19。生物樣本包括可能含有抗體的任何體液或組織,包括但不限於血液、血清、血漿、唾液、尿液、黏液、糞便、組織萃取物和組織液。術語患者意指包括任何哺乳動物,例如非靈長類動物(例如牛、豬、馬、貓、狗、大鼠等)和靈長類動物(例如猴子和人類),以人類為優選。
本揭露的抗原性胜肽和B細胞抗原決定位胜肽可用於免疫分析中以檢測來自患者的生物樣本中SARS-CoV-2抗體的存在。可以使用本領域已知的任何免疫分析。例如,可以在有利於結合的條件下將生物樣本與一種或多種SARS-CoV-2抗原性或B細胞抗原決定位胜肽或其免疫功能類似物接觸。生物樣本與抗原性或B細胞抗原決定位胜肽或其免疫功能類似物之間的任何結合可以透過本領域已知的方法來測量。所述生物樣本與SARS-CoV-2抗原性胜肽或其免疫功能類似物之間的結合的檢測表明樣本中SARS-CoV-2的存在。在一個更具體的實施例中,ELISA免疫分析可用以評估樣本中SARS-CoV-2抗體的存在。此種ELISA免疫分析包含以下步驟: i. 將胜肽或胜肽混合物(其包含抗原性胜肽(例如SEQ ID NOs: 4-5、17-18、37-38、259、261、263、265、266、270、281、308、321、322、323和324)或B細胞抗原決定位胜肽(例如SEQ ID NOs: 23-24、26、27和29-34、226、227和315-319))與固相支持物連接, ii. 在有利於抗體與胜肽結合的條件下,將連接於固相支持物的抗原性胜肽或B細胞抗原決定位胜肽暴露於含有來自患者的抗體的生物樣本中,以及 iii. 檢測與連接在固相支持物上的胜肽結合的抗體的存在。5. SARS-CoV-2 胜肽的免疫功能同源物和類似物
在一些實施例中,抗原性胜肽(例如SEQ ID NOs: 4-5、17-18、37-38、259、261、263、265、266、270、281、308、321、322、323和324)或B細胞抗原決定位胜肽(例如 SEQ ID NOs: 23-24、26、27、29-34、226、227和315-319)包括免疫功能同源物及/或類似物,其具有來自SARS-CoV-2的突變種和變異株的對應序列和構型要素。
揭露的SARS-CoV-2胜肽的同源物及/或類似物與由SARS-CoV-2引發的抗體結合或交叉反應,其被包括在本揭露中。類似物(包括等位基因、物種以及誘導變異物),通常於一個、兩個或幾個位置上有別於天然存在的胜肽,通常是由於保留性取代。類似物通常展現與天然胜肽至少75%、80%、85%、90%或95%的序列一致性。一些類似物還包括非天然胺基酸或在一個、兩個或幾個位置上之氨基端或羧基端胺基酸的修飾。
作為功能類似物的變異物可具有於胺基酸位置上的保留性取代、總電荷改變、與其他官能基共價連接或胺基酸的添加、插入或刪除及/或其任意組合。
保留性取代是指一個胺基酸殘基被另一個具有相似化學性質的胺基酸殘基所取代。例如,非極性(疏水性)胺基酸包括丙胺酸、白胺酸、異白胺酸、纈胺酸、脯胺酸、苯丙胺酸、色胺酸和甲硫胺酸;極性中性胺基酸包括甘胺酸、絲胺酸、蘇胺酸、半胱胺酸、酪胺酸、天門冬醯胺酸和麩醯胺酸;帶正電的(鹼性)胺基酸包括精胺酸、離胺酸和組胺酸;而帶負電的(酸性)胺基酸包括天門冬胺酸和麩胺酸。
在特定實施例中,功能類似物與原始胺基酸序列具有至少50%的一致性。在另一實施例中,功能類似物與原始胺基酸序列具有至少80%的一致性。在又一實施例中,功能類似物與原始胺基酸序列具有至少85%的一致性。在又一實施例中,功能類似物與原始胺基酸序列具有至少90%的一致性。
相較於對應的胜肽,同源性SARS-CoV-2胜肽含有以某種方式(例如序列或電荷的變化、與其他官能基共價連接、加入一個或多個分支結構及/或多聚化)經過修飾的序列,但仍保留與原始SARS-CoV-2胜肽實質相同的免疫原性。
透過序列比對程序(例如ClustalOmega或蛋白質BLAST分析)可以很容易地辨識出同源物。第3-5圖提供來自冠狀病毒株SARS-CoV-2、SARS CoV和MERS CoV的胺基酸序列的比對。這些同源性胜肽可以個別地使用或者可以將它們結合於一個混合物中以產生最佳的抗體捕獲相,以用於在來自受感染或是接受疫苗接種的個體的生物樣本中透過免疫分析(例如ELISA)檢測針對SARS-CoV-2的M、N和S蛋白的抗體。揭露的胜肽的同源物進一步被定義為衍生自與胜肽具有至少50%的一致性的變異株(例如SARS-CoV或MERS-CoV)胺基酸序列的對應位置的那些胜肽。
在一些實施例中,變異體胜肽同源物衍生自來自SARS-CoV或MERS-CoV序列的胺基酸位置(例如SEQ ID NOs: 2、3、7、8、21或22),其具有與SARS-CoV-2 SEQ ID NOs: 1、6、20約>50%、75%、80%、85%、90%或95%的序列一致性。在另一實施例中,SARS病毒株S-RBD肽胜同源物(SEQ ID NO: 28)具有與SEQ ID NO: 26約58.6%的一致性。
SARS-CoV-2 M蛋白(例如SEQ ID NOs: 4-5)、N蛋白(例如SEQ ID NOs: 17-18、259、261、263、265、266和270)和S蛋白(例如SEQ ID NOs: 37-38、281、308、321、322、323和324)的代表性抗原性區域的一系列合成胜肽及其同源物可單獨使用或組合使用,以用於在來自患者的生物樣本中檢測針對SARS-CoV-2的抗體,供檢測和診斷SARS-CoV-2感染使用。此外,一系列代表SARS-CoV-2的S蛋白的受體結合結構域的(S-RBD或S1-RBD)的合成胜肽(例如SEQ ID NO: 26、226、227或315-319)及其同源物可單獨使用或組合使用,以用於在生物樣本中檢測針對SARS-CoV-2的中和抗體,用以確定使用本文所述製劑對個體進行疫苗接種的免疫效力。6. UBI® SARS-CoV-2 ELISA 產品 a. 商標名稱和預期用途
UBI® SARS-CoV-2 ELISA是一種酵素連結免疫吸附分析法(ELISA),用於定性檢測人類血清和血漿中針對SARS-CoV-2的IgG抗體(肝素鈉或EDTA-二鉀(dipotassium (K2) EDTA))。UBI® SARS-CoV-2 ELISA旨在協助辨識對SARS-CoV-2有適應性免疫反應的個體,表明最近或先前的感染。目前尚不知道抗體在感染後能持續多長時間,以及是否存在抗體會產生保護性免疫。UBI® SARS-CoV-2 ELISA不得用於診斷或排除急性SARS-CoV-2感染。測試僅限於通過1988年臨床實驗室改進修正案(CLIA)的實驗室標準規定42 U.S.C 263a認證的實驗室,其符合執行高複雜度測試的要求。
結果用於IgG SARS CoV-2抗體的檢測。最初感染後數天,通常在血液中可檢測到針對SARS-CoV-2的IgG抗體,儘管尚不能很好地表徵感染後抗體持續存在的時間。血清轉化現象後的幾週內,個體可能存在可檢測到的病毒。
美國及其領土內的實驗室必須將所有結果報告給適當的公共衛生當局。
對於感染後早期之UBI® SARS-CoV-2 ELISA的靈敏度尚不清楚。陰性結果不能排除急性SARS-CoV-2感染。如果懷疑是急性感染,則必須直接檢測SARS-CoV-2。
UBI SARS-CoV-2 ELISA可能會產生偽陽性結果,這是由於來自先前存在的抗體的交叉反應性或其他可能原因所引起。由於存在偽陽性結果的風險,應考慮使用另一種不同的IgG抗體測定法確認陽性結果。
應僅在來自症狀發作後15天或更長時間的個體的樣本中進行測試。
UBI® SARS-CoV-2 ELISA目前僅在食品和藥物管理局的緊急使用授權下使用。b. 測試的概述和說明
UBI® SARS-CoV-2 ELISA是一種免疫分析,其採用衍生自SARS-CoV-2的基質(M)、棘狀(S)和核鞘(N)蛋白的合成胜肽,以於人類血清或血漿中檢測針對SARS- CoV-2的抗體。這些合成胜肽不含細胞或大腸桿菌衍生的不純物(在此,重組病毒蛋白產自細胞或大腸桿菌),這些合成胜肽可結合對SARS-CoV-2結構M、N和S蛋白的高抗原性片段具有特異性的抗體,並構成固相抗原免疫吸附物。具有吸光度數值大於或等於臨界值的樣本(即訊號與臨界值比值(Signal to Cut-off ratio) ≥ 1.00)被定義為陽性。c. 程序的化學和生物原理
UBI® SARS-CoV-2 ELISA採用結合到反應微量盤孔洞上的免疫吸附物,其由合成胜肽組成,這些合成胜肽可捕獲對SARS-CoV-2的棘狀(S)、基質(M)和核鞘(N)蛋白的高抗原性片段具有特異性的抗體。
在測定過程中,將稀釋的陰性對照和樣本加入反應微量盤的孔洞中並進行反應。如果存在SARS-CoV-2特異性抗體,其將與免疫吸附物結合。在徹底清洗反應微量盤的孔洞以移除未結合的抗體和其他血清/血漿成分後,將對人類IgG具有特異性的辣根過氧化物酶共軛山羊抗人類IgG抗體的標準製劑添加到每個孔洞中。然後使此共軛物製劑與捕獲的抗體反應。在再次徹底清洗孔洞以移除未結合的辣根過氧化物酶共軛抗體之後,加入含有過氧化氫和3’, 3’, 5’, 5’-四甲基聯苯胺(TMB)的受質溶液。在大多數情況下,如果有的話,藍色呈色與存在的SARS-CoV-2特異性IgG抗體的量成比例。使用微量盤式分析儀(例如Molecular Devices®的VERSAMAX™或同等儀器),在15分鐘內在450 nm處測量每個孔洞的吸光度。d. 試劑成分及其儲存條件
UBI® SARS-CoV-2 ELISA                                    192 個檢測
SARS-CoV-2 反應微量盤 192 個孔洞 每個微量盤孔洞含有吸附的SARS-CoV-2合成胜肽。儲存於2-8°C,利用乾燥劑密封。
非反應性對照 / 校正物 0.2 mL 去活化的正常人類血清,其含有0.1%的疊氮化鈉和0.02%的健大黴素(gentamicin)作為防腐劑。儲存在2-8°C。
樣本稀釋液 ( 緩衝液 I)                                              45 mL 磷酸鹽緩衝食鹽水溶液,其含有酪蛋白、明膠和防腐劑:0.1%的疊氮化鈉和0.02%的健大黴素。儲存在2-8°C。
共軛物 0.5 mL 辣根過氧化物酶共軛山羊抗人類IgG抗體,含0.02%的健大黴素和0.05%的4-二甲基胺基安替比林。儲存在2-8°C。
共軛物稀釋液 ( 緩衝液 II)                                        30 mL 磷酸鹽緩衝食鹽水溶液,其含有界面活性劑和經熱處理的正常山羊血清,以及0.02%的健大黴素作為防腐劑。儲存在2-8°C。
TMB 溶液 14 mL 3,3’,5,5’-四甲基聯苯胺(TMB)溶液。儲存在2-8°C。
受質稀釋液 14 mL 含有過氧化氫的檸檬酸鹽緩衝液。儲存在2-8°C。
終止溶液 25 mL 稀釋的硫酸溶液(1.0M H2 SO4 )。儲存在2-30°C。
洗滌緩衝液濃縮液 150 mL 含有界面活性劑的磷酸鹽緩衝食鹽水溶液的25倍濃縮液。儲存在2-30°C。
稀釋微孔板 192 孔洞 作為對照(blank)的黃色微量盤,以用於樣本的預稀釋。儲存在2-30°C。
微量盤覆蓋罩 6
每次反應期間,要使用透明的塑料黏合片覆蓋反應微量盤的孔洞。每當要檢測低於整盤的反應微量盤的孔洞數目時,可在移除墊紙之前切下塑料片材。或者,可以使用標準的微量盤蓋。所需材料 - 未提供
1. SARS-CoV-2 陽性對照 0.2 mL 含有SARS-CoV-2 IgG抗體的去活化人類血漿。儲存在≤-20°C。其可以單獨購買以作為UBI SARS-CoV-2 ELISA的抗SARS-CoV-2陽性對照(PN 200238)。 2. 手動或自動多道-8或12道移液器(50 µL至300 µL)。 3. 手動或自動可調式微量吸管(從1 µL至200 µL)。 4. 培育箱(37 ± 2°C)。 5. 聚丙烯或玻璃容器(容量為25 mL),附蓋。 6. 次氯酸鈉溶液,5.25% (液體家用漂白劑)。 7. 微量盤式分析儀,能夠透射波長為450± 2 nm的光。 8. 自動或手動抽吸清洗系統,可分配和抽吸250-350 µL。 9. 移液器吸液槽。 10. 試劑級(或更好)的水。 11. 拋棄式手套。 12. 計時器。 13. 吸水紙。 14. 生物危害性廢物容器。 15. 微量吸管尖。警告和注意事項
供體外診斷研究使用 目前僅用於處方 目前僅用於緊急使用授權 1. 截至本申請案的申請日: a. 此測試尚未獲得FDA的許可或批准,但已根據EUA獲得FDA的授權緊急使用,提供通過1988年臨床實驗室改進修正案(CLIA)的實驗室標準規定42 U.S.C 263a認證的實驗室使用,其符合執行高複雜度測試的要求。 b. 已授權將此測試的緊急使用僅用於檢測針對SARS-CoV-2的IgG抗體,而不能用於任何其他病毒或病原體。 c. 僅在存在以下情況的聲明期間,才可授權此測試的緊急使用:根據聯邦食品、藥品與化妝品法案第564(b)(1)節21 U.S.C. § 360bbb-3(b)(1)的規定,可以授權體外診斷測試進行緊急檢測以檢測及/或診斷COVID-19,除非聲明被終止或授權很快被撤銷。 2. 如果能傳播傳染性因子(infectious agent),試驗樣本、反應性和非反應性對照的處理。在整個測試過程中都要戴上拋棄式手套。要將手套作為生物危害性廢物處理。然後徹底洗手。 3. 請勿將來自一個試劑盒中的試劑替換為另一個。使共軛物和反應微量盤相匹配得以實現最佳效能。僅使用製造商提供的試劑。 4. 請勿使用超過其有效期限的試劑盒成分。 5. 每次運行樣本時,應在每個微量盤上以三重複方式對非反應性對照/校正物進行測定,並應按照與樣本相同的方式進行稀釋。 6. 僅使用試劑等級品質的水稀釋洗滌緩衝液濃縮液。 7. 使用前,讓所有試劑盒試劑和材料達到室溫(15至30°C)。 8. 除非需要,否則請勿從存儲袋中取出微量盤。未使用的連排(strips)應在2至8°C下使用提供的乾燥劑牢固地密封在其鋁箔袋中。 9. 警告:停止溶液(1 mol/L硫酸)會引起灼傷。切勿在此產品中加水。萬一接觸到眼睛,請立即用大量清水沖洗並就醫。 10. 避免將1 mol/L的硫酸(停止溶液)與任何氧化劑或金屬接觸。 11. 關於微量盤式分析儀和自動微量盤清洗機,請遵循儀器製造商提供的安裝、操作、校正和維護說明。 12. 溢出物應使用碘伏消毒劑或次氯酸鈉溶液徹底清理。 碘伏消毒劑:應使用可提供至少100 ppm有效碘的稀釋物。 次氯酸鈉: a. 不含酸的溢出物應使用5.25%的次氯酸鈉溶液徹底擦拭乾淨。 b. 含酸的溢出物應擦乾。然後,用5.25 %的次氯酸鈉溶液(家用液體漂白劑)擦拭洩漏區域。 13. 此產品含有疊氮化鈉作為防腐劑。疊氮化鈉可能在實驗室管道中形成疊氮化鉛或疊氮化銅。 這些疊氮化物在衝擊(例如錘擊)時可能爆炸。為防止形成疊氮化鉛或疊氮化銅,請在處理廢液後用水徹底沖洗排水管。為了移除懷疑的疊氮化物積聚,美國國家職業安全健康研究所建議:(1) 使用軟管從排水管吸取液體,(2) 填充10%的氫氧化鈉溶液,(3) 靜置16小時,並且(4) 用水充分沖洗。廢物處置
處置所有用於執行測試的樣本和材料,就好像它們含有傳染性因子一樣。建議在焚燒之前在121°C或更高溫度下進行高壓蒸氣滅菌法處理。
不包含酸的廢液可以與次氯酸鈉混合,使最終混合物體積中含有1.0%的次氯酸鈉。在添加次氯酸鈉之前,必須用一定比例的鹼中和含酸的廢液。在室溫下至少保留30分鐘以完成淨化作用。然後可以根據當地法令處置液體。樣本的收集和準備
1. UBI® SARS-CoV-2 ELISA可以在人類血清或血漿(抗凝血劑肝素鈉或EDTA-二鉀)上進行。含有沉澱物或顆粒物的樣本可能會給出不一致的測試結果。如有必要,應在測試前透過離心使樣本澄清。 2. 檢測前不得對樣本進行熱滅活。 3. 樣本可以在2-8°C下最多保存48小時,或者在≤-20°C下最多保存兩個月。 4. 樣本可以冷凍並解凍一次。試劑的製備
從冰箱中取出分析試劑後,讓它們達到室溫,並在移液之前透過輕輕旋轉充分混合。洗滌緩衝液:
在開始進行“測試程序”之前,請準備好洗滌緩衝液並裝入微量盤清洗機中。用24個體積的試劑級的水稀釋1個體積的洗滌緩衝液濃縮液。攪拌均勻。製備後,稀釋的洗滌溶液可以在偶爾混合的情況下保持穩定3個月。儲存於2至30°C。如果已將稀釋的洗滌溶液儲存在冰箱中,則要其等到達到室溫(15至30°C)後再使用。工作共軛物溶液:
按照“試驗程序”的第6步進行製備。利用共軛物稀釋液以1:100的比例稀釋共軛物。請參閱下表,以製備正確的工作共軛物溶液量。充分混合以確保其為均質溶液。工作共軛物溶液製備圖表
連排數目 試驗數目 共軛物 (µL) 稀釋液 (mL) 1至2                 8至24                 25               2.5 3至6                 25至48               50               5.0 7至9                 49至72               75               7.5 10至12             73至96               100             10.0TMB 受質溶液:
按照“測試程序”的步驟8進行製備。等量混合TMB溶液和受質稀釋液。關於製備的正確量的TMB受質溶液,請參考下表。需在製備後10分鐘內使用,並避免陽光直射。TMB 受質溶液製備
試驗數目 TMB 緩衝液 (mL) 受質稀釋液 (mL) 16                  1.1                       1.1 24                  1.6                       1.6 32                  2.1                       2.1 40                  2.5                       2.5 48                  2.8                       2.8 56                  3.5                       3.5 64                  3.8                       3.8 72                  4.0                       4.0 80                  4.5                       4.5 88                  5.0                       5.0 96                  5.5                       5.5
所有材料均應在室溫(15至30°C)下使用。液體試劑在使用前應徹底且溫和地混合。儲存說明
1. 不使用時應將UBI® SARS-CoV-2 ELISA試劑盒及其成分保存在2至8°C的溫度下,並在試劑盒的有效期限內使用。 2. 開封後,未使用的反應微量盤連排必須在2至8°C下使用提供的乾燥劑牢固地密封在鋁箔袋中存儲。當在2至8°C的密閉袋中保存時,打開一次後,反應微量盤可保持穩定8週。不穩定或變質的特徵
1. 所提供試劑的物理外觀變化可能表明這些材料已經變質;不要使用明顯混濁的試劑。 2. TMB溶液、受質稀釋劑和製備的受質溶液應為無色至淺黃色,以確保測試正確進行。任何其他顏色可能表示TMB溶液及/或受質溶液變質。不穩定或變質的特徵
抗SARS-CoV-2陽性對照與測試樣本的處理方式相同,用於驗證測試運行。建議在每次運行中將陽性對照與患者樣本同時在個別的孔洞中運行。陽性對照的吸光度數值應≥ 0.5,且訊號與臨界值比值應>1.0。如果陽性對照的吸光度數值或訊號與臨界值比值超出限值,則此微量盤無效,且必須重新進行測試。
非反應性對照/校正物是按照“測試程序”部分中的說明進行測試。
在測試驗證部分中提供非反應性對照/校正物的預期結果。測試程序
1. 針對稀釋微量盤: A. 將200 µL樣本稀釋液(緩衝液I)分配到所有孔洞中。 B. 將孔洞A1作為試劑空白。 C. 將10 µL非反應性對照/校正物加入孔洞B1、C1、D1中。 D. 將10 µL的抗SARS-CoV-2陽性對照加入適當的孔洞中。 E. 將10 µL的測試樣本加入適當的孔洞中。 2.  確保孔洞中的內容物充分混合。可利用移液器手動混合或溫和地振動微量盤加以混合。 3. 打開鋁箔袋並取出反應微量盤。當不使用完整的反應微量盤時,請從框架上除去多餘的連排,然後將其送回到提供的存儲袋中並牢固地密封。根據所使用的清洗系統,可能需要插入備用連排。 4. 從稀釋微量盤的每個孔洞中轉移100 µL的試劑空白、非反應性對照/校正物和稀釋的樣本至其於反應微量盤的相對應孔洞中。 5. 蓋上蓋子並在37 ± 2°C下反應60 ± 2分鐘。 6. 在清洗反應微量盤之前,請按照試劑製備中所述內容製備工作共軛物溶液(1:101)。 7. 如試劑製備中所述內容利用洗滌緩衝液洗滌微量盤。 A. 自動微量盤清洗機-使用至少300 µL/孔洞/清洗的量洗滌六次。 B. 手動微量盤清洗機或移液器(8或12道)-使用至少300 µL/孔洞/清洗的量洗滌六次。以相同的順序填滿整個微量盤然後抽吸。 8. 確保剩餘體積最小,例如,在吸水紙上透過敲打微量盤以吸乾水分。 9. 將100 µL製備好的工作共軛物溶液(1:101)加入到反應微量盤的所有孔洞中。蓋上蓋子並在37 ± 2°C下反應30 ± 1分鐘。 10. 根據試劑製備中所述內容,在使用之前在反應期間製備TMB基質溶液。遮蔽溶液以避免陽光直射。 11. 重複步驟7和步驟8中的清洗程序。 12. 將100 µL製備的TMB基質溶液添加到反應微量盤的每個孔洞中。 13. 蓋上蓋子並在37 ± 2°C下反應15 ± 1分鐘。 14. 將100 µL停止溶液加入反應微量盤的每個孔洞中。進行混合(例如透過溫和地敲打或振動微量盤)。 15. 利用空氣空白讀取450 ± 2 nm處的吸光度。注意:應在將停止溶液添加到反應微量盤後的15分鐘內讀取吸光度。測試驗證和結果計算
特異性針對SARS-CoV-2的抗體的存在或不存在是透過將樣本的吸光度與臨界值加以聯繫而確定的。測試驗證
為使測試有效: 1. 試劑空白的吸光度數值應小於0.150。如果超出極限,則微量盤無效,且必須重新進行測試。 2. 個別非反應性對照/校正物的吸光度數值應小於0.200且大於試劑空白。如果三個非反應性對照/校正物數值之一不在這些限制之內,請根據兩個可接受的對照數值重新計算非反應性對照/校正物平均值。如果三個對照數值中的兩個或兩個以上超出兩個限制值之一(小於0.200且大於試劑空白),則微量盤無效,且必須重新進行測試。 3. 抗SARS-CoV-2陽性對照的吸光度數值應≥ 0.5且訊號與臨界值比值應>1.0。如果陽性對照的吸光度數值或訊號與臨界值比值超出限制值,則此微量盤無效,且必須重新進行測試。結果計算
1. 試劑空白(RB)的吸光度 例子:    試劑空白              吸光度 孔洞A1                 0.044 2. 確定非反應性對照/校正物(NRC)的平均值 例子:      NRC                    吸光度 孔洞B1                0.062 孔洞C1                0.066 孔洞D1                0.063 總和                     0.191 平均值                 0.191 ÷ 3 = 0.064 3. 臨界值的計算: 臨界值= Mean NRC + 0.2 例子:平均NRC = 0.064 臨界值 = 0.064 + 0.2 = 0.264 4. 訊號與臨界值(S/C)比值的計算: S/C比值 = 樣本的OD ÷臨界值 例子:樣本的OD = 0.542 臨界值 = 0.264 S/C比值 = 0.542 / 0.264 = 2.05結果解釋
1. 根據UBI® SARS-CoV-2 ELISA的標準,具有吸光度數值小於臨界值(即訊號與臨界值比值< 1.00)的樣本為陰性,其對於針對SARS-CoV-2的IgG抗體可被視為陰性。 2. 根據UBI® SARS-CoV-2 ELISA的標準,具有吸光度數值大於或等於臨界值(即訊號與臨界值比值≥ 1.00)的樣本為陽性,其對於針對SARS-CoV-2的抗體可以視為陽性。UBI® SARS-CoV-2 ELISA 的結果解釋如下: S/C比值    結果      解釋 <1.00         陰性      對於針對SARS-CoV-2的IgG抗體可以視為陰性 ≥1.00         陽性      對於針對SARS-CoV-2的IgG抗體可以視為陽性 高於臨界值的測量結果的數值大小並不表示樣本中存在的抗體總量。程序的侷限性
1. UBI SARS CoV-2 ELISA的使用僅限於經過培訓的實驗室人員。不適合家庭使用。 2. 必須嚴格遵守UBI® SARS-CoV-2 ELISA程序和結果解釋部分。 3. 僅使用預期用途中列出的樣本類型才能確立性能。其他樣本類型尚未經過評估,因此不應與此測試一起使用。 4. 尚未使用指尖針刺樣本評估此測試。此測試未經授權可用於指尖採血的全血。 5. 在從出現症狀少於15天的患者收集的樣本中,SARS-CoV-2抗體可能低於可檢測的水平。應從症狀發作後≥15天的個體收集樣本。如果樣本是在症狀發作後不到15天的個人收集的,則不應進行測試。 6. 測試結果應與其他臨床和實驗室方法結合使用,以協助臨床醫生做出個別患者的判斷。 7. 測試結果不得用於診斷或排除急性COVID-19感染或告知感染狀況。如果懷疑是急性感染,應進行直接病毒核酸檢測或抗原檢測方法。 8. 偽陽性結果可能是由於預先存在的抗體的交叉反應性或其他可能原因所引起的。 9. 個別受試者的陰性結果表明不存在可檢測的抗SARS-CoV-2抗體。陰性結果並不排除SARS-CoV-2感染,因此不應作為患者管理決策的唯一依據。此測試對於感染後早期的靈敏度仍未知。 10. 如果在樣本中存在針對SARS-CoV-2病毒的抗體數量低於測試的檢測極限,或者收集樣本之患者在此疾病階段不存在檢測到的抗體,則可能出現陰性結果。 11. 尚未利用此測試評估譜系樣本(pedigreed specimens)(譜系樣本具有針對非SARS-CoV-2冠狀病毒(普通感冒)株(例如HKU1、NL63、OC43或229E)的抗體的直接證據)。 12. 如果結果與臨床證據不一致,建議進行其他測試以確認結果。 13. 目前尚不知道是否存在針對SARS-CoV-2的抗體可賦予感染免疫力。 14. 陽性結果可能並不表示先前SARS-CoV-2感染。在評估是否需要第二次但不同的血清學檢查以確認免疫反應時,應考慮其他資訊,其包括臨床病史和當地疾病盛行程度。 15. UBI® SARS-CoV-2 ELISA已被授權用於手動測試程序。尚未確定用於自動化儀器平台上的測定性能。 16. 不用於篩查捐獻的血液。實驗室授權條件
FDA網站上提供UBI® SARS-CoV-2 ELISA授權書、健康照護提供者的授權情況說明書、患者的授權情況說明書以及授權標籤(網站: www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/vitro-diagnostics-euas)。
使用UBI® SARS-CoV-2 ELISA的授權實驗室必須遵守以下授權書中所述的授權條件: 1. 使用UBI® SARS-CoV-2 ELISA的授權實驗室(“通過1988年臨床實驗室改進修正案(CLIA)的實驗室標準規定42 U.S.C. §263a認證的實驗室,其符合執行高複雜度測試的要求”為“授權實驗室”)必須包括測試結果報告、所有授權情況說明書。在緊急情況下,可以使用其他適當的方法散佈這些情況說明書,其中可能包括大眾媒體。 2. 授權實驗室必須使用授權標籤中概述的UBI® SARS-CoV-2 ELISA。不允許與授權程序(包括授權的臨床樣本類型、授權的對照材料、授權的其他輔助試劑和使用產品所需的授權材料)有任何差異。 3. 接受UBI® SARS-CoV-2 ELISA的授權實驗室必須在開始測試之前通知相關公共衛生當局其進行檢測的意向。 4. 適當地,使用UBI® SARS-CoV-2 ELISA的授權實驗室必須具有流程以向健康照護提供者和相關公共衛生當局報告檢測結果。 5. 授權實驗室必須收集有關UBI® SARS-CoV-2 ELISA性能的資訊,並且如果懷疑存在任何偽陽性或偽陰性結果,以及與他們意識到的測試的既定性能特徵有明顯的出入,必須向DMD/OHT7-OIR/OPEQ/CDRH (透過電子郵件:CDRH EUA-Reporting(at)fda.hhs.gov)和UBI技術支持(網站: www.unitedbiomedical.com/support.html)報告。 6. 所有使用UBI® SARS-CoV-2 ELISA的實驗室人員都必須接受免疫分析技術的培訓,並在使用此試劑盒時使用適當的實驗室和個人防護設備,並按照授權標籤使用UBI® SARS-CoV-2 ELISA。所有使用此測試的實驗室人員還必須接受培訓,並熟悉UBI® SARS-CoV-2 ELISA結果的解釋。 7. 使用UBI® SARS-CoV-2 ELISA的聯合生物醫學公司(United Biomedical Inc.)、授權分銷商和授權實驗室必須確保保留與此EUA相關的任何記錄,直到FDA另行通知為止。此類記錄將應要求提供給FDA進行檢查。性能評估
性能評估研究在以下的實施例11中進一步詳細描述。7. 具體實施例
(1) 一種用以檢測病毒感染和對COVID-19進行流行病學監測的血清學診斷分析,其包含來自SARS-CoV-2的M蛋白(SEQ ID NO: 1)、N蛋白(SEQ ID NO: 6)和S蛋白(SEQ ID NO: 20)的抗原性胜肽。 (2) 如(1)所述之血清學診斷分析,其中此抗原性胜肽包含選自由SEQ ID NOs: 4-5、17-18、37-38、259、261、263、265、266、270、281、308、321、322、323、324及其任意組合組成之群組的胺基酸序列。 (3) 如(1)所述之血清學診斷分析,其中此抗原性胜肽為選自由SEQ ID NOs: 5、18、38、261、266、281、322及其任意組合組成之群組。 (4) 一種檢測SARS-CoV-2感染的方法,包含: a) 將選自由SEQ ID NOs: 4-5、17-18、23-24、26、29-34、37-38、259、261、263、265、266、270、281、308、321、322、323和324及其任意組合組成之群組的抗原性胜肽連接至固相支持物, b) 在有利於抗體與胜肽結合的條件下,將(a)中連接於此固相支持物的此抗原性胜肽暴露於含有來自患者的抗體的生物樣本中,以及 c) 檢測與連接在此固相支持物上的此胜肽結合的抗體的存在。 (5) 如(4)所述之方法,其中(a)的此抗原性胜肽為選自由SEQ ID NOs: 5、18、38、261、266、281、322及其任意組合組成之群組。B. 用於預防 SARS-CoV-2 感染的高精密度、位點特異性的胜肽免疫原結構
揭露的救濟系統的第二範疇是關於用於預防SARS-CoV-2感染的高精密度、位點特異性的胜肽免疫原結構。1. S-RBD 胜肽免疫原結構的開發
本揭露提供胜肽免疫原結構,其含有具有衍生自棘狀蛋白的SARS-CoV-2受體結合結構域(RBD) (S-RBD或S1-RBD)的約6至約100個胺基酸的B細胞抗原決定位胜肽(SEQ ID NO: 226)或其同源物或變異物(例如SEQ ID NO: 227)。在某些實施例中,B細胞抗原決定位胜肽具有選自SEQ ID NOs: 23-24、26-27、29-34和315-319的胺基酸序列,如表3和13所示。
B細胞抗原決定位可直接地或透過任選的異源性間隔子(例如表7的SEQ ID NOs: 101-103)與衍生自病原體蛋白的異源性T輔助細胞(Th)抗原決定位(例如SEQ ID NOs: 49-100,如表6所示)共價連接。這些結構含有設計的B細胞和Th抗原決定位,二者共同作用以刺激與S-RBD位點(SEQ ID NO: 226)及其片段(例如SEQ ID NO: 26)交叉反應的高特異性抗體的產生。
本文使用術語“S-RBD胜肽免疫原結構”或“胜肽免疫原結構”是指具有多於約20個胺基酸的胜肽,其含有(a) 具有來自S-RBD結合位點(SEQ ID NOs: 226或227)或其變異物之多於約6個連續胺基酸殘基的B細胞抗原決定位,例如SEQ ID NOs: 23-24、26-27、29-34和315-319;(b) 異源性Th抗原決定位(例如SEQ ID NOs: 49-100);以及(c) 任選的異源性間隔子。
在某些實施例中,S-RBD胜肽免疫原結構可利用以下分子式作為代表: (Th)m –(A)n –(S-RBD B細胞抗原決定位胜肽)–X 或 (S-RBD B細胞抗原決定位胜肽)–(A)n –(Th)m –X 或 (Th)m –(A)n –(S-RBD B細胞抗原決定位胜肽)–(A)n –(Th)m –X 其中 Th為異源性T輔助細胞抗原決定位; A為異源性間隔子; (S-RBD B細胞抗原決定位胜肽)為具有來自S-RBD (SEQ ID NO: 226)的6至約35個胺基酸殘基的B細胞抗原決定位胜肽或其變異物,其可引發針對SARS-CoV-2的抗體; X為胺基酸的α-COOH或α-CONH2 ; m為1至約4;以及 n為0至約10。
基於許多理論基礎設計和選擇本揭露的S-RBD胜肽免疫原結構,包括: i. 透過使用蛋白質載體或有效的T輔助細胞抗原決定位,可以使S-RBD B細胞抗原決定位胜肽具有免疫原性; ii. 當S-RBD B細胞抗原決定位胜肽成為免疫原性的並投予宿主時,此胜肽免疫原結構可: a. 引發優先針對S-RBD B細胞抗原決定位(而非蛋白質載體或T輔助細胞抗原決定位)的高效價抗體; b. 產生能夠中和SARS-CoV-2的高特異性抗體;以及 c. 產生能夠抑制S-RBD與其受體ACE2結合的高特異性抗體。
揭露的S-RBD胜肽免疫原結構及其製劑可有效地作為醫藥組成物或疫苗製劑,以預防及/或治療COVID-19。
揭露的S-RBD胜肽免疫原結構的各種組分在下文進一步詳細描述。a. 來自 S-RBD B 細胞抗原決定位胜肽
本揭露是關於用以產生針對S-RBD位點(例如SEQ ID NO: 226或227)及其片段(例如SEQ ID NO: 23-24、26-27、29-34和315-319)具有特異性的高效價抗體的新穎胜肽組成物。胜肽免疫原結構的位點特異性使針對位於S-RBD上其他區域的不相關位點或位於載體蛋白上的不相關位點的抗體產生最小化,從而提供高安全係數。
本文使用術語“S-RBD”或S1-RBD”是指結合其ACE2受體的受體結合結構域,其含有200個胺基酸,且具有8個半胱胺酸,在半胱胺酸之間可形成4個雙硫鍵(第2圖)。本揭露的一範疇是透過主動免疫預防及/或治療SARS-CoV-2感染。因此,本揭露是關於靶向S-RBD的部分(例如SEQ ID NOs: 23-24、26-27、29-34和315-319)的胜肽免疫原結構及其製劑,以用以引發針對SARS-CoV-2的中和抗體或可抑制SARS-CoV-2與人類受體ACE2結合的抗體。
S-RBD胜肽免疫原結構的B細胞抗原決定位部分可含有來自S-RBD位點(SEQ ID NO: 226)或其變異物的約6至約35個胺基酸。在一些實施例中,B細胞抗原決定位胜肽具有選自SEQ ID NOs: 23-24、26-27、29-34和315-319的胺基酸序列,如表3和13所示。本揭露的S-RBD B細胞抗原決定位胜肽還包括S-RBD的免疫功能類似物或同源物,包括來自不同冠狀病毒株的S-RBD序列,例如表3所示的SARS-CoV (SEQ ID NO: 21)和MERS-CoV (SEQ ID NO: 22)。S-RBD B細胞抗原決定位胜肽的免疫功能類似物或同源物包括變異物,其在蛋白質的主要框架內於胺基酸位置上具有取代、總電荷改變、與其他官能基共價連接或胺基酸的添加、插入或刪除及/或其任意組合。在一些實施例中,來自S-RBD序列的變異物包括利用半胱胺酸殘基取代天然胺基酸殘基以產生可被雙硫鍵限制的胜肽的定點突變(例如SEQ ID NOs: 24、32和34)。
由含有來自S-RBD的B細胞抗原決定位的胜肽免疫原結構產生的抗體具有高特異性,並且可與全長S-RBD結合位點(例如SEQ ID NO: 226)或其片段(例如SEQ ID NO: 26)交叉反應。基於它們獨特的特徵和性質,由揭露的S-RBD胜肽免疫原結構所引發的抗體能夠針對SARS-CoV-2感染提供預防性方法。b. 異源性 T 輔助細胞抗原決定位 (Th 抗原決定位 )
本揭露提供胜肽免疫原結構,其含有來自S-RBD的B細胞抗原決定位,B細胞抗原決定位直接地或是透過任選的異源性間隔子共價連接至異源性T輔助細胞(Th)抗原決定位。
於胜肽免疫原結構中的異源性Th抗原決定位可增強S-RBD B細胞抗原決定位胜肽的免疫原性,其促進針對基於設計理論篩選和選擇的優化S-RBD B細胞抗原決定位胜肽之特異性高效價抗體的產生。
本文使用術語“異源性”是指衍生自並非S-RBD野生型序列之部分或與其同源之胺基酸序列的胺基酸序列。因此,異源性Th抗原決定位為衍生自非天然存在於S-RBD之胺基酸序列的Th抗原決定位(即Th抗原決定位對S-RBD而言不是自體衍生的)。因為Th抗原決定位對S-RBD而言是異源性的,當異源性Th抗原決定位共價連接至S-RBD B細胞抗原決定位胜肽時,S-RBD的天然胺基酸序列不會向氨基端或羧基端方向延伸。
本揭露的異源性Th抗原決定位可為不具有天然存在於S-RBD之胺基酸序列的任何Th抗原決定位。Th抗原決定位還可具有針對多種物種第2類MHC分子的混雜結合基序。在某些實施例中,Th抗原決定位包含多個混雜的第2類MHC結合基序,以允許T輔助細胞的最大活化,從而導致免疫反應的啟動和調節。優選的Th抗原決定位本身為非免疫原性的(即如果有的話,很少利用S-RBD胜肽免疫原結構所產生抗體是針對Th抗原決定位),因此允許針對S-RBD分子之目標B細胞抗原決定位胜肽的非常集中的免疫反應。
本揭露的Th抗原決定位包括,但不限於,衍生自外來病原體之胺基酸序列,如表6所例示(例如SEQ ID NOs: 49-100)。在某些實施例中,用於增強S-RBD B細胞抗原決定位胜肽的免疫原性的異源性Th抗原決定位衍生自天然病原體EBV BPLF1 (SEQ ID NO: 93)、EBV CP (SEQ ID NO: 91)、破傷風梭菌(SEQ ID NOs: 82-87)、霍亂毒素(SEQ ID NO: 81)和曼氏血吸蟲(SEQ ID NO: 100),以及衍生自麻疹病毒融合蛋白(MVF 49-66)和B型肝炎表面抗原(HBsAg 67-79)的理想化人工Th抗原決定位,其為單一序列(例如,對於MvF為SEQ ID NOs:49-52、54-57、59-60、62-63、65-66,以及對於HBsAg為SEQ ID NOs: 67-71、73-74、76-78)或組合序列形式(例如,對於MvF為SEQ ID NOs: 53、58、61、64,以及對於HBsAg為SEQ ID NOs: 72和75)。組合的理想化人工Th抗原決定位含有基於特定胜肽之同源物的可變殘基在胜肽骨架內於特定位置處作為代表的胺基酸殘基的混合物。可以利用在合成過程期間在特定位置添加選定受保護之胺基酸的混合物,而非一個特定的胺基酸,於單一過程中合成組合胜肽的集合。此種組合異源性Th抗原決定位胜肽集合可允許對具有不同遺傳背景之動物廣泛的Th抗原決定位覆蓋。異源性Th抗原決定位胜肽之代表性組合序列包括如表6所示的SEQ ID NOs: SEQ ID NOs: 53、58、61、64、72和75。本發明的Th抗原決定位胜肽對來自基因多樣性群體的動物和患者提供廣泛的反應性和免疫原性。c. 異源性間隔子
揭露的S-RBD胜肽免疫原結構任選地含有異源性間隔子,其將S-RBD B細胞抗原決定位胜肽共價連接至異源性T輔助細胞(Th)抗原決定位。
如上所述,術語“異源性”是指衍生自並非S-RBD天然型式序列之部分或與其同源之胺基酸序列的胺基酸序列。因此,當異源性間隔子共價連接至S-RBD B細胞抗原決定位胜肽時,S-RBD的天然胺基酸序列不會向氨基端或羧基端方向延伸,因為間隔子對S-RBD序列而言是異源性的。
間隔子為能夠將兩個胺基酸及/或胜肽連接在一起的任何分子或化學結構。依據應用的不同,間隔子的長度或極性可能會有所不同。間隔子連接可透過醯胺或羧基連結,但是其他官能基也是可能的。間隔子可包括化學化合物、天然存在的胺基酸或非天然存在的胺基酸。
間隔子可為S-RBD胜肽免疫原結構提供結構特徵。結構上,間隔子提供Th抗原決定位與S-RBD片段的B細胞抗原決定位的物理分離。透過間隔子的物理分離可破壞透過將Th抗原決定位連接至B細胞抗原決定位所產生的任何人工二級結構。另外,透過間隔子之抗原決定位的物理分離可消除Th細胞及/或B細胞反應之間的干擾。此外,可設計間隔子以產生或修飾胜肽免疫原結構的二級結構。例如,可設計間隔子以作為柔性鉸鏈,用以增強Th抗原決定位和B細胞抗原決定位的分離。柔性鉸鏈間隔子也可允許所呈現之胜肽免疫原與適當的Th細胞和B細胞之間更有效率的交互作用,以增強對Th抗原決定位和B細胞抗原決定位的免疫反應。編碼柔性鉸鏈之序列的例示見於通常富含脯胺酸的免疫球蛋白重鏈鉸鏈區域。利用序列Pro-Pro-Xaa-Pro-Xaa-Pro (SEQ ID NO:103)提供了一種作為間隔子使用之特別有用的柔性鉸鏈,其中Xaa是任意胺基酸,以天門冬胺酸為優選。
間隔子也可為S-RBD胜肽免疫原結構提供功能特徵。例如,可設計間隔子以改變S-RBD胜肽免疫原結構的總電荷,其可影響胜肽免疫原結構的溶解度。此外,改變S-RBD胜肽免疫原結構的總電荷可影響胜肽免疫原結構與其他化合物和試劑結合的能力。如下文進一步詳細討論的,S-RBD胜肽免疫原結構可透過靜電結合與高度帶電的寡核苷酸(例如CpG寡聚合物)形成穩定的免疫刺激複合物。S-RBD胜肽免疫原結構的總電荷對於形成這些穩定的免疫刺激複合物是重要的。
可作為間隔子的化學化合物包括,但不限於,(2-胺乙氧基)乙酸(AEA)、5-氨基戊酸(AVA)、6-氨基己酸(Ahx)、8-氨基-3,6-二氧雜辛酸(AEEA, mini-PEG1)、12-氨基-4,7,10-三氧雜十二酸(mini-PEG2)、15-氨基-4,7,10,13-四氧雜十五烷酸(mini-PEG3)、trioxatridecan-succinamic acid (Ttds)、12-氨基十二烷酸、Fmoc-5-氨基-3-氧戊酸(O1Pen)等。
天然存在的胺基酸包括丙胺酸、精胺酸、天門冬醯胺酸、天門冬胺酸、半胱胺酸、麩胺酸、麩醯胺酸、甘胺酸、組胺酸、異白胺酸、白胺酸、離胺酸、甲硫胺酸、苯丙胺酸、脯胺酸、絲胺酸、蘇胺酸、色胺酸、酪胺酸和纈胺酸。
非天然存在的胺基酸包括,但不限於,ε-N離胺酸、β-丙胺酸、鳥胺酸、正白胺酸、正纈胺酸、羥脯胺酸、甲狀腺素、γ-氨基丁酸、高絲胺酸、瓜胺酸、氨基苯甲酸、6-胺基己酸(Aca; 6-胺基己酸)、3-硫醇丙酸(MPA)、3-硝基酪胺酸、焦麩胺酸等。
S-RBD胜肽免疫原結構中的間隔子可共價連接在Th抗原決定位和S-RBD B細胞抗原決定位胜肽的氨基端或羧基端。在一些實施例中,間隔子共價連接至Th抗原決定位的羧基端和S-RBD B細胞抗原決定位胜肽的氨基端。在其他實施例中,間隔子共價連接至S-RBD B細胞抗原決定位胜肽的羧基端和Th抗原決定位的氨基端。在某些實施例中,可使用一個以上的間隔子,例如,當在S-RBD胜肽免疫原結構中存在一個以上的Th抗原決定位時。當使用一個以上的間隔子時,每個間隔子可以彼此相同或不同。此外,當S-RBD胜肽免疫原結構中存在一個以上的Th抗原決定位時,可利用間隔子分隔開Th抗原決定位,間隔子可為相同或不同,利用間隔子將Th抗原決定位與S-RBD B細胞抗原決定位胜肽分開。間隔子相對於Th抗原決定位或S-RBD B細胞抗原決定位胜肽的排列沒有限制。
在某些實施例中,異源性間隔子是天然存在的胺基酸或非天然存在的胺基酸。在其他實施例中,間隔子含有一個以上的天然存在或非天然存在的胺基酸。在具體實施例中,間隔子為Lys-、Gly-、Lys-Lys-Lys-、(α, ε-N)Lys、ε-N-Lys-Lys-Lys-Lys (SEQ ID NO: 101)或Lys-Lys-Lys- ε-N-Lys (SEQ ID NO: 102)。d. S-RBD 胜肽免疫原結構的具體實施例
在某些實施例中,S-RBD胜肽免疫原結構可利用以下分子式作為代表: (Th)m –(A)n –(S-RBD B細胞抗原決定位胜肽)–X 或 (S-RBD B細胞抗原決定位胜肽)–(A)n –(Th)m –X 或 (Th)m –(A)n –(S-RBD B細胞抗原決定位胜肽)–(A)n –(Th)m –X 其中 Th為異源性T輔助細胞抗原決定位; A為異源性間隔子; (S-RBD B細胞抗原決定位胜肽)為具有來自S-RBD (SEQ ID NO: 226或227)的6至35個胺基酸殘基的B細胞抗原決定位胜肽或其變異物,其可產生抗體,此抗體能夠中和SARS-CoV-2或抑制S-RBD與其受體ACE2的結合; X為胺基酸的α-COOH或α-CONH2 ; m為1至約4;以及 n為0至約10。
B細胞抗原決定位胜肽可含有來自以SEQ ID NO: 226表示的全長S-RBD多胜肽的部分的約6至約35個胺基酸。在一些實施例中,B細胞抗原決定位具有選自SEQ ID NOs: 23-24、26-27、29-34和315-319任一的胺基酸序列,如表3和13所示。
在S-RBD胜肽免疫原結構中的異源性Th抗原決定位具有選自SEQ ID NOs: 49-100及其組合任一的胺基酸序列,如表6所示。在一些實施例中,一個以上的Th抗原決定位存在於S-RBD胜肽免疫原結構中。
任選的異源性間隔子是選自Lys-、Gly-、Lys-Lys-Lys-、(α, ε-N)Lys、Pro-Pro-Xaa-Pro-Xaa-Pro (SEQ ID NO: 103)、ε-N-Lys-Lys-Lys-Lys (SEQ ID NO: 101)、Lys-Lys-Lys- ε-N-Lys (SEQ ID NO: 102)及其任意組合的任一者,其中Xaa是任意胺基酸,但以天門冬胺酸為優選。在具體實施例中,異源性間隔子是ε-N-Lys-Lys-Lys-Lys (SEQ ID NO: 101)或Lys-Lys-Lys-ε-N-Lys (SEQ ID NO: 102)。
在某些實施例中,S-RBD胜肽免疫原結構具有選自SEQ ID NOs: 107-144任一的胺基酸序列,如表8所示。
包含Th抗原決定位之S-RBD胜肽免疫原結構是於與S-RBD片段串聯的單一固相胜肽合成中同時產生。Th抗原決定位也可包括Th抗原決定位的免疫類似物。免疫Th類似物包括免疫增強類似物、交叉反應類似物和任何這些Th抗原決定位的片段,其足以增強或刺激對S-RBD B細胞抗原決定位胜肽的免疫反應。
在S-RBD胜肽免疫原結構中的Th抗原決定位可共價連接於S-RBD B細胞抗原決定位胜肽的氨基端或羧基端。在一些實施例中,Th抗原決定位是共價連接至S-RBD B細胞抗原決定位胜肽的氨基端。在其他實施例中,Th抗原決定位是共價連接至S-RBD B細胞抗原決定位胜肽的羧基端。在某些實施例中,一個以上的Th抗原決定位共價連接至S-RBD B細胞抗原決定位胜肽。當一個以上的Th抗原決定位連接至S-RBD B細胞抗原決定位胜肽時,每一個Th抗原決定位可具有相同胺基酸序列或不同胺基酸序列。另外,當一個以上的Th抗原決定位連接至S-RBD B細胞抗原決定位胜肽時,Th抗原決定位可以任何順序排列。例如,Th抗原決定位可連續地連接至S-RBD B細胞抗原決定位胜肽的氨基端,或連續地連接至S-RBD B細胞抗原決定位胜肽的羧基端,或當不同的Th抗原決定位共價連接至S-RBD B細胞抗原決定位胜肽的羧基端時,Th抗原決定位可共價連接至S-RBD B細胞抗原決定位胜肽的氨基端。Th抗原決定位相對於S-RBD B細胞抗原決定位胜肽的排列並無限制。
在一些實施例中,Th抗原決定位直接地共價連接至S-RBD B細胞抗原決定位胜肽。在其他實施例中,Th抗原決定位透過異源性間隔子共價連接至S-RBD片段。e. 變異物、同源物和功能類似物
也可使用上述免疫原胜肽結構的變異物和類似物,其可誘導抗體及/或與抗體交叉反應,而此抗體是針對優選的S-RBD B細胞抗原決定位胜肽。類似物(包括等位基因、物種以及誘導變異物),通常於一個、兩個或幾個位置上有別於天然存在的胜肽,通常是由於胺基酸取代。類似物通常展現與天然胜肽至少75%、80%、85%、90%或95%的序列一致性。一些類似物還包括非天然胺基酸或在一個、兩個或幾個位置上之氨基端或羧基端胺基酸的修飾。
作為功能類似物的變異物可具有於胺基酸位置上的取代、總電荷改變、與其他官能基共價連接或胺基酸的添加、插入或刪除及/或其任意組合。
保留性取代是指一個胺基酸殘基被另一個具有相似化學性質的胺基酸殘基所取代。例如,非極性(疏水性)胺基酸包括丙胺酸、白胺酸、異白胺酸、纈胺酸、脯胺酸、苯丙胺酸、色胺酸和甲硫胺酸;極性中性胺基酸包括甘胺酸、絲胺酸、蘇胺酸、半胱胺酸、酪胺酸、天門冬醯胺酸和麩醯胺酸;帶正電的(鹼性)胺基酸包括精胺酸、離胺酸和組胺酸;而帶負電的(酸性)胺基酸包括天門冬胺酸和麩胺酸。
在特定實施例中,功能類似物與原始胺基酸序列具有至少50%的一致性。在另一實施例中,功能類似物與原始胺基酸序列具有至少80%的一致性。在又一實施例中,功能類似物與原始胺基酸序列具有至少85%的一致性。在又一實施例中,功能類似物與原始胺基酸序列具有至少90%的一致性。
Th抗原決定位胜肽的功能免疫類似物也是有效的,且被包括作為本發明的一部分。功能免疫Th類似物可包括於Th抗原決定位中從1至約5個胺基酸殘基的保留性取代、添加、刪除和插入,其實質上未改變Th抗原決定位的Th刺激功能。如上文針對S-RBD B細胞抗原決定位胜肽所描述的,可以利用天然或非天然胺基酸完成保留性取代、添加和插入。表6辨識了Th抗原決定位胜肽之功能類似物的另一種變異物。具體而言,MvF1和MvF2 Th的SEQ ID NOs: 54和55分別是MvF4和MvF5 Th的SEQ ID NOs: 62-64和65的功能類似物,因為利用在氨基端和羧基端將各兩個胺基酸刪除(SEQ ID NOs: 54或55)或插入(SEQ ID NOs: 62-64和65)而使其胺基酸骨架有所區別。在類似序列的這兩個系列之間的差異並不會影響包含於此些序列中之Th抗原決定位的功能。因此,功能免疫Th類似物包括衍生自麻疹病毒融合蛋白MvF1-4 Ths (SEQ ID NOs: 54-64)和衍生自肝炎表面蛋白質HBsAg 1-3 Ths (SEQ ID NOs: 67-76)之Th抗原決定位的多種版本。2. 組成物
本揭露還提供包含揭露的S-RBD免疫原胜肽結構的組成物。a. 胜肽組成物
含有揭露的S-RBD胜肽免疫原結構的組成物可為液體或固體/凍乾形式。液體組成物可包括不改變S-RBD胜肽免疫原結構之結構或功能特性的水、緩衝液、溶劑、鹽及/或任何其他可接受的試劑。胜肽組成物可含有一種或多種揭露的S-RBD胜肽免疫原結構。b. 醫藥組成物
本揭露還關於含有揭露的S-RBD胜肽免疫原結構的醫藥組成物。
醫藥組成物可含有藥學上可接受的遞送系統中的載體及/或其他添加劑。因此,醫藥組成物可含有S-RBD胜肽免疫原結構的藥學上有效劑量以及藥學上可接受的載體、佐劑及/或其它賦形劑(例如稀釋劑、添加劑、穩定劑、防腐劑、助溶劑、緩衝劑等)。
醫藥組成物可含有一種或多種佐劑,其作用是加速、延長或增強針對S-RBD胜肽免疫原結構的免疫反應,而本身不具有任何特異性抗原作用。醫藥組成物中使用的佐劑可包括油、油乳液、鋁鹽、鈣鹽、免疫刺激複合物、細菌和病毒衍生物、仿病毒顆粒(virosomes)、碳水化合物、細胞因子、聚合物微粒。在某些實施例中,佐劑可選自明礬(磷酸鋁鉀)、磷酸鋁(例如ADJU-PHOS®)、氫氧化鋁(例如ALHYDROGEL®)、磷酸鈣、弗氏不完全佐劑(IFA)、弗氏完全佐劑、MF59、佐劑65、Lipovant、ISCOM、liposyn、皂苷、角鯊烯、L121、EMULSIGEN®、EmulsIL-6n®、單磷酸脂質A (MPL)、Quil A、QS21、MONTANIDE® ISA 35、ISA 50V、ISA 50V2、ISA 51、ISA 206、ISA 720、脂質體、磷脂質、肽聚糖、脂多醣(LPS)、ASO1、ASO2、ASO3、ASO4、AF03、親脂性磷脂質(脂質A)、γ菊糖、藻類菊粉(algammulin)、葡聚糖、右旋糖酐、葡甘露聚糖、半乳甘露聚糖、果聚醣、木聚糖、雙十八烷基二甲基溴化銨(DDA),以及其他佐劑和乳化劑。
在一些實施例中,醫藥組成物含有MONTANIDE™ ISA 51 (由植物油和二縮甘露醇油酸酯所組成的油質佐劑組成物,用以製造油包水乳液)、TWEEN® 80 (也稱為聚山梨醇酯80或聚氧乙烯(20)山梨糖醇酐單油酸酯)、CpG寡核苷酸及/或其任意組合。在其他實施例中,醫藥組成物是以EMULSIGEN或EMULSIGEN D作為佐劑的水包油包水(即w/o/w)乳液。
醫藥組成物還可包括藥學上可接受的添加劑或賦形劑。例如,醫藥組成物可含有抗氧化劑、黏結劑、緩衝劑、增積劑、載劑、螫合劑、著色劑、稀釋劑、崩散劑、乳化劑、填充劑、膠化劑、pH緩衝劑、防腐劑、助溶劑、穩定劑等。
醫藥組成物可配製成立即釋放或緩續釋放劑型。另外,可配製醫藥組成物用於透過免疫原包封和與微粒共同投予以誘導系統性或局部性黏膜免疫。所屬技術領域中具有通常知識者很容易判定此種遞送系統。
醫藥組成物可以以液體溶液或懸浮液型式配製成注射劑。含有S-RBD胜肽免疫原結構的液體載體也可在注射前製備。醫藥組成物可利用任何適合的用法投予,例如i.d.、i.v.、i.p.、i.m.、鼻內、口服、皮下等,並且可在任何適合的遞送裝置中施用。在某些實施例中,可配製醫藥組成物供皮下、皮內或肌內投予。也可製備適用於其它給藥方式的醫藥組成物,包括口服和鼻內應用。
醫藥組成物也可以適合的劑量單位形式配製。在一些實施例中,醫藥組成物含有每公斤體重約0.1 μg至約1 mg的S-RBD胜肽免疫原結構。醫藥組成物的有效劑量取決於許多不同的因素,包括投予方式、靶點、患者的生理狀態、患者是人類或動物、投予的其它藥物,以及處理是供預防還是治療。通常,患者是人類,但也可治療包括基因轉殖哺乳類動物的非人類哺乳類動物。當以多劑量遞送時,醫藥組成物可以方便地分成每個劑量單位形式的適當量。如治療領域眾所周知的,投予的劑量取決於個體的年齡、體重和一般健康狀況。
在一些實施例中,醫藥組成物含有一種以上的S-RBD胜肽免疫原結構。含有一種以上S-RBD胜肽免疫原結構之混合物的醫藥組成物允許協同性增強結構的免疫功效。含有一種以上S-RBD胜肽免疫原結構的醫藥組成物可在更大的遺傳群體中更為有效,這是由於廣泛的第2類MHC覆蓋,因此提供針對S-RBD胜肽免疫原結構之經改善的免疫反應。
在一些實施例中,醫藥組成物含有選自表8的SEQ ID NOs: 107-144的S-RBD胜肽免疫原結構,以及同源物、類似物及/或其組合。
在某些實施例中,可將具有組合形式之衍生自MvF和HBsAg的異源性Th抗原決定位(SEQ ID NOs: 59-61、67-72)的S-RBD胜肽免疫原結構(SEQ ID NOs: 126和127)以等莫耳比率混合,用於製劑中,以允許對具有不同遺傳背景之宿主群體最大覆蓋。
此外,藉由S-RBD胜肽免疫原結構(例如利用UBITh®1;SEQ ID NOs: 107-116)所引發的抗體反應大部分(>90%)是集中在針對S-RBD之B細胞抗原決定位胜肽的所欲求的交叉反應性,沒有太多,如果有的話,則是針對用於免疫原性增強的異源性Th抗原決定位。此與用於此種S-RBD胜肽免疫原性增強的常規蛋白(例如KLH)或其他生物蛋白載體形成鮮明對比。
在其他實施例中,包含胜肽組成物的醫藥組成物,例如S-RBD胜肽免疫原結構混合物與作為佐劑之礦物鹽(包括明礬凝膠(ALHYDROGEL)或磷酸鋁(ADJUPHOS))接觸形成懸浮液劑型,用以投予宿主。
含有S-RBD胜肽免疫原結構的醫藥組成物可用以於投予後在宿主中引發免疫反應並產生抗體。c. 還含有內源性 SARS-CoV-2 Th CTL 抗原決定位胜肽的醫藥組成物
含有S-RBD胜肽免疫原結構的醫藥組成物還可包括與胜肽免疫原結構分離(即未以共價連接)的內源性SARS-CoV-2 T輔助細胞抗原決定位胜肽及/或CTL抗原決定位胜肽。在醫藥/疫苗製劑中Th和CTL抗原決定位的存在透過啟動抗原特異性T細胞活化來引發被治療個體的免疫反應,此與防止SARS-CoV-2感染相關。另外,包含存在於來自SARS-CoV-2的蛋白質上的精心選擇的內源性Th抗原決定位及/或CTL抗原決定位的製劑可產生廣泛的細胞介導的免疫,此也使製劑可有效地治療和保護具有多種遺傳組成的個體。
在含有S-RBD胜肽免疫原結構的醫藥組成物中包括一種或多種分離的胜肽,此分離的胜肽含有內源性SARS-CoV-2 Th抗原決定位及/或CTL抗原決定位,可使胜肽彼此緊密接觸,從而允許抗原決定位被看見並被抗原呈現B細胞、巨噬細胞、樹突狀細胞等加工。這些細胞處理抗原並將其呈現至與B細胞接觸的表面以產生抗體,而T細胞觸發進一步的T細胞反應以幫助介導對病毒感染的細胞的殺害。
在一些實施例中,醫藥組成物含有與S-RBD胜肽免疫原結構分開的一種或多種內源性SARS-CoV-2 Th抗原決定位胜肽。在某些實施例中,內源性SARS-CoV-2 Th抗原決定位胜肽來自SARS-CoV-2的N蛋白或S蛋白。在特定實施例中,內源性SARS-CoV-2 Th抗原決定位胜肽選自由SEQ ID NOs: 13、39-41和44 (表5)、SEQ ID NOs: 161-165 (表8)及其任意組合組成的群組。內源性SARS-CoV-2 Th抗原決定位胜肽SEQ ID NOs: 161-165 (表8)分別對應於SEQ ID NOs: 39、40、44、41和13的序列,但在氨基端含有Lys-Lys-Lys (KKK)尾部。當用於醫藥組成物中(已利用CpG寡核苷酸(ODN)將內源性Th抗原決定位配製進入免疫刺激複合物中),SEQ ID NOs: 161-165的內源性Th抗原決定位特別有用,原因在於陽離子KKK尾部能夠透過靜電締合與CpG ODN交互作用。在胜肽免疫原結構中使用內源性SARS-CoV-2 Th抗原決定位可增強S-RBD B細胞抗原決定位胜肽的免疫原性,從而在感染後促進針對基於設計理論篩選和選擇的優化S-RBD B細胞抗原決定位胜肽之特異性高效價抗體的產生。
在其他實施例中,醫藥組成物含有與S-RBD胜肽免疫原結構分開的一種或多種內源性SARS-CoV-2 CTL抗原決定位胜肽。在某些實施例中,內源性SARS-CoV-2 CTL抗原決定位胜肽來自SARS-CoV-2的N蛋白或S蛋白。在特定實施例中,內源性SARS-CoV-2 CTL抗原決定位胜肽選自由SEQ ID NOs: 9-12、14-16、19、35-36、42-43、45-48 (表4)、SEQ ID NOs: 145-160 (表8)及其任意組合組成的群組。SEQ ID NOs: 145-160的內源性SARS-CoV-2 CTL抗原決定位胜肽分別對應於SEQ ID NOs: 45、42、46、36、48、43、47、35、12、11、10、14、19、9、16和15的序列,但在氨基端含有Lys-Lys-Lys (KKK)尾部。當用於醫藥組成物中(已利用CpG寡核苷酸(ODN)將內源性CTL抗原決定位配製進入免疫刺激複合物中),SEQ ID NOs: 145-160的內源性CTL抗原決定位特別有用,原因在於陽離子KKK尾部能夠透過靜電締合與CpG ODN交互作用。在胜肽免疫原結構中使用內源性SARS-CoV-2 CTL抗原決定位可增強S-RBD B細胞抗原決定位胜肽的免疫原性,從而在感染後促進針對基於設計理論篩選和選擇的優化S-RBD B細胞抗原決定位胜肽之特異性高效價抗體的產生。
在一些實施例中,醫藥組成物含有一種或多種S-RBD胜肽免疫原結構(SEQ ID NOs: 107-144或其任意組合)以及一種或多種分離的胜肽,分離的胜肽含有內源性SARS-CoV-2 Th抗原決定位胜肽(SEQ ID NOs: 13、39-41、44、161-165或其任意組合)及/或內源性SARS-CoV-2 CTL抗原決定位胜肽(SEQ ID NOs: 9-12、14-16、19、35-36、42-43、45-48、145-160或其任意組合)。d. 免疫刺激複合物
本揭露也關於含有與CpG寡核苷酸形成免疫刺激複合物的S-RBD胜肽免疫原結構的醫藥組成物。此種免疫刺激複合物特別適合作為佐劑及/或胜肽免疫原穩定劑。免疫刺激複合物呈微粒形式,其可有效地將S-RBD胜肽免疫原呈現給免疫系統的細胞以產生免疫反應。免疫刺激複合物可配製成用於腸胃外投予的懸浮液。免疫刺激複合物還可配製成油包水(w/o)乳液形式,作為與礦物鹽或原位凝膠聚合物結合的懸浮液,用於在腸胃外投予後將S-RBD胜肽免疫原結構有效遞送至宿主免疫系統的細胞。
穩定化的免疫刺激複合物可藉由透過靜電結合將S-RBD胜肽免疫原結構與陰離子型分子、寡核苷酸、多核苷酸或其組合複合而形成。穩定化的免疫刺激複合物可作為免疫原遞送系統併入醫藥組成物中。
在某些實施例中,將S-RBD胜肽免疫原結構設計成含有陽離子部份,其於範圍為5.0至8.0的pH下帶有正電荷。S-RBD胜肽免疫原結構或結構的混合物的陽離子部份的淨電荷計算是依據,每個離胺酸(K)、精胺酸(R)或組胺酸(H)帶有+1電荷,每個天門冬胺酸(D)或麩胺酸(E)帶有-1電荷,以及序列中其他胺基酸所帶的電荷為0。將在S-RBD胜肽免疫原結構之陽離子部份中的電荷相加,並表示為淨平均電荷。適合的胜肽免疫原具有淨平均正電荷為+1的陽離子部份。優選地,胜肽免疫原具有範圍大於+2之淨正電荷。在一些實施例中,S-RBD胜肽免疫原結構的陽離子部份為異源性間隔子。在某些實施例中,當間隔子序列為(α, ε-N)Lys、(α,ε-N)-Lys-Lys-Lys-Lys (SEQ ID NO: 101)或Lys-Lys-Lys-ε-N-Lys (SEQ ID NO: 102)時,S-RBD胜肽免疫原結構的陽離子部份具有+4的電荷。
如本文所述的“陰離子型分子”是指在範圍為5.0至8.0的pH下帶有負電荷的任何分子。在某些實施例中,陰離子型分子是寡聚合物或聚合物。寡聚合物或聚合物上的淨負電荷計算是依據,在寡聚合物中的每個磷酸二酯或硫代磷酸酯基團帶有-1電荷。適合的陰離子型寡核苷酸是具有8至64個核苷酸鹼基的單鏈DNA分子,CpG基序的重複數在1至10的範圍內。優選地,CpG免疫刺激性單鏈DNA分子含有18至48個核苷酸鹼基,CpG基序的重複數在3至8的範圍內。
更優選地,陰離子型寡核苷酸可以分子式5' X1 CGX2 3'表示,其中C和G是未甲基化的;且X1 是選自由A (腺嘌呤)、G (鳥嘌呤)和T (胸腺嘧啶)組成的群組;且X2 是C (胞嘧啶)或T (胸腺嘧啶)。或者,陰離子型寡核苷酸可以分子式5' (X3 )2 CG(X4 )2 3'表示,其中C和G是未甲基化的;且X3 是選自由A、T或G組成的群組;且X4 是C或T。在具體實施例中,CpG寡核苷酸具有以下序列。CpG1: 5' TCgTCg TTT TgTCgT TTT gTCgTTTTgTCg TT 3' (完全硫代磷酸化) (SEQ ID NO: 104)、CpG2: 5' 磷酸TCgTCg TTT TgTCgT TTT gTCgTT 3' (完全硫代磷酸化) (SEQ ID NO: 105)或CpG3: 5' TCgTCg TTT TgTCgT TTT gTCgTT 3' (完全硫代磷酸化) (SEQ ID NO: 106)。
所得到的免疫刺激複合物呈顆粒形式,其大小通常在1-50微米的範圍內,且是許多因素(包括交互作用成份的相對電荷化學計量和分子量)的函數。微粒免疫刺激複合物具有提供佐劑化和體內特異性免疫反應之向上調節的優點。此外,穩定化的免疫刺激複合物適用於透過各種方法(包括油包水乳液、礦物鹽懸浮液和聚合凝膠)製備醫藥組成物。
本揭露也關於用於預防及/或治療COVID-19的醫藥組成物,包括製劑。在一些實施例中,醫藥組成物包含穩定化的免疫刺激複合物,其是藉由混合CpG寡聚合物和含有S-RBD胜肽免疫原結構(例如SEQ ID NOs: 107-144)之混合物的胜肽組成物以透過靜電結合所形成,以進一步增強S-RBD胜肽免疫原結構的免疫原性,並引發抗體,此抗體可與SEQ ID NOs: 226的S-RBD結合位點或其片段(例如SEQ ID NO: 26)交叉反應。
在又一實施例中,醫藥組成物含有S-RBD胜肽免疫原結構之混合物(例如SEQ ID NOs: 107-144的任意組合),其與CpG寡聚合物形成穩定化的免疫刺激複合物,優選地,將免疫刺激複合物與具有高安全係數之作為佐劑的礦物鹽(包括明礬凝膠(ALHYDROGEL)或磷酸鋁(ADJUPHOS))混合,以形成用以投予宿主的懸浮液劑型。3. 抗體
本揭露還提供利用S-RBD胜肽免疫原結構引發的抗體。
本揭露提供S-RBD胜肽免疫原結構及其製劑,其於製造中具有成本效益,且其最佳設計可引發針對SARS-CoV-2的高效價中和抗體並抑制S-RBD與其受體ACE2的結合,在接受免疫接種的宿主中具有高反應率。在一些實施例中,用於引發抗體的S-RBD胜肽免疫原結構包含S-RBD胜肽的雜合,S-RBD胜肽靶向位於全長S-RBD (SEQ ID NO: 226)內SARS-CoV-2 S480-509 區域(SEQ ID NOs: 26)附近的S-RBD位點,S-RBD胜肽透過任選的異源性間隔子連接至衍生自病原體蛋白質的異源性Th抗原決定位(例如衍生自麻疹病毒融合(MVF)蛋白和其他蛋白質(例如表6的SEQ ID NOs: 49-100))及/或SARS-CoV-2衍生的內源性Th抗原決定位(表5的SEQ ID NOs: 13、39-41和44,以及表8的SEQ ID NOs: 161-165)。S-RBD胜肽免疫原結構之B細胞抗原決定位和Th抗原決定位胜肽共同作用以刺激與全長S-RBD位點(SEQ ID NO: 226)或其片段(例如SEQ ID NO: 26)交叉反應的高度特異性抗體的產生。
用以使胜肽免疫原性增強的傳統方法,例如透過化學偶聯載體蛋白(例如鑰孔血藍蛋白(KLH)或其他載體蛋白(例如白喉類毒素(DT)和破傷風類毒素(TT)蛋白)),通常導致產生大量針對載體蛋白的抗體。因此,此種胜肽–載體蛋白組成物的主要缺陷在於利用此種免疫原所產生的大部分(>90%)抗體是可導致抗原決定位抑制之針對載體蛋白KLH、DT或TT的非功能性抗體。
有別於用以使胜肽免疫原性增強的傳統方法,由揭露的S-RBD胜肽免疫原結構(例如SEQ ID NOs: 107-144)所產生的抗體可以高特異性結合至全長S-RBD位點(SEQ ID NO: 226)或其片段(例如SEQ ID NO: 26),沒有太多,如果有的話,抗體則是針對異源性Th抗原決定位(例如SEQ ID NOs: 49-100)、內源性SARS-CoV-2 Th抗原決定位(SEQ ID NOs: 13、39-41、44和161-165)或任選的異源性間隔子。4. 方法
本揭露也關於用以製備和使用S-RBD胜肽免疫原結構、組成物和醫藥組成物的方法。a. 製備 S-RBD 胜肽免疫原結構的方法
揭露的S-RBD胜肽免疫原結構可利用普通技術人員所熟知的化學合成方法加以製備(參見例如Fields, G.B., et al., 1992)。S-RBD胜肽免疫原結構可利用自動化美利弗德(Merrifield)固相合成法來合成,利用側鏈受保護之胺基酸,以t-Boc或F-moc化學保護α-NH2 ,在例如應用生物系統胜肽合成儀430A或431型(Applied Biosystems Peptide Synthesizer Model 430A或431)上進行。包含Th抗原決定位之組合資料庫胜肽的S-RBD胜肽免疫原結構的製備可透過提供用於在給定可變位置進行偶聯的替代性胺基酸的混合物而達成。
在欲求之S-RBD胜肽免疫原結構組裝完成後,依照標準程序處理樹脂,將胜肽從樹脂上切下,並將胺基酸側鏈上的官能基切除。可利用HPLC純化游離的胜肽,並利用例如胺基酸分析或定序以描述生化特性。胜肽的純化和表徵方法是本發明所屬技術領域中具有通常知識者所熟知的。
可以控制和確定透過此化學過程所產生之胜肽的品質,且結果是S-RBD胜肽免疫原結構的再現性、免疫原性和產量可以獲得保證。透過固相胜肽合成之S-RBD胜肽免疫原結構的製造的詳細描述於實施例1中提供。
已經發現允許保留欲求免疫活性之結構變異範圍比起允許保留小分子藥物特定藥物活性或與生物來源藥品共同產生的大分子中存在欲求活性及非欲求毒性的結構變異範圍更具包容性。
因此,與欲求胜肽具有相似的色層分析和免疫學特性的胜肽類似物,不論是刻意設計或因合成過程錯誤而無法避免地作為刪除序列副產物的混合物產生的,其通常如經純化之欲求的胜肽製劑具有相同的效果。只要建立嚴格的QC程序,以監控製造過程與產品評估過程,確保使用這些胜肽之終產物的再現性與功效,則經設計的類似物與非預期的類似物的混合物也是有效的。
也可利用包括核酸分子、載體及/或宿主細胞的重組DNA技術來製備S-RBD胜肽免疫原結構。因此,編碼S-RBD胜肽免疫原結構及其免疫功能類似物的核酸分子也包括在本揭露中作為本發明的一部分。類似地,包括核酸分子的載體(包括表現載體)以及含有載體的宿主細胞也包括在本揭露中作為本發明的一部分。
各種例示性實施例也包括製造S-RBD胜肽免疫原結構及其免疫功能類似物的方法。例如,方法可包括在表現胜肽及/或類似物的條件下培養宿主細胞之步驟,宿主細胞包含含有編碼S-RBD胜肽免疫原結構及/或其免疫功能類似物之核酸分子的表現載體。較長的合成胜肽免疫原可利用公知的重組DNA技術來合成。這些技術可於具有詳細實驗計畫之眾所周知的標準手冊中加以提供。為了構建編碼本發明胜肽的基因,將胺基酸序列反向轉譯以獲得編碼胺基酸序列的核酸序列,優選地利用對於其中具有待表現基因的生物體來說最適合的密碼子。接下來,通常透過合成編碼胜肽和任何調節因子(如有必要的話)的寡核苷酸以製造合成基因。將合成基因插入適合的選殖載體內並轉染到宿主細胞中。然後在適合所選表現系統和宿主的合適條件下表現胜肽。利用標準方法純化胜肽並描述其特性。b. 製備免疫刺激複合物的方法
各種例示性實施例還包括製造包含S-RBD胜肽免疫原結構和CpG寡去氧核苷酸(ODN)分子的免疫刺激複合物的方法。穩定化的免疫刺激複合物(ISC)衍生自S-RBD胜肽免疫原結構的陽離子部份和聚陰離子CpG ODN分子。自行組合系統是由電荷的靜電中和所驅動。S-RBD胜肽免疫原結構之陽離子部分對陰離子寡聚合物的莫耳電價比例的化學計量決定締合的程度。S-RBD胜肽免疫原結構和CpG ODN的非共價靜電結合是完全可再現的過程。此胜肽/CpG ODN免疫刺激複合物聚集體有助於呈現至免疫系統中“專業的”抗原呈現細胞(APC),因此可進一步增強複合物的免疫原性。在製造過程中,可輕易地描繪此些複合物的特徵以控制品質。胜肽/CpG ISC在體內具有良好的耐受性。設計這種包含CpG ODN和S-RBD胜肽免疫原結構的新穎微粒系統,以利用與CpG ODN使用相關的廣義B細胞促有絲分裂(mitogenicity),並促進平衡的Th-1/Th-2型反應。
在揭露的醫藥組成物中的CpG ODN在由相反電荷靜電中和所介導的過程中100%結合至免疫原,導致微米大小之微粒的形成。微粒形式允許來自CpG佐劑常規使用之CpG劑量的顯著減少,不利的先天性免疫反應的可能性更低,且促進包括抗原呈現細胞(APC)在內的替代性免疫原處理途徑。因此,此種劑型在概念上是新穎的,且透過替代的機制藉由促進免疫反應的刺激而提供潛在的優點。c. 製備醫藥組成物的方法
各種例示性實施例還包括含有S-RBD胜肽免疫原結構的醫藥組成物。在某些實施例中,醫藥組成物是利用油包水乳液和具有礦物鹽的懸浮液的劑型。
為了使醫藥組成物可被廣大群體所使用,安全性成為另一個需要考慮的重要因素。儘管在許多臨床試驗中都使用了油包水乳液,但基於其安全性,明礬仍然是製劑中使用的主要佐劑。因此,明礬或其礦物鹽磷酸鋁(ADJUPHOS)經常作為製劑中的佐劑供臨床應用。
其他佐劑和免疫刺激劑包括3 De-O-acylated monophosphoryl lipid A (MPL)或3-DMP、聚合或單體胺基酸,例如聚麩胺酸或聚離胺酸。此種佐劑可以與或不與其他特定的免疫刺激劑一起使用,免疫刺激劑例如胞壁醯肽(muramyl peptides) (例如N-acetylmuramyl-L-threonyl-D-isoglutamine (thr-MDP)、N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP)、N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1′-2′ dipalmitoyl -sn-glycero-3-hydroxyphosphoryloxy)-ethylamine (MTP-PE)、N-acetylglucsaminyl-N-acetylmuramyl-L-Al-D-isoglu-L-Ala-dipalmitoxy propylamide (DTP-DPP) THERAMIDE™),或其他細菌細胞壁成份。水包油乳液包括MF59 (參見Van Nest, G.等人的專利申請案WO 1990/014837,其透過引用整體併入本文),含有5%角鯊烯、0.5% TWEEN 80,以及0.5% Span 85 (任選含有不同量的MTP-PE),利用微射流機配製成次微米顆粒;SAF,含有10%角鯊烯、0.4% TWEEN 80、5% pluronic-嵌段共聚合物L121,以及thr-MDP,利用微射流化形成次微米乳液或利用漩渦震盪以產生大顆粒乳液;以及RIBI™佐劑系統(RAS) (RIBIImmunoChem, Hamilton, Mont.),含有2%角鯊烯、0.2% TWEEN 80,以及一種或多種的細菌細胞壁成份,細菌細胞壁成份選自由monophosphoryl lipid A (MPL)、海藻糖二黴菌酸酯(TDM)以及細胞壁骨架(CWS)組成的群組,優選為MPL+CWS (Detox™)。其他佐劑包括弗氏完全佐劑(CFA)、弗氏不完全佐劑(IFA),以及細胞因子(例如介白素(IL-1、IL-2和IL-12)、巨噬細胞群落刺激因子(M-CSF),以及腫瘤壞死因子(TNF-α))。
佐劑的選擇取決於含有佐劑之免疫原製劑的穩定性、給藥途徑、給藥計畫、佐劑對接受免疫之物種的功效,且在人類,藥學上可接受的佐劑是指已經被相關監管機構批准或可批准用於人類給藥的佐劑。例如單獨明礬、MPL或弗氏不完全佐劑((Chang, J.C.C., et al., 1998),其透過引用整體併入本文)或其任選地所有組合適於人類投予。
組成物可包括藥學上可接受的無毒載體或稀釋劑,其被定義為通常用於配製供動物或人類給藥的醫藥組成物的載體。選擇稀釋劑以免影響組成物的生物活性。此種稀釋劑的範例是蒸餾水、生理磷酸緩衝鹽水、林格氏液、葡萄糖溶液和漢克溶液。此外,醫藥組成物或劑型還可包括其他載體、佐劑或無毒的,非治療性的,非免疫原性的穩定劑等。
醫藥組成物還可包括大的緩慢代謝的大分子(例如蛋白質、多醣類(例如甲殼素)、聚乳酸、聚乙醇酸和共聚合物(例如膠乳功能化瓊脂糖(latex functionalized sepharose)、瓊脂糖(agarose)、纖維素等)、聚合胺基酸、胺基酸共聚物,以及脂質聚集體(例如油滴或脂質體)。另外,這些載體可作為免疫刺激劑(即佐劑)。
本發明的醫藥組成物可進一步包括合適的遞送載體。合適的遞送載體包括,但不限於,病毒、細菌、可生物降解的微球體、微粒、奈米粒子、脂質體、膠原蛋白微球和螺旋體(cochleates)。
在一些實施例中,醫藥組成物是透過將一種或多種S-RBD胜肽免疫原結構(SEQ ID NOs: 107-144或其任意組合)與一種或多種分離的胜肽組合以含有CpG ODN的免疫刺激複合物的形式而加以製備,分離的胜肽含有內源性SARS-CoV-2 Th抗原決定位胜肽(SEQ ID NOs: 13、39-41、44、161-165或其任意組合)及/或內源性SARS-CoV-2 CTL抗原決定位胜肽(SEQ ID NOs: 9-12、14-16、19、35-36、42-43、45-48、145-160或其任意組合)。d. 使用醫藥組成物的方法
本揭露還包括使用含有S-RBD胜肽免疫原結構的醫藥組成物的方法。
在某些實施例中,含有S-RBD胜肽免疫原結構的醫藥組成物可以用於COVID-19的預防及/或治療。
在一些實施例中,方法包含投予包含S-RBD胜肽免疫原結構之藥學上有效劑量的醫藥組成物給有其需要的宿主。在某些實施例中,方法包含投予包含S-RBD胜肽免疫原結構之藥學上有效劑量的醫藥組成物給溫血動物(例如人類、獼猴、天竺鼠、小鼠、貓等),以引發與S-RBD位點交叉反應的高特異性抗體,S-RBD位點是位於S-RBD全長序列(SEQ ID NO: 226)或來自其他冠狀病毒(例如SARS-CoV或MERS-CoV)的S-RBD序列內SARS-CoV-2 S480-509 區域(SEQ ID NO: 26)附近。
在某些實施例中,含有S-RBD胜肽免疫原結構的醫藥組成物可以用於預防由SARS-CoV-2感染引起的COVID-19。e. 體外功能分析和體內概念驗證研究
由S-RBD胜肽免疫原結構在接受免疫的宿主中所引發的抗體可用於體外功能分析。這些功能分析包括但不限於: (1) 透過包括ELISA分析在內的血清學分析測定對於位於S-RBD (SEQ ID NO: 226)內的S-RBD位點 (SEQ ID NO:26)的體外結合; (2) S-RBD與其受體ACE2結合的體外抑制; (3) 對於宿主細胞由SARS-CoV-2介導的感染的體外中和; (4) 在動物模型中對於接受疫苗接種之宿主由SARS-CoV-2介導的感染的體內預防。5. 具體實施例
(1) 一種S-RBD胜肽免疫原結構,其具有約20個或更多個的胺基酸,以以下分子式表示: (Th)m –(A)n –(S-RBD B細胞抗原決定位胜肽)–X 或 (S-RBD B細胞抗原決定位胜肽)–(A)n –(Th)m –X 或 (Th)m –(A)n –(S-RBD B細胞抗原決定位胜肽)–(A)n –(Th)m –X 其中 Th為異源性T輔助細胞抗原決定位; A為異源性間隔子; (S-RBD B細胞抗原決定位胜肽)為具有來自S-RBD (SEQ ID NO: 226)的6至約35個胺基酸殘基的B細胞抗原決定位胜肽或其變異物; X為胺基酸的α-COOH或α-CONH2 ; m為1至約4;以及 n為0至約10。 (2) 如(1)所述之S-RBD胜肽免疫原結構,其中S-RBD B細胞抗原決定位胜肽形成內部雙硫鍵以允許選自由SEQ ID NOs: 23-24、26-27和29-34組成之群組的抗原決定位的局部限制。 (3) 如(1)所述之S-RBD胜肽免疫原結構,其中異源性T輔助細胞抗原決定位選自由SEQ ID NOs: 49-100組成之群組。 (4) 如(1)所述之S-RBD胜肽免疫原結構,其中S-RBD B細胞抗原決定位胜肽選自由SEQ ID NOs: 23-24、26-27、29-34和315-319組成之群組,且Th抗原決定位選自由SEQ ID NOs: 49-100組成之群組。 (5) 如(1)所述之S-RBD胜肽免疫原結構,其中胜肽免疫原結構選自由SEQ ID NOs: 107-144組成之群組。 (6) 一種S-RBD胜肽免疫原結構,包含: a. B細胞抗原決定位,其包含來自SEQ ID NO:226之S-RBD序列約6至約35個胺基酸殘基; b. 異源性T輔助細胞抗原決定位,其包含選自由SEQ ID NOs: 49-100及其任意組合組成之群組的胺基酸序列;以及 c. 任選的異源性間隔子,其選自由胺基酸、Lys-、Gly-、Lys-Lys-Lys-、(α, ε-N)Lys、ε-N-Lys-Lys-Lys-Lys (SEQ ID NO: 101)、 Lys-Lys-Lys- ε-N-Lys (SEQ ID NO: 102)和Pro-Pro-Xaa-Pro-Xaa-Pro (SEQ ID NO: 103)及其任意組合組成之群組, 其中B細胞抗原決定位直接或透過任選的異源性間隔子共價連接至T輔助細胞抗原決定位。 (7) 如(6)所述之S-RBD胜肽免疫原結構,其中B細胞抗原決定位選自由SEQ ID NOs: 23-24、26-27、29-34和315-319組成之群組。 (8) 如(6)所述之S-RBD胜肽免疫原結構,其中任選的異源性間隔子為(α, ε-N)Lys、ε-N-Lys-Lys-Lys-Lys (SEQ ID NO: 101)、Lys-Lys-Lys-ε-N-Lys (SEQ ID NO: 102)或Pro-Pro-Xaa-Pro-Xaa-Pro (SEQ ID NO:103),其中Xaa為任意胺基酸。 (9) 如(6)所述之S-RBD胜肽免疫原結構,其中T輔助細胞抗原決定位共價連接至B細胞抗原決定位的氨基端或羧基端。 (10) 如(6)所述之S-RBD胜肽免疫原結構,其中T輔助細胞抗原決定位透過任選的異源性間隔子共價連接至B細胞抗原決定位的氨基端或羧基端。 (11) 一種組成物,其包含如(1)所述之S-RBD胜肽免疫原結構。 (12) 一種醫藥組成物,其包含: a. 如(1)所述之胜肽免疫原結構;以及 b. 藥學上可接受的遞送載體及/或佐劑。 (13) 如(12)所述之醫藥組成物,其中 a. S-RBD B細胞抗原決定位胜肽選自由SEQ ID NOs: 23-24、26-27、29-34和315-319組成之群組; b. 異源性T輔助細胞抗原決定位選自由SEQ ID NOs: 49-100組成之群組;以及 c. 異源性間隔子選自由胺基酸、Lys-、Gly-、Lys-Lys-Lys-、(α, ε-N)Lys、ε-N-Lys-Lys-Lys-Lys (SEQ ID NO: 101)、Lys-Lys-Lys- ε-N-Lys (SEQ ID NO: 102)和Pro-Pro-Xaa-Pro-Xaa-Pro (SEQ ID NO: 103)及其任意組合組成之群組;以及 其中S-RBD胜肽免疫原結構與CpG寡去氧核苷酸(ODN)混合以形成穩定化的免疫刺激複合物。 (14) 如(12)所述之醫藥組成物,其中 a. S-RBD胜肽免疫原結構選自由SEQ ID NOs: 107-144組成之群組;以及 其中S-RBD胜肽免疫原結構與CpG寡去氧核苷酸(ODN)混合以形成穩定化的免疫刺激複合物。 (15) 如(14)所述之醫藥組成物,其中醫藥組成物進一步含有分離的胜肽,其含有SEQ ID NOs: 13、39-41、44、161-165或其任意組合的內源性SARS-CoV-2 Th抗原決定位序列。 (16) 如(14)所述之醫藥組成物,其中醫藥組成物進一步含有分離的胜肽,其含有SEQ ID NOs: 9-12、14-16、19、35-36、42-43、45-48、145-160或其任意組合的內源性SARS-CoV-2 CTL抗原決定位序列。 (17) 如(14)所述之醫藥組成物,其中醫藥組成物進一步含有 a. 含有SEQ ID NOs: 13、39-41、44、161-165或其任意組合的內源性SARS-CoV-2 Th抗原決定位序列的分離的胜肽;以及 b. 含有SEQ ID NOs: 9-12、14-16、19、35-36、42-43、45-48、145-160或其任意組合的內源性SARS-CoV-2 CTL抗原決定位序列的分離的胜肽。 (18) 一種於動物中用以產生針對S-RBD的抗體的方法,其包含對動物投予如(12)所述之醫藥組成物。 (19) 一種於動物中用以產生針對S-RBD的抗體的方法,其包含對動物投予如(15)所述之醫藥組成物。 (20) 一種於動物中用以產生針對S-RBD的抗體的方法,其包含對動物投予如(16)所述之醫藥組成物。 (21) 一種於動物中用以產生針對S-RBD的抗體的方法,其包含對動物投予如(17)所述之醫藥組成物。 (22) 一種分離的抗體或其抗原決定位結合片段,其特異性地結合至SEQ ID NOs: 23-24、26-27、29-34或226的胺基酸序列。 (23) 如(22)所述之分離的抗體或其抗原決定位結合片段,其結合至S-RBD胜肽免疫原結構。 (24) 一種組成物,其包含如(22)所述之分離的抗體或其抗原決定位結合片段。 (25) 一種於動物中預防及/或治療COVID-19的方法,其包含對動物投予如(12)所述之醫藥組成物。 (26) 一種於動物中預防及/或治療COVID-19的方法,其包含對動物投予如(15)所述之醫藥組成物。 (27) 一種於動物中預防及/或治療COVID-19的方法,其包含對動物投予如(16)所述之醫藥組成物。 (28) 一種於動物中預防及/或治療COVID-19的方法,其包含對動物投予如(17)所述之醫藥組成物。C. 於受感染的患者用以治療 COVID-19 的基於受體的抗病毒治療
揭露的救濟系統的第三範疇是關於於受感染的患者用以治療COVID-19的基於受體的抗病毒治療。
本發明是涉及包含生物活性分子和一部分免疫球蛋白分子的新穎融合蛋白。本揭露的各個範疇關於融合蛋白、其組成物,以及製備和使用揭露的融合蛋白的方法。揭露的融合蛋白對於在生物體中延長生物活性分子的血清半衰期是有用的。
以下提供詳細描述以協助本領域技術人員實施本發明。那些所屬領域中具有通常知識者可理解在此明確描述之實施例的修飾或變化,其未悖離本文中所包含之訊息的精神或範圍者,乃由本揭露所涵蓋。文中所使用之術語僅用於描述特定實施例,並非用於縮限本發明。以下所使用的章節標題僅用於組織的目的,而不應被解釋為限制所描述的標的。1. 融合蛋白
本文所使用“融合蛋白”或“融合多胜肽”是雜合蛋白質或多胜肽,其包含以通常不會在自然界中發現的方式連接在一起的至少兩種蛋白質或多胜肽。
本揭露的一範疇是關於包含免疫球蛋白(Ig) Fc片段和生物活性分子的融合蛋白。相較於先前技術所描述未融合或合併進入融合蛋白(例如,含有兩鏈Fc區域的融合蛋白)之相同生物活性分子,合併進入揭露的融合蛋白的生物活性分子具有改善的生物性質。例如,相較於其非融合的對應物,合併進入揭露的融合蛋白的生物活性分子具有較長的血清半衰期。此外,揭露的融合蛋白維持生物活性分子的完整生物活性,而無任何功能性的降低,其比起先前技術的融合蛋白(因為兩鏈Fc區域造成空間上的阻礙而導致活性降低)有所改進。
相較於先前技術所描述未融合的生物活性分子和合併進入融合蛋白之生物活性分子,本揭露的融合蛋白對生物活性分子提供顯著的生物學優點。
本揭露融合蛋白可具有以下任何分子式(也表示於第6A-6D圖中): (B)-(鉸鏈)-(CH 2-CH 3) 或 (CH 2-CH 3)-(鉸鏈)-(B) 或 (B)-(L)m -(鉸鏈)-(CH 2-CH 3) 或 (CH 2-CH 3)-(鉸鏈)-(L)m -(B) 其中 “B”為生物活性分子; “鉸鏈”為IgG分子的鉸鏈區域; “CH 2-CH 3”為IgG重鏈之CH 2和CH 3恆定區結構域; “L”為任選的連接子;以及 “m”可為任何整數或0。
以下進一步討論融合蛋白的各個部分/片段。a. Fc 區域和 Fc 片段
本揭露融合蛋白含有來自免疫球蛋白(Ig)分子的Fc片段。
以下使用“Fc區域”是指位於重鏈恆定區羧基端之免疫球蛋白的一部分。Fc區域為免疫球蛋白的一部分,其可與細胞表面受體(Fc受體)和補體系統中的其他蛋白質交互作用,以協助活化免疫系統。在IgG、IgA和IgD同型中,Fc區域包含兩個重鏈結構域(CH 2和CH 3結構域)。在IgM和IgE同型中,Fc區域包含三個重鏈恆定結構域(CH 2至CH 4結構域)。雖然Fc部分的範圍可以變化,但是通常將人類IgG重鏈Fc部分定義為包含殘基C226或P230至其羧基端,其中編碼是依照EU索引。
在某些實施例中,融合蛋白包含CH 2-CH 3結構域,其為FcRn結合片段,可以再次回收進入循環中。具有這種結構域的融合蛋白證實此融合蛋白之體內半衰期的增加。
本文使用“Fc片段”是指融合蛋白的一部分,其對應於來自任何同型之免疫球蛋白分子的Fc區域。在一些實施例中,Fc片段包含IgG的Fc區域。在具體實施例中,Fc片段包含IgG1之Fc區域的全長的範圍。在一些實施例中,Fc片段是指免疫球蛋白分子的全長Fc區域,如同在本領域中將其作為特徵並加以描述。在其他實施例中,Fc片段包括全長Fc區域的一部分或片段,例如重鏈結構域的一部分(例如CH 2結構域、CH 3結構域等)及/或於Fc區域常見的鉸鏈區域。例如,Fc片段可以包含整個或部份的CH 2結構域及/或整個或部份的CH 3結構域。在一些實施例中,Fc片段包括全長Fc區域或其部分的功能類似物。
本文使用“功能類似物”是指胺基酸序列或核酸序列的變異物,其實質上保留了如同原始序列之相同的功能特性(結合辨識、結合親和力等)。功能類似物的例子包含序列,其與原始序列相似,但含有在胺基酸位置的保留性取代;靜電荷的變化;共價連接至另一官能基;或小規模的添加、插入、刪除或保留性取代及/或其任意組合。Fc片段的功能性類似物可以本領域已知的任何方法合成產生。例如,可以利用定點突變,藉由胺基酸的添加、刪除及/或取代,透過修飾已知胺基酸序列,以產生功能性類似物。在一些實施例中,功能類似物具有與給定之序列至少50%、55%、60%、65%、70%、75%、80%、85%、90%、92%、95%、96%、97%、98%或99%一致性之胺基酸序列。透過標準比對演算法(例如ClustalOmega),當依照比對演算法兩序列為最佳比對時,測定出兩個序列之間的百分比一致性。
可以由任何動物(例如,人、牛、山羊、豬、小鼠、兔、倉鼠、大鼠、天竺鼠)獲得或衍生免疫球蛋白分子。此外,可以由任何同型(例如,IgA、IgD、IgE、IgG或IgM)或一個同型中的亞類(IgG1、IgG2、IgG3和IgG4)獲得或衍生免疫球蛋白的Fc片段。在一些實施例中,Fc片段是由IgG獲得或衍生,且在特定實施例中,Fc片段是由人類IgG (包含人源化IgG)獲得或衍生。
可以利用本領域中任何已知的方法獲得或產生Fc片段。例如,可從動物分離或純化、重組表現,或合成產生此Fc片段。在一些實施例中,Fc片段是於核酸分子(例如,DNA或RNA)中編碼,以及由細胞、生殖細胞系、cDNA基因庫或噬菌體庫分離。
Fc區域及/或Fc片段可包括在一些免疫球蛋白同型(IgA、IgD和IgG)中發現的鉸鏈區域。在某些實施例中,透過突變鉸鏈區域以修飾Fc片段,藉此其不包含任何Cys,且無法形成雙硫鍵。以下進一步討論鉸鏈區域。
本揭露融合蛋白之Fc片段優選地為單鏈Fc。本文所述之“單鏈Fc” (即“sFc”)是指以此種方式(例如,利用化學修飾或突變添加、刪除或取代胺基酸)修飾Fc片段,以防止其形成二聚體。
在某些實施例中,融合蛋白的Fc片段衍生自人類IgG1,其可包括野生型人類IgG1胺基酸序列或其變異物。在一些實施例中,融合蛋白的Fc片段含有天然人類IgG1分子位於第297個胺基酸位置作為N-醣化位點之Asn (N)胺基酸(基於IgG1的歐洲編碼系統,如美國第7,501,494號專利所討論),其對應位於Fc片段(SEQ ID NO: 231)之殘基67,如表11所示。在其它實施例中,將Asn (N)殘基突變為His (H) (SEQ ID NO: 232)或Ala (A) (SEQ ID NO: 233)以移除位於Fc片段的N-醣化位點(表11)。含有位於N-醣化位點之可變位置的Fc片段如表11中SEQ ID NO: 234所示。
在一些實施例中,Fc片段的CH 3-CH 2結構域具有對應野生型序列之胺基酸序列(揭露於SEQ ID NO: 231)。在某些實施例中,Fc片段的CH 3-CH 2結構域具有SEQ ID NO: 232的胺基酸序列,在此將Asn (N)突變為His (H)以移除N-醣化位點。在某些實施例中,Fc片段的CH 3-CH 2結構域具有SEQ ID NO: 233的胺基酸序列,在此將Asn (N)突變為Ala (A)以移除N-醣化位點。b. 鉸鏈區域
本揭露融合蛋白可包括在一些免疫球蛋白同型(IgA、IgD和IgG)中可見的鉸鏈區域。鉸鏈區域將Fc區域與Fab區分隔開,且可增加分子彈性,並透過雙硫鍵連接兩重鏈。對由完整Fc區域所提供的功能而言,形成包含二CH 2-CH 3結構域之二聚體是需要的。位於野生型鉸鏈區域之半胱胺酸間的鏈間雙硫鍵有助於將Fc分子的二鏈結合在一起,以產生功能單位。
在某些實施例中,鉸鏈區域是衍生自IgG,以IgG1為優選。鉸鏈區域可以是全長或修飾(截短)的鉸鏈區域。
在具體實施例中,鉸鏈區域含有防止融合蛋白與其他融合蛋白或免疫球蛋白分子形成雙硫鍵的修飾。在具體實施例中,藉由突變及/或刪除一或多個半胱胺酸胺基酸修飾鉸鏈區域,以防止雙硫鍵的形成。可刪除全長鉸鏈區域的胺基端或羧基端以形成截短的鉸鏈區域。為了避免雙硫鍵的形成,可以利用非Cys的胺基酸取代或刪除位於鉸鏈區域的半胱胺酸(Cys)。在具體實施例中,可以Ser、Gly、Ala、Thr、Leu、Ile、Met或Val取代鉸鏈區域的Cys。來自IgG1至IgG4之野生型和突變的鉸鏈區域的實施例包括如表9所示之胺基酸序列(SEQ ID NOs: 166-187)。在含有突變序列之二鉸鏈區域之間無法形成雙硫鍵。修飾IgG1鉸鏈區域以提供不同的突變鉸鏈區域,其序列如表10所示(SEQ ID NOs: 188-225)。c. 連接子
融合蛋白可具有連接至Fc片段胺基端的生物活性分子。或者,融合蛋白可具有連接至Fc片段羧基端的生物活性分子。此連接為共價鍵,以胜肽鍵為優選。
在本發明中,可將一或多個生物活性分子直接連接至Fc片段的羧基端或胺基端。優選地,生物活性分子可直接連接至Fc片段的鉸鏈。
此外,融合蛋白可任選地包含至少一個連接子。因此,生物活性分子可以間接地連接至Fc片段。連接子可插入於生物活性分子和Fc片段之間。連接子可連接至Fc片段的胺基端或Fc片段的羧基端。
在一實施例中,連接子包括胺基酸。連接子可包括1-5個胺基酸。d. 生物活性分子
本文使用術語“生物活性分子”是指蛋白質或蛋白質的一部分,其源自SARS-CoV-2或涉及病毒進入細胞的宿主受體的蛋白質。生物活性分子的實例包括來自2019-CoV的棘狀(S)、外套膜(E)、膜(M)和核鞘(N)蛋白、人類受體ACE2 (hACE2)及/或其片段。
在一實施例中,生物活性分子是SARS-CoV-2的S蛋白(SEQ ID NO: 20)。在某些實施例中,生物活性分子是SARS-CoV-2的S蛋白的受體結合結構域(RBD) (S-RBD或S1-RBD) (SEQ ID NO: 226),其對應於全長S蛋白的胺基酸殘基331-530。在某些實施例中,SEQ ID NO: 226之S-RBD序列位於位置61和195的半胱胺酸(C)殘基突變為丙胺酸(A)殘基,如SEQ ID NO: 227所示(S-RBD的殘基61和195對應於SEQ ID NO: 20之全長S蛋白的殘基391和525)。在本揭露中,突變的S-RBD序列也稱為S-RBDa。在S-RBD序列中所引入C61A和C195A的突變是為了避免在重組蛋白表現中雙硫鍵形成的錯接(mismatch)。
在另一實施例中,生物活性分子是人類受體ACE2 (hACE2) (SEQ ID NO: 228)。在某些實施例中,生物活性分子是hACE2的細胞外結構域(ECD) (hACE2ECD ) (SEQ ID NO: 229),其對應於全長hACE2蛋白的胺基酸殘基1-740。在一些實施例中,將在SEQ ID NO: 229的hACE2ECD 序列中位於位置374和378的組胺酸(H)殘基突變為天門冬醯胺酸(N)殘基,如SEQ ID NO: 230所示(在本揭露中也稱為ACE2NECD )。引入H374N和H378N突變可破壞hACE2的胜肽酶活性。2. 組成物
在某些實施例中,本發明關於組成物,包含醫藥組成物,包含融合蛋白和藥學上可接受的載體、佐劑及/或其他賦形劑(例如稀釋劑、添加劑、穩定劑、防腐劑、助溶劑、緩衝劑等)。
醫藥組成物可以透過混合融合蛋白與任選的藥學上可接受之載體加以製備。藥學上可接受之載體包含溶劑、分散介質、等張劑和類似物。載體的例子包含水、鹽溶液或其他緩衝液(例如磷酸鹽、檸檬酸鹽緩衝液)、油、醇、蛋白質(例如血清白蛋白、明膠)、碳水化合物(例如單醣、雙醣和其它碳水化合物,包括葡萄糖、蔗糖、海藻糖、甘露糖、甘露糖醇、山梨糖醇或糊精)、凝膠、脂質、脂質體、穩定劑、防腐劑、抗氧化劑(包括抗壞血酸和甲硫胺酸)、螯合劑(例如EDTA)、成鹽反離子(例如鈉)、非離子界面活性劑(例如TWEEN™、PLURONICS™或聚乙二醇(PEG)),或其組合。
醫藥組成物可含有一種或多種佐劑,其作用是加速、延長或增強針對融合蛋白的免疫反應,而本身不具有任何特異性抗原作用。醫藥組成物中使用的佐劑可包括油、油乳液、鋁鹽、鈣鹽、免疫刺激複合物、細菌和病毒衍生物、仿病毒顆粒(virosomes)、碳水化合物、細胞因子、聚合物微粒。在某些實施例中,佐劑可選自明礬(磷酸鋁鉀)、磷酸鋁(例如ADJU-PHOS®)、氫氧化鋁(例如ALHYDROGEL®)、磷酸鈣、弗氏不完全佐劑(IFA)、弗氏完全佐劑、MF59、佐劑65、Lipovant、ISCOM、liposyn、皂苷、角鯊烯、L121、EMULSIGEN®、EmulsIL-6n®、單磷酸脂質A (MPL)、Quil A、QS21、MONTANIDE® ISA 35、ISA 50V、ISA 50V2、ISA 51、ISA 206、ISA 720、脂質體、磷脂質、肽聚糖、脂多醣(LPS)、ASO1、ASO2、ASO3、ASO4、AF03、親脂性磷脂質(脂質A)、γ菊糖、藻類菊粉(algammulin)、葡聚糖、右旋糖酐、葡甘露聚糖、半乳甘露聚糖、果聚醣、木聚糖、雙十八烷基二甲基溴化銨(DDA),以及其他佐劑和乳化劑。
在一些實施例中,醫藥組成物含有MONTANIDE™ ISA 51 (由植物油和二縮甘露醇油酸酯所組成的油質佐劑組成物,用以製造油包水乳液)、TWEEN® 80 (也稱為聚山梨醇酯80或聚氧乙烯(20)山梨糖醇酐單油酸酯)、CpG寡核苷酸及/或其任意組合。在其他實施例中,醫藥組成物是以EMULSIGEN或EMULSIGEN D作為佐劑的水包油包水(即w/o/w)乳液。
醫藥組成物還可包括藥學上可接受的添加劑或賦形劑。例如,醫藥組成物可含有抗氧化劑、黏結劑、緩衝劑、增積劑、載劑、螫合劑、著色劑、稀釋劑、崩散劑、乳化劑、填充劑、膠化劑、pH緩衝劑、防腐劑、助溶劑、穩定劑等。
醫藥組成物可配製成立即釋放或緩續釋放劑型。另外,可配製醫藥組成物用於透過免疫原包封和與微粒共同投予以誘導系統性或局部性黏膜免疫。所屬技術領域中具有通常知識者很容易判定此種遞送系統。
醫藥組成物可以以液體溶液或懸浮液型式配製成注射劑。含有融合蛋白的液體載體也可在注射前製備。醫藥組成物可利用任何適合的用法投予,例如i.d.、i.v.、i.p.、i.m.、鼻內、口服、皮下等,並且可在任何適合的遞送裝置中施用。在某些實施例中,可配製醫藥組成物供皮下、皮內或肌內投予。也可製備適用於其它給藥方式的醫藥組成物,包括口服和鼻內應用。
醫藥組成物也可以適合的劑量單位形式配製。在一些實施例中,醫藥組成物含有每公斤體重約0.1 μg至約1 mg的融合蛋白。醫藥組成物的有效劑量取決於許多不同的因素,包括投予方式、靶點、患者的生理狀態、患者是人類或動物、投予的其它藥物,以及處理是供預防還是治療。通常,患者是人類,但也可治療包括基因轉殖哺乳類動物的非人類哺乳類動物。當以多劑量遞送時,醫藥組成物可以方便地分成每個劑量單位形式的適當量。如治療領域眾所周知的,投予的劑量取決於個體的年齡、體重和一般健康狀況。
在一些實施例中,醫藥組成物含有一種以上的融合蛋白。含有一種以上融合蛋白之混合物的醫藥組成物允許協同性增強融合蛋白的免疫功效。含有一種以上融合蛋白的醫藥組成物可在更大的遺傳群體中更為有效,這是由於廣泛的第2類MHC覆蓋,因此提供針對融合蛋白之經改善的免疫反應。
醫藥組成物也可含有一種以上的活性化合物。例如,組成物可含有一或多種融合蛋白及/或一或多種額外的有益的化合物。活性成分可以任何方便和可實施的方式(例如,透過混合、溶液、懸浮液、乳化、包覆、吸附等)與載體結合,並製成適合於注射、輸液或類似物之劑型(例如粉末(包含凍乾粉末)、懸浮液)。也可製成緩釋製劑。
在某些實施例中,醫藥組成物包含供人類使用的融合蛋白。可於適當的pH值下,將醫藥組成物配製於合適的緩衝液中,合適的緩衝液包含,但不限於檸檬酸鹽、磷酸鹽、Tris、BIS-Tris等,醫藥組成物也可包含賦形劑(例如糖(50 mM至500 mM的蔗糖、海藻糖、甘露糖醇,或其混合物)、界面活性劑(例如,0.025%至0.5%的TWEEN 20或TWEEN 80)及/或其他試劑。可製備含有不同量融合蛋白的劑型。一般情況下,投予受試者之劑型包含介於約0.1 mg/mL至約200 mg/mL的融合蛋白。 在某些實施例中,劑型可包含介於約0.5 mg/mL至約50 mg/mL的融合蛋白;介於約1.0 mg/mL至約50 mg/mL的融合蛋白;介於約1 mg/mL至約25 mg/mL的融合蛋白;或介於約10 mg/mL至約25 mg/mL的融合蛋白。在具體實施例中,劑型包含約1.0 mg/mL、約5.0 mg/mL、約10.0 mg/mL,或約25.0 mg/mL的融合蛋白。3. 方法
本發明的另一個範疇是關於製備和使用融合蛋白及其組成物的方法。a. 融合蛋白之製備
在一些實施例中,製備融合蛋白的方法包含(i) 提供生物活性分子和包含鉸鏈區域之Fc片段,(ii) 修飾鉸鏈區域以防止其形成雙硫鍵,以及(iii) 透過突變的鉸鏈區域將生物活性分子直接或間接地連接至sFc,以形成融合蛋白、雜合體、偶聯物或其組成物。本發明還提供純化融合蛋白的方法,包含(i) 提供融合蛋白,以及(ii) 藉由基於蛋白質A或蛋白質G之層析媒介純化融合蛋白。
或者可以透過公知的分子生物學技術表現融合蛋白。任何分子選殖技術之標準手冊提供了詳細的方法,透過重組DNA和RNA的表現以製造本發明融合蛋白。為了構建表現本發明融合蛋白的基因,將胺基酸序列反向轉譯為核酸序列,以針對表現基因之生物體較佳使用優化的密碼子。接著,製備編碼胜肽或蛋白質的基因,通常是透過合成編碼融合蛋白和必需調控因子之重疊的寡核苷酸。組裝合成的基因並將其插入所需的表現載體中。因此,本發明包含那些編碼本發明融合蛋白的合成核酸序列,且核酸構建的特徵在於在非編碼序列的改變並不會改變其編碼分子的生物活性。將合成的基因插入合適的選殖載體,獲得重組體並描繪其特徵。在對於所選表現系統和宿主合適的條件下表現融合蛋白。透過蛋白A或蛋白G的親和性管柱(例如SOFTMAX®、ACROSEP®、SERA-MAG®或SEPHAROSE®)純化融合蛋白。
可在哺乳動物細胞、低等真核生物或原核生物製備本發明融合蛋白。哺乳動物細胞的例子包含猴COS細胞、CHO細胞、人類腎臟293細胞、人類上皮A431細胞、人類Colo205細胞、3T3細胞、CV-1細胞、其他經轉型的靈長類細胞株、正常二倍體細胞、衍生自原生組織、原生外植體(primary explants)、HeLa細胞、小鼠L細胞、BHK、HL-60、U937、HaK或Jurkat細胞之體外培養的細胞株。
本發明還提供了一種製備免疫球蛋白G之單鏈Fc (sFc)區域的方法,包含突變、取代或刪除位於IgG之Fc鉸鏈區域的Cys。在一個實施例中,以Ser、Gly、Thr、Ala、Val、Leu、Ile或Met取代Cys。在另一個實施例中,刪除Cys。在額外的實施例中,刪除鉸鏈的一個片段。
本發明更提供一種製備融合蛋白的方法,包含:(a) 提供生物活性分子和包含鉸鏈區域之IgG Fc片段,(b) 藉由胺基酸取代及/或刪除突變鉸鏈區域,以形成無雙硫鍵之突變的Fc,以及(c) 結合生物活性分子和突變的Fc。b. 融合蛋白之應用
含有融合蛋白之醫藥組成物可配製成立即釋放或緩續釋放劑型。另外,可配製醫藥組成物用於透過免疫原包封和與微粒共同投予以誘導系統性或局部性黏膜免疫。所屬技術領域中具有通常知識者很容易判定此種遞送系統。
可透過靜脈、皮下、肌內,或透過任何粘膜表面(例如口服、舌下、頰內、鼻腔、直腸、陰道),或透過肺部途徑投予本發明融合蛋白。在某些實施例中,可配製醫藥組成物供皮下、皮內或肌內投予。也可製備適用於其它給藥方式的醫藥組成物,包括口服和鼻內應用。
本發明融合蛋白的劑量變化取決於受試者和特定的給藥模式。根據本領域技術人員公知的一些因素,包含,但不限於融合蛋白種類、受試者的物種和受試者的體重,改變所需的劑量。劑量範圍可為0.1至100,000 μg/kg體重。在某些實施例中,劑量是每公斤體重約0.1 μg至約1 mg融合蛋白。可在整個24小時期間或透過持續輸注投予單一劑量或多劑量的融合蛋白。可以連續地或以特定時間表施用融合蛋白。可由從動物模型獲得之劑量-反應曲線推斷有效劑量。4. 具體實施例
本發明的具體實施例包括但不限於以下: (1) 一種融合蛋白,其包含IgG分子的Fc片段以及生物活性分子,其中Fc片段為單鏈Fc (sFc)。 (2) 如(1)所述之融合蛋白,其中Fc片段包含鉸鏈區域。 (3) 如(2)所述之融合蛋白,其中鉸鏈區域被突變且不會形成雙硫鍵。 (4) 如(2)所述之融合蛋白,其中鉸鏈區域包含選自由SEQ ID NO: 166-225組成之群組的胺基酸序列。 (5) 如(2)所述之融合蛋白,其中鉸鏈區域包含SEQ ID NO: 188的胺基酸序列。 (6) 如(1)所述之融合蛋白,其中生物活性分子為SEQ ID NO: 226的來自SARS-CoV-2的S蛋白的受體結合結構域(RBD) (S-RBD)或SEQ ID NO: 227的S-RBD的突變形式。 (7) 如(1)所述之融合蛋白,其中生物活性分子為SEQ ID NO: 228的人類受體ACE2的細胞外結構域(ECD) (ECD-hACE2)或SEQ ID NO: 229的ECD-hACE2的突變形式。 (8) 如(1)所述之融合蛋白,其中生物活性分子是透過突變的鉸鏈區域連接至Fc片段。 (9) 如(1)所述之融合蛋白,其中融合蛋白的胺基酸序列是選自由SEQ ID NOs: 235-238組成之群組。 (10) 一種醫藥組成物,其包含如(1)至(9)中任一所述之融合蛋白以及藥學上可接受的載體或賦形劑。 (11) 一種製備融合蛋白的方法,包含: a) 提供生物活性分子和包含鉸鏈區域之Fc片段, b) 藉由胺基酸取代及/或刪除突變鉸鏈區域,以形成突變的Fc,以及 c) 結合生物活性分子和突變的Fc。 (12) 如(11)所述之方法,其中鉸鏈區域透過取代及/或刪除Cys殘基被突變。 (13) 如(11)所述之方法,其中生物活性分子透過鉸鏈區域與突變的Fc結合。 (14) 如(11)所述之方法,其中生物活性為SEQ ID NO: 226的來自SARS-CoV-2的S蛋白的受體結合結構域(RBD) (S-RBD)或SEQ ID NO: 227的S-RBD的突變形式。 (15) 如(11)所述之方法,其中生物活性為SEQ ID NO: 228的人類受體ACE2的細胞外結構域(ECD) (ECD-hACE2)或SEQ ID NO: 229的ECD-hACE2的突變形式。
本發明額外的具體實施例包含,但不限於以下實例。D. 用於預防 SARS-COV-2 感染的多抗原決定位蛋白質 / 胜肽疫苗組成物
揭露的救濟系統的第四範疇是關於用於預防SARS-COV-2感染的多抗原決定位蛋白質/胜肽疫苗組成物。本文揭露的多抗原決定位蛋白質/胜肽疫苗組成物也稱為“ UB-612”。1. 基於 S1 受體結合區域的專門設計的蛋白質
目前臨床試驗中的大多數疫苗僅靶向全長S蛋白以誘導中和抗體反應。與由天然的多基因SARS-CoV-2感染所產生的反應相比,T細胞反應的誘導受到限制。S1-RBD區域是SARS-CoV-2的關鍵成分。其為細胞附著所必需的,代表高度相似的SARS-CoV病毒的主要中和結構域,提供全長S抗原無法實現的安全範圍(margin of safety),並消除潛在致命副作用的可能性,此潛在致命副作用的可能性導致撤回原本有效的不活化RSV疫苗。因此,通過FDA緊急使用授權批准的用於治療新診斷的COVID-19的單株抗體(禮來的中和抗體bamlanivimab、LY-CoV555和REGN-COV2抗體雞尾酒療法)都針對S1-RBD。
由於強大的S1-RBD疫苗成分的明顯優勢,多抗原決定位蛋白質/胜肽疫苗組成物(UB-612)包含在上述C部分所描述的基於S1受體結合區域的專門設計的蛋白質。如上所述,S1-RBD-sFc是透過將SARS-CoV-2的S1-RBD與人類IgG1的單鏈片段可結晶區域(sFc)融合而製成的重組蛋白。已顯示疫苗抗原與Fc片段的基因融合可促進抗體誘導和中和活性,此抗體是針對在恆河猴中的HIV gp120或在BALB/c小鼠中的Epstein-Barr病毒 gp350 (Shubin, Z., et al., 2017;以及Zhao, B., et al., 2018)。此外,工程改造的Fc已作為解決方案用於許多治療性抗體,以使非特異性結合最小化,以及增加溶解度、產量、熱穩定性和體內半衰期(Liu, H., et al., 2017)。
在一些實施例中,疫苗組成物含有SEQ ID NO: 235的S1-RBD-sFc融合蛋白。S1-RBD-sFc蛋白(SEQ ID NO: 235)含有S1-RBD胜肽(SEQ ID NO: 226),其對應於SARS-CoV-2的全長S蛋白的胺基酸殘基331-530,其透過來自IgG的突變的鉸鏈區域(SEQ ID NO: 188)與單鏈Fc胜肽(SEQ ID NO: 232)融合。
在一些實施例中,SEQ ID NO: 226之S-RBD序列位於位置61和195的半胱胺酸(C)殘基突變為丙胺酸(A)殘基,如SEQ ID NO: 227所示(S-RBD的殘基61和195對應於SEQ ID NO: 20之全長S蛋白的殘基391和525)。在本揭露中,突變的S-RBD序列也稱為S-RBDa。在S-RBD序列中所引入C61A和C195A的突變是為了避免在重組蛋白表現中雙硫鍵形成的錯接。與單鏈Fc胜肽融合的S-RBDa (S-RBDa-sFc)的胺基酸序列為SEQ ID NO: 236。
疫苗組成物中基於S1受體結合區域的專門設計的蛋白質的量可根據需要或應用而變化。疫苗組成物可含有約1 µg至約1,000 µg的基於S1受體結合區域的專門設計的蛋白質。在一些實施例中,疫苗組成物可含有約10 µg至約200 µg的基於S1受體結合區域的專門設計的蛋白質。2. Th/CTL 胜肽
僅針對S蛋白的中和反應不可能針對SARS-CoV-2及其帶有突變的B細胞抗原決定位的新出現的變異物提供持久的保護。隨著抗體效價的減少,持久的細胞反應可以增強初始中和反應(透過記憶B細胞活化),並提供更長的免疫持續時間。最近的研究表明,在2-3個月內,>90%的SARS-CoV-2感染者針對S的IgG反應迅速下降(Long, Q.-X., et al., 2020)。相較之下,在2003年SARS爆發後已顯示針對SARS的記憶T細胞可持續11-17年(Ng., O.-W., et al., 2016;以及 Le Bert, N., et al., 2020)。S蛋白是引發體液免疫的關鍵抗原,其主要含有CD4+抗原決定位(Braun, J., et al., 2020)。需要其他抗原來提升/增強細胞免疫反應以清除SARS-CoV-2感染。SARS-CoV-2蛋白中絕大多數已報告的CD8+ T細胞抗原決定位是位於ORF1ab、N、M和ORF3a區域;只有3個位於S,只有1個CD8+抗原決定位位於S1-RBD (Ferretti, A.P., et al., 2020)。成功控制感染的患者的T細胞可識別較小的M和N結構蛋白。在對英國近3,000人的一項研究中,發現與T細胞反應低的人相比,具有較高T細胞數目的人對SARS-CoV-2的保護作用更強,這表明T細胞免疫在預防COVID-19中可能起關鍵作用(Wyllie, D., et al., 2020)。
為了提供免疫原以引發T細胞反應,來自衍生自SARS-CoV和SARS-CoV-2的S、N和M蛋白的高度保守序列的Th/CTL抗原決定位在經過廣泛的文獻檢索後被確定(例如Ahmed, S.F., et al., 2020)。這些Th/CTL胜肽如表4和表5所示。選擇這些區域內的幾種胜肽並進行進一步設計。利用MHC I或II結合的事先驗證,每種選定的胜肽均含有Th或CTL抗原決定位,並顯示出良好的可製造性特徵(最佳長度和對高品質合成的適應性)。這些合理設計的Th/CTL胜肽透過在每個個別胜肽的氨基端添加Lys-Lys-Lys尾部進行進一步修飾,以改善胜肽的溶解度並使正電荷豐富以用於疫苗製劑。表32顯示五個最終胜肽及其個別的HLA等位基因的設計和序列。
為了增強免疫反應,可將專利的胜肽UBITh®1a (SEQ ID NO: 66)添加到疫苗組成物的胜肽混合物中。UBITh®1a是一種專利的合成胜肽,具有衍生自麻疹病毒融合蛋白(MVF)的原始框架序列。此序列被進一步修飾以在序列內展現迴文特徵,以允許在此19個胺基酸的短胜肽內容納多個第II類MHC結合基序。也將Lys-Lys-Lys序列添加到此人工Th胜肽的氨基端,以增加其正電荷,因此有助於胜肽隨後與高負電荷的CpG寡核苷酸分子結合,從而透過“電荷中和”形成免疫刺激複合物。在以前的研究中,將UBITh®1a連接至衍生自自身蛋白質的目標“功能性B抗原決定位胜肽”以使自身胜肽具有免疫原性,從而破壞免疫耐受性(Wang, C.Y., et al, 2017)。UBITh®1a的Th抗原決定位顯示出這種刺激活性,無論是與目標胜肽共價連接還是做為游離具有電荷的胜肽,將其與其他專門設計的目標胜肽一起給藥,都可以利用CpG1透過“電荷中和”作用而聚集在一起,以引發定點B或CTL反應。已經顯示這種免疫刺激複合物在其他方面可增強伴侶目標免疫原的弱或中度反應(例如WO2020/132275A1)。CpG1被設計成透過“電荷中和”以將合理設計的免疫原聚集在一起,從而在接受疫苗接種的宿主中產生平衡的B細胞(誘導中和抗體)和Th/CTL反應。此外,已知透過CpG活化TLR-9信號可促進IgA的產生並促進Th1免疫反應。UBITh®1胜肽因其“抗原決定位簇”性質而作為Th胜肽之一而併入,以進一步增強SARS-CoV-2衍生的Th和CTL抗原決定位胜肽的抗病毒活性。UBITh®1的胺基酸序列為SEQ ID NO: 65,UBITh®1a的序列為SEQ ID NO: 66。CpG1的核酸序列為SEQ ID NO: 104。
鑑於以上所述,多抗原決定位蛋白質/胜肽疫苗組成物可含有一種或多種Th/CTL胜肽。Th/CTL胜肽可包括: a. 衍生自SEQ ID NO: 1的SARS-CoV-2 M蛋白的胜肽(例如SEQ ID NO: 361); b. 衍生自SEQ ID NO: 6的SARS-CoV-2 N蛋白的胜肽(例如SEQ ID NOs: 9-16、19、153-160、165、347、350、351和363); c. 衍生自SEQ ID NO: 20的SARS-CoV-2 S蛋白的胜肽(例如SEQ ID NOs: 35-36、39-48、145-152、161-164、345-346、348、362、364和365);及/或 d. 衍生自病原體蛋白的人工Th抗原決定位(例如SEQ ID NOs: 49-100)。
疫苗組成物可含有一種或多種Th/CTL胜肽。在某些實施例中,疫苗組成物含有一種以上Th/CTL胜肽的混合物。當以混合物形式存在時,與其他一種或多種胜肽相比,每種Th/CTL胜肽可以任何量或比例存在。例如,Th/CTL胜肽可以等莫耳量、等重量量混合,或者混合物中每種胜肽的量可以不同於混合物中其他胜肽的量。如果混合物中存在兩種以上的Th/CTL胜肽,則胜肽的量可以與混合物中的任何其他胜肽相同或不同。
疫苗組成物中存在的Th/CTL胜肽的量可以根據需要或應用而變化。疫苗組成物可含有總共約0.1 µg至約100 µg的Th/CTL胜肽。在一些實施例中,疫苗組成物含有總共約1 µg至約50 µg的Th/CTL胜肽。
在某些實施例中,疫苗組成物包含SEQ ID NOs: 345、346、347、348、361和66的混合物。這些Th/CTL胜肽可以等莫耳量、等重量量混合,或者混合物中每種胜肽的量可以不同於混合物中其他胜肽的量。在某些實施例中,將這些Th/CTL胜肽以等重量量混合在疫苗組成物中。3. 賦形劑
疫苗組成物還可含有藥學上可接受的賦形劑。
本文使用術語“賦形劑(excipient)”或“賦形劑(excipients)”是指疫苗組成物中不是(a) 基於S1受體結合區域的專門設計的蛋白質或(b) Th/CTL胜肽以外的任何成分。賦形劑的例子包括載體、佐劑、抗氧化劑、黏結劑、緩衝劑、填充劑、螯合劑、著色劑、稀釋劑、崩散劑、乳化劑、界面活性劑、溶劑、填充劑、膠化劑、pH緩衝劑、防腐劑、助溶劑、穩定劑等。因此,疫苗組成物可含有藥學上有效劑量的具有醫療效用的基本成份(API),例如基於S1受體結合區域的專門設計的蛋白質及/或一種或多種的Th/CTL胜肽,以及藥學上可接受的賦形劑。
疫苗組成物可含有一種或多種佐劑,其作用是加速、延長或增強針對API的免疫反應,而本身不具有任何特異性抗原作用。佐劑可包括油、油乳液、鋁鹽、鈣鹽、免疫刺激複合物、細菌和病毒衍生物、仿病毒顆粒(virosomes)、碳水化合物、細胞因子、聚合物微粒。在某些實施例中,佐劑可選自CpG寡核苷酸、明礬(磷酸鋁鉀)、磷酸鋁(例如ADJU-PHOS®)、氫氧化鋁(例如ALHYDROGEL®)、磷酸鈣、弗氏不完全佐劑(IFA)、弗氏完全佐劑、MF59、佐劑65、Lipovant、ISCOM、liposyn、皂苷、角鯊烯、L121、EMULSIGEN®、EmulsIL-6n®、單磷酸脂質A (MPL)、Quil A、QS21、MONTANIDE® ISA 35、ISA 50V、ISA 50V2、ISA 51、ISA 206、ISA 720、脂質體、磷脂質、肽聚糖、脂多醣(LPS)、ASO1、ASO2、ASO3、ASO4、AF03、親脂性磷脂質(脂質A)、γ菊糖、藻類菊粉(algammulin)、葡聚糖、右旋糖酐、葡甘露聚糖、半乳甘露聚糖、果聚醣、木聚糖、雙十八烷基二甲基溴化銨(DDA),以及其他佐劑和乳化劑。
在一些實施例中,疫苗組成物含有ADJU-PHOS®(磷酸鋁)、MONTANIDE™ ISA 51 (由植物油和二縮甘露醇油酸酯所組成的油質佐劑組成物,用以製造油包水乳液)、TWEEN® 80 (也稱為聚山梨醇酯80或聚氧乙烯(20)山梨糖醇酐單油酸酯)、CpG寡核苷酸及/或其任意組合。在其他實施例中,醫藥組成物是以EMULSIGEN或EMULSIGEN D作為佐劑的水包油包水(即w/o/w)乳液。
在某些實施例中,多抗原決定位蛋白質/胜肽疫苗組成物含有ADJU-PHOS® (磷酸鋁)作為佐劑以改善免疫反應。磷酸鋁透過核苷酸結合寡聚化結構域(NOD)樣受體蛋白3 (NLRP3)發炎體途徑作為Th2定向佐劑。此外,它具有前吞噬作用和儲存作用,具有長期的安全記錄,並具有改善針對在許多疫苗製劑中目標蛋白的免疫反應的能力。
疫苗組成物可含有pH調節劑及/或緩衝劑(例如鹽酸、磷酸、檸檬酸、醋酸、組胺酸、鹽酸組胺酸—水物(histidine HCl•H2 O)、乳酸、三羥甲基氨基甲烷(tromethamine)、葡萄糖酸、天門冬胺酸、麩胺酸、酒石酸、琥珀酸、蘋果酸、延胡索酸、α-酮戊二酸和精胺酸鹽酸鹽(arginine HCl)。
疫苗組成物可含有界面活性劑和乳化劑(例如聚氧乙烯山梨糖醇酐脂肪酸酯(聚山梨糖醇酯,TWEEN®)、聚氧乙烯15羥基硬脂酸酯(聚乙二醇15羥基硬脂酸酯,SOLUTOL HS15®)、聚氧乙烯蓖麻油衍生物(CREMOPHOR® EL,ELP, RH 40)、聚氧乙烯硬脂酸酯(MYRJ®)、山梨糖醇酐脂肪酸酯(SPAN®)、聚氧乙烯烷基醚(BRIJ®)和壬基酚聚氧乙烯醚(Polyoxyethylene nonylphenol ether) (NONOXYNOL®)。
疫苗組成物可含有載體、溶劑或滲透壓保持劑(例如水、醇和鹽溶液(例如氯化鈉))。
疫苗組成物可含有防腐劑(例如烷基/芳基醇(例如苯甲醇、氯丁醇、2-乙氧基乙醇)、氨基芳基酸酯(amino aryl acid esters)(例如對羥苯甲酸甲酯、對羥苯甲酸乙酯、對羥苯甲酸丙酯、對羥苯甲酸丁酯及其組合)、烷基/芳基酸(例如苯甲酸、山梨酸)、雙胍類(例如氯己定)、芳族醚類(例如苯酚、3-甲酚、2-苯氧基乙醇)、有機汞(例如硫柳汞、苯汞鹽)。4. 製劑
疫苗組成物可配製成立即釋放或緩續釋放劑型。另外,可配製疫苗組成物用於透過免疫原包封和與微粒共同投予以誘導系統性或局部性黏膜免疫。所屬技術領域中具有通常知識者很容易判定此種遞送系統。
疫苗組成物可以以液體溶液或懸浮液型式配製成注射劑。含有疫苗組成物的液體載體也可在注射前製備。疫苗組成物可利用任何適合的用法投予,例如i.d.、i.v.、i.p.、i.m.、鼻內、口服、皮下等,並且可在任何適合的遞送裝置中施用。在某些實施例中,可配製疫苗組成物供皮下、皮內或肌內投予。也可製備適用於其它給藥方式的疫苗組成物,包括口服和鼻內應用。
疫苗組成物也可以適合的劑量單位形式配製。在一些實施例中,疫苗組成物含有約1 µg至約1,000 µg的API (例如基於S1受體結合區域的專門設計的蛋白質及/或一種或多種的Th/CTL胜肽)。疫苗組成物的有效劑量取決於許多不同的因素,包括投予方式、靶點、受試者的生理狀態、受試者是人類或動物、投予的其它藥物,以及處理是供預防還是治療。通常,受試者是人類,但也可治療非人類哺乳類動物。當以多劑量遞送時,疫苗組成物可以方便地分成每個劑量單位形式的適當量。如治療領域眾所周知的,投予的劑量取決於受試者的年齡、體重和一般健康狀況。
在一些實施例中,疫苗組成物在具有添加劑及/或賦形劑的製劑中含有基於S1受體結合區域的專門設計的蛋白質和一種或多種的Th/CTL胜肽。在某些實施例中,疫苗組成物在具有添加劑及/或賦形劑的製劑中含有基於S1受體結合區域的專門設計的蛋白質和一種以上的Th/CTL胜肽。含有一種以上Th/CTL胜肽之混合物的疫苗組成物可提供組成物的免疫功效的協同性增強。相較於僅含有專門設計的蛋白質或一種Th/CTL胜肽的組成物,疫苗組成物在具有添加劑及/或賦形劑的製劑中含有基於S1受體結合區域的專門設計的蛋白質和一種以上的Th/CTL胜肽可在更大的遺傳群體中更為有效,這是由於廣泛的第2類MHC覆蓋,因此提供針對疫苗組成物之經改善的免疫反應。
當疫苗組成物含有基於S1受體結合區域的專門設計的蛋白質和一種或多種的Th/CTL胜肽作為API時,專門設計的蛋白質和Th/CTL胜肽的相對量可以是以相對於彼此的任何量和比例存在。例如,專門設計的蛋白質和Th/CTL胜肽可以等莫耳量、等重量量混合,或者專門設計的蛋白質和Th/CTL胜肽的量可為不同。如果混合物中存在一種以上的Th/CTL胜肽,則專門設計的蛋白質和每種Th/CTL胜肽的量可以彼此相同或不同。在一些實施例中,存在於組成物中的專門設計的蛋白質的莫耳量或重量量大於Th/CTL胜肽的量。在其他實施例中,存在於組成物中的專門設計的蛋白質的莫耳量或重量量小於Th/CTL胜肽的量專門設計的蛋白質與Th/CTL胜肽的比例(重量:重量)可以根據需要或應用而變化。在一些情況下,專門設計的胜肽與Th/CTL胜肽的比例(w:w)可為10:90、20:80、30:70、40:60、50:50、60:40、70:30、80:20或90:10。在具體實施例中,專門設計的胜肽與Th/CTL胜肽的比例(w:w)為95:5、94:6、93:7、92:8、91:9、90:10、89:11、88:12、87:13、86:14或85:15。在具體實施例中,專門設計的胜肽與Th/CTL胜肽的比例(w:w)為88:12。
在一些實施例中,疫苗組成物包含SEQ ID NO: 235的基於S1受體結合區域的專門設計的蛋白質。在其他實施例中,疫苗組成物包含一種或多種Th/CTL胜肽。在一些實施例中,疫苗組成物包含SEQ ID NO: 235的基於S1受體結合區域的專門設計的蛋白質,其與SEQ ID NOs: 345、346、347、348、361和66的Th/CTL胜肽組合。在某些實施例中,疫苗組成物包含SEQ ID NO: 235的基於S1受體結合區域的專門設計的蛋白質、SEQ ID NOs: 345、346、347、348、361和66的Th/CTL胜肽,以及一種或多種的佐劑及/或賦形劑。在各種實施例中,疫苗組成物包含SEQ ID NO: 235,以及SEQ ID NOs: 345、346、347、348、361和66的Th/CTL胜肽,其中Th/CTL胜肽是以彼此間相等的重量比例存在,而SEQ ID NO: 235與Th/CTL胜肽的總重量的比例(w:w)為88:12。基於S1-RBD-sFC蛋白(SEQ ID NO: 235)和SEQ ID NOs: 345、346、347、348、361和66的Th/CTL胜肽的總重量,疫苗組成物的具體實施例含有20 µg/mL、60 µg/mL和200 µg/mL,分別於表33-35中提供。5. 抗體
本揭露還提供利用疫苗組成物引發的抗體。
本揭露提供一種疫苗組成物,其在具有添加劑及/或賦形劑的製劑中包含基於S1受體結合區域的專門設計的蛋白質(例如SEQ ID NO: 235的S1-RBD-sFc)和一種或多種的Th/CTL胜肽(例如,SEQ ID NOs: 345、346、347、348、361和66),能夠於接受免疫的宿主中具有高反應率引發針對SARS-CoV-2的高效價中和抗體並且抑制S-RBD與其受體ACE2的結合。
利用揭露的疫苗組成物引發的抗體也包括在本揭露中。可使用本領域已知的方法分離和純化此種抗體。分離的和純化的抗體可包括在醫藥組成物或製劑中,用於預防及/或治療暴露於SARS-CoV-2的受試者。6. 方法
本揭露還關於製備和使用疫苗組成物及其製劑的方法。a. 基於 S1 受體結合區域的專門設計的蛋白質和 Th/CTL 胜肽的製備方法
可以根據以上在部分C(3)中所述的方法或根據實施例15製備揭露的基於S1受體結合區域的專門設計的蛋白質。此外,可以根據以上在部分B(4)中所述的方法製備揭露的Th/CTL胜肽。b. 使用疫苗組成物的方法
在預防性應用中,可將揭露的多抗原決定位蛋白質/胜肽疫苗組成物投予易感染SARS-CoV-2病毒或有感染SARS-CoV-2病毒風險的受試者,而SARS-CoV-2病毒會導致COVID-19,藉此消除或降低風險,從而減輕疾病嚴重程度,或是延緩疾病的發作。
足以達成預防性治療的疫苗組成物的量定義為預防有效劑量。可以單一或多劑量方式將揭露的多抗原決定位蛋白質/胜肽疫苗組成物投予受試者,以產生足夠的免疫反應,以防止SARS-CoV-2感染。通常會監控免疫反應,且如果免疫反應開始減弱則給予重複劑量。
疫苗組成物可配製成立即釋放或緩續釋放劑型。另外,可配製疫苗組成物用於透過免疫原包封和與微粒共同投予以誘導系統性或局部性黏膜免疫。所屬技術領域中具有通常知識者很容易判定此種遞送系統。
疫苗組成物可以以液體溶液或懸浮液型式配製成注射劑。含有疫苗組成物的液體載體也可在注射前製備。疫苗組成物可利用任何適合的用法投予,例如i.d.、i.v.、i.p.、i.m.、鼻內、口服、皮下等,並且可在任何適合的遞送裝置中施用。在某些實施例中,可配製疫苗組成物供皮下、皮內或肌內投予。也可製備適用於其它給藥方式的疫苗組成物,包括口服和鼻內應用。
疫苗組成物的劑量可根據受試者和特定的給藥方式而變化。所需劑量可根據本領域技術人員已知的許多因素而變化,包括但不限於受試者的物種和大小。劑量可以是專門設計的蛋白質和Th/CTL胜肽的總重量的1 μg至1,000 μg。劑量可以是專門設計的蛋白質和Th/CTL胜肽的總重量的約1 μg至約1 mg、約10 μg至約500 μg、約 20 μg至約200 μg。此劑量,透過專門設計的蛋白質和Th/CTL胜肽的總重量測定,為約10 μg、約20 μg、約30 μg、約40 μg、約50 μg、約60 μg、約70 μg、約80 μg、約90 μg、約100 μg、約110 μg、約120 μg、約130 μg、約140 μg、約150 μg、約160 μg、約170 μg、約180 μg、約190 μg、約200 μg、約250 μg、約300 μg、約400 μg、約500 μg、約600 μg、約700 μg、約800 μg、約900 μg、約1,000 μg。專門設計的蛋白質和Th/CTL胜肽的比例(重量:重量)可根據需要和應用而變化。在一些情況下,專門設計的胜肽和Th/CTL胜肽的比例(w:w)可為10:90、20:80、30:70、40:60、50:50、60:40、70:30、80:20和90:10。在具體實施例中,專門設計的胜肽和Th/CTL胜肽的比例(w:w)為95:5、94:6、93:7、92:8、91:9、90:10、89:11、88:12、87:13、86:14或85:15。在具體實施例中,專門設計的胜肽和Th/CTL胜肽的比例(w:w)為88:12。在特定實施例中,疫苗組成物含有表33-35中所示的成分。
疫苗組成物可以單劑量方式,或是在一段時間內以多劑量方式,透過連續輸注投予。疫苗組成物可以連續方式或根據特定的劑量方案投予。可由從動物模型獲得之劑量-反應曲線外推有效劑量。在一些實施例中,疫苗組成物是以單次投予的形式提供給受試者。在其他實施例中,疫苗組成物是以多次投予(兩次或更多次)的形式提供給受試者。當以多次投予形式提供時,給藥之間的期間可以根據應用或需求而變化。在一些實施例中,將第一劑量的疫苗組成物投予受試者,並在第一劑後約1週至約12週投予第二劑。在某些實施例中,第二劑量是在第一次投予後約1週、約2週、約3週、約4週、約5週、約6週、約7週、約8週、約9週、約10週、約11週、約12週投予。在具體實施例中,在第一次投予後約4週投予第二劑。
可以在初始疫苗接種方案後投予受試者疫苗組成物的加強劑量,以增加針對SARS-CoV-2的免疫力。在一些實施例中,在初始疫苗接種方案後約6個月至約10年投予受試者疫苗組成物的加強劑量。在某些實施例中,疫苗組成物的加強劑量是在初始疫苗接種方案後或在最後一次加強劑量後約6個月、約1年、約2年、約3年、約4年、約5年、約6年、約7年、約8年、約9年或約10年投予。7. 具體實施例
(1) 一種融合蛋白,其選自由SEQ ID NOs: 235之S1-RBD-sFc、SEQ ID NO: 236之S1-RBDa-sFc和SEQ ID NO: 355 之S1-RBD-Fc組成之群組。 (2) 一種COVID-19疫苗組成物,其包含: a. 如(1)所述之融合蛋白;以及 b. 藥學上可接受的賦形劑。. (3) 如(2)所述之COVID-19疫苗組成物,其中融合蛋白為SEQ ID NO: 235之S1-RBD-sFc。 (4) 如(2)所述之COVID-19疫苗組成物,其進一步包含Th/CTL胜肽。 (5) 如(4)所述之COVID-19疫苗組成物,其中Th/CTL胜肽衍生自SEQ ID NO: 1的SARS-CoV-2 M蛋白、SEQ ID NO: 6的SARS-CoV-2 N蛋白、SEQ ID NO: 20的SARS-CoV-2 S蛋白、病原體蛋白,或其任意組合。 (6) 如(5)所述之COVID-19疫苗組成物,其中 a. 衍生自SARS-CoV-2 M蛋白之Th/CTL胜肽為SEQ ID NO: 361; b. 衍生自SARS-CoV-2 N蛋白之Th/CTL胜肽選自由SEQ ID NOs: 9-16、19、153-160、165、347、350、351和363組成之群組; c. 衍生自SARS-CoV-2 S蛋白之Th/CTL胜肽選自由SEQ ID NOs: 35-36、39-48、145-152、161-164、345-346、348、362、364和365組成之群組; d. 衍生自病原體蛋白之Th/CTL胜肽選自由SEQ ID NOs: 49-100組成之群組; (7) 如(2)所述之COVID-19疫苗組成物,其進一步包含SEQ ID NOs: 345、346、347、348、361和66之Th/CTL胜肽的混合物。 (8) 如(7)所述之COVID-19疫苗組成物,其中每一Th/CTL胜肽是以等重的量存在於混合物中。 (9) 如(8)所述之COVID-19疫苗組成物,其中S1-RBD-sFc蛋白相對於Th/CTL胜肽之混合物的總重量的比例(w:w)為88:12。 (10) 如(2)所述之COVID-19疫苗組成物,其中藥學上可接受的賦形劑為佐劑、緩衝液、界面活性劑、乳化劑、pH調節劑、食鹽水溶液、防腐劑、溶劑或其任意組合。 (11) 如(2)所述之COVID-19疫苗組成物,其中藥學上可接受的賦形劑選自由CpG寡核苷酸、ADJUPHOS (磷酸鋁)、組胺酸、鹽酸組胺酸—水物(histidine HCl•H2 O)、精胺酸鹽酸鹽(arginine HCl)、TWEEN 80 (聚氧乙烯(20)山梨糖醇酐單油酸酯)、鹽酸、氯化鈉、2-苯氧基乙醇、水及其任意組合組成之群組。 (12) 一種COVID-19疫苗組成物,其包含: a. SEQ ID NO: 235的S-RBD-sFc蛋白; b. 選自由SEQ ID NOs: 9-16、19、35-36、39-100、145-165、345-348、350、351、362-365及其任意組合組成之群組的Th/CTL胜肽; c. 藥學上可接受的賦形劑。 (13) 如(12)所述之COVID-19疫苗組成物,其中(b)中Th/CTL胜肽為SEQ ID NOs: 345、346、347、348、361和66的混合物。 (14) 如(12)所述之COVID-19疫苗組成物,其中每一Th/CTL胜肽是以等重的量存在於混合物中。 (15) 如(13)所述之COVID-19疫苗組成物,其中S-RBD-sFc蛋白相對於Th/CTL胜肽之混合物的總重量的比例(w:w)為88:12。 (16) 如(12)所述之COVID-19疫苗組成物,其中藥學上可接受的賦形劑為佐劑、緩衝液、界面活性劑、乳化劑、pH調節劑、食鹽水溶液、防腐劑、溶劑或其任意組合。 (17) 如(12)所述之COVID-19疫苗組成物,其中藥學上可接受的賦形劑選自由CpG寡核苷酸、ADJUPHOS (磷酸鋁)、組胺酸、鹽酸組胺酸—水物(histidine HCl•H2 O)、精胺酸鹽酸鹽(arginine HCl)、TWEEN 80 (聚氧乙烯(20)山梨糖醇酐單油酸酯)、鹽酸、氯化鈉、2-苯氧基乙醇、水及其任意組合組成之群組。 (18) 如(12)所述之COVID-19疫苗組成物,其中 Th/CTL胜肽為SEQ ID NOs: 345、346、347、348、361和66的混合物,其中每一胜肽是以等重的量存在於混合物中; 藥學上可接受的賦形劑是配製於水中之CpG1寡核苷酸、ADJUPHOS (磷酸鋁)、組胺酸、鹽酸組胺酸—水物(histidine HCl•H2 O)、精胺酸鹽酸鹽(arginine HCl)、TWEEN 80 (聚氧乙烯(20)山梨糖醇酐單油酸酯)、鹽酸、氯化鈉和2-苯氧基乙醇的組合。 (19) 如(18)所述之COVID-19疫苗組成物,其中 SEQ ID NO: 235的S-RBD-sFc蛋白的總量是介於約10 µg至約200 µg;以及 Th/CTL胜肽的總量是介於約2 µg至約25 µg。 (20) 如(18)所述之COVID-19疫苗組成物,其中 SEQ ID NO: 235的S-RBD-sFc蛋白的總量是介於約17.6 µg;以及 Th/CTL胜肽的總量是介於約2.4 µg。 (21) 如(18)所述之COVID-19疫苗組成物,其中 SEQ ID NO: 235的S-RBD-sFc蛋白的總量是介於約52.8 µg;以及 Th/CTL胜肽的總量是介於約7.2 µg。 (22) 如(18)所述之COVID-19疫苗組成物,其中 SEQ ID NO: 235的S-RBD-sFc蛋白的總量是介於約176 µg;以及 Th/CTL胜肽的總量是介於約24 µg。 (23) 一種在受試者中用以預防COVID-19的方法,其包含對受試者投予如(12)所述之疫苗組成物的藥學上有效劑量。 (24) 如(23)所述之方法,其中疫苗組成物的藥學上有效劑量是以兩劑投予於受試者。 (25) 如(24)所述之方法,其中將疫苗組成物的第一劑投予於受試者,並在第一劑之後約4週將疫苗組成物的第二劑投予於受試者。 (26) 一種用以產生針對SARS-CoV-2的抗體的方法,其包含對受試者投予如(12)所述之疫苗組成物的藥學上有效劑量。 (27) 一種分離的抗體或其抗原決定位結合片段,其特異性地結合至SARS-CoV-2 S蛋白的S-RBD部分(即SEQ ID NO: 226)。 (28) 一種組成物,其包含如(27)所述之分離的抗體或其抗原決定位結合片段。 (29) 一種COVID-19疫苗組成物,其由如表28所示成分的含量構成。 (30) 一種COVID-19疫苗組成物,其由如表29所示成分的含量構成。 (31) 一種COVID-19疫苗組成物,其由如表30所示成分的含量構成。8. 其他具體實施例
(1) 一種融合蛋白,其具有選自由S1-RBD-sFc (SEQ ID NO: 235)、S1-RBDa-sFc (SEQ ID NO: 236)和S1-RBD-Fc (SEQ ID NO: 255)組成之群組的胺基酸序列。 (2) 一種組成物,其包含如(1)所述之融合蛋白。 (3) 如(2)所述之組成物,其進一步包含選自由SEQ ID NOs: 345、346、347、348、361及其任意組合組成之群組的SARS-CoV-2胜肽。 (4) 如(2或3)任一所述之組成物,其進一步包含UBITh®1a胜肽(SEQ ID NO: 66)。 (5) 如請求項2所述之組成物,其進一步包含: a) 選自由SEQ ID NOs: 345、346、347、348、361及其任意組合組成之群組的SARS-CoV-2胜肽;以及 b)  UBITh®1a胜肽(SEQ ID NO: 66)。 (6) 一種組成物,其包含: a)  如(1)所述之融合蛋白; b) 包含SEQ ID NOs: 345、346、347、348和361的SARS-CoV-2胜肽的混合物;以及 c) UBITh®1a胜肽(SEQ ID NO: 66)。 (7) 如(5或6)任一所述之組成物,其中融合蛋白為S1-RBD-sFc (SEQ ID NO: 235)。 (8) 如(5或6)任一所述之組成物,其中融合蛋白為S1-RBDa-sFc (SEQ ID NO: 236)。 (9) 如(5或6)任一所述之組成物,其中融合蛋白為S1-RBD-Fc (SEQ ID NO: 355)。 (10) 一種組成物,其包含: a) S1-RBD-sFc融合蛋白; b) 包含SEQ ID NOs: 345、346、347、348和361的SARS-CoV-2胜肽的混合物;以及 c) UBITh®1a胜肽(SEQ ID NO: 66)。 (11) 一種SARS-CoV-2疫苗組成物,其包含:如(1)所述之融合蛋白以及藥學上可接受的載體及/或佐劑。 (12) 如(11)所述之SARS-CoV-2疫苗組成物,其進一步包含選自由SEQ ID NOs: 345、346、347、348、361及其任意組合組成之群組的SARS-CoV-2胜肽。 (13) 如(11或12)任一所述之SARS-CoV-2疫苗組成物,其進一步包含UBITh®1a胜肽(SEQ ID NO: 66)。 (14) 如(11)所述之SARS-CoV-2疫苗組成物,其進一步包含: a) 選自由SEQ ID NOs: 345、346、347、348、361及其任意組合組成之群組的SARS-CoV-2胜肽;以及 b) UBITh®1a胜肽(SEQ ID NO: 66)。 (15) 如(11至14)任一所述之SARS-CoV-2疫苗組成物,其中藥學上可接受的載體及/或佐劑為CpG1 (SEQ ID NO: 104)。 (16) 一種SARS-CoV-2疫苗組成物,其包含: a) 如(11)所述之融合蛋白; b) 包含SEQ ID NOs: 345、346、347、348和361的SARS-CoV-2胜肽的混合物; c) UBITh®1a胜肽(SEQ ID NO: 66);以及 d) 藥學上可接受的載體及/或佐劑。 (17) 如(11至16)任一所述之SARS-CoV-2疫苗組成物,其中融合蛋白為S1-RBD-sFc (SEQ ID NO: 235)。 (18) 如(11至16)任一所述之SARS-CoV-2疫苗組成物,其中融合蛋白為S1-RBDa-sFc (SEQ ID NO: 236)。 (19) 如(11至16)任一所述之SARS-CoV-2疫苗組成物,其中融合蛋白為S1-RBD-Fc (SEQ ID NO: 355)。 (20) 如(11至14或16至19)任一所述之SARS-CoV-2疫苗組成物,其中藥學上可接受的載體及/或佐劑為CpG1 (SEQ ID NO: 104)。 (21) 一種SARS-CoV-2疫苗組成物,其包含: a) S1-RBD-sFC融合蛋白; b) 包含SEQ ID NOs: 345、346、347、348和361的SARS-CoV-2胜肽的混合物; c) UBITh®1a胜肽(SEQ ID NO: 66);以及 d) CpG1寡核苷酸(SEQ ID NO: 104)。 (22) 一種用以針對SARS-CoV-2免疫接種受試者的方法,其包含對受試者投予如(11至21)任一所述之SARS-CoV-2疫苗組成物的藥學上有效劑量。 (23) 一種用以針對SARS-CoV-2免疫接種受試者的方法,其包含對受試者投予如(21)所述之SARS-CoV-2疫苗組成物的藥學上有效劑量。 (24) 一種利用編碼如(1)所述之融合蛋白的cDNA序列轉染的細胞株。 (25) 如請求項24所述之細胞株,其為中國倉鼠卵巢(CHO)細胞株。 (26) 如(24或25)任一所述之細胞株,其中融合蛋白為S1-RBD-sFc (SEQ ID NO: 235)。 (27) 如(24或25)任一所述之細胞株,其中融合蛋白為S1-RBDa-sFc (SEQ ID NO: 236)。 (28) 如(24或25)任一所述之細胞株,其中融合蛋白為S1-RBD-Fc (SEQ ID NO: 355)。 (29) 如(24或25)所述之細胞株,其中cDNA序列選自由S1-RBD-sFc (SEQ ID NO: 246)、S1-RBDa-sFc (SEQ ID NO: 247)和S1-RBD-Fc (SEQ ID NO: 357)組成之群組。 (30) 如(24或25)所述之細胞株,其中cDNA序列為編碼S1-RBD-sFc的SEQ ID NO: 246。 (31) 如(24或25)所述之細胞株,其中cDNA序列為編碼S1-RBDa-sFc的SEQ ID NO: 247。 (32) 如(24或25)所述之細胞株,其中cDNA序列為編碼S1-RBD-Fc的SEQ ID NO: 357。實施例 1. S-RBD 相關胜肽的合成及其製劑的製備 a. S-RBD 相關胜肽的合成
描述在開發S-RBD胜肽免疫原結構中,SARS-CoV-2抗原性胜肽、內源性Th和CTL以及S-RBD相關胜肽的合成方法。胜肽可小規模合成以用於血清學測定、實驗室先導研究或田野調查,也能大規模(公斤等級)的工業或商業化合成生產醫藥組成物。鑑定了大的S-RBD B細胞抗原決定位胜肽庫,其具有大約6至80個胺基酸長度的序列,並選出最優化序列作為胜肽免疫原結構,以用於有效的靶向S-RBD的治療疫苗。
表 1至3提供了SARS-CoV-2 M、N和S蛋白的全長序列(分別為SEQ ID NO:1、6和20)。表1、3、11和13還提供了源自SARS-CoV-2 M、N、E、ORF9b和S蛋白的抗原性胜肽的序列(SEQ ID NO:4-5、17-18、37-38、4-5、17-18、37-38、226、227、250-252、259、261、263、265、266、270、281、308、321、322、323、324和328-334),作為固相/免疫吸附胜肽用於抗體檢測的診斷分析。此外,表3、11和13提供了全長S-RBD、其片段或其修飾的序列(SEQ ID NO:226、227、23-24、26-27、29-34和315-319)。
選定的S-RBD B細胞抗原決定位胜肽與源自病原體蛋白(包括麻疹病毒融合蛋白(MVF)、B型肝炎病毒表面抗原蛋白(HBsAg)、流行性感冒病毒、破傷風梭菌和Epstein-Barr病毒(EBV),如表6中所識別(例如SEQ ID NO:49-100))的精心設計的T輔助細胞(Th)抗原決定位胜肽合成地連接以製成S-RBD胜肽免疫原結構。Th抗原決定位胜肽可以單一序列形式(例如,關於MVF的SEQ ID NO:49-52、54-57、59-60、62-63、65-66,以及關於HBsAg的SEQ ID NO:67-71、73 -74、76-78)或組合庫序列形式(例如,關於MvF的SEQ ID NO:53、58、61、64,以及關於HBsAg的SEQ ID NO:72和75)使用以增強個別S-RBD胜肽免疫原結構的免疫原性。為了產生記憶T細胞,其可針對SARS-CoV2促進接受免疫接種的宿主的B細胞喚醒(recall)或CTL反應,具有已知MHC結合活性的SARS-CoV2衍生的內源性Th和CTL抗原決定位顯示在表2、3、4、5和8中(SEQ ID NO:9-19、35-48、345-351),也被設計為合成免疫原(例如,SEQ ID NO:345-351),並合成以納入最終的SARS-CoV2疫苗製劑中。
選自數百種胜肽結構的代表性S-RBD胜肽免疫原結構在表8 (SEQ ID NO:107-144)中辨識。所有可用於免疫原性研究或相關血清學測試以檢測及/或測量抗S-RBD抗體的胜肽均可透過應用生物系統胜肽合成儀430A、431或433型利用F-moc化學小規模合成。每個胜肽可以通過在固相載體上獨立合成產生,在N端有F-moc保護以及三官能胺基酸的側鏈保護基團。合成後,將胜肽從固相載體上切割下來,並用90%三氟乙酸(TFA)移除側鏈保護基團。利用基質輔助雷射脫附游離飛行時間(MALDI-TOF)質譜儀評估合成的胜肽產物以確定正確的胺基酸組成。也利用反相HPLC (RP-HPLC)評估各個合成胜肽以確認產物的合成樣態與濃度。儘管嚴格控制合成過程(包括逐步地監測偶合效率),由於在延長循環中某些意外事件,包括胺基酸的插入、刪除、取代及提前終止,仍可能產生胜肽類似物。因此,合成產物一般包括多種胜肽類似物與目標胜肽。
儘管包括這些非預期的胜肽類似物,但最後的合成胜肽產物仍可用作免疫應用,包括免疫診斷(作為抗體捕捉抗原)與醫藥組成物(作為胜肽免疫原)。一般來說,只要開發嚴格的QC程序來監測製造過程及產品品質評估程序,以確保使用這些胜肽之最終產物的再現性與功效,此胜肽類似物,包括刻意設計或合成程序中產生的副產物混合物,通常可如欲求胜肽的純化產物同樣有效。可利用客製的自動胜肽合成儀UBI2003或類似機型以15 mmole至150 mmole的規模或更大的規模合成數百至數千克的大量胜肽。
對於供臨床試驗之最終醫藥組成物使用的活性成分,可利用預備的RP-HPLC於淺洗湜梯度下純化S-RBD胜肽免疫原結構,並利用MALDI-TOF質譜、胺基酸分析和RP-HPLC描繪純度與一致性的特性。b. 含有 S-RBD 胜肽免疫原結構的組成物的製備
製備採用油包水乳液和具有礦物鹽之懸浮液的劑型。為了設計醫藥組成物供廣大族群使用,安全性成為另一個需要考慮的重要因素。儘管在人類許多醫藥組成物的臨床試驗中使用油包水乳液,但基於其安全性,明礬仍然是用於醫藥組成物中的主要佐劑。因此,明礬或其礦物鹽ADJUPHOS (磷酸鋁)經常作為佐劑供臨床應用製劑的使用。
配方研究組可含有所有類型專門設計的S-RBD胜肽免疫原結構。對於其針對作為B細胞抗原決定位胜肽的相對應S-RBD胜肽或全長RBD多胜肽(SEQ ID Nos: 226、235、236和255)的相對免疫原性,在天竺鼠中仔細評估許多專門設計的S-RBD胜肽免疫原結構。使用塗覆有評估的胜肽(例如SEQ ID NO:23-24、26-27、29-34、315-319和335-344)的微量盤,透過ELISA試驗在各種同源性胜肽間進行抗原決定位鑑定和血清交叉反應性的分析。
利用經核准供人類使用的油劑Seppic MONTANIDE™ ISA 51以油包水乳液形式,或與礦物鹽ADJUPHOS (磷酸鋁)或ALHYDROGEL (明礬)混合,以配製不同量的S-RBD胜肽免疫原結構。利用將S-RBD胜肽免疫原結構以約20至2000 µg/mL濃度溶解於水中,並與MONTANIDE™ ISA 51配製成油包水乳液(1:1體積),或者與礦物鹽ADJUPHOS或ALHYDROGEL (明礬) (1:1體積)配製,以製成組成物。將組成物置於室溫下約30分鐘,並在免疫接種前利用漩渦震盪混合約10至15秒。利用2至3個劑量的特定組成物免疫接種動物,其在時間0 (初始免疫)和初始免疫後(wpi) 3週(加強免疫)投予,任選5或6 wpi進行第二次加強免疫,透過肌內途徑投藥。針對與SEQ ID NO: 26的S-RBD位點或與全長S-RBD序列(SEQ ID NO: 26)的相對應血清的交叉反應性,然後利用選定的B細胞抗原決定位胜肽測試來自接受免疫接種之動物的血清,以評估存在於劑型中的各種S-RBD胜肽免疫原結構的免疫原性。針對其相對應血清的功能特性,將最初在天竺鼠篩選中發現的具有強免疫原性的S-RBD胜肽免疫原結構在體外實驗中做進一步測試。然後,以油包水乳液、礦物鹽和基於明礬的配方製備所選的候選S-RBD胜肽免疫原結構,按照免疫方案在指定的特定期間內進行給藥方案。
只有最有希望的S-RBD胜肽免疫原結構才會在納入最終劑型之前以與SARS-CoV2 Th/CTL胜肽結構結合或不結合形式於GLP指導的臨床前研究中針對免疫原性、持續時間、毒性和功效研究進行進一步廣泛的評估,準備提交試驗用新藥申請,隨後在COVID-19患者中進行臨床試驗。實施例 2. 血清學檢測和試劑
以下詳細描述用以評估S-RBD胜肽免疫原結構及其製劑之功能性免疫原性的血清學試驗和試劑。a. 供免疫原性和抗體特異性分析之基於 S-RBD S-RBD B 細胞抗原決定位胜肽的 ELISA 試驗
利用ELISA分析評估免疫血清樣本及/或來自用以檢測COVID-19的個體樣本,如下所述。
利用配製於pH 9.5之10mM碳酸氫鈉緩衝液(除非另有說明)中濃度為2 μg/mL (除非另有說明)的S-RBD (SEQ ID NO: 226)或S-RBD B細胞抗原決定位胜肽(例如SEQ ID NOs: 23-24、26-27及/或29-34),將其以100 μL體積於37°C下作用1小時,以分別地塗覆96孔盤的孔洞。
將以S-RBD或S-RBD B細胞抗原決定位胜肽塗覆的孔洞與250 μL配製於PBS中濃度為3重量百分比的明膠於37°C下反應1小時,以阻斷非特異性蛋白質結合位點,接著利用含有0.05體積百分比TWEEN 20的PBS洗滌孔洞三次並乾燥。利用含有20體積百分比正常山羊血清、1重量百分比明膠和0.05體積百分比TWEEN 20的PBS以1:20比例(除非另有說明)稀釋待測血清。將100微升(100 μL)稀釋樣本(例如血清、血漿)加入每個孔洞並於37°C下反應60分鐘。然後利用配製於PBS中濃度為0.05體積百分比的TWEEN 20洗滌孔洞6次,以移除未結合的抗體。使用辣根過氧化物酶(HRP)共軛物種(例如天竺鼠或大鼠)特異性山羊多株抗IgG抗體或蛋白質A/G作為標記的示蹤劑,以在陽性孔洞中與形成的抗體/胜肽抗原複合物結合。將100微升(100 μL) HRP標記的偵測試劑以預滴定的最佳稀釋倍數配製於內含1體積百分比正常山羊血清與0.05體積百分比TWEEN 20的PBS中,將其加到每個孔洞中,並在37°C下再反應30分鐘。利用內含0.05體積百分比TWEEN 20的PBS洗滌孔洞6次以移除未結合的抗體,並與100 μL含有 0.04重量百分比3’, 3’, 5’, 5’-四甲基聯苯胺(TMB)和0.12體積百分比過氧化氫於檸檬酸鈉緩衝液中的受質混合物再反應15分鐘。藉由形成有色產物利用受質混合物以偵測過氧化物酶標記。藉由加入100 μL的1.0M硫酸終止反應並測定450 nm處的吸光值(A450 )。為了測定接受各種胜肽疫苗製劑之疫苗接種動物的抗體效價,或是測定正在接受SARS-CoV-2感染檢測的個人的抗體效價,將從1:100至1:10,000之10倍連續稀釋的血清或從1:100至1: 4.19x 108 之4倍連續稀釋的血清進行測試,且利用A450 臨界值設為0.5之A450 的線性回歸分析計算測試血清的效價,以Log10 表示。b. 透過基於 Th 胜肽的 ELISA 測試評估抗體對 Th 胜肽的反應性
以相似的ELISA方法如上所述進行,利用配製於pH 9.5之10mM碳酸氫鈉緩衝液(除非另有說明)中濃度為2 μg/mL (除非另有說明)的Th胜肽,將其以100 μL體積於37°C下作用1小時,以分別地塗覆96孔ELISA微量盤的孔洞。為了測定接受含有S-RBD胜肽免疫原結構的各種製劑之疫苗接種動物的抗體效價,將從1:100至1:10,000之10倍連續稀釋的血清進行測試,且利用A450 臨界值設為0.5之A450 的線性回歸分析計算測試血清的效價,以Log10 表示。c. 免疫原性評估
依照實驗疫苗接種程序收集來自動物個體的免疫前和免疫血清樣本,並在56°C下加熱30分鐘以使血清補體因子失活。在投予含有S-RBD胜肽免疫原結構的製劑後,根據程序獲得血液樣本,並利用基於相對應S-RBD B細胞抗原決定位胜肽的ELISA試驗評估其針對特定靶點的免疫原性。測試了連續稀釋的血清,並將稀釋倍數之倒數取對數(Log10 )以表示陽性效價。對於其能力(引發針對目標抗原內欲求抗原決定位特異性之高效價抗體反應和與S-RBD多胜肽高交叉反應性,且同時將針對用以提供欲求B細胞反應增強之T輔助細胞抗原決定位之抗體反應性維持在低至可忽略),而評估特定製劑的免疫原性。實施例 3. 在測定製劑中含有抗原性 SARS-CoV-2 胜肽混合物的胜肽組成物提高了靈敏度
儘管COVID-19的早期檢測是通過實驗室標準(例如使用分子探針的RT-PCR檢測)和臨床標準(例如體溫升高、乾咳等)完成的,但既靈敏又具特異性的抗體檢測分析適用於血清學監測。
在開發用於血清學監測和診斷的揭露的COVID-19抗體檢測分析時,分析特異性被認為是高度優先事項。高特異性是可接受的COVID-19抗體檢測的必要條件,以免誤診患者進行不必要的隔離,並避免不必要地實施緊急公共衛生措施以控制疫情。
用於血清監測和診斷的可接受的免疫分析還必須具有高靈敏度。因此,基於先前對SARS-CoV血清學的了解,衍生自SARS-CoV-2 M、N 和S蛋白的相對應抗原性胜肽的混合物,如同胜肽同源物(例如,SEQ ID NO:4、17和37),與那些透過廣泛的血清學驗證(例如,SEQ ID NO:4、17、37、262、265、281、322、354)所設計和鑑定者,被評估作為用於抗體檢測的互補靈敏度的抗原。為了增強所選胜肽與ELISA微量盤的結合能力,在每個所選胜肽類似物(例如,SEQ ID NO:5、18和38)的氨基端添加KKK-賴胺酸尾部。此外,經過廣泛的測試,胜肽混合物的使用不應導致胜肽混合物對正常血清的特異性的喪失。因此,包含具有SEQ ID NO:5、18和38的胺基酸序列的胜肽的抗原性胜肽的混合物可以保留用於測定製劑作為固相抗原吸附物。類似地,包含具有SEQ ID NO:5、18、38、261、266、281和322的胺基酸序列的抗原性胜肽的混合物可用作測定製劑作為固相抗原吸附物以具有增強的分析靈敏度(第28圖)。這些具有SEQ ID NOs: 5、18、38、261、266、281、322胺基酸序列的抗原性胜肽也可以單獨配製作為相對應成分ELISA的固相吸附物,每種相對應成分都具有高特異性,且它們一起形成了確證性分析以為SARS-CoV-2感染呈陽性的個體提供抗原性概況。實施例 4. 在大規模分析中對感染、隨機供血者和其他非 SARS-CoV-2 感染群體的 COVID-19 酵素免疫分析的評估 a. 來自其他病毒感染患者的血清和正常血清
利用血清學標誌物,在2000年之前從患有與COVID-19無關的其他病毒感染的患者那裡獲得的血清有充分的證明。從佛羅里達血庫獲得大量來自正常供血者的血清。這些血清組中對SARS-CoV-2反應性的血清陽性率是在任何已知COVID-19病例報告之前至少三年收集的,用於評估COVID-19 ELISA的特異性。b. 利用基於混合胜肽的 COVID-19 ELISA 分析以檢測 SARS-CoV-2
用於檢測SARS-CoV-2的ELISA測定在塗覆有SARS-CoV-2 M、N和S胜肽混合物的96孔微量盤上進行,血清按照下述方法以1:20比例稀釋。利用配製於pH 9.5之10mM碳酸氫鈉緩衝液(除非另有說明)中濃度為2 μg/mL的SARS-CoV-2 M、N和S蛋白衍生的胜肽混合物,將其以每孔洞100 μL體積於37°C下作用1小時,以分別地塗覆96孔盤的孔洞。將塗覆的孔洞與250 μL配製於PBS中濃度為3重量百分比的明膠於37°C下反應1小時,以阻斷非特異性蛋白質結合位點,接著利用含有0.05體積百分比TWEEN 20的PBS洗滌孔洞三次並乾燥。利用IFA針對SARS-CoV-2反應性抗體呈陽性的患者血清和對照血清透過其與SARS-CoV-2胜肽塗覆的孔洞的交叉反應性而用以作為陽性對照,將其利用含有20體積百分比正常山羊血清、1重量百分比明膠和0.05體積百分比TWEEN 20的PBS以1:20比例(除非另有說明)進行稀釋。將100微升(100 μL)稀釋樣本加入每個孔洞並於37°C下反應60分鐘。然後利用配製於PBS中濃度為0.05體積百分比的TWEEN 20洗滌孔洞6次,以移除未結合的抗體。使用辣根過氧化物酶共軛山羊抗人類IgG作為標記的示蹤劑,以在陽性孔洞中與形成的SARS-CoV-2抗體/胜肽抗原複合物結合。將100微升(100 μL)過氧化物酶標記的山羊抗人類IgG以預滴定的最佳稀釋倍數配製於內含1體積百分比正常山羊血清與0.05體積百分比TWEEN 20的PBS中,將其加到每個孔洞中,並在37°C下再反應30分鐘。利用內含0.05體積百分比TWEEN 20的PBS洗滌孔洞6次以移除未結合的抗體,並與100 μL含有0.04重量百分比3’, 3’, 5’, 5’-四甲基聯苯胺(TMB)和0.12體積百分比過氧化氫於檸檬酸鈉緩衝液中的受質混合物再反應15分鐘。藉由形成有色產物利用受質混合物以偵測過氧化物酶標記。藉由加入100 μL的1.0M硫酸終止反應並測定450 nm處的吸光值(A450 )。藉由加入100 μL的1.0M硫酸終止反應並測定450 nm處的吸光值(A450 )。c. 解釋標準
ELISA形式中的顯著反應性,即臨界值,是透過A450 吸光值進行評分,其要大於平均A450 加上來自正常群體的血清分佈的六個標準偏差。d. 結果
將來自一組500多個假定血清陽性率為零的正常血漿和血清樣本的樣本以1:20的稀釋倍數進行測試,以評估它們在混合胜肽SARS-CoV-2 ELISA中的個別反應性。正常供體樣本的平均A450 為0.074 ± 0.0342 (SD),確定A450 的臨界值為0.274。對於正常血清而言,訊號與臨界值(S/C)比值的分布具有數值為0.3的峰值S/C比值,沒有樣本顯示陽性反應性。因此,此ELISA對正常樣本的特異性在設定的臨界值處為100%。
利用來自與SARS-CoV-2無關的感染(例如HIV-1、HIV2、HCV、HTLV 1/II和梅毒)的患者的大量樣本,並在正常血清樣本中加入干擾物質,針對專一性對SARS-CoV-2 ELISA (其使用具有相對應SARS-CoV-2衍生序列的胜肽同源物)進行測試。
將對來自台灣、上海、北京和武漢的感染COVID-19患者的血清進行進一步的血清學分析,以再次確認混合胜肽SARS-CoV-2 ELISA的功效。從確診的COVID-19患者獲得的所有血清和利用IFA檢測到具有針對SARS-CoV-2的抗體效價的樣本,以及從第0至30天甚至更長時間的連續採血日期都將進行測試,以評估血清轉化過程和此種抗體的持久性。來自這些有來歷的血清轉化組別的結果可提供資訊以指明感染後最早可檢測到的抗SARS-CoV-2 M、N和S抗體水平以及此種抗體持續存在的整個時期。對高危的個體(包括醫院醫護人員、計程車司機、飛機空姐和其他與公眾經常接觸的人)進行大規模血清學篩查尤為重要,以識別那些罕見的超級傳播者(截至本案申請日發現<2%),其為感染了SARS-CoV-2具有高病毒量高但仍無症狀的個人,以盡量減少未知感染無意中危害公眾健康的情況。
總之,開發一種簡單、快速、方便的ELISA形式具有高靈敏度和特異性的SARS-CoV-2抗體檢測測試以大規模應用於COVID-19的血清監測。此測試基於固相免疫吸附物(包含對應於SARS-CoV-2 M、N和S蛋白片段的抗原性合成胜肽及其免疫功能類似物、分枝和線性形式、綴合物和聚合物)。免疫分析適合與基於分子探針或其他病毒檢測系統結合使用。這種基於胜肽的SARS-CoV-2免疫分析系統的高特異性(其由對SARS-CoV-2抗原性胜肽的選擇所施加的高嚴格性所提供)和高靈敏度(其由具有互補位點特異性抗原決定位的胜肽混合物所提供)導致適合國家流行病學調查的測試。遭受COVID-19爆發或懷疑存在COVID-19的國家可以使用此種測試進行回顧流行病學研究。此外,高特異性的免疫分析可用於區分SARS-CoV-2感染與由無關呼吸道病毒和細菌引起的疾病。本發明的免疫分析可消除COVID-19的不適宜過度報導、減少隔離患者的數量,並減少與遏制疾病傳播的緊急措施相關的其他成本。實施例 5. 用於安全性、免疫原性、毒性和功效研究的動物 a. 天竺鼠:
在成熟,未與抗原接觸或未受抗原刺激的(naïve),成年雄性和雌性Duncan-Hartley天竺鼠(300-350 g/BW)中進行免疫原性研究。實驗中每一組使用至少3隻天竺鼠。
在聯合生物醫學公司(UBI)作為試驗委託者之簽訂合約的動物設施依照經核准的IACUC申請進行涉及Duncan-Hartley天竺鼠(8-12週齡;Covance Research Laboratories, Denver, PA, USA)的試驗計畫。b. 食蟹獼猴:
在UBI作為試驗委託者之簽訂合約的動物設施依照經核准的IACUC申請對成年雄性和雌性猴子(食蟹獼猴,約3-4歲;昭衍(JOINN)實驗室,中國蘇州)進行免疫原性和重複劑量毒性研究。實施例 6. S-RBD 胜肽免疫原結構及其製劑引發的抗體的功能特性評估
進一步測試在天竺鼠中產生的免疫血清或純化的抗S-RBD抗體的能力,包括:(1) 結合具有SEQ ID NO:26、226和227序列的S-RBD胜肽和多胜肽;(2) 在ELISA分析和免疫螢光ACE2表面表現結合分析中抑制S-RBD蛋白與ACE2受體的結合;以及(3) 中和體外目標細胞病毒複製。a. 抗體結合分析
此測定的目的是證明來自接受免疫接種的天竺鼠的免疫血清可識別SARS-CoV-2棘狀(S)蛋白。具體而言,利用配製於0.1 M碳酸鹽緩衝液(pH 9.6)中濃度為1 μg/mL的重組S蛋白於4°C下隔夜反應以塗覆96孔微量盤(MaxiSorp NUNC)。在利用2% BSA阻斷後,加入連續稀釋的抗血清並在37°C下振盪反應1小時,然後利用含有0.1% TWEEN 20的PBS洗滌四次。利用山羊抗天竺鼠IgG H&L (HRP) (ABcam, ab6908)在37°C下反應1小時以檢測結合的抗血清,然後洗滌4次。將受質3’, 3’, 5’, 5’-四甲基聯苯胺(TMB)添加到每個孔洞中,並在37°C下反應20分鐘。利用ELISA微量盤式分析儀(Molecular Device)測量450nm處的吸光值。b. 抗體中和試驗
此測定的目的是證明來自已投予S-RBD胜肽免疫原結構(SEQ ID NOs: 107-144)或S-RBD融合蛋白(分別為SEQ ID NOs: 235和236的S-RBD-sFc和S-RBDa-sFc)的動物的免疫血清的抗體在ACE2受體存在下是否具有中和或受體結合抑制特性。具體而言,利用配製於0.1 M碳酸鹽緩衝液(pH 9.6)中濃度為1 μg/ml的重組S蛋白(SEQ ID NO: 20)或S-RBD蛋白(SEQ ID NO: 226, 227)於4°C下隔夜反應以塗覆96孔微量盤(MaxiSorp NUNC)。在利用2% BSA阻斷後,在S蛋白或S-RBD多胜肽塗覆的96孔微量盤中,將連續稀釋的免疫血清與hACE2在37°C下共培養1小時,然後利用含有0.1% Tween 20的PBS洗滌4次。利用山羊抗HuACE2 Ab (HRP) (R&D System)在37°C下反應1小時以檢測結合的ACE2ECD或ACE2NECD 胜肽(SEQ ID NO: 229-230),然後洗滌4次。將受質3’, 3’, 5’, 5’-四甲基聯苯胺(TMB)添加到每個孔洞中,並在37°C下反應20分鐘。利用ELISA微量盤式分析儀(Molecular Device)測量450nm處的吸光值。此訊號與中和抗體濃度成反比。中和效價可表示為血清稀釋倍數的倒數。c. 基於細胞的中和試驗 ( 流式細胞分析技術 )
透過流式細胞分析技術測量利用針對S-RBD (S-RBD胜肽免疫原結構、S-RBD-sFc融合蛋白或S-RBDa-sFc融合蛋白)的免疫血清對SARS-CoV-2 S蛋白與ACE2表現細胞結合的中和試驗。簡而言之,分離、收集106 個HEK293/ACE2細胞,並利用HBSS (Sigma-Aldrich)洗滌。在存在或不存在連續稀釋的免疫血清的情況下,將來自SARS-CoV-2的S蛋白添加到細胞中,使其終濃度為1 µg/mL,然後在室溫下反應30分鐘。利用HBSS洗滌細胞,並將細胞與以1/50比例稀釋的抗SARS-CoV-2 S蛋白抗體(HRP)在室溫下再反應30分鐘。在洗滌後,利用配製於PBS中的1%甲醛固定細胞,並使用CellQuest軟體在FACSCalibur流式細胞儀(BD Biosciences)進行分析。d. SARS-CoV-2 感染的中和
在利用S-RBD胜肽免疫原結構、S-RBD-sFc融合蛋白或S-RBDa-sFc融合蛋白免疫的天竺鼠的免疫血清在體外試驗中證明可以有效中和hACE2後,免疫血清將在SARS-CoV-2 中和分析中進行測試。
簡而言之,將Vero E6細胞以5 x 104 個細胞/孔洞的量置於96孔組織培養微量盤中並過夜生長。將100微升 (100 µL) 50%組織培養感染劑量的SARS-CoV-2與等體積稀釋的天竺鼠免疫血清混合,並在37℃下反應1小時。將混合物加到單層Vero E6細胞。在感染後第3天記錄細胞病變作用(CPE)。透過 Reed-Muench方法計算中和效價,其代表在50%的孔洞中完全阻止CPE的天竺鼠免疫血清的稀釋倍數。實施例 7. 用於開發 ACE2-SFC 融合蛋白作為抗病毒療法的檢測方法 1. 用於 hACE2 蛋白藥物開發的分析 a. 結合分析
設計以下測定以證明,相較於ACE2-ECD-Fc,hACE2融合蛋白(序列為SEQ ID NOs: 237-238的ACE2-ECD-sFc、ACE2N-ECD-sFc)可以被其天然配體(SARS-CoV-2的S蛋白)識別。具體而言,利用配製於0.1 M碳酸鹽緩衝液(pH 9.6)中濃度為1 μg/ml的重組S蛋白(Sino Biological)於4°C下隔夜反應以塗覆96孔微量盤(MaxiSorp NUNC)。在利用2% BSA阻斷後,將濃度為0.5 µg/mL的ACE蛋白加入並在37°C下振盪反應1小時,然後利用含有0.1% Tween 20的PBS洗滌4次。利用兔抗人類ACE2多株抗體:HRP (My Biosource, CN: MBS7044727)在37°C下反應1小時以檢測結合的ACE2蛋白,然後洗滌4次。將受質3’, 3’, 5’, 5’-四甲基聯苯胺(TMB)添加到每個孔洞中,並在37°C下反應20分鐘。利用ELISA微量盤式分析儀(Molecular Device)測量450nm處的吸光值。b. 阻斷分析
此測定的目的是證明,相較於ACE2-ECD-Fc,S蛋白和ACE2之間的結合是否可以被ACE2融合蛋白(分別為SEQ ID NOs: 237和238的ACE2-ECD-sFc和ACE2N-ECD-sFc)阻斷。具體而言,利用配製於0.1 M碳酸鹽緩衝液(pH 9.6)中濃度為1 μg/ml的ACE2於4°C下隔夜反應以塗覆96孔微量盤(MaxiSorp NUNC)。在利用2% BSA阻斷後,將連續稀釋的重組ACE2蛋白與SARS-CoV-2 S蛋白在37°C下共培養1小時,然後利用含有0.1% Tween 20的PBS洗滌4次。利用抗SARS-CoV-2 S抗體(HRP)在37°C下反應1小時以檢測結合的S蛋白,然後洗滌4次。將受質3’, 3’, 5’, 5’-四甲基聯苯胺(TMB)添加到每個孔洞中,並在37°C下反應20分鐘。利用ELISA微量盤式分析儀(Molecular Device)測量450nm處的吸光值。此訊號與蛋白質稀釋倍數的倒數成正比。c. 基於細胞的中和試驗 ( 流式細胞分析技術 )
透過流式細胞分析技術測量利用ACE2融合蛋白(分別為SEQ ID NOs: 237和238的ACE2-ECD-sFc和ACE2N-ECD-sFc)針對SARS-CoV-2 S蛋白與ACE2表現細胞的結合的中和作用。簡而言之,分離、收集106 個HEK293/ACE2細胞,並利用HBSS (Sigma-Aldrich)洗滌。在存在或不存在連續稀釋的ACE2重組蛋白的情況下,將SARS-CoV-2 S蛋白添加到細胞中,使其終濃度為1 µg/mL,然後在室溫下反應30分鐘。利用HBSS洗滌細胞,並將細胞與以1/50比例稀釋的抗SARS-CoV-2 S Ab (HRP)在室溫下再反應30分鐘。在洗滌後,利用配製於PBS中的1%甲醛固定細胞,並使用CellQuest軟體在FACSCalibur流式細胞儀(BD Biosciences)進行分析。d. 利用 SPR 分析測定親和力
如使用SPR儀器(GE, Biacore X100)的捕獲套件(Capture kit) (GE, BR100839)的使用說明書所示,將S-RBD-Fc固定在CM5感應晶片上。對於一個反應循環而言,恆定水平的重組蛋白最初被捕獲到感應晶片上。隨後,樣本(ACE2-ECD-sFc或ACE2N-ECD-sFc)在每個循環中以不同濃度流過晶片進行結合,然後透過流過運行緩衝液進行解離。最後,利用再生緩衝液使晶片再生以用於下一個反應循環。對於數據分析,利用BIAevaluation軟體分析來自至少五個反應循環的結合模式(或傳感圖)以獲得親和力參數(例如KD、Ka和kd)。實施例 8. CHO 細胞中之 S-RBD 融合蛋白的設計、質體構建和蛋白質表現 1. cDNA 序列的設計
來自SARS-CoV-2的S蛋白的cDNA序列(SEQ ID NO: 239)針對CHO細胞表現進行優化。此核酸編碼如SEQ ID NO: 20所示的S蛋白。透過將SARS-CoV的S蛋白序列(SEQ ID NO: 21)與來自SARS-CoV-2的相對應序列(SEQ ID NO: 20)進行比對以辨識S蛋白的受體結合結構域(RBD)。來自SARS-CoV-2 (aa331-530)的S-RBD多胜肽(胜肽SEQ ID NO: 226;DNA SEQ ID NO: 240)對應SARS-CoV的S-RBD序列,其被證明是以高親和力與hACE2結合的結合結構域。
為了開發保護個體免受COVID-19感染的醫藥組成物,S蛋白的RBD是在免疫後誘導抗體中和SARS-CoV-2的重要目標。為了產生S-RBD-Fc融合蛋白(DNA SEQ ID NO: 246),將編碼SARS-CoV-2的S-RBD (aa331-530)的核酸序列(DNA SEQ ID NO: 240)與免疫球蛋白Fc的單鏈的氨基端融合,如第6A圖所示,質體圖譜如第7圖所示。為了在CHO表現系統避免S-RBD融合蛋白中非關鍵雙硫鍵形成的錯配,S-RBD多胜肽(胺基酸SEQ ID NO: 227;DNA SEQ ID NO: 241)中的Cys391被Ala391替換,且Cys525被Ala525替換,以產生S-RBDa-sFc融合蛋白(胺基酸SEQ ID NO: 236;DNA SEQ ID NO: 247)。
為了開發透過病毒抑制作為被動免疫的中和干預,人類血管收縮素轉化酶Ⅱ(ACE2登錄號NP_001358344;胺基酸SEQ ID NO: 228;DNA SEQ ID NO: 242),其作為SARS-CoV-2的受體以介導病毒進入,是阻斷S蛋白的關鍵靶點。在之前的研究(Sui J., et al. 2004)中,結合親和力為1.70E-9,對應於用於中和的有效mAb。高劑量ACE2的給藥對於治療冠狀病毒感染的患者應該足夠安全,因為一些用於高血壓治療的ACE2臨床試驗證明了非常高劑量給藥的安全性(Arendse, L.B. et al. 2019)。
ACE2的細胞外結構域(胺基酸SEQ ID NO: 229;DNA SEQ ID NO: 243)與單鏈免疫球蛋白Fc (胺基酸SEQ ID NO: 232;DNA SEQ ID NO: 245)融合以產生S-ACE2ECD -Fc融合蛋白(DNA SEQ ID NO: 248),如第6C圖所示,質體圖譜如第8圖所示。為了降低安全性的不確定性,可以在CHO表現系統中生產融合蛋白,此融合蛋白消除在ACE2ECD 融合蛋白中的胜肽酶活性。具體而言,在ACE2的鋅結合結構域(胺基酸SEQ ID NO: 230;DNA SEQ ID NO: 244)中,His374被Asn374替換,且His378被Asn378替換,以產生ACE2NECD 融合蛋白(胺基酸SEQ ID NO: 238;DNA SEQ ID NO: 249)。由於鉸鏈區域沒有形成雙硫鍵,具有sFc的大蛋白融合不會限制與S蛋白的結合以實現最有效的中和效果。單鏈Fc的結構也具有在純化過程中透過蛋白質A結合和洗脫進行純化的優勢。其他利用Cys345-Cys370、Cys388-Cys441和Cys489-Cys497形成的雙硫鍵仍保留在序列設計中以保持構象結合到ACE2。2. 質體構建和蛋白表現 a. 質體構建
為了表現S-RBD-Fc和S-RBDa-Fc融合蛋白,可以在合適的細胞株中產生cDNA序列編碼的這些蛋白質。cDNA片段的氨基端可以添加用於蛋白質分泌的前導信號序列,而羧基端可以連接至單鏈Fc (sFc)或在之後具有凝血酶切割序列的His標籤。cDNA片段可以插入到pND表現載體中,此載體含有用於篩選的新黴素抗性基因和用於基因擴增的dhfr基因。利用PacI/EcoRV限制酶消化載體和cDNA片段,然後連接產生四種表現載體(pS-RBD、pS-RBD-sFc、pS-RBDa和pS-RBDa-sFc)。
為了表現ACE2ECD 和ACE2NECD 融合蛋白,可以在合適的細胞株中產生cDNA序列編碼的這些蛋白質。cDNA片段的羧基端可以連接至單鏈Fc或在之後具有凝血酶切割序列的His標籤。cDNA片段可以插入到pND表現載體中以產生四種表現載體(pACE2-ECD、pACE2-ECD-sFc、pACE2N-ECD、pACE2N-ECD-sFc)。b. 宿主細胞株
CHO-S™細胞株(Gibco, A1134601)是一種由成年中國倉鼠的卵巢所建立的穩定的非整倍體細胞株。宿主細胞株CHO-S™適用於無血清懸浮生長,並與用以實現高轉染效率的FREESTYLE™ MAX試劑相容。CHO-S細胞在添加8 mM麩醯胺酸補充劑(Life Technologies,貨號25030081)和抗細胞結團劑(anti-clumping agent) (Gibco,貨號0010057DG)的DYNAMIS™培養基(Gibco,貨號A26175-01)中培養。
ExpiCHO-S™細胞株(Gibco,貨號A29127)是CHO-S細胞株的克隆衍生物(clonal derivative)。ExpiCHO-S™細胞適合在沒有任何補充物的狀況下在ExpiCHO™表現培養基(Gibco,貨號A29100)中進行高密度懸浮培養。將細胞維持在溫度為37°C含有8% CO2 之加濕空氣的細胞培養箱內。c. 暫時表現
對於暫時表現,使用EXPIFECTAMINE™ CHO試劑盒(Gibco,貨號 A29129)將表現載體分別地轉染到ExpiCHO-S細胞中。在轉染後的第1天,添加EXPIFECTAMINE™ CHO增強劑和第一次饋料,並將細胞從37°C含有8% CO2 之加濕空氣的細胞培養箱轉移到32°C含有5% CO2 之加濕空氣的細胞培養箱中。然後,在轉染後第5天添加第二次饋料,並在轉染後第12-14天收穫細胞培養物。在收穫細胞培養物後,透過離心和0.22-µm過濾使上清液澄清。含有單鏈Fc和His標籤的重組蛋白分別透過蛋白質A層析(Gibco,貨號101006)和Ni-NTA層析(Invitrogen,貨號R90101)純化。d. 穩定轉染和細胞篩選
使用FreeStyle MAX試劑(Gibco,貨號16447500)將表現載體轉染到CHO-S細胞中,然後以篩選物DYNAMIS™培養基(含有8 mM L-麩醯胺酸、1:100稀釋比例的抗細胞結團劑、嘌呤黴素(InvovoGen,貨號ant-pr-1)和MTX (Sigma,貨號M8407))進行培養。經過2輪選擇階段後,得到四個穩定池(1A、1B、2A、2B)。此外,將細胞殖株置於半固體培養基CloneMedia (Molecular Devices,貨號K8700)中,且同時添加檢測抗體以透過高通量系統ClonePixTM2 (CP2)進行殖株篩選和單細胞分離。在沒有篩選物的狀況下,透過在含有8 mM麩醯胺酸和抗細胞結團劑的DYNAMIS™培養基中使用14天單一葡萄糖饋料批次培養對利用CP2挑選的殖株進行篩選。篩選後,通過有限稀釋對具有高產量的殖株進行單細胞分離,並透過利用CloneSelect Imager (Molecular Devices)成像以確認單株性(monoclonality)。e. 單一饋料批次培養 (Simple fed-batch culture)
利用單一饋料批次培養來確定表現重組蛋白的CHO-S細胞的生產力。在125-mL震盪燒瓶中,利用補充有8 mM L-麩醯胺酸和1:100稀釋比例的抗細胞結團劑的30 mL DYNAMIS培養基,將CHO-S細胞以3 x 105 個細胞/mL的量進行接種。將細胞置於37°C含有8% CO2 之加濕空氣的細胞培養箱中培養。在第3天和第5天加入4 g/L的葡萄糖,並在第7天加入6 g/L的葡萄糖。每天收集培養物以確定細胞密度、細胞存活率和生產力,直到細胞存活率降至50%以下或達到培養的第14天。f. 基因轉錄本的正確性
利用RT-PCR證實透過CHO-S表現細胞的基因轉錄的正確性。簡而言之,使用PURELINK™ RNA Mini試劑組(Invitrogen,貨號12183018A)分離細胞的總RNA。然後,使用Maxima H Minus First Strand cDNA Synthesis試劑盒(Thermo,貨號K1652)從總RNA反轉錄第一股cDNA。純化重組蛋白的cDNA,並將其連接到yT&A載體(Yeastern Biotech Co., Ltd,貨號YC203)中。最後,透過DNA定序確認cDNA序列。g. 表現細胞的穩定性
細胞以1~2 x 105 個細胞/mL的量進行接種,並在無選擇物試劑的培養基中培養60代。在此期間,一旦培養物的細胞密度達到1.0 x 106 個細胞/mL或更高時,將再次以1~2 x 105 個細胞/mL的細胞密度對培養物進行繼代。在培養60代後,將細胞性能和生產力與使用單一葡萄糖饋料批次培養剛剛從LMCB中解凍的細胞進行比較。在細胞中產物生產力的穩定性的標準是培養60代後效價大於70%。實施例 9. sFc 融合蛋白和帶 His 標籤的蛋白質的純化和生物化學特徵 1. sFc 融合蛋白的純化
利用蛋白質A-瓊脂糖層析從收穫的細胞培養條件培養基中純化所有sFc融合蛋白。利用蛋白質A親和管柱捕獲sFc融合蛋白。在洗滌和洗脫後,將蛋白溶液的pH調至3.5。然後透過添加1M Tris鹼緩衝液(pH 10.8)將蛋白質溶液中和至pH 6.0。透過聚丙烯醯胺膠體電泳確定融合蛋白的純度。根據在280 nm波長處的UV吸光度測量蛋白質濃度。2. 帶有 His 標籤蛋白
根據使用說明書將條件培養基與Ni-NTA樹脂混合以純化融合蛋白。帶有His標籤的蛋白質於pH 8.0的含有50 mmol·L−1磷酸二氫鈉、300 mmol·L−1氯化鈉和250 mmol·L−1咪唑的洗脫液中洗脫。洗脫液經Amicon YM-5濃縮後通過Sephadex G-75管柱除去不純物,且利用Sephadex G-25管柱移除鹽類;然後將收集的蛋白質溶液冷凍乾燥。透過聚丙烯醯胺膠體電泳確定帶有His標籤的蛋白的純度。根據在280 nm波長處的UV吸光度測量蛋白質濃度。3. sFc 融合蛋白和 His 標記蛋白的生化特徵,其用於 (1) 用以測量於 SARS-CoV-2 感染、康復或接種疫苗的個體中的中和抗體的高精密度 ELISA (2) 用以預防 SARS-CoV-2 感染的免疫原,以及 (3) 一種用於治療 COVID-19 的長效抗病毒蛋白
根據上述方法製備和純化S1-RBD-His (SEQ ID NO: 335)、S1-RBD-sFc (SEQ ID NO: 235)和ACE2-ECD-sFc (SEQ ID NO: 237)以作為(1) 於高精密度ELISA中的試劑,以於感染、康復的COVID-19患者或於SARS-CoV-2疫苗接種個體中測量中和抗體,(2) 於用於預防SARS-CoV-2感染之高精密度專門設計的疫苗製劑中的代表性免疫原,以及(3) 用於COVID-19治療的長效抗病毒蛋白。
在純化sFc融合蛋白和His標籤蛋白後,在非還原和還原條件下使用庫馬斯藍染色透過SDS-PAGE確定蛋白質的純度(第9-11圖)。第9圖是顯示在非還原條件(第2泳道)和還原條件(第3泳道)下S1-RBD-sFc蛋白的高度純化製劑的影像。第10圖是顯示在非還原條件(第2泳道)和還原條件(第3泳道)下S1-RBD-His蛋白的高度純化製劑的影像。第11圖是顯示在非還原條件(第2泳道)和還原條件(第3泳道)下ACE2-ECD-sFc蛋白的高度純化製劑的影像。
透過質譜分析和糖基化分析進一步描述純化的蛋白質的特徵。a. S1-RBD-His–LC 質譜分析
透過LC質譜分析進一步描述純化的S1-RBD-His蛋白的特徵。當未考慮任何轉譯後修飾(包括糖基化)時,S1-RBD-His蛋白的理論分子量(基於其胺基酸序列)為24,100.96 Da。第12圖顯示了一組具有介於26,783 Da至28,932 Da之間的分子量的分子種類,其主峰位於27,390.89 Da,表明此蛋白質被糖基化。b. S-RBD-sFc-LC 質譜分析和糖基化分析 i. 糖基化
醣蛋白可以有兩種類型的糖基化連接:N-連接糖基化和O-連接糖基化。N-連接糖基化通常發生在序列Asn-Xaa-Ser/Thr中的天門冬醯胺酸(Asn)殘基上,其中 Xaa是除Pro之外的任意胺基酸殘基,且碳水化合物部分透過位於天門冬醯胺酸側鏈上的NH2 連接在蛋白質上。O-連接糖基化則是利用絲胺酸或蘇胺酸殘基的側鏈OH基團。
通過胰蛋白酶消化然後進行LC-MS和MS/MS分析,以研究S-RBD-sFc的糖基化位點(第13和14圖)。第13圖顯示S-RBD-sFc在位於胺基酸位置13 (N13)處的精胺酸殘基上具有一個N-連接糖基化位點,且在胺基酸位置211 (S211)和224 (S224)處的絲胺酸殘基上具有O-糖基化位點。ii. N- 糖基化
透過質譜(MS)光譜技術分析S-RBD-sFc的N-連接聚糖結構。簡而言之,PNGase F用於從純化的蛋白質中釋放N-寡糖。然後利用2-氨基苯甲醯胺(2-AB)進一步標記N-連接聚醣的部分以增強質譜中的聚醣訊號。最後,透過帶有螢光檢測器的正相HPLC (用以映射(mapping))以及質譜(用以進行結構鑑定)研究共軛的寡糖。第13圖顯示在S-RBD-sFc蛋白上鑑定了10個N-連接聚醣,主要的N-聚醣是G0F和G0F+N。將S-RBD-sFc的N-連接聚醣的碳水化合物結構總結在表14中。iii. O- 糖基化
透過胰蛋白酶消化然後進行質譜光譜技術分析S-RBD-sFc的O-連接聚醣。在胰蛋白酶消化後,收集含有O-連接聚醣的峰,並透過質譜測定其分子量。第13圖顯示在S-RBD-sFc蛋白上鑑定了6個O-連接聚醣。S-RBD-sFc的O-連接聚醣的碳水化合物結構總結在表15中。iv. LC 質譜分析
透過LC質譜分析描述純化的S1-RBD-sFc蛋白的特徵。S1-RBD-sFc蛋白基於其胺基酸序列的理論分子量為48,347.04 Da。第14圖顯示S1-RBD-sFc蛋白的質譜概況,主峰位於49,984.51 Da。於理論分子量與利用LC質譜觀察到的重量之間的差異為1,637.47 Da,這表明純化的S-RBD-sFc蛋白含有N-及/或O-聚醣,如圖所示。c. ACE2-ECD-sFc-LC 質譜分析和糖基化分析 i. 糖基化
通過胰蛋白酶消化然後進行LC-MS和MS/MS分析,以研究ACE2-ECD-sFc的糖基化位點。第15圖顯示ACE2-ECD-sFc蛋白具有七個N-連接糖基化位點(N53、N90、N103、N322、N432、N546、N690),以及七個O-連接糖基化位點(S721、T730、S740、S744、T748、S751、S764)。ii. N- 糖基化
透過質譜(MS)光譜技術分析ACE2-ECD-sFc的N-連接聚糖結構。簡而言之,PNGase F用於從蛋白質中釋放N-寡糖。然後利用2-氨基苯甲醯胺(2-AB)進一步標記N-連接聚醣的部分以增強質譜中的聚醣訊號。最後,透過帶有螢光檢測器的正相HPLC (用以映射)以及質譜(用以進行結構鑑定)研究共軛的寡糖。第15圖顯示在ACE2-ECD-sFc蛋白上鑑定了17個N-連接聚醣,主要的N-聚醣是G0F和G0F+N。將ACE2-ECD-sFc的N-連接聚醣的碳水化合物結構總結在表16中。iii. O- 糖基化
透過胰蛋白酶消化然後進行質譜光譜技術分析ACE2-ECD-sFc的O-連接聚醣結構。在胰蛋白酶消化後,收集含有O-連接聚醣的峰,並透過質譜測定其分子量。第15圖顯示鑑定了8個O-連接聚醣。ACE2-ECD-sFc的O-連接聚醣的碳水化合物結構總結在表17中。iv. LC 質譜分析
透過LC質譜分析描述純化的ACE2-ECD-sFc蛋白的特徵。ACE2-ECD-sFc蛋白基於其胺基酸序列的理論分子量為111,234.70 Da。第16圖顯示ACE2-ECD-sFc蛋白的質譜概況,主峰位於117,748.534 Da。於理論分子量與利用LC質譜觀察到的重量之間的差異為1,637.47 Da,這表明純化的ACE2-ECD-sFc蛋白含有N-及/或O-聚醣。d. S1-RBD-sFc 的序列和結構
S1-RBD-sFc融合蛋白(SEQ ID NO: 235)的序列和結構如第52A圖所示。S1-RBD-sFc蛋白是一種醣蛋白,由一個N-連接聚醣(Asn13)和兩個O-連接聚醣(Ser211和Ser224)組成。陰影部分(aa1 – aa200)代表SARS-CoV-2的S1-RBD部分(SEQ ID NO: 226),方框部分(aa201 – aa215)代表突變的鉸鏈區域(SEQ ID NO: 188),而未加陰影/未加方框的部分 (aa216 – aa431)則代表IgG1的sFc片段(SEQ ID NO: 232)。以底線標示在IgGl的單鏈Fc中以His297取代Asn297 (EU索引編號) (即,第52A圖中所示的SEQ ID NO: 235中的His282)。S1-RBD-sFc蛋白的分子量約為50 kDa,含有431個胺基酸殘基,其包括12個半胱胺酸殘基(Cys6、Cys31、Cys49、Cys61、Cys102、Cys150、Cys158、Cys195、Cys246、Cys306、Cys352和Cys410),形成6對雙硫鍵(Cys6-Cys31、Cys49-Cys102、Cys61-Cys195、Cys150-Cys158、Cys246-Cys306和Cys352- Cys410),雙硫鍵如第52A圖中的連接線所示。將S1-RBD-sFc的雙硫鍵總結顯示在第52B圖中。
在RBD結構域上有一個N-糖基化位點Asn13,且在sFc片段上有兩個O-糖基化位點Ser211和Ser224。在第52A圖所示的殘基上方,N-糖基化位點以星號(*)顯示,而兩個O-糖基化位點以加號(+)顯示。IgG Fc片段在保留的天門冬醯胺酸殘基Asn297 (EU索引編號)上的糖基化是Fc介導的效應子功能(例如補體依賴性細胞毒殺作用(CDC)和抗體依賴性細胞介導的細胞毒殺作用(ADCC))的要素。設計S1-RBD-sFc中的Fc片段以利用蛋白質A親和層析進行純化。此外,透過突變為His以移除位於重鏈Asn297處的糖基化位點(N297H – EU編號,在S1-RBD-sFc蛋白為N282H),以防止透過Fc介導的效應子功能耗竭目標hACE2。e. S1-RBD-sFc hACE2 的結合活性
由於SARS-CoV-2的RBD與hACE2結合,因此測量與hACE2的結合是證明S1-RBD-Fc處於代表SARS-CoV-2棘狀蛋白的結構中的相關方法。在hACE2 ELISA中測試疫苗的結合活性,並證明其以8.477 ng/mL的EC50 結合hACE2,其表明高親和力(第52C圖)。實施例 10. 來自 SARS-CoV-2 核鞘 (N) 、棘狀 (S) 、膜 (M) 、外套膜 (E) 和開放閱讀框 9b (ORF9b) 蛋白的抗原性胜肽的設計和鑑定以用作免疫分析中的免疫吸附物 1. 來自 N S M E ORF9b 蛋白的胜肽抗原
合成了超過25種精心設計的衍生自SARS-CoV-2核鞘(N)蛋白(SEQ ID NO: 6,表2)的胜肽,以用於鑑定適用於製備SARS-CoV-2抗原混合物的抗原性胜肽,其在用於檢測感染個體抗體的各種免疫分析中作為免疫吸附物。抗原性胜肽的胺基酸序列如表13 (SEQ ID NOs: 253至278)所示,而胜肽在全長N蛋白中的相對位置如第17圖所示。
合成了具有衍生自SARS-CoV-2棘狀(S)蛋白(SEQ ID NO: 20,表3)序列的超過50種精心設計的胜肽,以用於鑑定適用於製備SARS-CoV-2抗原混合物的抗原性胜肽,其在用於檢測感染個體抗體的各種免疫分析中作為免疫吸附物。抗原性胜肽的胺基酸序列如表13 (SEQ ID NOs: 279至327)所示,而胜肽在全長S蛋白中的相對位置如第18圖所示。
合成了具有衍生自SARS-CoV-2膜(M)蛋白(SEQ ID NO: 1,表1)的暴露區域的序列的3種精心設計的胜肽,以用於鑑定適用於製備SARS-CoV-2抗原混合物的抗原性胜肽,其在用於檢測感染個體抗體的各種免疫分析中作為免疫吸附物。抗原性胜肽的胺基酸序列如表1和表13 (SEQ ID NOs:4、5、250和251)所示,而胜肽在全長M蛋白中的相對位置如第19圖所示。
合成了具有衍生自兩個小SARS-CoV-2蛋白(外套膜(E)蛋白和ORF9b蛋白)的序列的8種精心設計的胜肽,以用於鑑定適用於製備SARS-CoV-2抗原混合物的抗原性胜肽,其在用於檢測感染個體抗體的各種免疫分析中作為免疫吸附物。抗原性胜肽的胺基酸序列如表13 (針對E蛋白的是SEQ ID NOs: 252 ,而針對ORF9b蛋白的是SEQ ID NOs: 328-334)所示,而胜肽在全長E蛋白和ORF9b蛋白中的相對位置如第20和21圖所示。2. 對於胜肽抗原作為 ELISA 中的免疫吸附物進行評估
將來自經臨床診斷和PCR檢測證實COVID-19患者的一組10個代表性血清用於評估胜肽抗原的相對抗原性。
第22圖顯示在N蛋白內鑑定了高抗原性區域,其包括(a) 胺基酸109至195,其涵蓋部分氨基端結構域(NTD)並延伸至具有富含SR基序的連接子區域(SEQ ID NOs: 259、261、263和265);(b) 胺基酸213至266 (SEQ ID NOs: 269和270);以及(c) 位於涵蓋NLS和IDR區域的羧基端的胺基酸355-419 (SEQ ID NO: 18)。
第23圖顯示在S蛋白內鑑定出高抗原性區域,包括(a) 胺基酸534至588 (SEQ ID NO: 281),其涵蓋緊鄰RBM的區域; (b) 胺基酸785至839 (SEQ ID NO: 37和38),其涵蓋S2次單位的FP區域;(c) 胺基酸928至1015 (SEQ ID NO: 308),其涵蓋S2次單位的HR1區域;以及(d) 胺基酸1104至1183 (SEQ ID NOs: 321- 324),其涵蓋S2次單位的部分HR2區域。第24圖顯示在S蛋白3D結構中四個抗原性位點(SEQ ID NOs: 38、281、308和322)的定位。如左側小圖所示,兩種抗原性胜肽(SEQ ID NOs: 288和38)在S蛋白表面以球狀結構域形式暴露。一個抗原性位點(SEQ ID NO:308)位於延長的螺旋環狀結構內,如右側小圖所示。如左側和右側小圖所示,第四種抗原性胜肽(SEQ ID No: 322)位於羧基端結構域的周圍。
第25-27圖顯示分別從E蛋白(SEQ ID NO: 251)、M蛋白(SEQ ID NO: 5)和ORF9b蛋白(SEQ ID NO: 27)鑑定出的弱抗原性區域。
可以配製來自N、S和M區域的抗原性胜肽混合物作為固相免疫吸附物,其與來自感染SARS-CoV-2的個體的抗體具有最佳結合。來自N、S和M蛋白的抗原性胜肽混合物可用於靈敏度和特異性的免疫分析,用於檢測針對SARS-CoV-2的抗體和進行SARS-CoV-2感染的血清學監測。
第28圖顯示SARS-CoV-2 ELISA對樣本的分析靈敏度,樣本是由四種代表性PCR陽性COVID-19患者血清(LDB、SR25、DB20和A29)中獲得。此圖顯示高分析靈敏度,透過代表性SARS-CoV-2 ELISA (其以具有衍生自M、N和S蛋白的SEQ ID Nos: 5、18、38、261、266、281和322序列的抗原性胜肽的混合物配製),證實對高達1:640至高達>1:2560的稀釋倍數的陽性訊號。
可以在ELISA中使用個別胜肽抗原作為免疫吸附物針對每個患者獲得特定的血清反應性模式,以確定個體在SARS-CoV-2感染後的特徵抗體,如第29和30圖所示。這種對每個個別患者所產生的抗體的詳細評估將與傳統檢測形成鮮明對比,傳統檢測只能給出簡單的陽性或陰性測定,而沒有進一步的確認性特徵來確保血清陽性,這通常可能代表由抗體與表達宿主細胞抗原的蛋白質或其他干擾因素的交叉反應引起的偽陽性反應 .實施例 11. SARS-CoV-2 ELISA 採用衍生自 SARS-CoV-2 抗原決定位的合成肽抗原來檢測人類血清或血漿中針對 SARS-CoV-2 的抗體
為應對COVID-19的全球大流行,開發了一種血液篩查檢測試劑盒使用SARS-CoV2抗原性胜肽以檢測針對新型冠狀病毒SARS-CoV-2的抗體。
吸光度數值大於或等於臨界值的樣本被定義為“初始反應性(initially reactive)”。初始反應性的樣本應以重複方式再測試。在完全一樣(duplicate)的重複測試中均未發生反應的樣本被視為對SARS-CoV-2抗體“無反應性(nonreactive)”。在一項或兩項重複測試中具有反應性的初始反應性樣本被認為對SARS-CoV-2抗體具有“重複有反應性(repeatably reactive)”。
SARS-CoV-2 ELISA採用與反應微量盤孔洞結合的免疫吸附物,此反應微量盤由合成胜肽組成,此合成胜肽可捕獲對SARS-CoV-2的棘狀(S)、膜(M)和核鞘(N)蛋白的高抗原片段具有特異性的抗體。在測定過程中,將稀釋的陰性對照和樣本加入反應微量盤的孔洞中並進行反應。如果存在SARS-CoV-2特異性抗體,其將與免疫吸附物結合。在徹底清洗反應微量盤的孔洞以移除未結合的抗體和其他血清成分後,將對人類IgG的Fc部分具有特異性的辣根過氧化物酶共軛山羊抗人類IgG抗體的標準製劑添加到每個孔洞中。然後使此共軛物製劑與捕獲的抗體反應。在再次徹底清洗孔洞以移除未結合的辣根過氧化物酶共軛抗體之後,加入含有過氧化氫和3’, 3’, 5’, 5’-四甲基聯苯胺(TMB)的受質溶液。在大多數情況下,如果有的話,藍色呈色與存在的SARS-CoV-2特異性抗體的量成比例,透過額外的免疫分析(例如IFA)和更具體的測試(例如PCR)來研究重複有反應性的樣本是合適的,其針對SARS-CoV-2特定基因產物能夠識別抗原。從SARS-CoV-2大流行時間之前幾年收集的血清和血漿樣本中,在美國供血者之間缺乏可檢測的反應性,這表明此檢測具有區分SARS-CoV-2感染與其他人類冠狀病毒感染的特異性。與其他測試相比,本揭露的合成抗原提供高度標準化、不含生物危害試劑和易於擴大生產的優點。此外,ELISA形式的測試可以很容易地自動化進行大規模篩選。基於高度特異性胜肽的SARS-CoV2抗體檢測是開展廣泛回顧性監測的便利手段。在第3、8和10天對一名PCR確診的COVID-19患者(NTUH,台灣)進行了一系列的3次血清轉化採血測試。症狀出現後第10天是最早的時間點利用SARS-CoV-2 ELISA獲得陽性訊號。如以下在研究1和2中報告,測試了幾個額外的血清轉化採血以及從症狀出現的感染早期的靈敏度。1. 測定特異性和靈敏度的評估
在研究1中,首先利用血清樣本/血漿樣本測試SARS-CoV-2 ELISA,樣本收集自:(1) 已知患有與SARS-CoV-2無關的其他病毒感染的人(台灣和美國);(2) 一組分群,其為接受常規健康檢查的員工,以及於2007年收集的正常人血漿(NHP)。使用大量非COVID-19樣本(n=922),對這些樣本進行測試以評估檢測特異性,以確立用以確定合適的檢測臨界值的基本原理。如第31圖所示,利用此分析,與SARS-CoV-2感染無關的922個樣本均具有非常低的OD讀數。a. 研究 1 :性能特徵:對其他病毒感染缺乏交叉反應性:
SARS-CoV-2 ELISA的檢測結果來自已知患有其他病毒感染的患者的血清樣本,包括來自 HIV (51個樣本)、HBV (360個樣本)、HCV (92個樣本)陽性患者,以及具有NL63 (2個樣本)和HKU1 (1個樣本)病毒株的先前冠狀病毒感染的患者,如表18所示。在這些樣本中的任何一個都沒有觀察到交叉反應性,因為所有測試的樣本的OD讀數都接近對照組。來自一組分群(接受常規健康檢查的員工,以及於2007年收集的正常人血漿(NHP))的所有樣本都獲得了類似的接近對照組的OD讀數。b. 確定基於 NRC+0.2 SARS-CoV-2 ELISA 的臨界值
基於利用SARS-CoV-2 ELISA測試的922個樣本的OD讀數以及以下討論的基本原理,揭露的SARS-CoV-2 ELISA的臨界值設置為NRC+0.2 (即,對於每次免疫分析運行利用試劑盒隨附的非反應性對照(NRC)的三個OD450nm讀數的平均值加上0.2個單位)。NRC+0.2的臨界值允許最佳結果,其SARS-CoV-2 ELISA對PCR陽性確診COVID-19患者的檢測具有最大靈敏度,並且在一般人群中具有100%的特異性。表19報告了用於測試正常人血漿、正常人血清以及來自其他(即非SARS-CoV-2)病毒感染個體的血清或血漿樣本從所有測試運行收集NRC的平均OD450nm讀數。透過微量盤運行的NRC平均值始終接近正常人血漿的平均值,如第31圖所示。當跨測試站點檢查來自患有其他(即非SARS-CoV-2)病毒感染之個體的正常人血漿/血清和血清/血漿樣本的標準偏差(SD)時,標準偏差(SD)範圍介於0.006至0.020 (表19)。將臨界值設置為NRCs的平均值+0.2單位以提供一個高於NRCs平均值+4SD (0.020x4=0.080)的條形,其允許99.99%的信賴水平(z-值 = 3.981),以用於陰性預測值。此外,對於處於SARS-CoV-2感染風高險的個人(例如,醫院醫護人員和公共服務提供者等)(他們更有可能在血清轉化過程中轉為陽性),NRC+2單位的臨界值提供在“平均NRC +0.12”到“平均NRC +0.2”之間建立灰色區域的空間。c. 研究 1 :性能特徵:對於在所有 COVID-19 住院患者檢測血清轉化具有 100% 的靈敏度
SARS-CoV-2 ELISA (血清/血漿)的檢測結果的評估是基於:(1) 症狀出現後<10天,主要是在患者入院時收集的樣本;(2) 症狀出現後>10天,對於在醫院治療期間的患者;(3) 出院日的患者;以及(4) 出院後14天複診的患者,如表20和第32圖所示。
本研究1的結果顯示(1) 入院時收集的樣本(n=10)的靈敏度為0%,(2) 住院期間所有血清轉化(23個中的23個)為陽性,從而產生100%的測試靈敏度,(3) 出院當天全部呈現陽性反應(5個中的5個),從而產生100%的靈敏度,以及(4) 全部在出院後14天複診時顯示陽性反應,從而產生100%的靈敏度。研究1測試的總體靈敏度為78.2% (36/46) (或37/47=78.7%,一個樣本是在不同時間點從一名患者身上採集兩次)。
總之,如第33圖所示,對於研究1中測試的所有樣本繪製了基於NRC+0.2的臨界值計算的S/C比值的分佈。從與SARS-CoV-2無關感染的個體收集的922個樣本中沒有一個透過此ELISA證明了任何陽性反應性。表21列出所有樣本的匯總結果,樣本來自與SARS-CoV-2無關感染的個體,以及46名COVID-19確診患者(樣本是在症狀出現後10天收集)。
揭露的SARS-CoV-2 ELISA為症狀出現後10天的住院的COVID-19患者提供了100%的總體特異性和100%的靈敏度。當將所有46名COVID-19確診患者(包括從患者症狀開始時收集的樣本)都考慮在內時所獲得的總體靈敏度為78.2%。這些陽性樣本可以透過相關實施例中描述的其他血清學測定進一步表徵SARS-CoV-2反應性抗體的抗原性概況,以確認陽性和進一步評估免疫狀態(包括可以針對SARS-CoV-2展現中和活性的抗體量)。d. 研究 2 :性能特徵:於 COVID-19 患者的血清轉化的靈敏度
使用揭露的SARS-CoV-2 ELISA對來自17名PCR確診和住院的COVID-19患者的總共37份樣本進行測試。提供在治療期間與症狀發作相關的血清採集日期的詳細資訊,如表22所示。
SARS-CoV-2 ELISA (血清/血漿)的檢測結果的評估是根據(1) 住院後<7天,(2) 住院後7-14天,以及(3) 住院後>14天,如表23所示。結果顯示,症狀出現後<7天的樣本的相對特異性為25%;症狀出現後7-14天為63.6%;而出院後>14天則為100%。所有37個樣本的總體靈敏度為81.1% (30/37),並且在此分群中在症狀出現後>14天的陽性預測值的準確度為100%。e. 結論
揭露的SARS-CoV-2 ELISA篩選試驗是一種高度靈敏和特異的試驗,能夠檢測人類血清或血漿中的低水平抗體。此分析的特點是: ●最早在症狀出現後2天(研究2中ID No. 11的一名患者,表22),在人類血清轉化樣本中能夠檢測到SARS-CoV-2抗體。且通常而言,研究1和研究2分別地在症狀出現後7至10天和症狀後第10至14天具有陽性預測值為100%。研究1和2的總體靈敏度分別為78.2%和81.1%。 ●從正常血漿捐獻者和在2020年之前收集的接受健康檢查的員工的分群中收集的血清/血漿樣本中,SARS-CoV-2的特異性為100%。 ●在2020年之前收集的來自其他病毒(例如HCV、HBV、HIV,包括其他冠狀病毒(N-63、HKU))感染個體的樣本未發現交叉反應性。2. 特別注意事項
在檢測個別受試者的血漿或血清中是否存在針對SARS-CoV-2的抗體時,必須嚴格遵守揭露的SARS-CoV-2 ELISA程序和結果解釋部分(如上所述)。由於SARS-CoV-2 ELISA是設計以測試血清或血漿的個體單位,因此有關其解釋的數據是來自測試個體樣本。目前沒有足夠的數據來解釋對其他體液進行的測試,且不建議對這些樣本進行測試。
使用揭露的SARS-CoV-2 ELISA發現其血清或血漿呈陽性的人被假定已感染了此病毒。透過揭露的SARS-CoV-2 ELISA檢測呈陽性的個體應使用其他分子檢測(例如RT-PCR)進行測試,以確定此個體是否具有能夠傳染給他人的活動性感染症(active infection)。還應提供適當的諮詢和醫學評估。此類評估應被視為SARS-CoV-2抗體檢測的重要組成部分,並應包括對新抽取樣本的檢測結果確認。
由SARS-CoV-2引起的COVID-19是一種臨床綜合癥,其診斷只能在臨床上確立。揭露的SARS-CoV-2 ELISA檢測不能單獨用於診斷活動性SARS-CoV-2感染症,即使推薦的反應性樣本調查證實存在SARS-CoV-2抗體。血清學調查中任何時候的陰性檢測結果並不排除將來接觸或感染SARS-CoV-2的可能性。3. UBI® SARS-CoV-2 ELISA 的性能評估 a. 交叉反應性
UBI® SARS-CoV-2 ELISA在一項臨床一致性研究(如下所述)中進行了評估,結果顯示100% (154/154)的陰性一致性百分比(negative percent agreement)。此外,使用具有已知針對呼吸道融合病毒(10)和ANA (6)抗體的血清檢查非SARS-CoV-2特異性抗體的交叉反應性。沒有觀察到干擾。b. 臨床一致性研究
進行研究以確定UBI® SARS-CoV-2 ELISA檢測的臨床性能。
為了估計UBI® SARS-CoV-2 ELISA與PCR比較器(comparator)之間的陽性一致性百分比(positive percent agreement,PPA),從透過聚合酶鏈反應(PCR)方法檢測出對SARS-CoV-2呈現陽性且出現COVID-19症狀的95名受試者收集了100份血清和5份EDTA血漿樣本。每個樣本都使用UBI® SARS-CoV-2 ELISA進行測試。
為了估計陰性一致性百分比(NPA),從154名推定為SARS-CoV-2陰性的受試者中收集62份血清和92份EDTA血漿樣本。所有154個樣本都是在COVID爆發之前收集的。每個樣本都使用UBI® SARS-CoV-2 ELISA進行測試。兩組的結果列於表24和25。c. 獨立臨床一致性驗證研究
UBI® SARS-CoV-2 ELISA於2020年6月17日和9月1日在由國家癌症研究所(NCI)資助的弗雷德里克國家癌症研究實驗室(FNLCR)進行了測試。此測試針對一組先前冷凍的樣本進行了驗證,此樣本由58份SARS-CoV-2抗體陽性血清樣本和97份抗體陰性血清和血漿樣本組成。58個抗體陽性樣本中的每一個都透過核酸擴增試驗(NAAT)進行了確認,並且確認了所有58個樣本中都存在IgM和IgG抗體。在使用UBI SARS-CoV-2 ELISA進行測試之前,透過幾種正交方法確認了樣本中存在抗體。IgM和IgG抗體的存在透過一種或多種比較器方法得到確認。選擇不同抗體效價的抗體陽性樣本。
所有抗體陰性樣本均在2020年之前收集,樣本包括:i) 不考慮臨床狀態選擇的八十七 (87) 個樣本,為“陰性”以及ii) 從HIV+患者的銀行血清中選擇的十 (10)個樣本,為“HIV+”。測試由一名操作員使用一批UBI SARS-CoV-2 ELISA進行。根據CLSI EP12-A2 (2008)中描述的評分方法計算靈敏度和特異性的信賴區間。
為了評估與HIV+的交叉反應性,評估了具有HIV抗體陰性樣本中增加的偽陽性率是否在統計學上高於無HIV抗體陰性樣本中的偽陽性率(為此,根據 Altman描述的評分方法計算了假陽性率差異的信賴區間)。研究結果和匯總統計數據顯示於表26和27。
注意到本研究的以下侷限性: ●樣本不是隨機選擇的,且靈敏度和特異性估計值可能無法反映設備的實際性能。 ●這些結果僅基於血清和血漿樣本,可能不代表其他樣本類型(例如全血,包括指尖血)的性能。 ●在此組中的樣本數量是最小可行樣本量,其仍然為測試性能提供合理的估計和信賴區間,並且所使用的樣本可能不能代表在患者群體中觀察到的抗體概況。d. 基質等效性 (Matrix Equivalency)
使用來自五名健康供體的患者匹配的血清和血漿樣本進行基質等效性研究。將血漿樣本抽取至含有肝素鈉或K2 EDTA作為抗凝血劑的小瓶中。使用UBI SARS-CoV-2 ELISA測試時,匹配的樣本呈陰性。然後將樣本對加入SARS-CoV-2 IgG陽性樣本以獲得三個濃度,並以重複方式測試。結果顯示每種基質的陽性和陰性訊號100%一致,表明基質反應性對使用UBI® SARS-CoV2 ELISA檢測血清或血漿樣本中的SARS-CoV-2 IgG而言沒有影響。
此研究表明,使用血清、肝素鈉血漿和K2 EDTA血漿樣本,UBI® SARS-CoV-2 ELISA的性能是相等的。e. 分類特異性 (Class Specificity)
使用UBI® SARS-CoV-2 ELISA測試了八份血清樣本,其對於SARS-CoV-2的IgG和IgM抗體呈陽性。然後利用DTT處理樣本以破壞IgM抗體,並利用UBI® SARS-CoV-2 ELISA重新測試。所有8個樣本的結果在DTT處理前和後均為陽性,表明對人類IgG同型具有分類特異性反應性。UBI® SARS-CoV-2 ELISA檢測僅對人類 IgG同型顯示分類特異性反應性。未觀察到與人類IgM的結合交互作用。實施例 12. 用於透過抑制 S1 ACE2 結合來測量中和抗體的 ELISA 的開發
基於ELISA的S1-RBD和ACE2結合測定的詳細程序在第34圖的底部說明。具體而言,ELISA微量盤使用ACE2 ECD-sFc塗覆,各種S1-RBD蛋白作為示踪劑,單獨HRP作為對照示踪劑。在本研究中,評估了S1-RBD-His、S1-RBD-His-HRP、S1-RBD-sFc-HRP和單獨HRP與塗覆在ELISA微量盤上的ACE2 ECD-sFc的結合能力。第34圖顯示S1-RBD-His、S1-RBD-His-HRP和S1-RBD-sFc-HRP能夠與塗覆在ELISA微量盤上的ACE2 ECD-sFc結合,EC50 值分別為0.40 µg/mL、0.19 µg/mL和0.27 µg/mL。單獨的HPR則不能與ACE2 ECD-sFc結合。
接下來,對於第34圖中描述的結合測定進行修改,修改了在結合步驟之前的步驟,如第35圖底部所示。具體而言,在將S1-RBD-His-HRP蛋白加入塗覆有ACE2 ECD-sFc的ELISA微量盤之前,將S1-RBD-His-HRP蛋白與稀釋的免疫血清 (5 wpi) (免疫血清含有針對S1-RBD-sFc的抗體)混合並培養。添加此額外步驟以確定針對S1-RBD-sFc產生的抗體是否可以抑制S1-RBD-His-HRP蛋白與ACE2 ECD-sFc的結合。
第35圖顯示利用來自以S1-RBD-sFc免疫接種的天竺鼠的免疫血清對S1-RBD-His-HRP結合ACE2 ECD-sF的抑制呈現稀釋依賴性降低,範圍從於1:10稀釋時的>95%至約<10%,具有EC50 約為3.5 Log10 。可調整結合的完整信號以允許靈敏檢測能夠干擾並因此抑制S1-RBD與ACE2受體結合的抗體量。可以為這種簡化形式的ELISA建立標準化檢測,以測量在COVID-19患者、感染和康復個體或接受S1-RBD (包含疫苗)的個體中存在的血清中和抗體的程度。
透過抗體檢測分析發現對於針對SARS-CoV-2抗體呈陽性的任何患者樣本都可以使用這種“中和”ELISA進行進一步測試,以確定患者是否產生了能夠抑制S1-RBD與 ACE2結合的抗體。這種中和ELISA可用作患者預防SARS-CoV-2再次感染能力的預測指標。實施例 13. 含有 S1-RBD 融合蛋白的針對 SARS-CoV-2 感染的高精密度專門設計的疫苗 1. 總體設計
針對病毒感染的有效免疫反應取決於體液免疫和細胞免疫。更具體地說,高精密度專門設計的預防性疫苗(使用專門設計的免疫原,免疫原為胜肽或蛋白質,以作為活性藥物成分)具有潛力用以(1) 透過使用位於病毒蛋白上的B細胞抗原決定位誘導中和抗體,此病毒蛋白涉及病毒與其位於目標細胞上的受體的結合;(2) 透過使用內源性Th和CTL抗原決定位誘導細胞反應(細胞反應包括初級和記憶B細胞以及CD8+ T細胞反應,以抵抗入侵的病毒抗原。此種疫苗可以與佐劑(例如ADJUPHOS、MONTANIDE ISA、CpG等)和其他賦形劑一起配製,以增強高精密度專門設計的免疫原的免疫原性。
代表性專門設計的COVID-19疫苗採用表現S-RBD-sFc蛋白(胺基酸序列為SEQ ID NO: 235,而核酸序列為SEQ ID NO: 246)的CHO細胞。此蛋白質被設計和製備以呈現位於SARS CoV-2棘狀(S)蛋白上的受體結合結構域(RBD),利用在RBD中特有的碳水化合物結構,以在免疫接種後誘導高親和力中和抗體。此疫苗還利用包含內源性SARS-CoV-2 Th和CTL抗原決定位的專門設計的胜肽混合物,其能夠促進宿主特異性Th細胞介導的免疫,以促進病毒特異性初級和記憶B細胞和CTL對SARS-CoV-2的反應,用於預防SARS-CoV-2感染。有效的疫苗需要啟動記憶T細胞和B細胞,以便在病毒感染/攻毒時快速喚醒。
為了提高揭露的專門設計的免疫原的有效性,採用了兩種代表性的佐劑(ADJU-PHOS®/CpG和MONTANIDE™ISA/CpG)製劑來誘導最佳的抗SARS-CoV-2免疫反應。
ADJUPHOS被普遍接受作為人類疫苗的佐劑。這種佐劑透過提高抗原呈現細胞(APC)對專門設計的免疫原的吸引和攝入來誘導Th2反應。MONTANIDE™ISA 51是一種油劑,當將其與水相專門設計的胜肽/蛋白質免疫原混合時會形成乳液,以引發對SARS-CoV-2的有效免疫反應。CpG寡核苷酸是TLR9促效劑(agonists),可改善抗原呈現並誘發疫苗特異性細胞和體液反應。通常,帶負電荷的CpG分子與帶正電荷的專門設計的免疫原結合以形成供抗原呈遞的免疫刺激複合物,以進一步增強免疫反應。
相較於具有更複雜免疫原內容物的疫苗(其利用不活化病毒裂解物或其他較少被描繪特徵的免疫原)的弱或不適當的抗體呈現,揭露的高精密度專門設計的疫苗具有產生高度特異性免疫反應的優勢。此外,在COVID-19疫苗開發中存在與抗體依賴性免疫加強反應(antibody-dependent enhancement,ADE)機制相關的潛在缺陷。具體而言,ADE是一種現象,其中病毒與非中和抗體的結合增強了其進入宿主細胞的能力,且有時也增強了其複制。這種機制導致感染力和毒性增加,已在蚊蟲叮咬傳播的黃質病毒、HIV和冠狀病毒中觀察到。設計揭露的高精密度疫苗以透過監測抗體反應的質量和數量來避免疫苗誘導的疾病增強,因為它們將決定功能結果。
以下討論的代表性研究闡述了設計揭露的高精密度SARS-CoV-2疫苗的方法,此疫苗可以促進抗體的產生,這些抗體可以(1) 與CHO表現的S1-RBD-sFc蛋白結合;(2) 抑制S1蛋白與固定在微量盤孔洞表面的ACE2受體結合,或抑制S1蛋白結合至過度表現ACE2受體蛋白的細胞表面,以及(3) 在細胞介導的中和試驗中中和病毒介導的細胞病變效應。
在天竺鼠中使用不同形式的S1-RBD-sFc專門設計的蛋白(SEQ ID NOs: 235、236和355)的免疫時程表顯示於表28,用於透過S蛋白抗體結合測定評估針對S蛋白的抗體。2. S1 蛋白抗體結合分析 ( 免疫原性 )
不同形式的S1-RBD蛋白(包括S1-RBD-sFc、S1-RBDa-sFc和S1-RBD-Fc),每組以100 µg的S1-RBD蛋白與ISA51混合以製備w/o乳液。使用如表28所示的免疫時程表,將這些製劑以肌內注射方式免疫接種天竺鼠(每組n=5)。簡而言之,對天竺鼠給予每劑100 µg的S1-RBD蛋白進行初始免疫,然後在第3週時以每劑50 µg的S1-RBD蛋白加強免疫,在初始免疫後(WPI)第0、3和5週收集的個別血清。收集的血清樣本透過S1塗覆的ELISA測試免疫原性,詳細程序如第36圖所示。
第37A圖顯示僅在單次施用(3 WPI)後產生高效價的S結合抗體,針對S1-RBD-sFc、S1-RBDa-sFc和S1-RBD-Fc的抗體效價的幾何平均值(GeoMeans)分別為94,101、40,960和31,042。效價測定為最大稀釋倍數的倒數,其於臨界點以上仍可顯示陽性,其中臨界值設置為0.050 OD450 讀數(平均值+ 3XSD)。這些效價表明單鏈Fc融合蛋白S1-RBD-sFc蛋白(SEQ ID NO: 235)是最具免疫原性的,其次是S-RBDa-sFc(SEQ ID NO: 236),其中RBD結構域被修飾以減少Cys-雙硫鍵使結構域折疊更好,而雙鏈Fc融合蛋白S-RBD的免疫原性最低。在3 WPI的S1-RBD-sFc和S1-RBDa-sFc之間的差異具有統計學上的意義(p ≦ 0.05),表明所有結構都具有高度免疫原性,S1-RBD-sFc在結合抗體反應方面顯然具有輕微優勢。然而在5 WPI 時,S1-RBDa-sFc vs. S1-RBD-Fc (p > 0.99)和S1-RBD-sFc vs. S1-RBD-Fc (p = 0.20)則沒有觀察到顯著差異。
第37B圖顯示5WPI時利用天竺鼠免疫血清在ELISA上對S1蛋白與ACE2結合的中和作用和抑制稀釋度ID50 (幾何平均效價;GMT)。將來自各組中每隻接受免疫接種動物的5 WPI血清樣本連續稀釋,並透過基於ELISA的方法測定抑制活性。血清的抑制活性透過使用以下公式確定:抑制活性= {1 - (OD450實驗組數值 - OD450背景值 )/(OD450最大值 - OD450背景值 )} x 100%。所得抑制曲線(左側小圖)表示為平均值±SE。基於利用四參數羅吉斯回歸(four-parameter logistic regression)產生的抑制曲線確定具有50%抑制率的每隻動物的抗體效價(右側小圖)。
第38圖顯示利用每劑50µg的小劑量進行加強免疫在3 WPI時導致針對每種蛋白質免疫原的抗體效價提高了4至10倍。比較三種專門設計的融合蛋白,S-RBD-sFc融合蛋白在加強免疫後的GeoMeanS1結合效價增加了106 ,比初始免疫增加了10倍。
針對其抑制S1-RBD與其表面受體ACE-2結合以防止病毒進入目標細胞的能力,對這三種蛋白質免疫原引發的抗體的功能特性進行評估。建立了兩種功能測定,包括(1) 利用ELISA以評估利用此種S1結合抗體對S1-RBD與ACE-2 ECD-sFc塗覆的微量盤結合的直接抑制;(2) 基於細胞的S1-RBD-ACE2結合抑制分析。這些功能測定在下文進一步描述。3. 用於確定 S1-RBD ACE2 結合抑制的基於 ELISA 的測定
兩個獨立的基於ELISA的S1-RBD/ACE2結合抑制分析的詳細程序如第39圖所示。
在方法A中,ELISA微量盤以ACE2 (例如ACE2 ECD-sFc)塗覆,並將100 µL來自利用S-RBDa-sFc免疫接種的動物的抗血清與S1-RBD-His混合和反應,然後將混合物加入ELISA微量盤中。S1-RBD-His結合/抑制的量可以使用HRP共軛的抗His抗體檢測。
在方法B中,ELISA微量盤以ACE2 (例如ACE2 ECD-sFc)塗覆,並將100 µL來自利用S-RBDa-sFc免疫接種的動物的抗血清與S1-RBD-His-HRP混合和反應,然後將混合物加入ELISA微量盤中。可以直接檢測S1-RBD-His-HRP結合/抑制的量。4. 用以確定 S1-RBD ACE2 結合抑制的基於 ELISA 測定的結果
利用上述方法A和B的S1-RBD/ACE2結合抑制試驗,透過ELISA來確定針對S1-RBD-sFc、S1-RBDa-sFc和S1-RBD-Fc的抗體抑制S1-RBD-His與ACE2 ECD-sFc結合的能力。
第40圖顯示了使用方法A的抑制測定獲得的結果。具體地,第40圖顯示,當血清以1:10稀釋倍數進行測定,在結合ELISA微量盤上結合的ACE2 ECD-sFc之前,將所有免疫血清(此免疫血清是在利用sFc或Fc融合蛋白對天竺鼠進行初始劑量的免疫接種後於3 wpi收集)與S1-RBD-His蛋白混合並反應,在此測定中可觀察到超過95%的結合抑制。發現於S1-RBD-His與ACE2 ECD-sFc結合抑制中呈現稀釋依賴性降低,從血清1:10稀釋時的>95%抑制至血清1:100稀釋時的約60%抑制,以及血清1:1,000稀釋時的約20%抑制。
第41圖顯示了使用方法B的抑制測定獲得的結果。具體地,第41圖顯示,當血清以1:250稀釋倍數進行測定,在結合ELISA微量盤上結合的ACE2 ECD-sFc之前,將所有免疫血清(此免疫血清是在利用sFc或Fc融合蛋白對天竺鼠進行初始劑量和加強劑量的免疫接種後於5 wpi收集)與S1-RBD-His-HRP蛋白混合並反應,在此測定中可觀察到超過95%的結合抑制。發現從1:250稀釋至1:32,000稀釋於S1-RBD-His-HRP與ACE2 ECD-sFc結合抑制中呈現稀釋依賴性降低。
在方法A (第40圖)和方法B (第41圖)的結果中觀察到的差異表明,相較於方法A,方法B在檢測結合抑制方面更靈敏。5. 用以確定 S1-RBD ACE2 結合抑制的基於細胞的測定
第42圖詳細說明了基於細胞的S1-RBD和ACE2結合抑制測定的詳細程序。具體而言,將ACE-2過度表現的HEK293細胞作為這種結合的目標細胞。將免疫血清(此免疫血清是由利用各種形式的S1-RBD融合蛋白(S1-RBD-sFc、S1-RBDa-sFc和S-RBD-Fc)免疫的天竺鼠獲得)與S1-RBD-His蛋白混合和反應,然後是利用FITC共軛的偵測抗體(偵測抗體是抗His-FITC)進行檢測。在此FITC示蹤的ACE2/S1-RBD結合系統中,針對其各自的結合抑制能力,將免疫血清(免疫血清是由利用各種形式的S-RBD-sFc、S-RBDa-sFc或S-RBD-Fc免疫的天竺鼠收集)的存在進行測試。如第43圖所示,針對每個系列免疫血清(免疫血清收集自針對個別專門設計的蛋白質免疫原進行初始劑量和加強劑量的免疫接種後於5 wpi收集)建立了劑量依賴性曲線,從約100%抑制下降到範圍為約10%的抑制,對於專門設計的蛋白質免疫原S-RBD-sFc、S-RBDa-Fc和S-RBD-Fc分別具有特徵IC50 數值為1:1024、1:180和1:300。對於專門設計的蛋白質免疫原S-RBD-sFc、S-RBDa-Fc和S-RBD-Fc,其產生的抗體的幾何平均效價(GMT) ID50 數值分別為202、69.2和108。如第44圖所示,顯示對於所有三個專門設計的蛋白質免疫原的抑制概況的代表性圖式,是針對在0、3和5週收集的血清,固定以1:625稀釋度,透過此基於細胞的阻斷試驗用以評估其所產生的相對S1-ACE2結合抑制。此比較結合抑制研究表明,相較於S-RBDa-sFc (約21%)和S-RBD-Fc (約33%)的21和33%抑制,S-RBD-sFc產生最佳的功能性免疫原性,其表現高結合抑制(約75%)。
鑑於所有結合抑制結果,本揭露的S-RBD-sFc蛋白似乎是最有效的高精密度專門設計的免疫原,可代表B細胞成分,用以引發能夠抑制S1和ACE2結合的功能性抗體,而S1和ACE2結合為SARS-CoV-2病毒進入的關鍵途徑。6. 體外中和試驗
從利用S-RBD-sFc、S-RBDa-Fc和S-RBD-Fc免疫的動物收集的血清樣本在56°C下處理0.5小時以失活,並利用細胞培養基進行2倍連續稀釋。將稀釋的血清於北京科鑫實驗室進行以與CNI株病毒混合,或在台北獨立進行以與台灣株病毒混合,將100 TCID50 以1:1比例懸浮於96孔盤中,然後在36.5°C的5% CO2 培養箱中反應2小時。然後將Vero細胞(1-2 x 104 個細胞)加入血清-病毒混合物中,並將微量盤在36.5°C的5% CO2 培養箱中培養5天。在顯微鏡下記錄各孔洞的細胞病變效應(CPE),並以50%保護條件的稀釋倍數計算中和效價。
如表29所示,來自單次免疫後的天竺鼠的免疫血清是於3 wpi收集並交由北京科鑫實驗室進行體外中和試驗。發現採血前(0 wpi)和其他對照血清的效價小於8。來自利用專門設計的蛋白S-RBD-sFc的免疫原的免疫血清表現出最佳效價(1:>256),而來自S1-RBDa-sFc和S1-RBD-Fc的免疫血清則分別在128和192的範圍內。這種檢測抑制病毒誘導的CPE能力的體外中和試驗進一步說明了所測試的免疫血清在預防SARS-CoV-2感染方面的功能功效。
對這些免疫血清的另一項獨立測試在台北南港進行,如表29所示。對免疫血清(此免疫血清是在初始免疫和加強免疫後從天竺鼠收集,於0、3和5 wpi採血)進行這種基於CPE的體外中和分析。在第二個站點測試中,0和3 wpi的免疫血清獲得了高度可重複的結果,測得的中和效價介於128和256之間,而來自這些專門設計的蛋白的免疫血清的效價約為4,096和8,192,較單次給藥時的免疫血清高約為15至30倍。取決於個別實驗室的評分系統,發現採血前和其他對照血清小於8或4。如在北京實驗室觀察到,來自具有專門設計的蛋白S1-RBD-sFc的結構的免疫血清表現出最佳效價(1:>256),而其他免疫血清的範圍為128和192。因此,當使用S1-RBD-sFc作為專門設計的免疫原時,發現其中和效價至少是其他兩種專門設計的蛋白S1-RBD-Fc或S1-RBD-sFc的2倍以上。在兩個獨立實驗室透過這種體外中和試驗證實這些專門設計的蛋白誘導的抗體抑制病毒誘導的CPE的能力,進一步說明這些免疫血清的功能功效,因此這些高密精度專門設計的蛋白在疫苗製劑中作為免疫原具有預防SARS-CoV-2感染的效用。
將利用S1-RBD-sFc免疫的天竺鼠血清的中和效價與COVID-19患者恢復期血清的中和效價進行比較。使用S1-RBD:ACE2結合抑制ELISA (也稱為qNeu ELISA),將在天竺鼠的反應與台灣COVID-19患者出院後恢復期血清的反應進行了比較。結果如第53圖所示,證明稀釋1,000倍(3 WPI)或8,000倍 (5 WPI)的天竺鼠免疫血清表現出與稀釋20倍的10名患者的恢復期血清相比相當或更高的S1-RBD:ACE2結合抑制,說明天竺鼠血清中的抗體效價比人類恢復期血清高50倍以上。
使用透過抗SARS-CoV-2 N蛋白抗體和免疫螢光可視化的個別CPE研究進一步證實抗體的中和效力。同樣地,在1:32,768倍稀釋的動物血清(此動物血清樣本來自利用S1-RBD-sFc融合蛋白免疫的動物於5 WPI時收集)中觀察到SARS-CoV-2的完全中和(VNT100 ) (第54圖)。將免疫血清與MONTANIDE™ ISA 50V2配製進行分析,此免疫血清是來自利用以MONTANIDE™ ISA 50V2配製的S1-RBD-sFc、S1-RBDa-sFc和S1-RBD-Fc於0和3 WPI進行免疫接種並於5 WPI收集。利用病毒-血清混合物感染單層Vero-E6細胞,以免疫螢光(IFA)進行分析。利用人類抗SARS-CoV-2 N蛋白抗體對細胞染色,並利用抗人類IgG-488 (淺色)檢測。以DAPI (4',6-二脒基-2-苯基吲哚)複染細胞核(深色)。
為了進一步證實透過CPE測定和IFA獲得的中和效價,對10個樣本(陽性和陰性)建立盲碼,並將其送到位於德州加爾維斯敦之德州大學醫學分部(UTMB)的Alexander Bukreyev博士的實驗室。這些樣本在複製病毒中和試驗中進行了測試,並計算每個樣本的VNT50 效價。結果顯示在UTMB和中央研究院進行的兩種測定之間存在強相關性(r=0.9400) (第55圖)。
綜上所述,免疫原性檢測結果表明,三種疫苗製劑均具有免疫原性,其中S1-RBD-sFc在S1-RBD結合抗體效價、抑制SARS-CoV-2 S1-RBD與ACE2結合以及活SARS-CoV-2中和作用等方面具有明顯優勢。實施例 14. 用於預防 SARS-COV-2 感染的多抗原決定位蛋白 / 胜肽疫苗組成物的製造
在預製劑表徵研究中製備和評估疫苗組成物的不同劑型以測試它們對疫苗施用的適用性。在強制降解研究中,S-RBD-sFc顯示對熱、光照和攪拌敏感,但對冷凍和解凍循環不敏感。將被認為S-RBD-sFc敏感的條件用於選擇適合疫苗施用的適當pH值和賦形劑。1. pH – 熱和紫外線照射
S-RBD-sFc的等電點(pI)值介於7.3至8.4之間,因此製備的製劑的pH值範圍為5.7至7.0。通常,隨著製劑pH值遠離等電點(pI),溶液變得更清澈,因為蛋白質溶解度相應增加。
使用尺寸排除層析法來確定製劑的pH值是否對熱誘導的蛋白質聚集或紫外線誘導的不純物有影響。在本研究中,使用組胺酸緩衝液製備含有S-RBD-sFc且pH範圍為5.7至7.0的溶液,並在35°C下反應24小時或在紫外線下照射24小時。使用尺寸排除層析法來確定存在的S-RBD-sFc以及幾種高分子量(HMW)不純物的量。此研究的結果顯示在表30中。具體地,結果表明pH對熱誘導的蛋白質聚集沒有明顯影響。結果還表明,在紫外線照射24小時後,隨著pH值的降低,特別是從pH值5.7到6.4,S-RBD-sFc形成的高分子量不純物更少。
基於這項研究,最終劑型選擇是依照原型製劑的評估(使用10 mM組胺酸於目標pH值5.9在應激條件下),並將製劑pH規格限制於pH 5.4和pH 6.4。2. 界面活性劑 - 攪拌
根據強制降解研究,發現S-RBD-sFc對攪拌應激敏感,並且在攪拌過程中容易形成可見顆粒。表面活性劑通常用於減少固-液和液-氣界面處的蛋白質吸附,這可能導致蛋白質不穩定。因此,進行了一項研究以確定聚山梨醇酯80是否能夠減少或防止攪拌後S-RBD-sFc的沉澱。
在本研究中,將含有約2 mg/mL S-RBD-sFc的三種個別溶液在25°C下以1,200 RPM攪拌67小時。第一種溶液含有0.03% (w/v) 聚山梨醇酯80,第二種溶液含有0.06% (w/v) 聚山梨醇酯80,而第三種溶液是不含任何聚山梨醇酯80的對照。在本研究中,結果顯示0.06% (w/v) 聚山梨醇酯80在攪拌後有效減輕S-RBD-sFc的沉澱(數據未顯示)。因此,確定存在0.06% (w/v) 聚山梨醇酯80以提高穩定性並減少製劑中S-RBD-sFc的沉澱。3. 蛋白質緩衝液
精胺酸鹽酸鹽、蔗糖和甘油等添加劑經常用作蛋白質製劑開發中的保護劑。
在本研究中,含有S-RBD-sFc以及不同量的精胺酸鹽酸鹽(25 mM至100 mM)、蔗糖(25 mM至100 mM)或甘油(5%至15%)的溶液在50 °C下反應1小時。使用尺寸排除層析法來確定存在的S-RBD-sFc以及幾種高分子量(HMW)不純物的量。此研究的結果顯示在表30中。具體地,結果表明精胺酸鹽酸鹽、蔗糖或甘油的添加能夠降低熱誘導的聚集。透過測量在40°C下反應45分鐘的樣本的濁度(OD600 ),進一步證實了這些結果。與尺寸排除層析法結果一致,精胺酸鹽酸鹽、蔗糖或甘油的添加有效地降低了樣本的濁度(數據未顯示)。
還評估了精胺酸鹽酸鹽、蔗糖或甘油在紫外線應激下對pH值為5.9的S-RBD-sFc溶液的影響。尺寸排除層析法結果表明,精胺酸鹽酸鹽的添加略微增加了光誘導的聚集,但蔗糖和甘油對聚集沒有任何顯著影響(表30)。4. 總結
將在製劑篩選研究中獲得的結果總結在表31中提供。實施例 15. 用於用以預防 SARS-COV-2 感染的多抗原決定位蛋白 / 胜肽疫苗組成物的 S1-RBD-sFc 蛋白的生產
用於小規模中試批次(15L)和大規模批次(100L)的饋料批次生產開發如下所述進行。1. 中試批次 (15L) a. 饋料批次 細胞培養上游製程
中試規模的饋料批次生產開發是利用9 L的初始工作體積在15 L的Finesse生物反應器中進行。HYPERFORMA™ 15 L生物反應器是配備HYPERFORMA™ G3Lab控制器和TruFlow氣體質量流量控制器(MFC)的玻璃容器生物反應器。配備的攪拌槳為斜葉攪拌槳,供氣管為鑽孔管式供氣管,具有0.8 mm直徑的曝氣孔。15-L生物反應器使用參數如下: a.  培養基:DYNAMIS + 1 g/kg硫酸葡聚醣 + 1.17 g/kg麩醯胺酸 b.  初始細胞密度:0.3E6 vc/mL c. 溫度:37℃;D5上TS至32 °C d.  pH:pH 7.0 ± 0.3;鹼:1 M碳酸鈉;酸:CO2 e.  溶氧:設定值50% f.   饋料策略:83% EX-CELL® ACF CHO培養基 + 17% EX-CELL® 325 PF CHO培養基,補充50 g/kg葡萄糖和20 g/kg酵母萃取物。 D3 – D7:每天3%;D8 – D12:每天4% (總饋料比例:35% w/w) g.  葡萄糖控制:D3 – D13:當[Gluc] ≤ 2 g/L時添加2 g/kg葡萄糖(儲液300 g/kg) h.  收穫標準:細胞活力 ≤ 60%或於D14
簡而言之,添加L-麩醯胺酸和硫酸葡聚醣的DYNAMIS™ AGT™培養基(Thermo Fisher Scientific, A2617502)用於快速擴種(seed train expansion)和生產過程。在運行第3天(D3)開始向生物反應器提供大量營養物質。透過將83% EX-CELL® ACF CHO培養基(Merck, C9098)和17% EX-CELL® 325 PF CHO培養基(Merck, 24340C)混合來配製營養源饋料。在BioProfile FLEX分析儀(Nova Biomedical)上對細胞數量、細胞存活率、代謝物濃度(葡萄糖、乳酸、麩醯胺酸、麩胺酸和氨)、滲透壓、pH、pCO2 和pO2 進行每日監測。收穫標準是細胞存活率低於60%或在生產第14天(D14)。
在收穫當天,透過C0HC深層式過濾器(Merck, MC0HC05FS1),然後使用0.22 μm膠囊過濾器,以使細胞培養液澄清。將收穫的細胞培養液(HCCF)立即轉移到蛋白質純化實驗室進行下游處理。
在此過程中,第7天的峰值VCD約為14E+06 vc/mL,細胞存活率能夠維持≥ 90%直至生產結束。S1-RBD-sFc在第14天的產率為1.6 g/L。b. 收穫
Millistak+ POD C0HC 0.55 m2 和Opticap XL 5 Capsule用於收穫材料。將過濾器利用100 L/m2 的純淨水以600 LMH的流量(flux rate)沖洗。沖洗速度(flush rate)為5 L/分鐘,沖洗時間至少為10分鐘。在運行濾液之前,進行洩水以從POD過濾器中排出純淨水(10 psi至少10分鐘)。以500 L/分鐘運行收穫的細胞培養液(HCCF),其等於54.5 LMH。丟棄前1.4 L的滯留物,並收集其餘的滯留物。在整個操作過程中,對壓力進行監控,且壓力不應超過30 psi。澄清前和澄清後的濁度分別為1343 NTU和12.9 NTU,澄清前和澄清後的效價分別為1.66 g/L和1.50 g/L。上游產品產率很高(1.5 g/L)。c. 下游純化製程開發
簡而言之,首先利用1% TWEEN 80 (Merck, 8.17061)和0.3% TNBP (Merck, 1.00002)處理收穫的細胞培養液(HCCF),並在環境溫度(23±4°C)下不攪拌保持1小時,以進行溶劑/清潔劑病毒失活。使用蛋白質A親和層析管柱(MabSelectSuReLX樹脂,Cytiva Life Sciences, 17-5474-03)純化溶劑/清潔劑處理的HCCF。來自蛋白質A管柱的洗脫液立即用1 M Tris鹼溶液(Merck, 1.08386)中和至pH 6.0。中和的蛋白質溶液透過兩種類型的深層式過濾器(C0HC (23 cm2 , Merck Millipore, MC0HC23CL3)和X0SP (23 cm2 , Merck Millipore, MX0SP23CL3))過濾以移除沉澱物和不純物。澄清的蛋白質溶液透過陽離子交換層析管柱(NUVIA™ HR-S media, Bio-Rad, 156-0515)進一步純化。將蛋白濃度調整至5 mg/ml,並將蛋白溶液進行病毒過濾(PLANOVATM 20N Nano filter, Asahi Kasei, 20NZ-001)。透過使用切向流過濾(tangential flow filtration) (TANGENX™ SIUS™ PDn TFF Cassette, Repligen, PP030MP1L)將來自奈米過濾的濾液進行緩衝液交換以成為製劑緩衝液。緩衝液交換後,然後將TWEEN 80以0.06% (w/v)的終濃度添加到配製的蛋白質溶液中,然後進行0.22 µm過濾,將配製的產品儲存在2-8 °C並避光。d. 製程產量, 15L 中試批次
每一步驟的產率如下: a.  溶劑清潔劑病毒失活、蛋白質A層析、中和以及深層式過濾:11.30 g (83.1%產率)。 b. 陽離子交換層析:10.96 g (96.7%產率)。 c. 奈米過濾,製劑通過滲濾和0.2 µg過濾:10.50 g (99.7%產率)。
總回收率為80.3%產率。2. 大規模批次 (100L)
臨床批次的S-RBD-sFc (100L)由殖株研究細胞庫生產。這些變化僅在原料藥水平上進行,最終成分沒有變化。原料和製程參數沒有改變,只是批量放大了。兩個批次之間沒有觀察到顯著差異。
透過比較性試驗評估了中試批次和大規模批次之間S-RBD-sFc原料藥生產製程變化的影響。
為了評估來自15L規模製程的原料藥批次與來自100L規模製程的原料藥之間的可比較性,對利用特性鑑定所產生的放行數據的分析數據和強制降解研究的數據進行了比較和評估。
由15L規模和100L規模製程生產的S-RBD-sFc批次均符合各自規格中規定的放行規格。所有測試批次都顯示出批次一致性(lot-to-lot consistency),具有相似的尺寸變體和不純物水平、電荷變體的相似分佈和相當的效力。
特性鑑定研究的結果證明了利用15L規模或100L規模製程生產的S-RBD-sFc批次在蛋白質和碳水化合物結構、轉譯後修飾、純度/不純物、異質性和生物活性方面的可比較性和一致性。此外,強制降解研究表明,利用不同製程製造的測試批次的降解途徑和對特定降解條件的敏感性相似且具有可比較性。
總體而言,關於由放行測試、強制降解研究和其他特性鑑定獲得的結果,結果證明了利用15L規模和100L規模生產的S-RBD-sFc批次之間的可比較性。實施例 16. 一種用於預防 SARS-COV-2 感染的多抗原決定位蛋白 / 胜肽疫苗組成物
在天竺鼠的初步免疫原性評估確定了我們基於RBD的蛋白質的體液免疫原性,並允許選擇S1-RBD-sFc (SEQ ID NO: 235)作為SARS-CoV-2疫苗的主要免疫原性B細胞成分。
T細胞抗原決定位的存在對於誘導針對病毒抗原的B細胞記憶反應很重要。SARS-CoV-2 CTL和Th抗原決定位,透過MHC結合和T細胞功能測定驗證,在SARS-CoV-2和SARS-CoV-1 (2003)病毒之間保留,用於設計高精密度針對COVID-19的SARS-CoV-2疫苗。對在SARS-CoV-1 (2003)上的T細胞抗原決定位進行鑑定,是使用MHC結合測定法加以確定,用於透過序列比對確定在SARS-CoV-2 (2019)中相對應的T細胞抗原決定位(參見第3、4和5A-5C圖,以及表32)。以類似方式鑑定了在揭露的高精密度專門設計的SARS-CoV-2疫苗設計中納入的CTL抗原決定位。納入SARS-CoV-2疫苗設計中的Th和CTL抗原決定位已透過第2類MHC結合和T細胞刺激進行驗證,如表32所示。用於預防SARS-CoV-2感染的特定多抗原決定位蛋白/胜肽疫苗組成物含有20 µg/mL、60 µg/mL和200 µg/mL (S1-RBD-sFc融合蛋白和Th/CTL胜肽的組合重量),如表33至35所示。1. 於大鼠的免疫原性研究
在大鼠進行的一組實驗中,將Th/CTL胜肽(SEQ ID NOs: 345、346、348、348、361和66)的專利混合物添加到S1-RBD-sFc (SEQ ID NO: 235) B細胞成分中,用於進一步評估最佳配方和佐劑以及建立疫苗的細胞免疫成分(例如第56圖)。將此疫苗組成物用於以下研究。a. 在大鼠中進行體液免疫原性測試
以實施例13中描述的天竺鼠實驗對三種蛋白質候選物進行測試,利用具有初始免疫(100 µg或200 µg)和加強免疫(50 µg或100 µg)的單次給藥方案,使用ISA 50作為佐劑,以允許對個別的候選結構進行嚴格的比較。這組實驗在大鼠中進行,評估了不同劑量的免疫原和佐劑,以根據S1-RBD結合抗體效價和平衡的Th1/Th2反應選擇最佳佐劑。
含有S1-RBD-sFc蛋白和Th/CTL胜肽的疫苗組成物將候選疫苗與兩種不同的佐劑系統組合,(a) ISA51與CpG3 (SEQ ID NO: 106)組合,以及(b) ADJU-PHOS®與CpG1 (SEQ ID NO: 104)組合。將這些疫苗-佐劑組合以IM途徑投予大鼠,每次注射利用10至300 μg的寬廣劑量範圍,在0 WPI (初始免疫)和2 WPI (加強免疫)施用。在0、2 (即第一劑之後)、3和4 WPI (即在第二劑之後1和2週)對動物採血,以進行抗體效價分析。
在所有時間點的結合抗體(BAb)測試結果表明,用兩種佐劑系統配製的疫苗在10至300 µg範圍內的所有劑量均引起相似水平的抗S1-RBD ELISA效價,表明即使含有少量主要蛋白質免疫原,疫苗製劑具有出色的免疫原性(第57A圖)。此外,不含合成胜肽成分的100 µg劑量的S1-RBD-sFc可刺激高S1-RBD結合活性,其類似於先前的天竺鼠研究(數據未顯示)。
在S1-RBD:ACE2結合抑制ELISA測試中,在4 WPI時,10和30 µg的劑量誘導的抑制活性與高劑量100和300 µg誘導的抑制活性一樣強(第57B圖,左側小圖)。將最低劑量的S1-RBD-sFc蛋白(10 µg)和合理設計的胜肽與ADJU-PHOS®/CpG1佐劑一起配製出現最有效的抑制活性。在針對台灣SARS-CoV-2分離株的複製病毒中和試驗中(如上文針對天竺鼠研究所討論的),疫苗組成物誘導的4 WPI免疫血清未顯示出顯著的劑量依賴性效應。然而,低劑量的添加佐劑的蛋白,10和30 μg,可以>10,240稀釋倍數的VNT50 中和病毒感染(第57B圖,右側小圖)。測定了每個接種劑量組於6 WPI的大鼠免疫血清,(a) 與一組COVID-19患者的恢復期血清相比,針對S1-RBD:ACE2結合抑制ELISA中的效價,以μg/mL表示阻斷水平(第57C圖,左側小圖);以及(b) 透過在Vero-E6細胞中進行SARS-CoV-2 CPE測定,表示為VNT50 (第57C圖,右側小圖)。如第57C圖所示,所有劑量的疫苗製劑在大鼠中引起的中和效價顯著高於恢復期患者的中和效價,其透過S1-RBD:ACE2結合ELISA和更高(但由於患者數據分散且動物數量少,而未達到統計顯著性)VNT50b. 在大鼠進行細胞免疫原性測試
為了解決與Th1/Th2反應平衡相關的問題,使用ELISpot評估接受接種的大鼠的細胞反應。i. 大鼠 Th1/Th2 平衡研究的程序
總共12隻8-10週齡雄性Sprague Dawley大鼠(300-350 gm/BW)購自BioLASCO Taiwan Co., Ltd。經過3天的適應後,將動物隨機分為4組。涉及動物的所有程序均按照法規和聯亞生技(UBI Asia)實驗動物照護及使用委員會(IACUC)審查和批准的指南進行。IACUC編號為AT-2028。將大鼠以肌內途徑在第0週(初始免疫)和第2週(加強免疫)接種疫苗,其使用範圍為1至100 μg疫苗組成物的不同劑量,疫苗組成物含有S1-RBD-sFc (SEQ ID NO: 235)、選自SARS-CoV-2的S、M和N蛋白的五種Th/CTL胜肽(SEQ ID NOs: 345、346、348、348和361)和專利的通用Th胜肽UBITh®1a (SEQ ID NO: 66),以ADJU-PHOS®/CpG1佐劑配製。在第0、2、3和4週收集大鼠的免疫血清(每個劑量組n = 3)用於評估抗原性活性。在4 WPI收集脾臟細胞,並以2μg/孔洞的Th/CTL胜肽匯集加上S1-RBD或以單獨Th/CTL胜肽匯集於體外對脾臟細胞進行再刺激。透過ELISpot分析確定分泌IFN-γ、IL-2和IL-4的脾臟細胞。透過減去陰性對照孔洞來計算每百萬個細胞中的細胞因子分泌細胞(SC)。ii. 用於測量細胞反應的 ELISpot
在4 WPI時從接受疫苗接種的大鼠收集脾臟置於淋巴細胞條件培養基(LCM;添加10% FBS和青黴素/鏈黴素的RPMI-1640培養基)中,並加工成單細胞懸浮液。將細胞顆粒再懸浮於5 mL的RBC裂解緩衝液中以在室溫(RT)下作用3分鐘,然後加入含有青黴素/鏈黴素的RPMI-1640培養基以停止反應。離心後,將細胞顆粒再懸浮於LCM中以用於ELISpot測定。利用大鼠IFN-γ ELISpotPLUS試劑盒(MABTECH,貨號:3220-4APW)、大鼠IL-4 T細胞ELISpot試劑盒(U-CyTech,貨號:CT081)和大鼠IL-2 ELISpot試劑盒(R&D Systems,貨號:XEL502)進行ELISpot檢測。將利用捕獲抗體預塗覆的ELISpot微量盤在室溫下以LCM進行阻斷至少30分鐘。將250,000個大鼠脾臟細胞置於每個孔洞中,並利用S1-RBD-His蛋白加上Th/CTL胜肽匯集、S1-RBD-His蛋白、Th/CTL胜肽匯集或每種單一Th/CTL胜肽於37°C下刺激18-24小時。利用配製於LCM中的每種蛋白質/胜肽(終濃度為每孔洞1 μg)刺激細胞。根據製造商的說明書對斑點進行呈色。LCM和ConA分別用作陰性和陽性對照。透過AID iSpot分析儀掃描和量化斑點。透過減去陰性對照孔洞計算每百萬個細胞的斑點形成單位(SFU)。
在脾臟細胞中觀察到IFN-γ分泌具有劑量依賴性趨勢,而幾乎沒有觀察到IL-4的分泌(第58A圖)。結果表明,疫苗組成物具有高度免疫原性並誘導Th1傾向細胞免疫反應,如高IFN-γ/IL-4或IL-2/IL-4比值所示。在存在Th/CTL胜肽匯集的情況下(第58B圖)和利用個別胜肽再刺激也觀察到高IL-2/IL-4比值,其誘導了很少的IL-4分泌(第58C圖)。條形代表平均值標準差 (n = 3)。觀察到在30和100 μg組中IFN-γ或IL-2的分泌顯著高於IL-4 (*** p < 0.005,使用最小平方平均和配對比較),但在1或3 μg劑量組中,它們沒有統計學上的差異。2. 於基因轉殖小鼠的攻毒研究
疫苗組成物的初始攻毒研究是在台灣中央研究院陶秘華博士建立的AAV/hACE2轉導BALB/c小鼠模型中進行;其他研究人員也報導了對此模型的改編。a. BALB/C 攻毒研究的動物程序
總共12隻8-10週齡雄性BALB/C購自BioLASCO Taiwan Co., Ltd。經過3天的適應後,將動物隨機分為4組。涉及動物的所有程序均按照法規和聯亞生技(UBI Asia)實驗動物照護及使用委員會(IACUC)審查和批准的指南進行。IACUC編號為AT2032和AT2033。
將小鼠以IM途徑在第0週(初始免疫)和第2週(加強免疫)接種疫苗,其使用3、9或30 μg疫苗組成物,疫苗組成物含有S1-RBD-sFc (SEQ ID NO: 235)和Th/CTL胜肽(SEQ ID NOs: 345、346、348、348、361和66),以ADJU-PHOS®/CpG1佐劑配製。在第0、3和4週收集來自小鼠的免疫血清,用於透過以下所述測定方法評估免疫原性和功能活性。
AAV6/CB-hACE2和AAV9/CB-hACE2由中央研究院的AAV核心設施生產。BALB/C小鼠(8-10週齡)透過腹腔注射阿托品(0.4 mg/ml)/氯胺酮(20 mg/ml)/甲苯噻嗪(0.4%)的混合物進行麻醉。然後給小鼠氣管內(IT)注射配製於100 μL生理食鹽水中的3 x 1011 vg的AAV6/hACE2。為了轉導肺外器官,將配製於100 μL生理食鹽水中的1 x 1012 vg的AAV9/hACE2腹腔注射到小鼠體內。
在AAV6/CB-hACE2和AAV9/CB-hACE2轉導後兩週,將小鼠麻醉,並利用體積為100 μL的1x104 PFU的SARS-CoV-2病毒(hCoV-19/Taiwan/4/2020 TCDC#4,來自臺灣大學,台北,台灣)對小鼠進行鼻內攻毒。小鼠攻毒實驗經由中央研究院的IACUC評估和批准。根據ISCIII IACUC指南,使用二氧化碳犧牲實驗中存活的小鼠。所有動物在SARS-CoV-2攻毒後每天稱重一次。b. 用於 SARS-CoV-2 RNA 定量的 RT-PCR
為了測量SARS-CoV-2的RNA水平,利用先前研究所述Taqman即時RT-PCR方法,使用針對SARS-CoV-2基因組外套膜(E)基因中的26,141至26,253區域的特異性引子。使用正向引子E-Sarbeco-F1 (5’-ACAGGTACGTTAATAGTTAATAGCGT-3’; SEQ ID NO: 368)和反向引子E-Sarbeco-R2 (5’-ATATTGCAGCAGTACGCACACA-3’; SEQ ID NO: 369),另外使用探針E-Sarbeco-P1 (5’-FAM-ACACTAGCCATCCTTACTGCGCTTCG-BBQ-3’; SEQ ID NO: 370)。根據製造商的說明書,使用RNeasy Mini試劑盒(QIAGEN, Germany)從每個樣本中收集總共30 μL RNA溶液。使用Superscript III一步法RT-PCR系統和白金Taq聚合酶(Thermo Fisher Scientific, USA),將5 μL的RNA樣本添加到總共25 μL的混合物中。最終反應混合物包含400 nM正向和反向引子、200 nM探針、1.6 mM去氧核糖核苷三磷酸(dNTP)、4 mM硫酸鎂、50 nM ROX 參考染料和1 μL來自試劑盒的酵素混合物。循環條件採用一步法PCR方案進行:以55°C 10分鐘進行cDNA合成,然後進行94°C 3 分鐘和45個擴增循環(94°C 15秒和58°C 30秒)。數據由應用生物系統7500即時PCR系統(Thermo Fisher Scientific, USA)收集和計算。合成的113-bp寡核苷酸片段用作qPCR標準品來估計病毒基因組的拷貝數。寡核苷酸由Genomics BioSci and Tech Co. Ltd. (Taipei, Taiwan)合成。c. 攻毒研究
在研究的0和2 WPI時,將一組3隻的小鼠接種上述疫苗組成物,疫苗組成物含有3、9或30 µg蛋白質並用ADJU-PHOS®/CpG1配製。在4 WPI時,利用表現hACE2的腺相關病毒(AAV)感染小鼠,並在2週後透過鼻內(IN)途徑利用106 TCID50 的SARS-CoV-2進行攻毒(第59A圖)。使用肺病毒量和體重測量來測定疫苗的功效。如第59B圖所示,相較於生理食鹽水組,利用30 µg疫苗組成物進行疫苗接種顯著降低了肺病毒量(~3.5 log10 病毒基因組拷貝/µg RNA或~5倍TCID50 /mL傳染性病毒)(p <0.05,透過配對t檢驗測量)。如第59C圖所示,以中劑量和高劑量進行疫苗接種導致肺部病變的明顯減少。利用3 µg或9 µg疫苗組成物進行疫苗接種可將利用細胞培養方法(TCID50 )檢測到的活病毒降低到檢測水平以下(LOD,第59B圖,右側小圖),但在透過RT-PCR測量時似乎沒有顯著降低病毒量(第59B圖,左側小圖)。同樣地,體重測量顯示高劑量組和對照組之間存在顯著差異(數據未顯示)。總之,儘管在本研究中缺乏統計檢定力(N = 3 隻小鼠),但當將缺乏活病毒檢測、缺乏炎症細胞浸潤以及缺乏肺部免疫病理學結合起來時,似乎每劑30 µg的最高劑量可能具有最大的保護功效。3. 於恒河猴的免疫原性和攻毒研究
基於使用恒河猴(RM)建立的模型,對含有S1-RBD-sFc (SEQ ID NO: 235)以及Th/CTL胜肽(SEQ ID NOs: 345、346、348、348、361和66)的疫苗組成物進行免疫研究,如下文所述執行。a. 於非人類靈長類動物的免疫原性研究
此研究是在昭衍實驗室(北京)在大約3-6歲的恒河猴中進行。將動物個別飼養在不銹鋼籠子中,置於有環境監測且通風良好的房間(普通級)內,此房間保持在18-26°C的溫度和40-70%的相對濕度。將動物隔離並適應環境至少14天。動物的一般健康狀況在抵達後三天內由獸醫評估和記錄。對猴子進行詳細的檢測,包括臨床觀察、體重、體溫、心電圖(ECG)、血液學、凝血和臨床化學。在從飼育群轉移之前由獸醫審查數據。基於在第-1天獲得的實驗前體重,使用電腦隨機分組程序,將所有動物隨機分配到各自的劑量組。透過肌內(IM)注射給予第1至4組中的所有動物對照品或測試品。對一隻後肢的股四頭肌注射給藥。對於臨床症狀,在研究期間每天至少觀察猴子兩次(上午和下午),觀察的臨床症狀包括但不限於死亡率、發病率、糞便、嘔吐以及水和食物攝入量的變化。為了下文所述的免疫原性研究,將動物定期採血。
將恒河猴(3-6歲)分為四組,分別肌內注射高劑量(100 μg/劑)、中劑量(30 μg/劑)、低劑量(10 μg/劑)疫苗和生理鹽水。在透過氣管內途徑利用106 TCID50 /ml SARS-CoV-2病毒攻毒(在第82天進行)之前,對所有分組的動物進行3次免疫接種(第0、28和70天)。在攻毒後第7天對獼猴實施安樂死並收集肺部組織。在3、5、7 dpi,收集咽拭子。在免疫後第0、14、28、35、42、70和76天以及在攻毒後第0、3、5、7天收集血液樣本,以用於SARS-CoV-2的中和抗體測試。在攻毒後第7天收集肺組織並用於RT-PCR測定和組織病理學測定。還分別在攻毒後第0和3天收集的血液樣本進行淋巴細胞亞群百分比(CD3+、CD4+和CD8+)和關鍵細胞因子(TNF-α、IFN-γ、IL-2、IL-4、IL-6)的分析。b. 在恒河猴的免疫原性和攻毒研究
基於使用恒河猴(RM)建立的模型,IM注射疫苗組成物的免疫研究開始於RM (N = 4/組)在0和4 WPI接受0、10、30或 100 μg的組成物。免疫原性測定表明,在所有動物中,與S1-RBD結合的血清IgG比基線增加,結合效價在5和7 WPI達到約3個對數(第60A圖)。誘導了強烈的中和抗體反應,其中以30 μg劑量最有效(第60B圖)。ELISpot分析表明疫苗組成物以劑量依賴性方式活化抗原特異性IFN-γ分泌T細胞(第60C圖),T細胞反應在100 µg劑量水平最高。4. 準備臨床試驗的毒性研究
如下所述,為了進行臨床試驗,在Sprague-Dawley大鼠中以符合GLP的重複劑量毒理學研究,對含有S1-RBD-sFc (SEQ ID NO: 235)和Th/CTL胜肽(SEQ ID NOs: 345、346、348、348、361和66)的疫苗組成物進行測試。a. 毒性研究方案
將總共160隻大鼠(80隻/性別)根據第-1天(第一次給藥前1天,第一次給藥日定義為第1天)測得的體重隨機分為8組,其中將120隻大鼠分配到第1、2、3和4組(15隻/性別/組)進行毒性研究,將40隻大鼠分配到第5、6、7和8組(5隻/性別/組)進行衛星研究(satellite study)。對於作為陰性對照的第1和5組,使用生理鹽水注射處理大鼠。對於作為佐劑對照的第2和6組,以疫苗組成物安慰劑處理大鼠。對於第3和7組以及第4和8組,則分別使用劑量為100、300 μg/動物的疫苗組成物處理大鼠。在大鼠單側後肢肌肉(股四頭肌和腓腸肌,第一劑於左側,第二劑於右側)多部位進行肌內注射,每兩週一次,連續2週,共2劑(在第1和15天)。劑量體積為0.5 mL/動物。在研究期間進行臨床觀察(包括注射部位觀察)、體重、進食量、體溫、檢眼鏡檢查、血液學、凝血、臨床化學、尿液分析、T淋巴細胞亞群、分泌IFN-γ的T淋巴細胞斑點數目(以周邊血液單核球(PBMC))、細胞因子、免疫原性、中和抗體效價以及IgG2b/IgG1比值分析的檢測。第1至4組中的前10隻動物/性別/組指定用於給藥2週後(第18天)的終末屍檢,其餘5隻動物/性別/組指定用於最後一次給藥後4週的恢復屍檢(第44天)。對第1至4組中的所有動物進行完整的屍檢,然後評估器官重量並進行肉眼檢查和顯微鏡檢查。b. 準備臨床試驗的毒性研究
為了進行臨床試驗,在Sprague-Dawley大鼠中以符合GLP的重複劑量毒性研究對疫苗組成物進行測試。此研究包括300 ug劑量,是臨床使用最高劑量的3倍。雖然2次注射的時程表沒有超過臨床使用的時程表,但根據WHO指引46,這是可以接受的。此研究還旨在評估疫苗組成物的免疫原性。將一百六十(160)隻大鼠隨機分為8組(80隻雄性和80隻雌性),其中40隻大鼠被納入衛星免疫原性研究。低劑量組和高劑量組分別以100 μg/動物(0.5mL)和300 μg/動物(0.5mL)的疫苗組成物進行接種;對照組注射相同劑量體積的生理食鹽水(0.9%生理食鹽水)或佐劑(疫苗組成物安慰劑)。在2 WPI給藥後兩週(第18天),指定前10隻動物/性別/組進行終末屍檢,而在4 WPI最後一次給藥後(第44天),指定其餘20隻動物/性別/組進行4週恢復屍檢。在實驗條件下,在大鼠單側後肢肌肉(股四頭肌和腓腸肌,第一劑於左側,第二劑於右側)多部位進行肌內注射,每兩週一次,連續2週,在0和2 WPI (在第1和15天)共2劑。
在第1和3週,利用高達300 μg/動物的劑量水平的疫苗組成物進行處理的耐受性良好,沒有全身性毒性跡象。在整個研究過程中均未發現與測試品相關的死亡或垂死狀態。在整個研究的臨床觀察(包括注射部位觀察)中沒有出現與疫苗相關的異常發現。注射部位未發現紅斑或水腫,且所有觀察時間點的Draize評分均為0。同樣地,未於體重、進食量、體溫、血液學、化學(AG比值除外)、檢眼鏡檢查或尿液分析觀察到疫苗相關變化,且在CD3+、CD3+CD4+、CD3+CD8+和CD3+CD4+/CD3+CD8比值未觀察到統計學上顯著變化。纖維蛋白原、IFN-γ和IL-6在統計學上顯著增加,同時觀察到白蛋白/球蛋白比值降低;這些結果與對疫苗的急性期反應一致,並在恢復期結束時全部消除。附睾、皮膚、肝臟、前列腺和乳腺的組織病理學檢查顯示炎症細胞浸潤極少,沒有可見的病變或異常。
在衛星組中測量的疫苗組成物的免疫原性表明,此疫苗能夠在於2和4 WPI (14天間隔)接受100 μg/動物或300 μg/動物兩種劑量的動物體內誘導大量抗SARS-CoV-2 S1-RBD IgG (數據未顯示)。S1-RBD結合IgG效價在2 WPI的加強免疫(第15天)後隨時間適度上升,在6 WPI (第44天)時在利用100 μg/動物和300 μg/動物的疫苗組成物免疫的大鼠中分別達到約2.6 log10 和3.3 log10 。在本研究中觀察到的發現如同旨在刺激免疫反應從而產生高效價抗體的疫苗所預期一樣。透過ELISA測定抗SARS-CoV-2 S1-RBD IgG效價、亞型IgG和血清細胞因子的產生以確定Th1/Th2反應。在分析S1-RBD特異性IgG亞類時,Th2相關亞類IgG1抗SARS-CoV-2 S1-RBD的模式和誘導水平與於總IgG抗SARS-CoV-2 S1-RBD中觀察到的模式和誘導水平相當。在6 WPI (第43天)於接種疫苗組成物的大鼠中,僅檢測到Th1相關亞類IgG2b抗SARS-CoV-2 S1-RBD的輕微誘導。然而,透過ELISA測量的血清細胞因子模式表明Th1/Th2平衡反應(數據未顯示)。
此疫苗組成物的臨床試驗已在台灣開始。第一項研究名為“第1期開放性研究以評估UB-612疫苗在健康成人志願者中的安全性、耐受性和免疫原性”,其於2020年9月在台灣啟動。此試驗包括UB-612的三個劑量組(10、30或100 µg) (每組N=20),在第1和29天施用(2種免疫方案)。主要終點是接種疫苗後7天內不良事件的發生;次要終點包括六個月隨訪期間的不良事件、標準實驗室安全性測定、抗原特異性抗體效價、血清轉化率、T細胞反應和中和抗體效價的增加。實施例 17. 1 期開放性研究以評估高精密度專門設計的疫苗在健康成人志願者中的安全性、耐受性和免疫原性 1. 目標
主要目的是評估揭露的高精密度專門設計的疫苗在健康成人志願者中的安全性、耐受性和免疫原性。2. 方法
在第0天和第4週利用低劑量和高劑量揭露的高精密度專門設計的疫苗進行開放性兩劑肌內給藥。3. 受試者數目
總共40個參與者。 a. 研究分支、干預、主要和次要終點在第45圖中詳細描述,而納入和排除標準在第46圖中詳細描述。 b. 用以評估針對SARS-CoV-2的專門設計的疫苗在健康成人中的安全性、耐受性和免疫原性的第1期開放性研究的臨床設計如第47圖所示。 c. 詳細描述了用以評估針對SARS-CoV-2的專門設計的疫苗在健康成人志願者中的安全性、耐受性和免疫原性的第1期開放性研究的臨床活動,如第48圖所示。 d. 詳細描述了用以評估針對SARS-CoV-2的專門設計的疫苗在健康成人志願者中的安全性、耐受性和免疫原性的第1期開放性研究的臨床設計,此研究以兩階段進行具有4個分群,如第49圖所示。實施例 18. 專門設計的長效蛋白藥物 ACE2-ECD-sFc 產生的高抗病毒作用,其在用以在 VERO 細胞中抑制 SARS-COV-2 誘導的 CPE 的中和分析中測量
冠狀病毒SARS-CoV-1 (2003)和SARS-CoV-2 (2019)透過病毒外套膜錨定棘狀(S)蛋白與受體血管收縮素轉化酶2 (ACE2)結合進入宿主細胞。在S蛋白的其他獨特特徵中,相較於SARS-CoV-1,SARS-CoV-2以更高的親和力(高達20倍)與ACE2結合,此對應於在SARS-CoV-2觀察到新感染的快速人際傳播。由於ACE2在SARS-CoV-2的傳播中起著至關重要的作用,因此一種工程化的可溶性ACE2樣蛋白可能作為一種有效的攔截器(interceptor)來阻止病毒入侵,從而達到治療目的,同時保護膜結合的ACE2的正常的生理功能免於進一步降低和受損。
使用專利技術平台,一種GMP等級的獨特的基於ACE受體的長效融合蛋白產品可用於治療COVID-19的有症狀和無症狀患者。此技術平台整合了連接單鏈免疫球蛋白Fc片段(sFc)的ACE2細胞外結構域(ACE2-ECD)的質體構建、ACE2-sFc融合蛋白在CHO-S細胞株中的表現和生產、蛋白質種類的純化和生物表徵。ACE2-sFc產品正在進行臨床前測試,並且計劃對經臨床診斷和PCR確認後確認患有輕度至重度SARS-CoV-2感染的患者進行平行加速第1期安全性研究。
已經進行了多種體外生物測定分析,證明融合蛋白ACE2-sFc具有功能活性。這些檢測包括基於SPR的結合親和力檢測、SARS-CoV-2 棘狀(S)蛋白的分子和細胞辨識,以及利用ACE2-sFc對S蛋白-ACE交互作用的中和作用。已在細胞層次上證實了對SARS-CoV-2感染的概念驗證抑制。ACE2-sFc,無論是單獨使用還是與抗IL6R mAb或目前批准的Remdesivir協同組合,都可能對治療COVID-19具有重要的臨床效用。
使用“單鏈Fc平台”來生產有效的長效中和蛋白產品ACE2-ECD-sFc (SEQ ID NO: 237)。由於受體結合抑制的性質,如果冠狀病毒發生突變,ACE2-ECD-sFc蛋白預期幾乎不會產生耐藥性。如第50圖所示,由於二價Fc融合性質的龐大構型,與單鏈(ACE ECD-sFc蛋白)相比,ACE-ECD-Fc在與S1蛋白結合時具有更快的脫離率(約10倍),表明Fc蛋白的結合親和力比單鏈(sFc)融合蛋白的結合親和力低10倍。如第51圖所示,儘管所有三種類型的ACE-ECD融合蛋白(ACE2 ECD-sFc、ACE2 ECD-Fc和ACE2 ECD-sFc)都具有阻斷S1與ELISA微量盤上塗覆的ACE-2結合的顯著能力。與其他兩種類型相比,ACE2-ECD-sFc具有更高的阻斷抑制百分比。此結果表明,當在兩個獨立的實驗室(北京科鑫實驗室和台北中央研究院實驗室)中測試時,於Vero細胞的病毒誘導的細胞病變效應(CPE)的相對抑制作用如表36所示,其中,在此測定中利用2.4 mg/mL的ACE2-ECD-sFc可達到8,192的等同效價,根據利用範圍約為50的血清效價中和抗體在靈長類動物攻毒研究中可以獲得完全保護的觀察結果,其可為遭遇SARS-CoV-2感染急性發作的患者提供高效治療。將在輕度至重度COVID-19患者中進行第I/II期試驗,以觀察這種長效蛋白質藥物的安全性和有效性。
表1. 來自SARS-CoV-2、SARS-CoV和MERS-CoV膜醣蛋白M的胺基酸序列
Figure 02_image001
表2. 來自SARS-CoV-2、SARS-CoV和MERS-CoV核鞘磷蛋白N的胺基酸序列
Figure 02_image003
Figure 02_image005
表3. 來自SARS-CoV-2、SARS和MERS表面醣蛋白S的胺基酸序列
Figure 02_image007
Figure 02_image009
Figure 02_image011
*透過半胱胺酸雙硫鍵使胜肽環化,半胱胺酸下方劃有底線。用以取代SARS-CoV-2片段之胺基酸的半胱胺酸/絲胺酸以斜體表示。
表4. 用於疫苗設計的SARS-CoV-2 CTL抗原決定位(透過先前的SARS-CoV研究藉由PBMC結合和刺激試驗驗證)
Figure 02_image013
改編自Ahmed, S.F., et al, 2020
表5. 用於疫苗設計的SARS-CoV-2 Th抗原決定位(透過先前的SARS-CoV研究藉由PBMC結合和刺激試驗驗證)
Figure 02_image015
改編自Ahmed, S.F., et al, 2020
表6. 用於SARS-CoV-2胜肽免疫原結構設計包括理想化人工Th抗原決定位之病原體蛋白衍生的Th抗原決定位的胺基酸序列
Figure 02_image017
Figure 02_image019
表7. 任選的異源性間隔子和CpG寡核苷酸的例子
Figure 02_image021
表8. SARS-CoV-2胜肽免疫原結構的胺基酸序列
Figure 02_image023
Figure 02_image025
Figure 02_image027
Figure 02_image029
*透過半胱胺酸雙硫鍵使胜肽環化,半胱胺酸下方劃有底線。用以取代SARS-CoV-2片段之胺基酸的半胱胺酸/絲胺酸以斜體表示。
表9. 來自IgG1、IgG2、IgG3和IgG4的野生型和突變鉸鏈區域
Figure 02_image031
X:Ser、Gly、Thr、Ala、Val、Leu、Ile、Met及/或刪除
表10. 衍生自IgG1之突變鉸鏈區域的胺基酸序列範例
Figure 02_image033
Figure 02_image035
1 畫底線的殘基表示與野生型IgG序列相關的突變位點。
Figure 02_image037
表11. sFc和Fc融合蛋白的胺基酸序列
Figure 02_image039
Figure 02_image041
表12. sFc和Fc融合蛋白的核酸序列
Figure 02_image043
Figure 02_image045
Figure 02_image047
Figure 02_image049
Figure 02_image051
Figure 02_image053
Figure 02_image055
Figure 02_image057
表13.  SARS-CoV-2抗原性胜肽
Figure 02_image059
Figure 02_image061
Figure 02_image063
Figure 02_image065
*利用絲胺酸取代的半胱胺酸殘基化有底線。
表14. S-RBD-sFc的N-連接聚糖結構
Figure 02_image067
表15. S-RBD-sFc的O-連接聚糖結構
Figure 02_image069
表16. ACE2-ECD-sFc的N-連接聚糖結構
Figure 02_image071
表17. ACE2-ECD-sFc的O-連接聚糖結構
Figure 02_image073
表18. UBI SARS-CoV-2 ELISA的特異性評估 性能特點:與其他病毒感染缺乏交叉反應性
Figure 02_image075
表19. 基於從於美國、台灣和中國的“非COVID-19”個體收集的數據的特異性評估
Figure 02_image077
Figure 02_image079
表20. 靈敏度評估(使用UBI SARS-CoV-2 ELISA偵測抗SARS-CoV-2 IgG)
Figure 02_image081
性能特徵:於 PCR 確診的 COVID-19 住院患者的 靈敏度 相對靈敏度 (症狀發作後<10天) = 0/10 =0% 相對靈敏度 (症狀發作後>10天) = 23/23 =100% 相對靈敏度 (出院日) = 5/5 =100% 總體靈敏度 (所有46個樣本) = 36/46 =78.2% 陽性預測值的準確度 (對於症狀發作後>10天的患者) = 36/36 =100%
表21. 研究1:性能特徵:基於症狀發作後10天收集的COVID-19樣本的靈敏度和特異性
Figure 02_image083
相對 靈敏度 (症狀發作>10天) :100% 總體 靈敏度 ,包括症狀出現時的靈敏度(來自46個不同個體) :78.2% 相對特異性 : 100% 入院和症狀發作後 10 天患者之陽性預測值的準確度 = 36/(36+0) = 100% 陰性預測值的準確度 = 922/(0+922) = 100%
表22. 研究2:利用UBI® SARS-CoV-2 ELISA對台灣COVID-19患者的血清/血漿樣本進行抗SARS-CoV-2 IgG檢測
Figure 02_image085
表23. 研究2:使用UBI® SARS-CoV-2 ELISA進行靈敏度評估
Figure 02_image087
性能特徵:於 PCR 確診的 COVID-19 住院患者的 靈敏度 相對 靈敏度 (症狀發作後<7天) = 1/4 =25% 相對 靈敏度 (症狀發作後7-14天) = 7/11 =63.6% 相對 靈敏度 (症狀發作後>14天) = 22/22 =100% 總體靈敏度 (所有37個樣本) = 30/37 =81.1% 陽性預測值的準確度 (症狀發作後>14天) = 22/ 22 =100%
表24. 依據症狀發作後天數的陽性符合率(Positive Agreement)
Figure 02_image089
表25. 陰性百分比符合率(Negative Percent Agreement)
Figure 02_image091
表26. 獨立評估的總結結果
Figure 02_image093
表27. 獨立評估的概括統計量
Figure 02_image095
表28. RBD-sFc專門設計的蛋白質在天竺鼠中的免疫時程表
Figure 02_image097
表29. 利用CPE分析評估免疫血清中和抗體的效價
Figure 02_image099
*在位於北京的科鑫實驗室(Kexin Laboratory)和在位於台北的中央研究院實驗室(Sinica Lab)分別進行的CPE分析
表30. S-RBD-sFc (pH從5.7到7.0)在37 °C下持續24小時的粒徑篩析層析法
Figure 02_image101
表31. S1-RBD-sFc的pH值和賦形劑選擇的概述
Figure 02_image103
表32. 篩選包含SARS-CoV-2 Th/CTL抗原決定位且具有已知MHC I/II結合的胜肽以用於高精密度SARS-CoV-2專門設計的疫苗
Figure 02_image105
粗體 : MHC I底線 : MHC II
表33. UB-612 20 μg/mL的組成
Figure 02_image106
1 用於第2期和第2/3期臨床試驗的材料將根據cGMP進行製造
表34. UB-612 60 μg/mL的組成
Figure 02_image108
1 用於第2期和第2/3期臨床試驗的材料將根據cGMP進行製造
表35. UB-612 200 μg/mL的組成
Figure 02_image110
1 用於第2期和第2/3期臨床試驗的材料將根據cGMP進行製造
表36. 透過CPE分析對純化的ACE2-ECD-sFc的等同的中和抗體效價進行評
Figure 02_image112
第1圖描述SARS-CoV-2結構的示意圖。病毒表面蛋白(棘狀、外套膜和膜蛋白)嵌入衍生自宿主細胞的脂質雙層外套膜中。與其他乙型冠狀病毒不同,SARS-CoV-2不具有血凝素酯酶醣蛋白。單股正義病毒RNA與核鞘蛋白結合。
第2圖描述SARS-CoV-2 S-RBD (即來自棘狀蛋白的受體結合結構域)衍生的B細胞抗原決定位胜肽免疫原結構的代表性設計,其分別包含受限制的環狀結構A、B和C,是基於ACE2和SARS-CoV結合複合物的改編的3D結構(透過Protein Data Bank (PDB) entry: 2AJF獲得圖像)。
第3圖描述來自SARS-CoV-2、SARS-CoV和MERS-CoV的M蛋白序列的比對。星號(*)表示此位置的胺基酸相同,冒號(:)表示保留性取代,句號(.)表示半保留性取代,底線(_)表示抗原性胜肽。
第4圖描述來自SARS-CoV-2、SARS-CoV和MERS-CoV的N蛋白序列的比對。星號(*)表示此位置的胺基酸相同,冒號(:)表示保留性取代,句號(.)表示半保留性取代,底線(_)表示抗原性胜肽,虛線(--)表示CTL抗原決定位,以及點線(…)表示Th抗原決定位。
第5A-5C圖描述來自SARS-CoV-2、SARS-CoV和MERS-CoV的S蛋白序列的比對。星號(*)表示此位置的胺基酸相同,冒號(:)表示保留性取代,句號(.)表示半保留性取代,底線(_)表示抗原性胜肽,虛線(--)表示CTL抗原決定位,點線(…) 表示Th抗原決定位,以及方框(□)表示B細胞抗原決定位。
第6A-6D圖描述根據本揭露之各種實施例的單鏈融合蛋白的設計。第6A圖描述在氨基端包含S-RBD的融合蛋白的結構,此S-RBD與人類IgG的鉸鏈區域和Fc片段(CH 2和CH 3結構域)共價連接。第6B圖描述在氨基端包含來自SARS-CoV-2的S-RBD的融合蛋白,此S-RBD透過連接子與人類IgG的鉸鏈區域和Fc片段(CH 2和CH 3結構域)共價連接。第6C圖描述在氨基端包含ACE2-ECD (即ACE2的細胞外結構域)的融合蛋白,此ACE2-ECD與人類IgG的鉸鏈區域和Fc片段(CH 2和CH 3結構域)共價連接。第6D圖描述在氨基端包含ACE2-ECD的融合蛋白,此ACE2-ECD透過連接子與人類IgG的鉸鏈區域和Fc片段(CH 2和CH 3結構域)共價連接。
第7圖描述pZD/S-RBD-sFc質體的圖譜。pZD/S-RBD –sFc質體編碼根據本發明的實施例的S-RBD-sFc融合蛋白。
第8圖描述pZD/hACE2-sFc質體的圖譜。pZD/hACE2-sFc質體編碼根據本發明的實施例的ACE2-sFc融合蛋白。
第9圖說明透過在非還原和還原條件下利用庫馬斯藍染色的SDS-PAGE描述代表性經純化的專門設計的S1-RBD-sFc蛋白的生化特徵。
第10圖說明透過在非還原和還原條件下利用庫馬斯藍染色的SDS-PAGE描述代表性經純化的專門設計的S1-RBD-His蛋白的生化特徵。
第11圖說明透過在非還原和還原條件下利用庫馬斯藍染色的SDS-PAGE描述代表性經純化的專門設計的ACE2-ECD-sFc蛋白的生化特徵。
第12圖說明透過LC質譜分析描述代表性經純化的專門設計的S1-RBD-His蛋白的生化特徵。
第13圖說明具有SEQ ID NO: 235序列之代表性經純化的專門設計的S1-RBD-sFc蛋白的N-和O-糖基化模式。
第14圖說明透過LC質譜分析描述代表性經純化的專門設計的S1-RBD-sFc蛋白的生化特徵。
第15圖說明具有SEQ ID NO: 237序列之代表性經純化的專門設計的ACE2-ECD-sFc蛋白的N-和O-糖基化模式。
第16圖說明透過MALDI-TOF質譜分析描述代表性經純化的專門設計的ACE2-ECD-sFc蛋白的生化特徵。
第17圖描述來自SARS-CoV-2 N (核鞘)蛋白的抗原性胜肽的設計和鑑定。全長N蛋白的示意圖顯示在上方,而本文揭露的專門設計的胜肽抗原則顯示在下方。
第18圖描述來自SARS-CoV-2 S (棘狀)蛋白的抗原性胜肽的設計和鑑定。全長S蛋白的示意圖顯示在上方,而本文揭露的專門設計的胜肽抗原則顯示在下方。
第19圖描述來自SARS-CoV-2 M (膜)蛋白的抗原性胜肽的設計和鑑定。全長M蛋白的示意圖顯示在上方,而本文揭露的專門設計的胜肽抗原則顯示在下方。
第20圖描述來自SARS-CoV-2 E (外套膜)蛋白的抗原性胜肽的設計和鑑定。全長E蛋白的示意圖顯示在上方,而本文揭露的專門設計的胜肽抗原則顯示在下方。
第21圖描述來自SARS-CoV-2 ORF9b蛋白的抗原性胜肽的設計和鑑定。全長ORF9b蛋白的示意圖顯示在上方,而本文揭露的專門設計的胜肽抗原則顯示在下方。
第22圖描述利用從代表性的COVID-19患者獲得的血清抗體與來自衍生自SARS-CoV-2 N (核鞘)蛋白的各個區域經辨識的抗原性胜肽的反應性。
第23圖描述利用來自代表性的COVID-19患者的血清抗體進行來自SARS-CoV-2 S (棘狀)蛋白的抗原性區域鑑定。
第24圖利用3D結構說明位於SARS-CoV-2 S (棘狀)蛋白上四個抗原性胜肽的位點。
第25圖利用來自代表性的COVID-19患者的血清抗體說明來自SARS-CoV-2 E (外套膜)蛋白的抗原性區域。
第26圖利用來自代表性的COVID-19患者的血清抗體說明來自SARS-CoV-2 M (膜)蛋白的抗原性區域。
第27圖利用來自代表性的COVID-19患者的血清抗體說明來自SARS-CoV-2 ORF9b蛋白的抗原性區域。
第28圖描述SARS-CoV-2 ELISA對具有代表性的PCR陽性COVID-19患者的血清的分析靈敏度。
第29圖描述利用塗覆有衍生自N蛋白(SEQ ID NOs: 18、261和266)、M蛋白(SEQ ID NO: 5)和S蛋白(SEQ ID NOs: 38、281和322)的個別抗原性胜肽的微量盤透過ELISA檢測所得到的COVID-19患者血清的血清反應性模式。
第30圖描述利用塗覆有衍生自N蛋白(SEQ ID NOs: 18、261和266)、M蛋白(SEQ ID NO: 5)和S蛋白(SEQ ID NOs: 38、281和322)的個別抗原性胜肽的微量盤透過確認性ELISA所得到的SARS-CoV-2 ELISA陽性無症狀個體的血清反應性模式。
第31圖描述利用微量盤運行所得到的平均非反應性對照(NRC)數值的分佈。
第32圖描述從住院後不到10天、住院後超過10天、出院日和出院後14天收集的樣本中的COVID-19患者的OD450nm 讀數分佈。
第33圖描述在不同時間點收集的COVID-19患者的樣本和從與SARS-CoV-2感染無關的個體收集的樣本中S/C比值的分佈。
第34圖透過ELISA描述HRP共軛S1-RBD蛋白與ACE2-ECD-sFc的結合。
第35圖描述對S1-RBD與ACE2-ECD-sFc結合的抑制作用,其使用利用S1-RBD免疫產生的免疫血清透過ELISA進行測定。
第36圖描述對與各種形式專門設計的蛋白相關的免疫原性的評估,其利用S1蛋白塗覆的微量盤透過ELISA進行測定。
第37A-37B圖描述利用ELISA對S1-RBD融合蛋白的免疫原性和中和作用的評估。第37A圖提供使用S1蛋白塗覆的微量盤利用ELISA透過免疫血清(3和5 WPI)的滴定而進行的免疫原性評估。第37B圖提供對於S1蛋白與ACE2結合的中和作用和抑制稀釋度ID50 (幾何平均效價; GMT),其是利用於5 WPI之天竺鼠免疫血清以ELISA進行測定。
第38圖描述利用免疫血清(3和5 WPI)滴定進行的免疫原性評估,其利用S1蛋白包覆的微量盤透過ELISA進行測定。
第39圖描述利用S1-RBD和ACE2結合抑制試驗對中和抗體效價的評估,其使用兩種不同的方法(方法A和方法B)。
第40圖描述利用由不同形式專門設計的S1-RBD蛋白質免疫原所產生的免疫血清(5 WPI)對S1-RBD和ACE2結合抑制的評估,其是利用方法A於不同血清稀釋倍數下進行測定。
第41圖描述利用由不同形式專門設計的S1-RBD蛋白質免疫原所產生的免疫血清對S1-RBD和ACE2結合抑制的評估,其是利用方法B於不同血清稀釋倍數下進行測定。
第42圖描述利用由不同形式專門設計的S1-RBD蛋白質免疫原所產生的免疫血清對S1-RBD和ACE2結合抑制的評估,其是透過基於細胞的阻斷試驗進行測定。
第43圖描述利用由不同形式專門設計的S1-RBD蛋白質免疫原所產生的免疫血清對S1-RBD和ACE2結合抑制的評估,其是以不同血清稀釋稀釋倍數透過基於細胞的阻斷試驗進行測定。
第44圖描述利用由不同形式專門設計的S1-RBD蛋白質免疫原所產生的免疫血清(0、3和5 WPI)對S1-RBD和ACE2結合抑制的評估,其是以不同血清透過基於細胞的阻斷試驗進行測定。
第45圖描述針對SARS-CoV-2的代表性專門設計的疫苗的第I期臨床試驗設計。
第46圖描述來自健康成人自願者的疫苗選擇標準。
第47圖描述第I期開放性試驗研究的臨床設計,以於健康成人自願者中評估針對SARS-CoV-2的專門設計的疫苗的安全性、耐受性和免疫原性。
第48圖描述與第I期開放性試驗研究相關的臨床活動,以於健康成人自願者中評估針對SARS-CoV-2的專門設計的疫苗的安全性、耐受性和免疫原性。
第49圖描述第I期開放性試驗研究的臨床設計,以利用四個分群(cohorts)在兩個階段內於健康成人自願者中評估針對SARS-CoV-2的專門設計的疫苗的安全性、耐受性和免疫原性。
第50圖描述ACE2-sFc以高結合親和力與SARS-CoV-2 S1蛋白結合。
第51圖描述ACE2-sFc能夠阻斷S1蛋白與塗覆在ELISA微量盤上的ACE2的結合。
第52A-52C圖描述S1-RBD-sFc的胺基酸序列、結構和功能。第52A圖提供S1-RBD-sFc的序列,並辨識N-連接的糖基化位點(*)、O-連接的糖基化位點(+)、Asn轉為His的突變(畫有底線的殘基)以及雙硫鍵(連接的線)。第52B圖總結在S1-RBD-sFc融合蛋白中的雙硫鍵。第52C圖是利用光學密度顯示出S1-RBD-sFc與hACE2的結合能力的圖式。
第53圖描述利用天竺鼠血清和恢復期血清之比較性S1-RBD:ACE2結合抑制作用。利用來自正常健康人(NHP, n=10)和經病毒學診斷的COVID-19患者(n=10)的人類血清樣本,其以1:20稀釋倍數進行檢測,用以評估SARS-CoV-2抑制率。分別以1:1000和1:8000的稀釋倍數測試於3 WPI和5 WPI收集的來自S1-RBD-sFc疫苗接種的天竺鼠的匯集免疫血清。
第54圖描述利用免疫血清對活SARS-CoV-2的有效中和作用。分析免疫血清,其於5 WPI從天竺鼠收集,此天竺鼠是於0和3 WPI利用以MONTANIDE™ ISA 50V2配製的S1-RBD-sFc、S1-RBDa-sFc和S1-RBD-Fc進行疫苗接種。透過免疫螢光(IFA)分析利用病毒-血清混合物感染的Vero-E6細胞單層。利用人類抗SARS-CoV-2 N蛋白抗體進行細胞染色,並以抗人類IgG-488檢測(淺色陰影)。利用DAPI (4',6-二脒基-2-苯基吲哚)對細胞核進行對比染色(深色陰影)。
第55圖描述盲性血清樣本的中和作用測試。使用螢光信號作為病毒複製的示值讀數,利用表現螢光綠蛋白的重組SARS-CoV-2 (ic-SARS-CoV-2-mNG)評估中和作用。此分析的檢測極限為1:20,且陰性樣本指定為1:10效價。作為陽性對照,其包括來自恢復期COVID-19人類患者的血漿。在此分析中,與在中央研究院獲得的中和效價有很強的相關性(R=0.94)。
第56圖描述本文揭露的多抗原決定位蛋白質/胜肽疫苗的成分的示意圖。疫苗組成物含有提供B細胞抗原決定位的S1-RBD-sFc融合蛋白、衍生自SARS-CoV-2 S、M和N蛋白提供第I和II類MHC分子的五種合成Th/CTL胜肽,以及UBITh®1a胜肽。將這些成分與CpG1混合,CpG1透過偶極交互作用與帶正電荷(設計的)的胜肽結合,並且還充當佐劑,然後其與ADJU-PHOS®佐劑結合以構成多抗原決定位疫苗藥物產品。
第57A-57C圖描述在大鼠中進行的體液免疫原性測試。第57A圖顯示利用ISA51/CpG3 (左側小圖)或ADJU-PHOS®/CpG1 (右側小圖)作為佐劑之疫苗組成物的免疫原性。在第0週和第2週使用疫苗組成物(S1-RBD-sFc的劑量範圍為10-300 µg/劑,將合成的專門設計的胜肽與佐劑一同配製)免疫Sprague Dawley大鼠。以ELISA上檢測於0、2、3和4 WPI的免疫血清與S1-RBD蛋白的直接結合。第57B圖(左側小圖)顯示利用來自使用以ISA51/CpG3或ADJU-PHOS®/CpG1作為佐劑之疫苗組成物免疫接種的大鼠的抗體對hACE結合的抑制作用,樣本是在4 WPI收集。第57B圖(右側小圖)顯示對於以ISA51/CpG3或ADJU-PHOS®/CpG1作為佐劑之疫苗組成物藉由大鼠免疫血清對活SARS-CoV-2的有效中和作用,其以VNT50 表示。第57C圖顯示相較於恢復期的COVID-19患者(左側小圖)來自使用不同劑量疫苗組成物免疫接種的大鼠的免疫血清對RBD:ACE2的抑制效價,且對活SARS-CoV-2的有效中和作用以VNT50 表示(右側小圖)。
第58A-58C圖描述大鼠的細胞免疫原性測試。其利用ELISpot分析利用疫苗組成物免疫接種的大鼠的IFN-γ、IL-2和IL-4分泌細胞。第58A圖顯示IFN-γ和IL-4分泌ELISpot分析,使用的細胞來自利用疫苗組成物免疫接種之大鼠(於0和2 WPI進行免疫接種),以Th/CTL胜肽匯集(使用1 µg至100 µg的Th/CTL胜肽匯集)進行刺激。第58B圖顯示IL-2和IL-4分泌ELISpot分析,使用的細胞來自利用疫苗組成物免疫接種之大鼠(於0和2 WPI進行免疫接種),以Th/CTL胜肽匯集(使用1 µg至100 µg的Th/CTL胜肽匯集)進行刺激。第58C圖顯示利用所示的個別胜肽刺激的細胞的IL-2和IL-4反應。透過減去陰性對照孔洞來計算每百萬個細胞的細胞因子分泌細胞(SC)。條形表示平均值±SD (n = 3)。在30和100 µg組別中,觀察到IFN-γ或IL-2的分泌明顯高於IL-4 (*** p < 0.005,使用最小平方平均和配對比較),但在1或3 µg劑量組中在統計學上無差異。直條1、2、3和4分別代表利用1、3、30和100 µg/劑劑量的疫苗組成物免疫的動物。
第59A-59C圖描述在接受揭露的疫苗組成物的不同劑量後在hACE轉導小鼠中進行活SARS-CoV-2攻毒試驗的結果。第59A圖顯示免疫和攻毒時間表的示意圖。第59B圖顯示來自利用活病毒攻毒之小鼠利用RT-PCR (左側小圖)和TCID50 (右側小圖)表示的SARS-CoV-2效價。第59C圖顯示從利用活病毒攻毒的小鼠中分離出的肺的染色切片。
第60A-60C圖描述在接受揭露的疫苗組成物的不同劑量後的恒河猴(RM)的免疫原性結果。第60A圖透過ELISA顯示RM免疫血清與S1-RBD的直接結合。基於ELISA的血清抗體效價(平均Log10 SD)定義為具有高於臨界值之OD450 數值的最高稀釋倍數(* p ≦ 0.05, ** p ≦ 0.01)。第60B圖顯示藉由RM免疫血清對活SARS-CoV-2的有效中和作用。免疫血清是從於第0週和第4週接受疫苗接種之RM在第42天收集得到,於SARS-CoV-2感染的Vero-E6細胞中進行細胞病變作用(CPE)的分析。第60C圖顯示在第35天收集並以Th/CTL胜肽匯集刺激之RM周邊血液單核球的IFN-γ ELISpot分析(** p ≦ 0.01)。
Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0005
Figure 12_A0101_SEQ_0006
Figure 12_A0101_SEQ_0007
Figure 12_A0101_SEQ_0008
Figure 12_A0101_SEQ_0009
Figure 12_A0101_SEQ_0010
Figure 12_A0101_SEQ_0011
Figure 12_A0101_SEQ_0012
Figure 12_A0101_SEQ_0013
Figure 12_A0101_SEQ_0014
Figure 12_A0101_SEQ_0015
Figure 12_A0101_SEQ_0016
Figure 12_A0101_SEQ_0017
Figure 12_A0101_SEQ_0018
Figure 12_A0101_SEQ_0019
Figure 12_A0101_SEQ_0020
Figure 12_A0101_SEQ_0021
Figure 12_A0101_SEQ_0022
Figure 12_A0101_SEQ_0023
Figure 12_A0101_SEQ_0024
Figure 12_A0101_SEQ_0025
Figure 12_A0101_SEQ_0026
Figure 12_A0101_SEQ_0027
Figure 12_A0101_SEQ_0028
Figure 12_A0101_SEQ_0029
Figure 12_A0101_SEQ_0030
Figure 12_A0101_SEQ_0031
Figure 12_A0101_SEQ_0032
Figure 12_A0101_SEQ_0033
Figure 12_A0101_SEQ_0034
Figure 12_A0101_SEQ_0035
Figure 12_A0101_SEQ_0036
Figure 12_A0101_SEQ_0037
Figure 12_A0101_SEQ_0038
Figure 12_A0101_SEQ_0039
Figure 12_A0101_SEQ_0040
Figure 12_A0101_SEQ_0041
Figure 12_A0101_SEQ_0042
Figure 12_A0101_SEQ_0043
Figure 12_A0101_SEQ_0044
Figure 12_A0101_SEQ_0045
Figure 12_A0101_SEQ_0046
Figure 12_A0101_SEQ_0047
Figure 12_A0101_SEQ_0048
Figure 12_A0101_SEQ_0049
Figure 12_A0101_SEQ_0050
Figure 12_A0101_SEQ_0051
Figure 12_A0101_SEQ_0052
Figure 12_A0101_SEQ_0053
Figure 12_A0101_SEQ_0054
Figure 12_A0101_SEQ_0055
Figure 12_A0101_SEQ_0056
Figure 12_A0101_SEQ_0057
Figure 12_A0101_SEQ_0058
Figure 12_A0101_SEQ_0059
Figure 12_A0101_SEQ_0060
Figure 12_A0101_SEQ_0061
Figure 12_A0101_SEQ_0062
Figure 12_A0101_SEQ_0063
Figure 12_A0101_SEQ_0064
Figure 12_A0101_SEQ_0065
Figure 12_A0101_SEQ_0066
Figure 12_A0101_SEQ_0067
Figure 12_A0101_SEQ_0068
Figure 12_A0101_SEQ_0069
Figure 12_A0101_SEQ_0070
Figure 12_A0101_SEQ_0071
Figure 12_A0101_SEQ_0072
Figure 12_A0101_SEQ_0073
Figure 12_A0101_SEQ_0074
Figure 12_A0101_SEQ_0075
Figure 12_A0101_SEQ_0076
Figure 12_A0101_SEQ_0077
Figure 12_A0101_SEQ_0078
Figure 12_A0101_SEQ_0079
Figure 12_A0101_SEQ_0080
Figure 12_A0101_SEQ_0081
Figure 12_A0101_SEQ_0082
Figure 12_A0101_SEQ_0083
Figure 12_A0101_SEQ_0084
Figure 12_A0101_SEQ_0085
Figure 12_A0101_SEQ_0086
Figure 12_A0101_SEQ_0087
Figure 12_A0101_SEQ_0088
Figure 12_A0101_SEQ_0089
Figure 12_A0101_SEQ_0090
Figure 12_A0101_SEQ_0091
Figure 12_A0101_SEQ_0092
Figure 12_A0101_SEQ_0093
Figure 12_A0101_SEQ_0094
Figure 12_A0101_SEQ_0095
Figure 12_A0101_SEQ_0096
Figure 12_A0101_SEQ_0097
Figure 12_A0101_SEQ_0098
Figure 12_A0101_SEQ_0099
Figure 12_A0101_SEQ_0100
Figure 12_A0101_SEQ_0101
Figure 12_A0101_SEQ_0102
Figure 12_A0101_SEQ_0103
Figure 12_A0101_SEQ_0104
Figure 12_A0101_SEQ_0105
Figure 12_A0101_SEQ_0106
Figure 12_A0101_SEQ_0107
Figure 12_A0101_SEQ_0108
Figure 12_A0101_SEQ_0109
Figure 12_A0101_SEQ_0110
Figure 12_A0101_SEQ_0111
Figure 12_A0101_SEQ_0112
Figure 12_A0101_SEQ_0113
Figure 12_A0101_SEQ_0114
Figure 12_A0101_SEQ_0115
Figure 12_A0101_SEQ_0116
Figure 12_A0101_SEQ_0117
Figure 12_A0101_SEQ_0118
Figure 12_A0101_SEQ_0119
Figure 12_A0101_SEQ_0120
Figure 12_A0101_SEQ_0121
Figure 12_A0101_SEQ_0122
Figure 12_A0101_SEQ_0123
Figure 12_A0101_SEQ_0124
Figure 12_A0101_SEQ_0125
Figure 12_A0101_SEQ_0126
Figure 12_A0101_SEQ_0127
Figure 12_A0101_SEQ_0128
Figure 12_A0101_SEQ_0129
Figure 12_A0101_SEQ_0130
Figure 12_A0101_SEQ_0131
Figure 12_A0101_SEQ_0132
Figure 12_A0101_SEQ_0133
Figure 12_A0101_SEQ_0134
Figure 12_A0101_SEQ_0135
Figure 12_A0101_SEQ_0136
Figure 12_A0101_SEQ_0137
Figure 12_A0101_SEQ_0138
Figure 12_A0101_SEQ_0139
Figure 12_A0101_SEQ_0140
Figure 12_A0101_SEQ_0141
Figure 12_A0101_SEQ_0142
Figure 12_A0101_SEQ_0143
Figure 12_A0101_SEQ_0144
Figure 12_A0101_SEQ_0145
Figure 12_A0101_SEQ_0146
Figure 12_A0101_SEQ_0147
Figure 12_A0101_SEQ_0148
Figure 12_A0101_SEQ_0149
Figure 12_A0101_SEQ_0150
Figure 12_A0101_SEQ_0151
Figure 12_A0101_SEQ_0152
Figure 12_A0101_SEQ_0153
Figure 12_A0101_SEQ_0154
Figure 12_A0101_SEQ_0155
Figure 12_A0101_SEQ_0156
Figure 12_A0101_SEQ_0157
Figure 12_A0101_SEQ_0158
Figure 12_A0101_SEQ_0159
Figure 12_A0101_SEQ_0160
Figure 12_A0101_SEQ_0161
Figure 12_A0101_SEQ_0162
Figure 12_A0101_SEQ_0163
Figure 12_A0101_SEQ_0164
Figure 12_A0101_SEQ_0165
Figure 12_A0101_SEQ_0166
Figure 12_A0101_SEQ_0167
Figure 12_A0101_SEQ_0168
Figure 12_A0101_SEQ_0169
Figure 12_A0101_SEQ_0170
Figure 12_A0101_SEQ_0171
Figure 12_A0101_SEQ_0172
Figure 12_A0101_SEQ_0173
Figure 12_A0101_SEQ_0174
Figure 12_A0101_SEQ_0175
Figure 12_A0101_SEQ_0176
Figure 12_A0101_SEQ_0177
Figure 12_A0101_SEQ_0178
Figure 12_A0101_SEQ_0179
Figure 12_A0101_SEQ_0180
Figure 12_A0101_SEQ_0181
Figure 12_A0101_SEQ_0182
Figure 12_A0101_SEQ_0183
Figure 12_A0101_SEQ_0184
Figure 12_A0101_SEQ_0185
Figure 12_A0101_SEQ_0186
Figure 12_A0101_SEQ_0187
Figure 12_A0101_SEQ_0188
Figure 12_A0101_SEQ_0189
Figure 12_A0101_SEQ_0190
Figure 12_A0101_SEQ_0191
Figure 12_A0101_SEQ_0192
Figure 12_A0101_SEQ_0193
Figure 12_A0101_SEQ_0194
Figure 12_A0101_SEQ_0195
Figure 12_A0101_SEQ_0196
Figure 12_A0101_SEQ_0197
Figure 12_A0101_SEQ_0198
Figure 12_A0101_SEQ_0199
Figure 12_A0101_SEQ_0200
Figure 12_A0101_SEQ_0201
Figure 12_A0101_SEQ_0202
Figure 12_A0101_SEQ_0203
Figure 12_A0101_SEQ_0204
Figure 12_A0101_SEQ_0205
Figure 12_A0101_SEQ_0206
Figure 12_A0101_SEQ_0207
Figure 12_A0101_SEQ_0208
Figure 12_A0101_SEQ_0209
Figure 12_A0101_SEQ_0210
Figure 12_A0101_SEQ_0211
Figure 12_A0101_SEQ_0212
Figure 12_A0101_SEQ_0213
Figure 12_A0101_SEQ_0214
Figure 12_A0101_SEQ_0215
Figure 12_A0101_SEQ_0216
Figure 12_A0101_SEQ_0217
Figure 12_A0101_SEQ_0218
Figure 12_A0101_SEQ_0219
Figure 12_A0101_SEQ_0220
Figure 12_A0101_SEQ_0221
Figure 12_A0101_SEQ_0222
Figure 12_A0101_SEQ_0223
Figure 12_A0101_SEQ_0224
Figure 12_A0101_SEQ_0225
Figure 12_A0101_SEQ_0226
Figure 12_A0101_SEQ_0227
Figure 12_A0101_SEQ_0228
Figure 12_A0101_SEQ_0229
Figure 12_A0101_SEQ_0230
Figure 12_A0101_SEQ_0231
Figure 12_A0101_SEQ_0232
Figure 12_A0101_SEQ_0233
Figure 12_A0101_SEQ_0234
Figure 12_A0101_SEQ_0235
Figure 12_A0101_SEQ_0236
Figure 12_A0101_SEQ_0237
Figure 12_A0101_SEQ_0238
Figure 12_A0101_SEQ_0239
Figure 12_A0101_SEQ_0240
Figure 12_A0101_SEQ_0241
Figure 12_A0101_SEQ_0242
Figure 12_A0101_SEQ_0243
Figure 12_A0101_SEQ_0244
Figure 12_A0101_SEQ_0245
Figure 12_A0101_SEQ_0246
Figure 12_A0101_SEQ_0247
Figure 12_A0101_SEQ_0248
Figure 12_A0101_SEQ_0249
Figure 12_A0101_SEQ_0250
Figure 12_A0101_SEQ_0251
Figure 12_A0101_SEQ_0252
Figure 12_A0101_SEQ_0253
Figure 12_A0101_SEQ_0254
Figure 12_A0101_SEQ_0255
Figure 12_A0101_SEQ_0256
Figure 12_A0101_SEQ_0257
Figure 12_A0101_SEQ_0258
Figure 12_A0101_SEQ_0259
Figure 12_A0101_SEQ_0260
Figure 12_A0101_SEQ_0261
Figure 12_A0101_SEQ_0262
Figure 12_A0101_SEQ_0263
Figure 12_A0101_SEQ_0264
Figure 12_A0101_SEQ_0265
Figure 12_A0101_SEQ_0266
Figure 12_A0101_SEQ_0267
Figure 12_A0101_SEQ_0268
Figure 12_A0101_SEQ_0269
Figure 12_A0101_SEQ_0270
Figure 12_A0101_SEQ_0271
Figure 12_A0101_SEQ_0272
Figure 12_A0101_SEQ_0273
Figure 12_A0101_SEQ_0274
Figure 12_A0101_SEQ_0275
Figure 12_A0101_SEQ_0276
Figure 12_A0101_SEQ_0277
Figure 12_A0101_SEQ_0278
Figure 12_A0101_SEQ_0279
Figure 12_A0101_SEQ_0280
Figure 12_A0101_SEQ_0281
Figure 12_A0101_SEQ_0282
Figure 12_A0101_SEQ_0283
Figure 12_A0101_SEQ_0284
Figure 12_A0101_SEQ_0285
Figure 12_A0101_SEQ_0286
Figure 12_A0101_SEQ_0287
Figure 12_A0101_SEQ_0288
Figure 12_A0101_SEQ_0289
Figure 12_A0101_SEQ_0290
Figure 12_A0101_SEQ_0291
Figure 12_A0101_SEQ_0292
Figure 12_A0101_SEQ_0293
Figure 12_A0101_SEQ_0294
Figure 12_A0101_SEQ_0295
Figure 12_A0101_SEQ_0296
Figure 12_A0101_SEQ_0297
Figure 12_A0101_SEQ_0298
Figure 12_A0101_SEQ_0299
Figure 12_A0101_SEQ_0300
Figure 12_A0101_SEQ_0301
Figure 12_A0101_SEQ_0302
Figure 12_A0101_SEQ_0303
Figure 12_A0101_SEQ_0304
Figure 12_A0101_SEQ_0305
Figure 12_A0101_SEQ_0306
Figure 12_A0101_SEQ_0307
Figure 12_A0101_SEQ_0308
Figure 12_A0101_SEQ_0309
Figure 12_A0101_SEQ_0310
Figure 12_A0101_SEQ_0311
Figure 12_A0101_SEQ_0312
Figure 12_A0101_SEQ_0313
Figure 12_A0101_SEQ_0314
Figure 12_A0101_SEQ_0315
Figure 12_A0101_SEQ_0316
Figure 12_A0101_SEQ_0317
Figure 12_A0101_SEQ_0318
Figure 12_A0101_SEQ_0319
Figure 12_A0101_SEQ_0320
Figure 12_A0101_SEQ_0321
Figure 12_A0101_SEQ_0322
Figure 12_A0101_SEQ_0323
Figure 12_A0101_SEQ_0324
Figure 12_A0101_SEQ_0325
Figure 12_A0101_SEQ_0326
Figure 12_A0101_SEQ_0327
Figure 12_A0101_SEQ_0328
Figure 12_A0101_SEQ_0329
Figure 12_A0101_SEQ_0330
Figure 12_A0101_SEQ_0331
Figure 12_A0101_SEQ_0332
Figure 12_A0101_SEQ_0333
Figure 12_A0101_SEQ_0334
Figure 12_A0101_SEQ_0335
Figure 12_A0101_SEQ_0336
Figure 12_A0101_SEQ_0337
Figure 12_A0101_SEQ_0338
Figure 12_A0101_SEQ_0339
Figure 12_A0101_SEQ_0340
Figure 12_A0101_SEQ_0341
Figure 12_A0101_SEQ_0342
Figure 12_A0101_SEQ_0343
Figure 12_A0101_SEQ_0344
Figure 12_A0101_SEQ_0345
Figure 12_A0101_SEQ_0346
Figure 12_A0101_SEQ_0347
Figure 12_A0101_SEQ_0348
Figure 12_A0101_SEQ_0349
Figure 12_A0101_SEQ_0350
Figure 12_A0101_SEQ_0351
Figure 12_A0101_SEQ_0352
Figure 12_A0101_SEQ_0353
Figure 12_A0101_SEQ_0354
Figure 12_A0101_SEQ_0355
Figure 12_A0101_SEQ_0356
Figure 12_A0101_SEQ_0357
Figure 12_A0101_SEQ_0358
Figure 12_A0101_SEQ_0359
Figure 12_A0101_SEQ_0360
Figure 12_A0101_SEQ_0361
Figure 12_A0101_SEQ_0362
Figure 12_A0101_SEQ_0363
Figure 12_A0101_SEQ_0364
Figure 12_A0101_SEQ_0365
Figure 12_A0101_SEQ_0366
Figure 12_A0101_SEQ_0367
Figure 12_A0101_SEQ_0368
Figure 12_A0101_SEQ_0369
Figure 12_A0101_SEQ_0370
Figure 12_A0101_SEQ_0371
Figure 12_A0101_SEQ_0372
Figure 12_A0101_SEQ_0373
Figure 12_A0101_SEQ_0374
Figure 12_A0101_SEQ_0375
Figure 12_A0101_SEQ_0376
Figure 12_A0101_SEQ_0377
Figure 12_A0101_SEQ_0378
Figure 12_A0101_SEQ_0379
Figure 12_A0101_SEQ_0380
Figure 12_A0101_SEQ_0381
Figure 12_A0101_SEQ_0382

Claims (73)

  1. 一種融合蛋白,其包含: a) 衍生自來自SARS-CoV-2的棘狀(S)蛋白的受體結合結構域(RBD)的一胺基酸序列,其係選自由SEQ ID NO: 225和SEQ ID NO: 226組成之群組; b) 來自一IgG分子之一任選的鉸鏈區域,其係選自由SEQ ID NO: 166-225組成之群組;以及 c) 一IgG分子的一Fc片段,其係選自由SEQ ID NOs: 231-234組成之群組, 其中(a)中的該胺基酸序列係直接或透過(b)中的該任選的鉸鏈區域共價連接至(c)中的該Fc片段。
  2. 如請求項1所述之融合蛋白,其中 (c)中的該Fc片段具有SEQ ID NO: 232的一胺基酸序列,且 該任選的鉸鏈區域具有SEQ ID NO: 166或SEQ ID NO: 188的一胺基酸序列。
  3. 如請求項1所述之融合蛋白,其中該融合蛋白係選自由SEQ ID NOs: 235之S1-RBD-sFc、SEQ ID NO: 236之S1-RBDa-sFc和SEQ ID NO: 355 之S1-RBD-Fc組成之群組。
  4. 一種COVID-19疫苗組成物,其包含: a) 如請求項3所述之該融合蛋白;以及 b) 一藥學上可接受的賦形劑。
  5. 如請求項4所述之COVID-19疫苗組成物,其中該融合蛋白係SEQ ID NO: 235之S1-RBD-sFc。
  6. 如請求項4所述之COVID-19疫苗組成物,其進一步包含一Th/CTL胜肽。
  7. 如請求項6所述之COVID-19疫苗組成物,其中該Th/CTL胜肽係衍生自SEQ ID NO: 1的SARS-CoV-2 M蛋白、SEQ ID NO: 6的SARS-CoV-2 N蛋白、SEQ ID NO: 20的SARS-CoV-2 S蛋白、一病原體蛋白,或其任意組合。
  8. 如請求項7所述之COVID-19疫苗組成物,其中 a. 衍生自該SARS-CoV-2 M蛋白之該Th/CTL胜肽係SEQ ID NO: 361; b. 衍生自該SARS-CoV-2 N蛋白之該Th/CTL胜肽係選自由SEQ ID NOs: 9-16、19、153-160、165、347、350、351和363組成之群組; c. 衍生自該SARS-CoV-2 S蛋白之該Th/CTL胜肽係選自由SEQ ID NOs: 35-36、39-48、145-152、161-164、345-346、348、362、364和365組成之群組; d. 衍生自一病原體蛋白之該Th/CTL胜肽係選自由SEQ ID NOs: 49-100組成之群組。
  9. 如請求項4所述之COVID-19疫苗組成物,其進一步包含SEQ ID NOs: 345、346、347、348、361和66之Th/CTL胜肽的一混合物。
  10. 如請求項9所述之COVID-19疫苗組成物,其中每一該Th/CTL胜肽係以等重的量存在於該混合物中。
  11. 如請求項10所述之COVID-19疫苗組成物,其中該S1-RBD-sFc蛋白相對於Th/CTL胜肽之該混合物的總重量的比例(w:w)係88:12。
  12. 如請求項4所述之COVID-19疫苗組成物,其中該藥學上可接受的賦形劑係一佐劑、緩衝液、界面活性劑、乳化劑、pH調節劑、食鹽水溶液、防腐劑、溶劑或其任意組合。
  13. 如請求項4所述之COVID-19疫苗組成物,其中該藥學上可接受的賦形劑係選自由CpG寡核苷酸、磷酸鋁、組胺酸、鹽酸組胺酸—水物(histidine HCl•H2 O)、精胺酸鹽酸鹽(arginine HCl)、聚氧乙烯(20)山梨糖醇酐單油酸酯、鹽酸、氯化鈉、2-苯氧基乙醇、水及其任意組合組成之群組。
  14. 一種COVID-19疫苗組成物,其包含: a. SEQ ID NO: 235的一S1-RBD-sFc蛋白; b. 選自由SEQ ID NOs: 9-16、19、35-36、39-100、145-165、345-348、350、351、362-365及其任意組合組成之群組的一Th/CTL胜肽; c. 一藥學上可接受的賦形劑。
  15. 如請求項14所述之COVID-19疫苗組成物,其中(b)中該Th/CTL胜肽係SEQ ID NOs: 345、346、347、348、361和66的一混合物。
  16. 如請求項15所述之COVID-19疫苗組成物,其中每一該Th/CTL胜肽係以等重的量存在於該混合物中。
  17. 如請求項16所述之COVID-19疫苗組成物,其中該S1-RBD-sFc蛋白相對於Th/CTL胜肽之該混合物的總重量的比例(w:w)係88:12。
  18. 如請求項14所述之COVID-19疫苗組成物,其中該藥學上可接受的賦形劑係一佐劑、緩衝液、界面活性劑、乳化劑、pH調節劑、食鹽水溶液、防腐劑、溶劑或其任意組合。
  19. 如請求項14所述之COVID-19疫苗組成物,其中該藥學上可接受的賦形劑係選自由CpG寡核苷酸、磷酸鋁、組胺酸、鹽酸組胺酸—水物(histidine HCl•H2 O)、精胺酸鹽酸鹽(arginine HCl)、聚氧乙烯(20)山梨糖醇酐單油酸酯、鹽酸、氯化鈉、2-苯氧基乙醇、水及其任意組合組成之群組。
  20. 如請求項14所述之COVID-19疫苗組成物,其中 該Th/CTL胜肽係SEQ ID NOs: 345、346、347、348、361和66的一混合物,其中每一胜肽係以等重的量存在於該混合物中; 該藥學上可接受的賦形劑係配製於水中之一CpG1寡核苷酸、磷酸鋁、組胺酸、鹽酸組胺酸—水物(histidine HCl•H2 O)、精胺酸鹽酸鹽(arginine HCl)、聚氧乙烯(20)山梨糖醇酐單油酸酯、鹽酸、氯化鈉和2-苯氧基乙醇的一組合。
  21. 如請求項20所述之COVID-19疫苗組成物,其中 SEQ ID NO: 235的該S1-RBD-sFc蛋白的總量係介於約10 µg至約200 µg;以及 該Th/CTL胜肽的總量係介於約2 µg至約25 µg。
  22. 如請求項20所述之COVID-19疫苗組成物,其中 SEQ ID NO: 235的該S1-RBD-sFc蛋白的總量係介於約17.6 µg;以及 該Th/CTL胜肽的總量係介於約2.4 µg。
  23. 如請求項20所述之COVID-19疫苗組成物,其中 SEQ ID NO: 235的該S1-RBD-sFc蛋白的總量係介於約52.8 µg;以及 該Th/CTL胜肽的總量係介於約7.2 µg。
  24. 如請求項20所述之COVID-19疫苗組成物,其中 SEQ ID NO: 235的該S1-RBD-sFc蛋白的總量係介於約176 µg;以及 該Th/CTL胜肽的總量係介於約24 µg。
  25. 一種在一受試者中用以預防COVID-19的方法,其包含對一受試者投予如請求項12所述之疫苗組成物的一藥學上有效劑量。
  26. 如請求項25所述之方法,其中該疫苗組成物的該藥學上有效劑量係以兩劑投予於該受試者。
  27. 如請求項26所述之方法,其中將該疫苗組成物的 一第一劑投予於該受試者,並在該第一劑之後約4週將該疫苗組成物的一第二劑投予於該受試者。
  28. 一種用以產生針對SARS-CoV-2的抗體的方法,其包含對一受試者投予如請求項14所述之疫苗組成物的一藥學上有效劑量。
  29. 一種分離的抗體或其抗原決定位結合片段,其特異性地結合至SARS-CoV-2 S蛋白的S1-RBD部分(SEQ ID NO: 226)。
  30. 一種組成物,其包含如請求項29所述之分離的抗體或其抗原決定位結合片段。
  31. 一種利用編碼如請求項1所述之融合蛋白的cDNA序列轉染的細胞株。
  32. 如請求項31所述之細胞株,其係中國倉鼠卵巢(CHO)細胞株。
  33. 如請求項31所述之細胞株,其中該cDNA序列係選自由編碼S1-RBD-sFc的SEQ ID NO: 246、編碼S1-RBDa-sFc的SEQ ID NO: 247和編碼S1-RBD-Fc的SEQ ID NO: 357組成之群組。
  34. 如請求項31所述之細胞株,其中該cDNA序列係編碼S1-RBD-sFc的SEQ ID NO: 246。
  35. 如請求項31所述之細胞株,其中該cDNA序列係編碼S1-RBDa-sFc的SEQ ID NO: 247。
  36. 如請求項31所述之細胞株,其中該cDNA序列係編碼S1-RBD-Fc的SEQ ID NO: 357。
  37. 一種用以檢測病毒感染和對COVID-19進行流行病學監測的血清學診斷分析,其包含來自SARS-CoV-2的M蛋白(SEQ ID NO: 1)、N蛋白(SEQ ID NO: 6)和S蛋白(SEQ ID NO: 20)的抗原性胜肽。
  38. 如請求項37所述之血清學診斷分析,其中該抗原性胜肽包含選自由SEQ ID NOs: 4-5、17-18、37-38、259、261、263、265、266、270、281、308、321、322、323、324及其任意組合組成之群組的一胺基酸序列。
  39. 如請求項37所述之血清學診斷分析,其中該抗原性胜肽係選自由SEQ ID NOs: 5、18、38、261、266、281、322及其任意組合組成之群組。
  40. 一種檢測SARS-CoV-2感染的方法,包含: a. 將選自由SEQ ID NOs: 4-5、17-18、23-24、26、29-34、37-38、259、261、263、265、266、270、281、308、321、322、323和324及其任意組合組成之群組的一抗原性胜肽連接至一固相支持物, b. 在有利於抗體與胜肽結合的條件下,將(a)中連接於該固相支持物的該抗原性胜肽暴露於含有來自一患者的抗體的一生物樣本中,以及 c. 檢測在(b)中與連接在該固相支持物上的該胜肽結合的抗體的存在。
  41. 如請求項40所述之方法,其中(a)的該抗原性胜肽係選自由SEQ ID NOs: 5、18、38、261、266、281、322及其任意組合組成之群組。
  42. 如請求項41所述之方法,其中與連接在該固相支持物上的該胜肽結合的抗體的存在係透過ELISA評估。
  43. 一種S-RBD胜肽免疫原結構,其具有約20個或更多個的胺基酸,以以下分子式表示: (Th)m –(A)n –(S1-RBD B細胞抗原決定位胜肽)–X 或 (S1-RBD B細胞抗原決定位胜肽)–(A)n –(Th)m –X 或 (Th)m –(A)n –(S1-RBD B細胞抗原決定位胜肽)–(A)n –(Th)m –X 其中 Th為一異源性T輔助細胞抗原決定位; A為一異源性間隔子; (S1-RBD B細胞抗原決定位胜肽)係具有來自S1-RBD (SEQ ID NO: 226)的6至約35個胺基酸殘基的一B細胞抗原決定位胜肽或其變異物; X為一胺基酸的一α-COOH或α-CONH2 ; m為1至約4;以及 n為0至約10。
  44. 如請求項43所述之S1-RBD胜肽免疫原結構,其中該S1-RBD B細胞抗原決定位胜肽形成內部雙硫鍵以允許選自由SEQ ID NOs: 23-24、26-27和29-34組成之群組的該抗原決定位的局部限制。
  45. 如請求項43所述之S1-RBD胜肽免疫原結構,其中該異源性T輔助細胞抗原決定位係選自由SEQ ID NOs: 49-100組成之群組。
  46. 如請求項43所述之S1-RBD胜肽免疫原結構,其中該S1-RBD B細胞抗原決定位胜肽係選自由SEQ ID NOs: 23-24、26-27、29-34和315-319組成之群組,且該Th抗原決定位係選自由SEQ ID NOs: 49-100組成之群組。
  47. 如請求項43所述之S1-RBD胜肽免疫原結構,其中該胜肽免疫原結構係選自由SEQ ID NOs: 107-144組成之群組。
  48. 一種S1-RBD胜肽免疫原結構,包含: a. 一B細胞抗原決定位,其包含來自SEQ ID NO:226之S1-RBD序列約6至約35個胺基酸殘基; b. 一異源性T輔助細胞抗原決定位,其包含選自由SEQ ID NOs: 49-100及其任意組合組成之群組的一胺基酸序列;以及 c. 一任選的異源性間隔子,其係選自由一胺基酸、Lys-、Gly-、Lys-Lys-Lys-、(α, ε-N)Lys、ε-N-Lys-Lys-Lys-Lys (SEQ ID NO: 101)、 Lys-Lys-Lys- ε-N-Lys (SEQ ID NO: 102)和Pro-Pro-Xaa-Pro-Xaa-Pro (SEQ ID NO: 103)及其任意組合組成之群組, 其中該B細胞抗原決定位係直接或透過該任選的異源性間隔子共價連接至該T輔助細胞抗原決定位。
  49. 如請求項48所述之S1-RBD胜肽免疫原結構,其中該B細胞抗原決定位係選自由SEQ ID NOs: 23-24、26-27、29-34和315-319組成之群組。
  50. 如請求項48所述之S1-RBD胜肽免疫原結構,其中該任選的異源性間隔子係(α, ε-N)Lys、ε-N-Lys-Lys-Lys-Lys (SEQ ID NO: 101)、Lys-Lys-Lys-ε-N-Lys (SEQ ID NO: 102)或Pro-Pro-Xaa-Pro-Xaa-Pro (SEQ ID NO:103),其中Xaa係任意胺基酸。
  51. 如請求項48所述之S1-RBD胜肽免疫原結構,其中該T輔助細胞抗原決定位係共價連接至該B細胞抗原決定位的氨基端或羧基端。
  52. 如請求項48所述之S1-RBD胜肽免疫原結構,其中該T輔助細胞抗原決定位係透過該任選的異源性間隔子共價連接至該B細胞抗原決定位的氨基端或羧基端。
  53. 一種組成物,其包含如請求項43所述之S1-RBD胜肽免疫原結構。
  54. 一種醫藥組成物,其包含: a. 如請求項43所述之一胜肽免疫原結構;以及 b. 一藥學上可接受的遞送載體及/或佐劑。
  55. 如請求項54所述之醫藥組成物,其中 a. 該S1-RBD B細胞抗原決定位胜肽係選自由SEQ ID NOs: 23-24、26-27、29-34和315-319組成之群組; b. 該異源性T輔助細胞抗原決定位係選自由SEQ ID NOs: 49-100組成之群組;以及 c. 該異源性間隔子係選自由一胺基酸、Lys-、Gly-、Lys-Lys-Lys-、(α, ε-N)Lys、ε-N-Lys-Lys-Lys-Lys (SEQ ID NO: 101)、Lys-Lys-Lys- ε-N-Lys (SEQ ID NO: 102)和Pro-Pro-Xaa-Pro-Xaa-Pro (SEQ ID NO: 103)及其任意組合組成之群組;以及 其中該S1-RBD胜肽免疫原結構與一CpG寡去氧核苷酸(ODN)混合以形成一穩定化的免疫刺激複合物。
  56. 如請求項54所述之醫藥組成物,其中 a. 該S1-RBD胜肽免疫原結構係選自由SEQ ID NOs: 107-144組成之群組;以及 其中該S1-RBD胜肽免疫原結構與一CpG寡去氧核苷酸(ODN)混合以形成一穩定化的免疫刺激複合物。
  57. 如請求項56所述之醫藥組成物,其中該醫藥組成物進一步含有一分離的胜肽,其含有SEQ ID NOs: 13、39-41、44、161-165或其任意組合的一內源性SARS-CoV-2 Th抗原決定位序列。
  58. 如請求項56所述之醫藥組成物,其中該醫藥組成物進一步含有一分離的胜肽,其含有SEQ ID NOs: 9-12、14-16、19、35-36、42-43、45-48、145-160或其任意組合的一內源性SARS-CoV-2 CTL抗原決定位序列。
  59. 如請求項56所述之醫藥組成物,其中該醫藥組成物進一步含有 a. 含有SEQ ID NOs: 13、39-41、44、161-165或其任意組合的一內源性SARS-CoV-2 Th抗原決定位序列的一分離的胜肽;以及 b. 含有SEQ ID NOs: 9-12、14-16、19、35-36、42-43、45-48、145-160或其任意組合的一內源性SARS-CoV-2 CTL抗原決定位序列的一分離的胜肽。
  60. 一種於一動物中用以產生針對S1-RBD的抗體的方法,其包含對該動物投予如請求項54所述之醫藥組成物。
  61. 一種於一動物中用以產生針對S1-RBD的抗體的方法,其包含對該動物投予如請求項57所述之醫藥組成物。
  62. 一種於一動物中用以產生針對S1-RBD的抗體的方法,其包含對該動物投予如請求項58所述之醫藥組成物。
  63. 一種於一動物中用以產生針對S1-RBD的抗體的方法,其包含對該動物投予如請求項59所述之醫藥組成物。
  64. 一種分離的抗體或其抗原決定位結合片段,其特異性地結合至SEQ ID NOs: 23-24、26-27、29-34或226的胺基酸序列。
  65. 如請求項64所述之分離的抗體或其抗原決定位結合片段,其結合至S1-RBD胜肽免疫原結構。
  66. 一種組成物,其包含如請求項64所述之分離的抗體或其抗原決定位結合片段。
  67. 一種於一動物中預防及/或治療COVID-19的方法,其包含對該動物投予如請求項54所述之醫藥組成物。
  68. 一種於一動物中預防及/或治療COVID-19的方法,其包含對該動物投予如請求項57所述之醫藥組成物。
  69. 一種於一動物中預防及/或治療COVID-19的方法,其包含對該動物投予如請求項58所述之醫藥組成物。
  70. 一種於一動物中預防及/或治療COVID-19的方法,其包含對該動物投予如請求項59所述之醫藥組成物。
  71. 一種融合蛋白,其包含: a) 衍生自人類受體ACE2 (ECD-hACE2)的細胞外結構域(ECD)的一胺基酸序列,其係選自由SEQ ID NO: 228和SEQ ID NO: 229組成之群組; b) 來自一IgG分子之一任選的鉸鏈區域,其係選自由SEQ ID NO: 166-225組成之群組;以及 c) 一IgG分子的一Fc片段,其係選自由SEQ ID NOs: 231-234組成之群組, 其中(a)中的該胺基酸序列係直接或透過(b)中的該任選的鉸鏈區域共價連接至(c)中的該Fc片段。
  72. 如請求項71所述之融合蛋白,其中 (c)中的該Fc片段具有SEQ ID NO: 232的一胺基酸序列,且 該任選的鉸鏈區域具有SEQ ID NO: 166或SEQ ID NO: 188的一胺基酸序列。
  73. 如請求項71所述之融合蛋白,其中該融合蛋白係選自由SEQ ID NOs: 237之ACE2-ECD-sFc、SEQ ID NO: 238之ACE2-ECDN-sFc和SEQ ID NO: 356之ACE2-ECD-Fc組成之群組。
TW110105685A 2020-02-19 2021-02-19 用於檢測、預防和治療新型冠狀病毒(covid-19)疾病的設計胜肽及蛋白質 TWI818236B (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US202062978596P 2020-02-19 2020-02-19
US62/978,596 2020-02-19
US202062990382P 2020-03-16 2020-03-16
US62/990,382 2020-03-16
US202063027290P 2020-05-19 2020-05-19
US63/027,290 2020-05-19
US202063118596P 2020-11-25 2020-11-25
US63/118,596 2020-11-25

Publications (2)

Publication Number Publication Date
TW202144384A true TW202144384A (zh) 2021-12-01
TWI818236B TWI818236B (zh) 2023-10-11

Family

ID=77392273

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110105685A TWI818236B (zh) 2020-02-19 2021-02-19 用於檢測、預防和治療新型冠狀病毒(covid-19)疾病的設計胜肽及蛋白質

Country Status (10)

Country Link
US (1) US20230109393A1 (zh)
EP (1) EP4107180A4 (zh)
JP (1) JP2023515800A (zh)
KR (1) KR20220144829A (zh)
AU (1) AU2021222039A1 (zh)
BR (1) BR112022016574A2 (zh)
CA (1) CA3172443A1 (zh)
MX (1) MX2022010118A (zh)
TW (1) TWI818236B (zh)
WO (1) WO2021168305A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113087777A (zh) * 2020-04-17 2021-07-09 成都威斯克生物医药有限公司 抗SARS-CoV-2感染的蛋白以及用该蛋白制备的疫苗

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115803091A (zh) * 2020-05-22 2023-03-14 福迈康股份公司 Ace2-fc融合蛋白及其用途
WO2021254868A1 (en) * 2020-06-19 2021-12-23 Sciensano Multiplex sars-cov-2 immunoassay
WO2022013609A1 (en) * 2020-07-13 2022-01-20 Immunovaccine Technologies, Inc. Sars-cov-2 vaccine compositions and methods of preparation and use
EP4228697A1 (en) 2020-10-16 2023-08-23 Invisishield Technologies Ltd. Compositions for preventing or treating viral and other microbial infections
WO2022090469A2 (en) * 2020-10-29 2022-05-05 Formycon Ag Ace2 fusion proteins and uses thereof
CN112852666A (zh) * 2021-01-19 2021-05-28 新疆河润水业有限责任公司 一种微生物菌剂的制备方法及采用微生物菌剂制备的微生物肥料
WO2023034933A1 (en) * 2021-09-02 2023-03-09 Nonigenex, Inc. Methods and systems for assessing adaptive immunity to coronavirus
CN113717258B (zh) * 2021-09-03 2023-09-29 郑州安图生物工程股份有限公司 一种SARS-CoV-2感染细胞免疫检测的抗原多肽组合物及其应用、试剂盒
WO2023044397A1 (en) * 2021-09-15 2023-03-23 The Board Of The Trustees Of The University Of Illinois Engineered receptors and monoclonal antibodies for coronaviruses and uses thereof
CN113769080B (zh) * 2021-09-17 2023-04-07 清华大学 多肽免疫偶联物及其应用
TW202334198A (zh) * 2021-10-12 2023-09-01 聯亞生技開發股份有限公司 用於避免感染與治療遠程新冠肺炎之針對SARS-CoV-2 OMICRON BA.4/BA.5的疫苗組成物
WO2023069461A2 (en) * 2021-10-19 2023-04-27 Vaxxinity, Inc. Method for the prevention and treatment of coronavirus disease
WO2023079001A1 (en) * 2021-11-03 2023-05-11 Nykode Therapeutics ASA Immunogenic constructs and vaccines for use in the prophylactic and therapeutic treatment of diseases caused by sars-cov-2
GB202117821D0 (en) * 2021-12-09 2022-01-26 Univ Edinburgh A method of providing peptides
WO2023154781A2 (en) * 2022-02-09 2023-08-17 Vaxxinity, Inc. Sars-cov-2 vaccine for the prevention and treatment of coronavirus disease (covid-19)
WO2024011163A1 (en) * 2022-07-06 2024-01-11 Georgia State University Research Foundation, Inc. Coronavirus vaccines and methods of use thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004321500A1 (en) * 2003-09-29 2006-05-11 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Immunoglobulins with potent and broad antiviral activity
US20050214748A1 (en) * 2003-11-12 2005-09-29 Wang Chang Y Peptide-based diagnostic reagents for SARS
CA2569142A1 (en) * 2004-06-02 2005-12-22 New York Blood Center Sars vaccines and methods to produce highly potent antibodies
CN101522208A (zh) * 2005-02-08 2009-09-02 纽约血库公司 抗严重急性呼吸综合征相关冠状病毒的中和单克隆抗体
MX2008014710A (es) * 2006-05-19 2009-02-12 Amgen Inc Anticuerpos para coronavirus del sars.
CA2996996A1 (en) * 2015-08-31 2017-03-09 National Research Council Of Canada Tgf-.beta.-receptor ectodomain fusion molecules and uses thereof
CN106380517B (zh) * 2016-10-28 2019-07-16 中国人民解放军军事医学科学院微生物流行病研究所 一种对中东呼吸综合征冠状病毒具有中和活性的小分子抗体及其应用
US11696948B2 (en) * 2018-06-12 2023-07-11 Kbio Holdings Limited Vaccines formed by virus and antigen conjugation
RU2709659C1 (ru) * 2018-09-06 2019-12-19 федеральное государственное бюджетное учреждение "Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи" Министерства здравоохранения Российской Федерации Иммунобиологическое средство и способ его использования для индукции специфического иммунитета к вирусу ближневосточного респираторного синдрома (варианты)
WO2021156490A2 (en) * 2020-02-06 2021-08-12 Vib Vzw Corona virus binders

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113087777A (zh) * 2020-04-17 2021-07-09 成都威斯克生物医药有限公司 抗SARS-CoV-2感染的蛋白以及用该蛋白制备的疫苗

Also Published As

Publication number Publication date
KR20220144829A (ko) 2022-10-27
WO2021168305A1 (en) 2021-08-26
BR112022016574A2 (pt) 2023-02-14
CA3172443A1 (en) 2021-08-26
TWI818236B (zh) 2023-10-11
JP2023515800A (ja) 2023-04-14
US20230109393A1 (en) 2023-04-06
EP4107180A1 (en) 2022-12-28
EP4107180A4 (en) 2024-05-08
AU2021222039A1 (en) 2022-09-29
MX2022010118A (es) 2022-09-05

Similar Documents

Publication Publication Date Title
TWI818236B (zh) 用於檢測、預防和治療新型冠狀病毒(covid-19)疾病的設計胜肽及蛋白質
US20200330587A1 (en) Epstein-barr virus vaccines
CN114206946B (zh) 冠状病毒疫苗组合物、方法及其使用
US20220089652A1 (en) Stabilized soluble pre-fusion rsv f proteins
CN113321739B (zh) 一种covid-19亚单位疫苗及其制备方法与应用
CN117957016A (zh) Sars-cov-2与流感联合疫苗
KR101121754B1 (ko) E형 간염 바이러스의 폴리펩티드 단편, 그를 이용한 백신 조성물 및 진단용 키트
CN112512564A (zh) 铁蛋白蛋白
US11806394B2 (en) Protein-based nanoparticle vaccine for metapneumovirus
JP2015521592A (ja) 安定化されたgp120
US8017126B2 (en) Modified HIV-1 envelope proteins
TW202320845A (zh) 用於預防及治療2019冠狀病毒病(COVID—19)之SARS—CoV—2多重表位肽/蛋白質疫苗
WO2023064631A1 (en) Engineering antigen binding to, and orientation on, adjuvants for enhanced humoral responses and immunofocusing
EP4313138A1 (en) Sars-cov-2 subunit vaccine
OA18879A (en) Stabilized soluble pre-fusion RSV F proteins
Lucy Kuo et al. A Novel SARS-CoV-2 Multitope Protein/Peptide Vaccine Candidate is Highly