TW202139272A - 半導體裝置的形成方法 - Google Patents

半導體裝置的形成方法 Download PDF

Info

Publication number
TW202139272A
TW202139272A TW110111826A TW110111826A TW202139272A TW 202139272 A TW202139272 A TW 202139272A TW 110111826 A TW110111826 A TW 110111826A TW 110111826 A TW110111826 A TW 110111826A TW 202139272 A TW202139272 A TW 202139272A
Authority
TW
Taiwan
Prior art keywords
fin
region
semiconductor
layer
gate
Prior art date
Application number
TW110111826A
Other languages
English (en)
Inventor
劉昌淼
陳柏寧
陳科維
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202139272A publication Critical patent/TW202139272A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Patterning of the switching material
    • H10N70/063Patterning of the switching material by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823431MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823481MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0924Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/253Multistable switching devices, e.g. memristors having three or more terminals, e.g. transistor-like devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors

Abstract

一種半導體裝置的形成方法包含:圖案化遮罩層以及半導體材料以形成第一鰭片以及第二鰭片和插設於第一鰭片以及第二鰭片的溝槽。於第一鰭片、第二鰭片以及溝槽上方形成第一襯層。於第一襯層上方形成絕緣材料。執行第一退火,接著執行絕緣材料的第一平坦化以形成第一平坦化絕緣材料。其後,第一平坦化絕緣材料的頂表面係在遮罩層的頂表面上方。執行第二退火,接著執行第一平坦化絕緣材料的第二平坦化以形成第二平坦化絕緣材料。蝕刻絕緣材料以形成淺溝槽隔離(STI)區域且於半導體材料上方形成閘極結構。

Description

半導體裝置的形成方法
本發明實施例係有關於半導體技術,且特別是有關於半導體裝置的形成方法。
半導體裝置被用於各種電子應用中,像是,例如個人電腦、手機、數位相機、以及其他電子設備。半導體裝置通常係透過依序沉積絕緣層或介電質層、導電層及半導體層的材料於半導體基板上方,並使用微影法圖案化各種材料層以形成電路組件以及元件於其上。
半導體產業透過持續減縮最小部件尺寸,使得一給定區域中能夠積體更多組件,來持續改進各種電子組件(例如電晶體、二極體、電阻器、電容器等)的積體密度。然而,其他挑戰伴隨著最小部件尺寸的減縮而浮現,其提供了進一步改良的機會。
在一實施例中,一種半導體裝置的形成方法包含:圖案化遮罩層以及半導體材料以形成第一鰭片以及第二鰭片和插設於第一鰭片以及第二鰭片的溝槽。於第一鰭片、第二鰭片以及溝槽上方形成第一襯層。於第一襯層上方形成絕緣材料。執行第一退火,接著執行絕緣材料的第一平坦化以形成第一平坦化絕緣材料。其後,第一平坦化絕緣材料的頂表面係在遮罩層的頂表面上方。執行第二退火,接著執行第一平坦化絕緣材料的第二平坦化以形成第二平坦化絕緣材料。蝕刻絕緣材料以形成淺溝槽隔離(STI)區域且於半導體材料上方形成閘極結構。
在另一實施例中,一種半導體裝置的形成方法包含: 在基板的第一區域上方形成第一鰭片堆疊物以及在基板的第二區域上方形成第二鰭片堆疊物。第一鰭片堆疊物包括矽鰭片,且第二鰭片堆疊物包括矽鍺鰭片。於第一鰭片堆疊物以及第二鰭片堆疊物上方形成矽襯層,且在矽襯層上方形成絕緣襯層。於絕緣襯層上方形成絕緣材料,使得絕緣材料具有第一頂表面。執行第一退火。平坦化絕緣材料以形成第一平坦化絕緣材料,使得第一平坦化絕緣材料具有在第一鰭片堆疊物的第一頂表面以及第二鰭片堆疊物的第一頂表面之上的第二頂表面。執行第二退火。平坦化第一平坦化絕緣材料,藉以暴露第二鰭片堆疊物的一部分。
在又一實施例中,一種半導體裝置的形成方法包含:於基板上方形成第一半導體鰭片以及第二半導體鰭片。在第一半導體鰭片以及第二半導體鰭片上方以及之間沉積半導體層,在半導體層上方沉積第一絕緣層,第一絕緣層包括氧化物,且在第一絕緣層上方沉積第二絕緣層。執行第一退火,其氧化至少一部分的半導體層。在第二絕緣層上執行第一平坦化,使得第二絕緣層具有在第一半導體鰭片以及第二半導體鰭片之上的第一平整頂表面。執行第二退火,且半導體層在第二退火之後被氧化。在第二半導體層上執行第二平坦化,使得第二絕緣層具有第二平整頂表面。對第二絕緣層開槽,使得第二絕緣層具有在第一半導體鰭片以及第二半導體鰭片的頂表面之下的第三頂表面。
要瞭解的是以下的揭露內容提供許多不同的實施例或範例,以實施提供之主體的不同部件。以下敘述各個構件及其排列方式的特定範例,以求簡化揭露內容的說明。當然,這些僅為範例並非用以限定本發明。例如,以下的揭露內容敘述了將一第一部件形成於一第二部件之上或上方,即表示其包含了所形成的上述第一部件與上述第二部件是直接接觸的實施例,亦包含了尚可將附加的部件形成於上述第一部件與上述第二部件之間,而使上述第一部件與上述第二部件可能未直接接觸的實施例。此外,揭露內容中不同範例可能使用重複的參考符號及/或用字。這些重複符號或用字係為了簡化與清晰的目的,並非用以限定各個實施例及/或所述外觀結構之間的關係。
再者,為了方便描述圖式中一元件或部件與另一(複數)元件或(複數)部件的關係,可使用空間相關用語,例如“在...之下”、“下方”、“下部”、“上方”、“上部”及類似的用語。除了圖式所繪示的方位之外,空間相關用語也涵蓋裝置在使用或操作中的不同方位。所述裝置也可被另外定位(例如,旋轉90度或者位於其他方位),並對應地解讀所使用的空間相關用語的描述。
本文提供的實施例減少或避免環繞半導體鰭片的淺溝槽隔離(STI)區域的形成期間,半導體鰭片的上部分的氧化。STI區域的形成包含在可能導致鰭片損耗的環境中的某些退火步驟,像是在含氧環境中的退火步驟。通常,單個部件的物理形狀和化學結構的細節隨著電子組件的尺寸減小,對於性能變得越來越關鍵。在鰭式場效電晶體(FinFET)的情況中,例如,最靠近閘極電極的上部分的尺寸以及形狀會影響鰭片在源極和漏極區域之間使電流通過或完全停止電流流動的能力。實際上,任何電晶體可“導通”或“截止”的速度有部分係取決於閘極面積的影響,例如,直接受到向閘極電極提供電壓電位而形成的電場之通道區域的面積的影響。在FinFET的鰭片的例子中,移除上部分的一部分可能會導致閘極面積減縮。使用一些半導體材料,像是矽鍺,來形成半導體鰭片以向通道區提供應變(strain),其提高了電晶體的性能。像是下面討論的那些實施例減縮了鰭片的通道區暴露於其他元素(像是氧氣),藉以限制了整合至晶格結構中的氧,其可放鬆或降低應變,藉以減輕了應變。
舉例而言,在退火步驟期間仔細選擇保護半導體鰭片的材料和該些材料的厚度將減少或消除半導體鰭片的氧化。其結果是,半導體鰭片的上部分將保持設計的輪廓或將達成更接近設計形狀的輪廓(例如,正方形形狀),並且閘極電極隨後也將形成具有設計的形狀和閘極面積或更接近設計的形狀和閘極面積。另外,半導體鰭片的半導體材料的晶格結構對性能很重要,且因此,在其晶格結構中少量氧氣或無氧氣的存在進一步確保了電晶體提升的性能。
第1圖繪示根據一些實施例的鰭式場效電晶體(FinFET)的實例的立體圖。FinFET包括在基板50(例如,半導體基板)上的鰭片58/60。隔離區域80係設置於基板50中,且鰭片58/60凸出於隔離區域80之上且形成於相鄰的隔離區域80之間。雖然隔離區域80與基板50分開說明/描述,當用於本文中,用語“基板”可用以僅指稱半導體基板或用以指稱含有隔離區域的半導體基板。如所述,鰭片58/60以及基板50可包括相同的材料、不同的材料、及/或複數個材料。在此背景中,鰭片58/60指稱在相鄰隔離區域80之間延伸並凸出於相鄰隔離區域80之上的部分。
閘極介電質層112係沿著鰭片58/60的側壁並在鰭片58/60的頂表面上方,且閘極電極114係在閘極介電質層112上方。源極/汲極區域100相對於閘極介電質層112以及閘極電極114設置於鰭片58/60的相對側中。第1圖進一步繪示用於後續圖式之參考截面。截面A-A係沿著閘極電極114的縱軸且在例如垂直於FinFET的源極/汲極區域100之間的電流流動方向的方向上。截面B-B垂直於截面A-A,且沿著鰭片58/60的縱軸並在例如FinFET的源極/汲極區域100之間的電流流動的方向上。截面C-C平行於截面A-A,且延伸通過FinFET的源極/汲極區域100。為了清楚起見,後續附圖參考這些參考截面。
本文中討論的一些實施例在使用閘極後製製程形成的FinFET的背景中討論。在其他實施例中,亦可使用閘極先製製程。另外,一些實施例亦考量用於像是平面FET的平面裝置的態樣。
第2圖至第19B圖為根據一些實施例的FinFET的製造中的中間階段的截面圖。第2圖至第10圖繪示除了多個鰭片/FinFET以外,第1圖繪示的參考截面A-A。第11A圖、第12A圖、第13A圖、第14A圖、第15A圖、第16A圖、第17A圖、第18A圖、以及第19A圖亦沿著第1圖繪示的參考截面A-A繪示,且第11B圖、第12B圖、第13B圖、第14B圖、第15B圖、第16B圖、第17B圖、第17C圖、第18B圖、以及第19B圖除了多個鰭片/FinFET以外,亦沿著第1圖繪示的參考截面B-B繪示。第13C圖以及第13D圖除了多個鰭片/FinFET以外,沿著第1圖繪示的參考截面C-C繪示。
在第2圖中,繪示於區域50N中具有第一鰭片58且於區域50P中具有第二鰭片60的基板50。基板50可為半導體基板,像是塊狀半導體、半導體覆絕緣體(SOI)基板等,其可被摻雜(例如,以p型或n型摻雜物摻雜)或未被摻雜。基板50可為晶圓,像是矽晶圓。通常,SOI基板係形成於絕緣體層上的一層半導體材料。絕緣體層可為例如埋入式氧化物(BOX)層、氧化矽層等。絕緣體層提供於基板上(通常係矽或玻璃基板)。也可使用其他基板,像是多層或梯度基板。在一些實施例中,基板50的半導體材料可包含矽;鍺;化合物半導體,包含碳化矽、砷化鎵、磷化鎵、磷化銦、砷化銦、及/或銻化銦;合金半導體,包含矽鍺、磷砷化鎵、砷化鋁銦、砷化鋁鎵、砷化鎵銦、磷化鎵銦;及/或砷磷化鎵銦;或其組合。
基板50具有區域50N以及區域50P。區域50N可用以形成n型裝置,像是NMOS電晶體,例如n型FinFET。區域50P可用以形成p型裝置,像是PMOS電晶體,例如p型FinFET。區域50N可與區域50P物理上分隔(如所示地透過分隔物50D),且可設置任意數量的裝置部件(例如,其他主動裝置、摻雜區域、隔離結構等)於區域50N以及區域50P之間。
第一鰭片58以及第二鰭片60(統稱為鰭片58/60)可以與基板50相同的半導體材料或不同的半導體材料形成。鰭片58/60的半導體條可透過任何適合的製程形成。舉例而言,在其中第一鰭片58係由矽形成且第二鰭片60係由矽鍺形成的一些實施例中,凹槽可形成於區域50P的基板中,其後矽鍺層可於凹槽中磊晶成長。可執行像是化學機械研磨(CMP)製程的平坦化製程來平整化區域50N中的矽材料以及區域50P中的矽鍺材料的上表面。其後,可透過任何適合的方法來圖案化鰭片58/60。舉例而言,可使用包含雙重圖案化或多重圖案化製程的一或多個光學微影製程來圖案化鰭片58/60。通常,雙重圖案化或多重圖案化製程與光學微影以及自對準製程結合,藉以能夠創造出具有,例如比用單個直接光學微影製程可獲得的間距還要小的間距的圖案。舉例而言,在一個實施例中,將犧牲層形成於基板上方並使用光學微影製程圖案化。使用自對準製程在圖案化的犧牲層旁邊形成間隔物。然後移除犧牲層,且接著可使用剩餘的間隔物來圖案化鰭片。在一些實施例中,遮罩(像是第2圖所示的遮罩62)可保留在鰭片58/60上。鰭片58/60以及遮罩62一起構成鰭片堆疊物。每個遮罩62可具有約200 Å以及約800 Å之間的厚度。
可使用其他方法形成鰭片58/60。舉例而言,鰭片58/60可透過在基板50上方沉積犧牲遮罩層並在犧牲遮罩層中圖案化開口來形成,其中開口對應於鰭片58/60的位置。磊晶材料,像是區域50N中的矽和區域50P中的矽鍺可在開口中成長。當在磊晶成長區域50P中的第二鰭片60時可遮蓋區域50N,而在磊晶成長區域50N中的第一鰭片58時,可遮蓋區域50P。也可使用其他製程。
第3-9圖繪示根據一些實施例形成淺溝槽隔離(STI)區域80(參見第9圖)的製程。通常,以下討論的製程形成將使各種半導體裝置(例如,電晶體)彼此電性隔離的STI區域。以下STI形成製程包含在氧氣環境中的熱處理(例如,退火)期間保護電晶體的各種部件(例如,FinFET裝置的鰭片58/60)免於氧化的方式。
首先參照第3圖,半導體襯層64形成於鰭片58/60上方以及相鄰的鰭片58/60之間。如以下所討論的,半導體襯層64在STI形成製程期間提供了對鰭片58/60的保護。半導體襯層64可包括矽(Si)、碳化矽(SiC)、矽鍺(SiGe)等。半導體襯層64可使用化學氣相沉積(CVD)、原子層沉積(ALD)、汽相磊晶(VPE)、分子束磊晶(MBE)等製程磊晶成長。半導體襯層64可以約10 Å至約30 Å,或約10 Å至約20 Å的厚度沉積。如將於後續步驟中所討論的,具有較厚的半導體襯層64的好處是在像是退火製程的步驟期間保護鰭片58/60免於氧化。
在第4圖中,可選地,可在半導體襯層64上方形成絕緣襯層68。絕緣襯層68提供將形成STI區域邊界的穩定的介電質襯裡。類似地,絕緣襯層68形成於鰭片58/60上方並形成於相鄰的鰭片58/60之間。絕緣襯層68可包括氧化物,像是氧化矽;氮化物,像是氮化矽等;或其組合,像是氮氧化矽或氧化物以及氮化矽的複合層。絕緣襯層68可透過像是高密度電漿化學氣相沉積(HDP-CVD)(例如在遠程電漿系統中以CVD為基礎的材料沉積和後固化(post-curing)以使其轉換成像是氧化物之其他材料)、ALD、VPE、MBE等或其組合的CVD形成。在一些實施例中,自半導體襯層64熱成長絕緣襯層68。絕緣襯層68可具有從大於0 Å至小於或等於約20 Å的範圍內的厚度,像是約10 Å至約20 Å。半導體襯層64與絕緣襯層68的組合厚度可在10 Å至約50 Å之間,像是約20 Å至約40 Å。
雖然被描述為係形成於區域50N以及區域50P兩者之中,絕緣襯層68可形成於區域50P中,像是在鰭片60上方以及鰭片60之間,鰭可以矽鍺形成。在一些實施例中,絕緣襯層68沉積於區域50N以及區域50P兩者上方,且接著圖案化(例如,透過蝕刻)以自區域50N移除。或者,可在沉積絕緣襯層68於區域50P上方時遮蔽區域50N。
在第5圖中,形成第一絕緣材料72於半導體襯層64上方以及絕緣襯層68上方(如果有形成的話),包含在鰭片58/60上方以及相鄰的鰭片58/60之間。第一絕緣材料72可為氧化物,像是氧化矽;氮化物等或其組合,且可透過HDP-CVD、FCVD等或其組合形成。可使用透過任何可接受的製程形成的其他絕緣材料。在所繪示的實施例中,第一絕緣材料72為藉由FCVD製程形成的氧化矽。就形成於區域50N上方的部分以及形成於區域50P上方的部分,絕緣襯層68以及第一絕緣材料72可包括相同的材料(例如氧化矽)或不同的材料(例如分別為氮化矽以及氧化矽)。在一些實施例中,他們可包括具有不同摻雜程度及/或摻雜類型的類似材料。由於鰭片58/60的沉積方法和形狀,第一絕緣材料72可能具有不平坦的頂表面。在形成第一絕緣材料72之後,可執行第一清潔製程以從第一絕緣材料72的上部分移除雜質。第一清潔製程可包含過氧化銨(NH4 OH)、過氧化氫(H2 O2 )、水等或其任意組合。
在第6圖中,可執行第一退火製程以緻密化絕緣材料72以及絕緣襯層68。雖然未具體繪示,第一退火製程可氧化所有或部分的半導體襯層64,其可導致半導體襯層64與絕緣襯層68結合。在亦未具體繪示的一些實施例中,第一退火製程亦可模糊絕緣材料72和絕緣襯層68之間的邊界。第一退火製程可以約300 °C以及約800 °C之間的溫度,像是少於700 °C、或甚至少於500 °C的溫度執行約20分鐘以及約8小時之間,或是於1小時以及2小時之間的時間。在一些實施例中,第一退火製程包括濕退火部分和乾退火部分。濕退火部分包含氧氣或水,而乾退火部分係在氮氣環境中執行。
半導體襯層64的優點是用作為緩衝物,並因此減少或防止鰭片58/60的氧化。此優點在半導體襯層64透過在第一退火製程期間被環境氧氣氧化到一定程度而用作為最後一道防線時體現。舉例而言,第二鰭片60(例如,當包括矽鍺時)在不存在半導體襯層64的情況下,在退火製程期間將更可能發生氧化。
繼續參照第6圖,在第一退火製程之後形成第二絕緣材料76於第一絕緣材料72上方以提供更平滑以及更平整的頂表面。第二絕緣材料76可為氧化物,像是氧化矽;氮化物等;或其組合且可藉由像是電漿增強CVD(PECVD)等的CVD形成。在所繪示的實施例中,第二絕緣材料76包括與第一絕緣材料72(例如氧化矽)類似的材料。更平滑以及更平整的第二絕緣材料76的頂表面使得在後續步驟中能夠更有效且更好地控制下述的移除製程(例如,平坦化)。在形成第二絕緣材料76之後,直接位於遮罩62的頂表面上方的第一絕緣材料72以及第二絕緣材料76(連帶半導體襯層64以及絕緣襯層68)的組合物可具有約1000 Å以及約5000 Å之間,像是約2500 Å的厚度T1 。以不同的方式測量,直接位於鰭片58/60的頂表面上方的所有上述參考層(包含遮罩62)可具有約1200 Å以及約5800 Å之間,像是約2800 Å的厚度T2
在第7圖中,在第一絕緣材料72以及第二絕緣材料76上執行第一移除製程以移除鰭片58/60上方的那些層的一部分以及遮罩62。在一些實施例中,可利用平坦化製程,像是化學機械研磨(CMP)、回蝕(etch-back)製程、其組合等。在一些實施例中,在第一移除製程之後,直接位於遮罩62的頂表面上方的第一絕緣材料72以及第二絕緣材料76(連帶半導體襯層64以及絕緣襯層68)的厚度T3 可在約100 Å以及約500 Å之間,像是約150 Å以及約200 Å之間。在一些實施例中,在第一移除製程之後,直接位於鰭片58/60的頂表面上方的上述參考層(包含遮罩62)的厚度T4 可在約200 Å以及約1300 Å之間,像是約350 Å以及約550 Å之間。注意小於100Å的厚度T3 (或小於200Å的厚度T4 )可能不足以保護鰭片58/60(像是可包括矽鍺的鰭片60)免於在以下討論之後續退火步驟期間被氧化。另外,大於500 Å的厚度T3 (或大於1300 Å的厚度T4 )可能不必要地增加第一絕緣材料72以及第二絕緣材料76的形成和後續的平坦化步驟期間的製程時間而輕微地增加免於被氧化的保護之優點。在一些實施例中,在第一移除製程期間即時地監控鰭片58/60以及遮罩62上方的絕緣材料72的量,並且在獲得所需厚度時停止第一移除製程。亦可使用像是即時製程(timed process)的其他方法。可在第一移除製程之後執行第二清潔製程以自第一絕緣材料72的剩餘部分的上部分移除雜質。第二清潔製程可包含過氧化銨(NH4 OH)、過氧化氫(H2 O2 )、水等或其任意組合。
繼續參照第7圖,在移除製程之後,可執行第二退火製程以進一步緻密化第一絕緣材料72以及第二絕緣材料(如果有任何剩餘的話)。如以上關於第一退火製程的討論且亦未具體繪示的,第一絕緣材料72可組合或進一步與半導體襯層64及/或絕緣襯層68組合。遮罩62以及鰭片58/60上方的絕緣材料(例如,第一絕緣材料72、第二絕緣材料76、絕緣襯層68、以及半導體襯層64)的厚度T3 或厚度T4 的的優點在於保護鰭片58/60免於在第二退火製程期間氧化。就半導體襯層64於第一退火製程期間實質上被氧化的程度,半導體襯層64(如果其可與上覆的絕緣層有所區別)可能較少用作為化學緩衝物,而更多地係用作為物理緩衝物來減少或防止鰭片58/60氧化。第二退火製程可以約300 °C以及約800 °C之間、約300 °C以及約700 °C之間、或約300 °C以及約500 °C之間的溫度執行約30分鐘以及約3小時之間,或是於1小時以及2小時之間的時間。在一些實施例中,第二退火製程包括濕退火部分和乾退火部分。濕退火部分包含氧氣或水,而乾退火部分係在氮氣環境中執行。
由於厚度T3 或厚度T4 提供保護之結果,鰭片58/60的輪廓在第二退火之前以及之後維持實質上相同。沒有此保護時,鰭片58/60的上部分可處於較大的被氧化的風險中,其可能導致傾斜的輪廓。因為此保護,鰭片58/60的上部分保持具有側壁實質上垂直的方形。另外,就第二鰭片60發生的任何氧化的程度,其中在第一退火製程之前,第二鰭片60的材料的分子式為Si1-x Gex ,其中x值為約0.20以及約0.50之間,像是約0.25。在第一退火製程以及第二退火製程之後,第二鰭片60的外部部分的材料的分子式為Si1-x-y Gex Oy ,維持實質上相同的x值。實際上,x值可在約0.15至約0.50之間,或約0.20至約0.25之間,像是約0.20,且y值可小於約0.05(即5%),像是約0,其表明第二鰭片60在第一和第二退火製程期間沒有被氧化或很小程度地被氧化。這樣,x值可在其原始值的約15%至約100%之間。
在第8圖中,將第二移除製程應用於第一絕緣材料72以及任何第二絕緣材料76的剩餘物(連帶絕緣襯層68以及半導體襯層64的一部分)以移除鰭片58/60上方絕緣材料的過量的部分。在一些實施例中,可利用像是CMP、回蝕製程、其組合等的平坦化製程。平坦化製程移除遮罩62並暴露鰭片58/60使得鰭片58/60以及第一絕緣材料72的頂表面在平坦化製程完成後為平整的。在其他實施例中,平坦化製程在鰭片58/60上方的遮罩62停住且暴露遮罩62。
在第9圖中,對第一絕緣材料72開槽以形成淺溝槽隔離(STI)區域80。對第一絕緣材料72開槽使得鰭片58/60的上部分84自相鄰的STI區域80之間突出高度H1 。另外,STI區域80的頂表面可包括如所繪示的平表面、凸表面、凹表面或其組合。STI區域80的頂表面可透過任何適當的蝕刻而形成為平的、凸的、及/或凹的。可使用可接受的蝕刻製程來對STI區域80開槽,像是對絕緣材料(例如,半導體襯層64、絕緣襯層68、第一絕緣材料72)的材料有選擇性的製程,舉例而言,以比對鰭片58/60的材料更快的速率蝕刻第一絕緣材料72的材料。舉例而言,可使用例如使用稀氫氟酸(dHF)、緩衝氧化物蝕刻(BOE)溶液或乾蝕刻移除氧化物。在一些實施例中,執行在區域50N中形成STI區域80的蝕刻時遮蔽區域50P,且執行在區域50P中形成STI區域80的蝕刻時遮蔽區域50N。在第二移除製程於遮罩62停住的實施例中,遮罩62可在此開槽期間移除以形成STI區域80,或在開槽之前或之後移除以形成STI區域80。
另外在第9圖中,在鰭片58/60及/或基板50中可形成適當的井(未繪示)。在一些實施例中,可形成P井於區域50N中,且可形成N井於區域50P中。在一些實施例中,P井或N井同時形成在區域50N以及區域50P中。
在具有不同井類型的實施例中,可使用光阻劑或其他遮罩(未繪示)在區域50N以及區域50P達成不同的佈植步驟。舉例而言,光阻劑可形成於區域50N中的鰭片58以及STI區域80上方。將光阻劑圖案化以暴露基板50的區域50P,像是PMOS區域。光阻劑可透過使用旋塗技術形成且可透過使用可接受的光學微影技術圖案化。一旦光阻劑被圖案化,在區域50P中執行n型雜質的佈植,且光阻劑可用作為遮罩以實質上避免n型雜質被佈植到區域50N,像是NMOS區域。n型雜質可為在區域中佈植到等於或小於1018 cm-3 ,像是約1016 cm-3 以及約1018 cm-3 之間的濃度的磷、砷、銻等。佈植之後,可透過例如可接受的灰化製程移除光阻劑。
在區域50P佈植之後,光阻劑(未具體繪示)形成於區域50P的鰭片60以及STI區域80上方。將光阻劑圖案化以暴露基板50的區域50N,像是NMOS區域。光阻劑可透過使用旋塗技術形成且可透過使用可接受的光學微影技術圖案化。一旦光阻劑被圖案化,在區域50N中執行p型雜質的佈植,且光阻劑可用作為遮罩以實質上避免p型雜質被佈植到區域50P,像是PMOS區域。p型雜質可為在區域中佈植到等於或小於1018 cm-3 ,像是約1016 cm-3 以及約1018 cm-3 之間的濃度的硼、氟化硼、銦等。佈植之後,可透過例如可接受的灰化製程移除光阻劑。
在區域50N以及區域50P的佈植之後,可執行退火以修復佈植損壞並活化被佈植的p型及/或n型雜質。在一些實施例中,儘管原位和佈植摻雜可一起使用,磊晶鰭片的成長材料可在成長期間被原位摻雜,其可省去佈植。
在第10圖中,於鰭片58/60上形成虛置介電質層90。虛置介電質層90可為例如氧化矽、氮化矽、其組合等,且可根據可接受的技術沉積或熱成長。虛置介電質層90的材料可與區域50N以及區域50P為相同材料或不同材料。在虛置介電質層90的組成具有不同的材料或其他差異的一些實施例中,於此也可以使用上述的遮罩方法。
繼續參照第10圖,在虛置介電質層90上方形成虛置閘極層92,並在虛置閘極層92上方形成遮罩層94。虛置閘極層92可沉積於虛置介電質層90上方且接著像是藉由CMP平坦化。遮罩層94可沉積於虛置閘極層92上方。虛置閘極層92可為導電或非導電材料且可選自包含非晶矽、多結晶矽(多晶矽)、多晶矽鍺(poly-SiGe)、金屬氮化物、金屬矽化物、金屬氧化物、以及金屬的群組。虛置閘極層92可透過物理氣相沉積(PVD)、CVD、濺射沉積、或其他領域中已知且用於沉積所選材料的技術來沉積。虛置閘極層92可由具有與隔離區域的蝕刻具有高蝕刻選擇率的其他材料製成。舉例而言,遮罩層94可包含氮化矽、氮氧化矽等。在此實例中,單個虛置閘極層92以及單個遮罩層94跨過區域50N以及區域50P形成。注意虛置介電質層90被繪示成僅覆蓋鰭片58/60僅係為了說明之目的。在一些實施例中,可沉積虛置介電質層90使得虛置介電質層90覆蓋STI區域80,延伸於虛置閘極層92以及STI區域80之間。
第11A圖至第19B圖繪示製造實施例裝置中的各種附加的步驟。第11A圖至第19B圖繪示在區域50N以及區域50P的任一個中的部件。舉例而言,第11A圖至第19B圖中繪示的結構可應用於區域50N以及區域50P兩者。區域50N以及區域50P的結構中的差異(如果有任何差異)伴隨每個圖式描述於內文中 。
在第11A圖以及第11B圖中,可使用可接受的光學微影以及蝕刻技術圖案化遮罩層94(參見第10圖)以形成遮罩94。遮罩94的圖案可接著被轉印到虛置閘極層92。在一些實施例中(未繪示),遮罩94的圖案亦可透過可接受的蝕刻技術轉印到虛置介電質層90以形成虛置閘極92。虛置閘極92覆蓋個別的鰭片58/60的通道區域84。遮罩94的圖案可用以將每個虛置閘極92與鄰近的虛置閘極物理性地分開。虛置閘極92亦可具有實質上垂直於個別的磊晶鰭片58/60的長度方向的長度方向。
繼續參照第11A圖以及第11B圖,閘極密封間隔物96可形成在虛置閘極92、遮罩94、及/或鰭片58/60的暴露表面。熱氧化或沉積之後非等向性蝕刻可形成閘極密封間隔物96。閘極密封間隔物96可由氧化矽、氮化矽、氮氧化矽等形成。
在形成閘極密封間隔物96之後,可執行輕摻雜源極/汲極(LDD)區域的佈植(未明確繪示)。在具有不同裝置類型的實施例中,類似於上面在第9圖中討論的佈植,可在區域50N上方形成遮罩(像是光阻劑),同時暴露區域50P,並可將適當類型(例如p型)的雜質佈植到區域50P中暴露的鰭片60中。接著可將遮罩移除。隨後,可在區域50P上方形成遮罩(像是光阻劑),同時暴露區域50N,並可將適當類型(例如n型)的雜質佈植到區域50N中暴露的鰭片58中。接著可將遮罩移除。n型雜質可為先前討論過的任何n型雜質,而p型雜質可為先前討論過的任何p型雜質。輕摻雜源極/汲極區域可具有約1015 cm-3 至約1019 cm-3 的雜質濃度。可使用退火來修復佈植損壞並活化佈植的雜質。
在第12A圖以及第12B圖中,閘極間隔物98沿著虛置閘極92以及遮罩94的側壁形成在閘極密封間隔物96上。可透過共形地沉積絕緣材料並於隨後非等向性地蝕刻該絕緣材料來形成閘極間隔物98。閘極間隔物98的絕緣材料可為氧化矽、氮化矽、氮氧化矽、碳氮化矽、其組合等。
注意以上的揭露大致上描述了形成間隔物和LDD區域的製程。可使用其他製程和順序。舉例而言,可利用更少或附加的間隔物、可利用不同的步驟順序(例如,在形成閘極間隔物98之前,不對閘極密封間隔物96進行蝕刻,產生“L形”閘極密封物間隔物)、可形成和移除間隔物及/或其他類似者。另外,n型以及p型裝置可使用不同結構以及步驟形成。舉例而言,n型裝置的LDD區域可在形成閘極密封間隔物96之前形成,而p型裝置的LDD區域可在形成閘極密封間隔物96之後形成。
在第13A圖以及第13B圖中,在鰭片58/60中形成磊晶源極/汲極區域100以在個別的通道區域84(即鰭片58/60的上部分84)中施加應力,藉以提高性能。在鰭片58/60中形成磊晶源極/汲極區域100使得每個虛置閘極92被設置在磊晶源極/汲極區域100的各相鄰對之間。在一些實施例中,磊晶源極/汲極區域100可延伸到鰭片58/60中,且也可穿過鰭片58/60。在一些實施例中,使用閘極間隔物98來將磊晶源極/汲極區域100與虛置閘極92分開適當的橫向距離,以使磊晶源極/汲極區域100不會使後續形成的最終FinFET的閘極短路。
區域50N(例如,NMOS區域)中的磊晶源極/汲極區域100可透過遮蔽區域50P(例如,PMOS區域)並蝕刻區域50N中的鰭片58的源極/汲極區域以在鰭片58中形成凹槽而形成。接著,區域50N中的磊晶源極/汲極區域100在凹槽中磊晶成長。磊晶源極/汲極區域100可包含任何可接受的材料,像是適於n型FinFET的材料。舉例而言,區域50N中的磊晶源極/汲極區域100可包含在通道區域84中施加拉伸應力的材料,像是矽、碳化矽、摻磷碳化矽、磷化矽等、或任何適合的材料。區域50N中的磊晶源極/汲極區域100可具有從鰭片58的個別表面凸起的表面,並且可具有刻面(facets)。
區域50P(例如,PMOS區域)中的磊晶源極/汲極區域100可透過遮蔽區域50N(例如,NMOS區域)並蝕刻區域50P中的鰭片60的源極/汲極區域以在鰭片60中形成凹槽而形成。接著,區域50P中的磊晶源極/汲極區域100在凹槽中磊晶成長。磊晶源極/汲極區域100可包含任何可接受的材料,像是適於p型FinFET的材料。舉例而言,區域50P中的磊晶源極/汲極區域100可包含在通道區域84中施加壓縮應力的材料,像是矽鍺、摻硼矽鍺、鍺、鍺錫等、或任何適合的材料。區域50P中的磊晶源極/汲極區域100亦可具有從p型鰭片60的個別表面凸起的表面,並且可具有刻面。
與先前討論的用以形成輕摻雜源極/汲極區域的製程類似,磊晶源極/汲極區域100及/或鰭片58/60可以摻雜物佈植以形成源極/汲極區域,接著退火。源極/汲極區域可具有約1019 cm-3 以及約1021 cm-3 之間的雜質濃度。源極/汲極區域的n型及/或p型雜質可為先前討論過的任何雜質。在一些實施例中,磊晶源極/汲極區域100可在成長期間原位摻雜。
作為使用磊晶製程形成在區域50N和區域50P中的磊晶源極/汲極區域100的結果,磊晶源極/漏極區的上表面具有刻面,這些刻面橫向向外延展到超出鰭片58/60的側壁。在一些實施例中,這些刻面會導致相同FinFET的相鄰源極/汲極區域100如第13C圖所示地合併。在其他實施例中,相鄰源極/汲極區域100在磊晶製程完成後如第13D圖所示地保持分開。在第13C圖以及第13D圖所繪示的實施例中,形成閘極間隔物98以覆蓋鰭片58/60的側壁的一部分,該部分延展於STI區域80上方,藉以阻擋磊晶成長。在一些實施例中,可調整用以形成閘極間隔物98的間隔物蝕刻以移除間隔物材料來使磊晶成長區域能夠延伸到STI區域80的表面。
在第14A圖以及第14B圖中,在前述圖式所示的結構上方沉積第一層間介電質(ILD)108。第一ILD 108可由介電質材料形成且可透過任何適合的方法,像是CVD、電漿增強CVD(PECVD)、或FCVD沉積。介電質材料可包含磷矽酸鹽玻璃(PSG)、硼矽酸鹽玻璃(BSG)、摻硼磷矽酸鹽玻璃(BPSG)、未摻雜矽酸鹽玻璃(USG)等。可使用透過任何可接受製程形成的其他絕緣材料。在其他實施例中,在第一ILD 108和磊晶源極/汲極區域100、遮罩94和閘極間隔物98之間設置接觸蝕刻停止層(CESL)106。CESL 106可包括介電質材料,像是氮化矽、氧化矽、氮氧化矽等,其與上覆的第一ILD 108的材料具有不同的蝕刻率。
在第15A圖以及第15B圖中,可執行像是CMP的平坦化製程以平整化第一ILD 108的頂表面與虛置閘極92或遮罩94的頂表面。平坦化製程亦可移除虛置閘極92上的遮罩94以及沿著遮罩94側壁的閘極密封間隔物96以及閘極間隔物98部分。在平坦化製程之後,虛置閘極92、閘極密封間隔物96、閘極間隔物98、以及第一ILD 108的頂表面被平整化。據此,透過第一ILD 108暴露虛置閘極92的頂表面。在一些實施例中,可保留遮罩94,在這種情況下,平坦化製程將第一ILD 108的頂表面與遮罩94的頂表面平整化。
在第16A圖以及第16B圖中,在一或多個蝕刻步驟中移除虛置閘極92,以及遮罩94(如果存在的話),藉以形成凹槽110。亦可移除凹槽110中的虛置介電質層90部分。在一些實施例中,僅移除虛置閘極92而保留虛置介電質層90,並使虛置介電質層90透過凹槽110暴露。在一些實施例中,在晶粒的第一區域(例如,核心邏輯區域)中將虛置介電質層90自凹槽110移除,而在晶粒的第二區域(例如,輸入/輸出區域)中將虛置介電質層90保留於凹槽110中。在一些實施例中,透過非等向性乾蝕刻製程移除虛置閘極92。舉例而言,蝕刻製程可包含使用選擇性蝕刻虛置閘極92而不蝕刻第一ILD 108或閘極間隔物98的一或多個反應氣體的乾蝕刻製程。每個凹槽110暴露及/或上覆個別鰭片58/60的通道區域84。將每個通道區域84設置在相鄰對的磊晶源極/汲極區域100之間。在移除期間,當蝕刻虛置閘極92時,可將虛置介電質層90用作為蝕刻停止層。在移除虛置閘極92之後,可接著可選地移除虛置介電質層90。
在第17A圖以及第17B圖中,形成用於替代閘極的閘極介電質層112以及閘極電極114。第17C圖繪示第17B圖的區域120的細節圖式。閘極介電質層112共形地沉積於凹槽110中,像是在鰭片58/60的頂表面以及側壁上,以及在閘極密封間隔物96/閘極間隔物98的側壁上。雖然未具體繪示,閘極介電質層112亦可形成於第一ILD 108的頂表面上。根據一些實施例,閘極介電質層112包括氧化矽、氮化矽或其之多層。在一些實施例中,閘極介電質層112包含高k介電質材料,且在此些實施例中,閘極介電質層112可具有大於約7.0的k值,且可包含金屬氧化物或鉿、鋁、鋯、鑭、錳、鋇、鈦、鉛的矽酸鹽及其組合。閘極介電質層112的形成方法可包含分子束沉積(MBD)、ALD、PECVD等。在虛置介電質層90的一部分保留在凹槽110中的實施例中,閘極介電質層112包含虛置介電質層90的材料(例如,SiO2 )。
閘極電極114分別沉積於閘極介電質層112上方,且填充凹槽110的剩餘部分。閘極電極114可包含含金屬材料,像是氮化鈦、氧化鈦、氮化鉭、碳化鉭、鈷、釕、鋁、鎢、其組合或其之多層。舉例而言,雖然於第17B圖中繪示單層閘極電極114,閘極電極114可如第17C圖所示地包括任意數量的襯層114A、任意數量的工作功能調整層114B、以及填充材料114C。在填充凹槽110之後,可執行像是CMP的平坦化製程以移除過量部分的閘極介電質層112以及閘極電極114的材料,其中過量部分在ILD108的頂表面上方。閘極電極114以及閘極介電質層112的材料的剩餘部分因此形成最終FinFET的替代閘極。閘極電極114以及閘極介電質層112可統稱為“閘極堆疊物”。閘極以及閘極堆疊物可沿著鰭片58/60的通道區域84的側壁延伸。
區域50N以及區域50P中閘極介電質層112的形成可同時發生以使每個區域中的閘極介電質層112自相同的材料形成,且閘極電極114的形成可同時發生以使每個區域中的閘極電極114自相同的材料形成。在一些實施例中,每個區域中的閘極介電質層112可透過不同的製程形成,使得閘極介電質層112可為不同的材料,及/或每個區域中的閘極電極114可透過不同的製程形成,使得閘極電極114可為不同的材料。當使用不同製程時,可使用各種遮蔽步驟以遮蔽以及暴露適當的區域。
在第18A圖以及第18B圖中,在第一ILD 108上方沉積第二ILD 128。在一些實施例中,第二ILD 128係透過流動式CVD方法形成的流動式膜。在一些實施例中,第二ILD 128係由像是PSG、BSG、BPSG、USG等的介電質材料形成,且可透過任何適合的方法,像是CVD以及PECVD沉積。根據一些實施例,在形成第二ILD 128之前,可對閘極堆疊物(包含閘極介電質層112以及相應的上覆閘極電極114)開槽,使得凹槽直接形成於閘極堆疊物上方且形成於閘極密封間隔物96/閘極間隔物98的相對部分之間。將包括一或多層介電質材料,像是氮化矽、氮氧化矽等的閘極遮罩116填充於凹槽中,接著進行平坦化製程以移除延伸於第一ILD 108上方的介電質材料的過量部分。隨後形成穿過閘極遮罩116的閘極接點130(第19A圖以及第19B圖)以接觸開槽過的閘極電極114的頂表面。
在第19A圖以及第19B圖中,根據一些實施例,閘極接點130以及源極/汲極接點132形成穿過第二ILD 128以及第一ILD 108。源極/汲極接點132的開口形成穿過第一以及第二ILD 108以及128,且閘極接點130的開口形成穿過第二ILD 128以及閘極遮罩116。開口可使用可接受的光學微影以及蝕刻技術形成。開口中可形成像是擴散阻障層、黏著層等的襯裡以及導電材料。襯裡可包含鈦、氮化鈦、鉭、氮化鉭等。導電材料可為銅、銅合金、銀、金、鎢、鈷、鋁、鎳等。可執行像是CMP的平坦化製程以自第二ILD 128的頂表面移除過量的材料。剩餘的襯裡以及導電材料形成開口中的源極/汲極接點132以及閘極接點130。在一些實施例中,矽化物可形成在磊晶源極/汲極區域100以及源極/汲極接點132之間的介面。源極/汲極接點132物理性以及電性耦接至磊晶源極/汲極區域100,且閘極接點130物理性以及電性耦接至閘極電極114。源極/汲極接點132以及閘極接點130可在不同的製程中形成,或可在相同的製程中形成。雖然被繪示為形成於相同的截面中,但是在一些實施例中,源極/汲極接點132和閘極接點130中的每一個可形成於不同的截面中,其可避免接點短路。
實施例可達成多個優點。透過在STI區域80的形成中選擇特定半導體以及絕緣襯層(例如,半導體襯層64以及絕緣襯層68),可較佳地在特定退火步驟期間保護鰭片58/60免於氧化。另外,在每個退火步驟期間將絕緣材料(例如,半導體襯層64、絕緣襯層68、第一絕緣材料72、以及第二絕緣材料76)維持於特定厚度確保充分緻密化第一絕緣材料72同時進一步保護鰭片58/60免於氧化。舉例而言,在基板的不同區段的鰭片輪廓可大致上相同且不管是形成2-切口STI區域(2-cut STI region)(利如,用於環形震盪器(RO)元件的FinFET)、8-切口STI區域(利如,用於相變記憶體(PCM)元件中的FinFET)、或12-切口STI區域,其中在基板的不同區段中形成較大的STI區域(例如,8-切口及/或12-切口STI區域)將傾向於使鰭片更易於氧化。舉例而言,在PCM鰭片60頂部部分的所有高度處的PCM鰭片60的寬度可為在RO鰭片60相應高度處的RO鰭片60的寬度的至少80%(或甚至82%),即寬度相差不到約20%。事實上,在PCM鰭片60的頂部部分的上80%中的所有高度處的PCM鰭片60的寬度可為在RO鰭片60相應高度處的RO鰭片60的寬度的至少95%(或甚至97%),即寬度相差不到約5%。另外,在PCM鰭片60的頂部部分的最低點的PCM鰭片60的寬度亦可為在相應的最低點的RO鰭片60的寬度的至少95%(或甚至97%),即寬度相差不到約5%。再者,鰭片(含不同類型的STI區域,像是RO鰭片60以及PCM鰭片60)的水平寬度在任何位置可相差小於約18%到約20%,而在鰭片頂部部分的上半部相差小於約3%。更甚者,沿著鰭片58/60的上半部分,水平寬度(平行於基板的主表面)將變化小於約14%,像是小於約12%或小於約10%。鰭片58/60不僅維持設計的方形輪廓,鰭片58/60幾乎不包含氧氣,甚至沒有氧氣,使得鰭片58/60維持所需的晶格結構-特別是對於包括SiGe的第二鰭片60而言,其維持應變的晶格結構–以提高性能。對於性能的好處可包含使PMOS遷移率增加約10-15%、增加有效增益(Id,eff )以及開/關增益(Id,of )約3-10%,以及增加環形振盪器速度(例如,NMOS和PMOS之間的反相器)約2%。
在一實施例中,一種半導體裝置的形成方法包含:圖案化遮罩層以及半導體材料以形成第一鰭片以及第二鰭片和插設於第一鰭片以及第二鰭片的溝槽。於第一鰭片、第二鰭片以及溝槽上方形成第一襯層。於第一襯層上方形成絕緣材料。執行第一退火,接著執行絕緣材料的第一平坦化以形成第一平坦化絕緣材料。其後,第一平坦化絕緣材料的頂表面係在遮罩層的頂表面上方。執行第二退火,接著執行第一平坦化絕緣材料的第二平坦化以形成第二平坦化絕緣材料。蝕刻絕緣材料以形成淺溝槽隔離(STI)區域且於半導體材料上方形成閘極結構。
在一實施例中,半導體裝置的形成方法進一步包括形成第二襯層於第一襯層上方,且第二襯層與第一襯層不同。
在一實施例中,半導體材料包括矽鍺。
在一實施例中,第一襯層包括矽。
在一實施例中,在執行絕緣材料的第一平坦化之後,第一平坦化絕緣材料的頂表面係在遮罩層的頂表面之上約150 Å至約200 Å處。
在一實施例中,半導體裝置的形成方法進一步包括在蝕刻半導體材料以形成凹槽之前,形成虛置閘極結構;以及在形成源極/汲極區域之後移除虛置閘極結構。
在一實施例中,執行第一退火包括在300 °C以及約700 °C之間執行約1小時至約2小時之間的熱處理。
在另一實施例中,一種半導體裝置的形成方法包含:在基板的第一區域上方形成第一鰭片堆疊物以及在基板的第二區域上方形成第二鰭片堆疊物。第一鰭片堆疊物包括矽鰭片,且第二鰭片堆疊物包括矽鍺鰭片。於第一鰭片堆疊物以及第二鰭片堆疊物上方形成矽襯層,且在矽襯層上方形成絕緣襯層。於絕緣襯層上方形成絕緣材料,使得絕緣材料具有第一頂表面。執行第一退火。平坦化絕緣材料以形成第一平坦化絕緣材料,使得第一平坦化絕緣材料具有在第一鰭片堆疊物之上的第一頂表面以及第二鰭片堆疊物的第一頂表面之上的第二頂表面。執行第二退火。平坦化第一平坦化絕緣材料,藉以暴露第二鰭片堆疊物的一部分。
在一實施例中,在第二退火之後,與基板相距一距離的第一鰭片堆疊物的寬度和與基板相距該距離的第二鰭片堆疊物的寬度相差小於3%。
在一實施例中,絕緣襯層包括氧化物。
在一實施例中,執行第一退火包括進一步氧化絕緣襯層。
在一實施例中,形成該絕緣材料包括:透過流動式化學氣相沉積(FCVD)形成第一絕緣材料;以及透過電漿增強化學氣相沉積(PECVD)形成第二絕緣材料。
在一實施例中,形成矽鰭片於第一區域上方包括:形成第一遮罩於第二區域上方;蝕刻基板的第一區域以形成矽鰭片;以及移除第一遮罩。
在一實施例中,半導體裝置的形成方法進一步包括形成第三鰭片堆疊物於基板的第二區域上方,第三鰭片堆疊物包括第二矽鍺鰭片,第二矽鍺鰭片係相變記憶體元件的一部分,第一矽鍺鰭片係環形震盪器的一部分。
在一實施例中,第一矽鍺鰭片以及第二矽鍺鰭片各包括頂部部分,頂部部分具有垂直於基板的主表面測得的長度;以及其中在執行第二退火之後,各頂部部分包括最高點以及最低點,最低點更接近基板,各頂部部分進一步包括:第一寬度,位於與最高點相距20%的長度處,第二矽鍺鰭片的第一寬度與第一矽鍺鰭片的第一寬度相差小於5%;第二寬度,位於與最高點相距40%的長度處,第二矽鍺鰭片的第二寬度與第一矽鍺鰭片的第二寬度相差小於5%;第三寬度,位於與最高點相距80%的長度處,第二矽鍺鰭片的第三寬度與第一矽鍺鰭片的第三寬度相差小於5%;第四寬度,位於與最高點相距90%的長度處,第二矽鍺鰭片的第四寬度與第一矽鍺鰭片的第四寬度相差小於5%;以及第五寬度,位於最低點,第二矽鍺鰭片的第五寬度與第一矽鍺鰭片的第五寬度相差小於5%。
在又一實施例中,一種半導體裝置的形成方法包含:於基板上方形成第一半導體鰭片以及第二半導體鰭片。在第一半導體鰭片以及第二半導體鰭片上方以及之間沉積半導體層,在半導體層上方沉積第一絕緣層,第一絕緣層包括氧化物,且在第一絕緣層上方沉積第二絕緣層。執行第一退火,其氧化至少一部分的半導體層。在第二絕緣層上執行第一平坦化,使得第二絕緣層在第一平坦化之後具有在第一半導體鰭片以及第二半導體鰭片之上的第一平整頂表面。執行第二退火,且半導體層在第二退火之後被氧化。在第二半導體層上執行第二平坦化,使得第二絕緣層在第二平坦化之後具有第二平整頂表面。對第二絕緣層開槽,使得第二絕緣層具有在第一半導體鰭片以及第二半導體鰭片的頂表面之下的第三頂表面。
在一實施例中,第一半導體鰭片以及第二半導體鰭片包括矽鍺。
在一實施例中,在對第二絕緣層開槽之後,第一半導體鰭片包括凸出於第二絕緣層之上的上部分,上部分的外側邊緣包括小於約5%的氧濃度。
在一實施例中,其中第一半導體鰭片在第一半導體鰭片的上半部包括一系列的寬度,該一系列的寬度平行於基板的主表面,該一系列的寬度中的每一個寬度彼此之間的差異小於約10%。
在一實施例中,半導體裝置的形成方法進一步包括蝕刻每一個第一半導體鰭片以及第二半導體鰭片的端部;在每一個第一半導體鰭片以及第二半導體鰭片的相對側上形成源極/汲極區域;以及在每一個第一半導體鰭片以及第二半導體鰭片上方形成閘極結構。
前述內文概述了許多實施例的特徵,使本技術領域中具有通常知識者可以從各個方面更加了解本發明實施例。本技術領域中具有通常知識者應可理解,且可輕易地以本發明實施例為基礎來設計或修飾其他製程及結構,並以此達到相同的目的及/或達到與在此介紹的實施例等相同之優點。本技術領域中具有通常知識者也應了解這些相等的結構並未背離本發明的發明精神與範圍。在不背離本發明的發明精神與範圍之前提下,可對本發明實施例進行各種改變、置換或修改。
50:基板 50D:分隔物 50N,50P,120:區域 58,60:鰭片 62:遮罩 64:半導體襯層 68:絕緣襯層 72:第一絕緣材料 76:第二絕緣材料 80:隔離區域 84:上部分 90:虛置介電質層 92:虛置閘極層 94:遮罩層 96:閘極密封間隔物 98:閘極間隔物 100:源極/汲極區域 106:接觸蝕刻停止層 108:第一層間介電質 110:凹槽 112:閘極介電質層 114:閘極電極 114A:襯層 114B:工作功能調整層 114C:填充材料 116:閘極遮罩 128:第二層間介電質 130:閘極接點 132:源極/汲極接點 T1 ,T2 ,T3 ,T4 :厚度 H1 :高度
根據以下的詳細說明並配合所附圖式可以更加理解本發明實施例。應注意的是,根據本產業的標準慣例,圖示中的各種部件(feature)並未必按照比例繪製。事實上,可能任意的放大或縮小各種部件的尺寸,以做清楚的說明。 第1圖繪示根據一些實施例的鰭式場效電晶體(FinFET)的實例的立體圖。 第2、3、4、5、6、7、8、9、10、11A、11B、12A、12B、13A、13B、13C、13D、14A、14B、15A、15B、16A、16B、17A、17B、17C、18A、18B、19A、以及19B圖為根據一些實施例的FinFET的製造中的中間階段的截面圖。
50:基板
120:區域
58,60:鰭片
84:上部分
90:虛置介電質層
98:閘極間隔物
100:源極/汲極區域
106:接觸蝕刻停止層
108:第一層間介電質
112:閘極介電質層
114:閘極電極

Claims (1)

  1. 一種半導體裝置的形成方法,該方法包括: 圖案化一遮罩層以及一半導體材料以形成一第一鰭片以及一第二鰭片與插設於第一鰭片以及第二鰭片之間的一溝槽; 形成一第一襯層於該第一鰭片、該第二鰭片以及該溝槽上方; 形成一絕緣材料於該第一襯層上方; 執行一第一退火; 於執行該第一退火之後執行該絕緣材料的一第一平坦化以形成一第一平坦化絕緣材料,該第一平坦化絕緣材料的一頂表面係在該遮罩層的一頂表面上方; 執行一第二退火; 於執行該第二退火之後執行該第一平坦化絕緣材料的一第二平坦化以形成一第二平坦化絕緣材料; 蝕刻該絕緣材料以形成多個淺溝槽隔離(STI)區域;以及 形成一閘極結構於該半導體材料上方。
TW110111826A 2020-04-01 2021-03-31 半導體裝置的形成方法 TW202139272A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/837,641 US11139432B1 (en) 2020-04-01 2020-04-01 Methods of forming a FinFET device
US16/837,641 2020-04-01

Publications (1)

Publication Number Publication Date
TW202139272A true TW202139272A (zh) 2021-10-16

Family

ID=77227904

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110111826A TW202139272A (zh) 2020-04-01 2021-03-31 半導體裝置的形成方法

Country Status (3)

Country Link
US (3) US11139432B1 (zh)
CN (1) CN113270488A (zh)
TW (1) TW202139272A (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10818562B2 (en) * 2017-11-30 2020-10-27 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor structure and testing method thereof
US11527653B2 (en) * 2020-07-22 2022-12-13 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and method of manufacture

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9236267B2 (en) 2012-02-09 2016-01-12 Taiwan Semiconductor Manufacturing Company, Ltd. Cut-mask patterning process for fin-like field effect transistor (FinFET) device
US9171929B2 (en) 2012-04-25 2015-10-27 Taiwan Semiconductor Manufacturing Company, Ltd. Strained structure of semiconductor device and method of making the strained structure
US9093530B2 (en) 2012-12-28 2015-07-28 Taiwan Semiconductor Manufacturing Company, Ltd. Fin structure of FinFET
US9159824B2 (en) 2013-02-27 2015-10-13 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with strained well regions
US9214555B2 (en) 2013-03-12 2015-12-15 Taiwan Semiconductor Manufacturing Co., Ltd. Barrier layer for FinFET channels
US9136106B2 (en) 2013-12-19 2015-09-15 Taiwan Semiconductor Manufacturing Company, Ltd. Method for integrated circuit patterning
US9548303B2 (en) 2014-03-13 2017-01-17 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET devices with unique fin shape and the fabrication thereof
US9608116B2 (en) 2014-06-27 2017-03-28 Taiwan Semiconductor Manufacturing Company, Ltd. FINFETs with wrap-around silicide and method forming the same
US9564489B2 (en) 2015-06-29 2017-02-07 Taiwan Semiconductor Manufacturing Company, Ltd. Multiple gate field-effect transistors having oxygen-scavenged gate stack
US9520482B1 (en) 2015-11-13 2016-12-13 Taiwan Semiconductor Manufacturing Company, Ltd. Method of cutting metal gate
US10672886B2 (en) * 2017-08-31 2020-06-02 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for high-k metal gate
US10700197B2 (en) * 2017-09-29 2020-06-30 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method

Also Published As

Publication number Publication date
US11594680B2 (en) 2023-02-28
US20230200264A1 (en) 2023-06-22
US20210313514A1 (en) 2021-10-07
US20210399221A1 (en) 2021-12-23
CN113270488A (zh) 2021-08-17
US11139432B1 (en) 2021-10-05

Similar Documents

Publication Publication Date Title
CN110838487B (zh) 半导体器件及方法
TW202046505A (zh) 半導體裝置
US20230200264A1 (en) Method of Forming a FinFET Device
TWI807431B (zh) 半導體結構及其製造方法
CN113299751A (zh) 半导体器件和方法
US11923414B2 (en) Semiconductor device and method
US11437240B2 (en) Transistor gate structure and method of forming
KR102549844B1 (ko) 반도체 디바이스 및 방법
US11515403B2 (en) Semiconductor device and method
CN113594093A (zh) 半导体装置的形成方法
TW202109623A (zh) 形成半導體裝置的方法
CN113113408A (zh) 半导体装置
TW202101599A (zh) 半導體裝置之形成方法
US11652155B2 (en) Air spacer and method of forming same
TWI808733B (zh) 半導體裝置及其形成方法
TWI815623B (zh) 奈米結構場效電晶體裝置及其形成方法
US20230047598A1 (en) Semiconductor devices and methods of manufacture
US20230008994A1 (en) Semiconductor device with dielectric layer and method of forming the same
US20220051950A1 (en) Gapfill structure and manufacturing methods thereof
US20230064844A1 (en) Semiconductor Device and Methods of Manufacturing
TW202322399A (zh) 半導體裝置及其製造方法
TW202109885A (zh) 半導體裝置
TW202230610A (zh) 半導體裝置及其形成方法
TW202234521A (zh) 半導體裝置的形成方法
KR20220154598A (ko) 반도체 디바이스 및 제조 방법