TW202130025A - 氧化還原液流電池單元、單元堆及氧化還原液流電池系統 - Google Patents

氧化還原液流電池單元、單元堆及氧化還原液流電池系統 Download PDF

Info

Publication number
TW202130025A
TW202130025A TW109121103A TW109121103A TW202130025A TW 202130025 A TW202130025 A TW 202130025A TW 109121103 A TW109121103 A TW 109121103A TW 109121103 A TW109121103 A TW 109121103A TW 202130025 A TW202130025 A TW 202130025A
Authority
TW
Taiwan
Prior art keywords
negative electrode
positive electrode
unit area
cell
per unit
Prior art date
Application number
TW109121103A
Other languages
English (en)
Inventor
越智雄大
Original Assignee
日商住友電氣工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商住友電氣工業股份有限公司 filed Critical 日商住友電氣工業股份有限公司
Publication of TW202130025A publication Critical patent/TW202130025A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

本發明之氧化還原液流電池單元具備正極電極與負極電極,上述正極電極及上述負極電極分別為包含複數個碳纖維之集合體,上述負極電極之單位面積重量大於上述正極電極之單位面積重量。

Description

氧化還原液流電池單元、單元堆及氧化還原液流電池系統
本發明係關於一種氧化還原液流電池單元、單元堆及氧化還原液流電池系統。
蓄電池之一有氧化還原液流電池。氧化還原液流電池中,對正極電極、負極電極分別供給正極電解液、負極電解液而進行充放電。專利文獻1中,揭示有以負極電解液之充電狀態(State of Charge,SOC)成為75%以上95%以下之方式使氧化還原液流電池運轉。 [先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開2006-147374號公報
本發明之氧化還原液流電池單元係 具備正極電極與負極電極, 上述正極電極及上述負極電極分別為包含複數個碳纖維之集合體, 上述負極電極之單位面積重量大於上述正極電極之單位面積重量。
本發明之單元堆係 具備複數個本發明之氧化還原液流電池單元。
本發明之氧化還原液流電池系統係 具備本發明之氧化還原液流電池單元、或本發明之單元堆。
[發明所欲解決之問題] 於氧化還原液流電池中,期望降低氫氣之產生量。
於氧化還原液流電池中,利用包含水溶液之電解液、例如專利文獻1中記載之釩系電解液等。於負極電解液為水溶液之情形時,若充電進展使得SOC變高,則於具備負極電極之負極單元中,易產生水之電解。因此,於負極側,易產生氫氣。於SOC超出100%之狀態、即過度充電之狀態下,因水之電解而易導致氫氣之產生量變多。
如專利文獻1所記載,只要監控電解液之SOC,以SOC成為特定範圍之方式進行充放電運轉,則可防止過度充電。結果,氫氣之產生量易變少。然而,於SOC之監控裝置、例如測定開路電壓(OCV,Open circuit voltage)之裝置發生故障等而無法適當地測定SOC之情形時,無法進行於SOC為未達100%之特定值時停止充電之類的控制。因此,氫氣之產生量可能會變多。由此,期望即便不監控SOC或OCV,亦可防止負極電解液之過度充電,進而可降低氫氣之產生量。
因此,本發明之目的之一在於提供一種可降低氫氣之產生量之氧化還原液流電池單元。又,本發明之另一目的在於提供一種可降低氫氣之產生量之單元堆、及氧化還原液流電池系統。
[發明之效果] 本發明之氧化還原液流電池單元、本發明之單元堆及本發明之氧化還原液流電池系統可降低氫氣之產生量。
[本發明之實施方式之說明] 首先列出本發明之實施態樣進行說明。 (1)本發明之一態樣之氧化還原液流電池單元係 具備正極電極與負極電極, 上述正極電極及上述負極電極分別為包含複數個碳纖維之集合體, 上述負極電極之單位面積重量大於上述正極電極之單位面積重量。 以下,有時將氧化還原液流電池單元稱為RF電池單元。
本發明之RF電池單元根據以下理由而可降低負極側之氫氣之產生量。尤其是,本發明之RF電池單元即便不監控充電狀態(SOC)或開路電壓(OCV),亦可降低氫氣之產生量。
RF電池所利用之正極電解液有時包含具有較高氧化力之離子。以下,有時將具有較高氧化力之離子稱為氧化劑離子。作為氧化劑離子,可例舉例如上述釩系電解液中5價之釩離子。若正極電極為包含複數個碳纖維之集合體,則被5價釩離子之類之氧化劑離子氧化。若充電進展,則正極電解液中5價釩離子之類之氧化劑離子變多,故正極電極之氧化易進展。
於單位面積重量相對較小之正極電極中,若充電進展,則因上述氧化劑離子而使氧化易進展。伴隨正極電極之氧化,正極側易產生碳酸氣體。由此,只要基於碳酸氣體之產生量而停止充電,則可防止負極電解液成為過度充電。即,降低負極側之氫氣之產生量。又,藉由將此種因正極電極中之電池反應性降低導致之現象用作充電停止之觸發,即便不監控SOC或OCV,亦可進行適當之運轉。
(2)作為本發明之RF電池單元之一例,可例舉如下形態,即, 上述負極電極之單位面積重量相對於上述正極電極之單位面積重量之比率為105%以上。
若於相同運轉條件下進行比較,則上述比率為105%以上之情形相較上述比率未達105%之情形而言,若充電進展,則於正極側碳酸氣體之產生量易變多。由此,只要基於碳酸氣體之產生量而停止充電,則可更確實地防止負極電解液成為過度充電。
(3)作為本發明之RF電池單元之一例,可例舉如下形態,即, 上述正極電極之單位面積重量及上述負極電極之單位面積重量為20 g/m2 以上500 g/m2 以下。
上述形態易將單元電阻調整為實用之範圍。
(4)作為本發明之RF電池單元之一例,可例舉如下形態,即, 上述碳纖維之平均纖維徑為20 μm以下。
上述形態中,與平均纖維徑超出20 μm之情形相比較,若充電進展,則正極電極之電池反應性易降低。因此,若充電進展,則於正極側碳酸氣體之產生量易變多。由此,只要基於碳酸氣體之產生量而停止充電,則可更確實地防止負極電解液成為過度充電。
(5)本發明之一態樣之單元堆係 具備複數個如上述(1)至(4)中任一項之RF電池單元。
本發明之單元堆根據上述理由,即便不監控SOC或OCV,亦可降低負極側之氫氣之產生量。
(6)本發明之一態樣之氧化還原液流電池系統係 具備如上述(1)至(4)中任一項之RF電池單元、或上述(5)之單元堆。 以下,有時將氧化還原液流電池系統稱為RF(Radio frequency,射頻)電池系統。
本發明之RF電池系統根據上述理由,即便不監控SOC或OCV,亦可降低負極側之氫氣之產生量。
[本發明之實施方式之詳情] 以下,參照圖式,說明本發明之實施方式之氧化還原液流電池單元、單元堆及氧化還原液流電池系統。圖中之相同符號係指相同名稱物。
[實施方式] 參照圖1、圖2,對實施方式之RF電池單元1、實施方式之單元堆2、實施方式之RF電池系統10之概略進行說明。其後,詳細說明實施方式之RF電池單元1所具備之正極電極13及負極電極14。
(概要) 實施方式之RF電池單元1具備正極電極13與負極電極14,且用作RF電池系統10之主要成分。RF電池系統10為電解液循環型蓄電池之一,對正極電極13、負極電極14分別供給正極電解液、負極電解液,進行充放電。
尤其是,實施方式之RF電池單元1中,正極電極13及負極電極14分別為包含複數個碳纖維之集合體。又,負極電極14之單位面積重量W4 大於正極電極13之單位面積重量W3 。亦即,W3 <W4 ,W3 ≠W4 。RF電池單元1中,利用單位面積重量W3 、W4 之不同而降低負極側之氫氣之產生量。再者,圖1、圖2中對正極電極13,負極電極14附上交叉影線而表示。
實施方式之單元堆2具備複數個實施方式之RF電池單元1。實施方式之RF電池系統10具備實施方式之RF電池單元1、或實施方式之單元堆2。
(電池單元) RF電池單元1具代表性的是具備正極電極13、負極電極14、及隔膜11,且使用下述單元架3而構建。正極電極13及負極電極14為進行電池反應之場所。隔膜11由正極電極13與負極電極14夾著,將兩者隔開。隔膜11例如可例舉離子交換膜等。
單元架3具備雙極板15及框體30。雙極板15為導電性板。雙極板15之構成材料例如可例舉導電性塑膠等。如圖2所示,框體30係配置於雙極板15之周圍之絕緣性框板。框體30之構成材料例如可例舉氯乙烯樹脂等樹脂。
如圖2之分解圖中紙面左側之單元架3所示,框體30具備正極電解液用之供液歧管33、排液歧管35及狹縫。框體30之一面係利用供液歧管33及供液側之狹縫將正極電解液供給至雙極板15上之正極電極13。又,框體30之一面係利用排液歧管35及排液側之狹縫將來自正極電極13之正極電解液排出。如圖2之分解圖中紙面右側之單元架3所示,框體30具備負極電解液用之供液歧管34、排液歧管36、及狹縫。框體30之另一面以與上述正極電極13相同之方式將負極電解液供給至負極電極14,且將來自負極電極14之負極電解液排出。
如圖2之分解圖所示,具備一個RF電池單元1之單一單元電池具備單元架3、正極電極13、隔膜11、負極電極14、及單元架3,且將該等構件依上述順序排列而構建。具備複數個RF電池單元1之多單元電池具備複數個正極電極13、複數個負極電極14、複數個隔膜11、及三個以上之單元架3。如圖1、圖2所示,多單元電池具備將單元架3、正極電極13、隔膜11、負極電極14依此順序積層而成之積層體。如圖1所示,上述積層體所具備之各單元架3之雙極板15具代表性的是由正極電極13與負極電極14夾著。
(單元堆) 多單元電池中,作為RF電池單元1,利用被稱為單元堆之形態。如圖1、圖2所例示,單元堆2具代表性的是具備上述積層體、一對端板21、及複數個緊固構件22。一對端板21夾著上述積層體。各緊固構件22具代表性的是具備長螺栓與螺帽。複數個緊固構件22將兩端板21間緊固。本例之框體30具備密封材38。藉由上述緊固件及密封材38而將上述積層體液密地保持。
如圖2所示,單元堆2亦可具備複數個子單元堆20。子單元堆20具備特定數量之RF電池單元1之積層體、及夾著該積層體之一對給排板23。於給排板23,連接有圖1所示之配管160、170。
(RF電池系統) RF電池系統10具備RF電池單元1、及將正極電解液、負極電解液供給至RF電池單元1之循環機構。RF電池系統10所具備之RF電池單元1亦可為單元堆2。該點於該項相同。
RF電池單元1具代表性的是如圖1所示般經由變電設備9、交流/直流轉換器90等介置機器而連接於發電部91與負載92。RF電池單元1於被供給正極電解液及負極電解液之狀態下,將發電部91作為電力供給源進行充電,將負載92作為電力提供對象進行放電。發電部91例如可例舉太陽光發電機、風力發電機、及其他通常之發電站等。負載92例如可例舉電力系統或電力用戶等。此種RF電池系統10例如可利用於負載平準化、瞬低補償或緊急用電源、太陽光發電或風力發電之類的自然能源發電之輸出平滑化等。
<循環機構> 循環機構具備槽16、17、配管160、170、及泵18、19。槽16貯存正極電解液。槽17貯存負極電解液。配管160具備去路配管161及返路配管162。配管170具備去路配管171及返路配管172。配管160、170連接於槽16、17與RF電池單元1。泵18、19分別連接於去路配管161、171。藉由泵18、19,將來自槽16之正極電解液、及來自槽17之負極電解液經由去路配管161、171而供給至RF電池單元1之正極電極13、負極電極14。來自正極電極13之正極電解液、及來自負極電極14之負極電解液經由返路配管162、172而返回至槽16、17。圖1之黑箭頭表示電解液之流動。
(電解液) 電解液可例舉包含作為活性物質發揮功能之離子即活性物質離子之溶液。RF電池系統10所利用之代表性電解液可例舉包含活性物質離子與酸之水溶液。作為正極活性物質離子之一例,可例舉釩離子、錳離子、鐵離子等。作為負極活性物質離子之一例,可例舉釩離子、鈦離子、鉻離子等。釩系電解液中,正極活性物質離子及負極活性物質離子均為釩離子,釩離子之價數不同。
RF電池單元1、單元堆2、RF電池系統10中,基本構成或構成材料、電解液之組成等亦可利用公知者。
(電極) 對於實施方式之RF電池單元1所具備之正極電極13、負極電極14,可利用包含複數個碳纖維之集合體。以下,有時將包含複數個碳纖維之集合體稱為纖維集合體。纖維集合體例如可例舉碳氈、碳布、碳紙等。
<單位面積重量> 正極電極13及負極電極14均為上述纖維集合體,但纖維集合體之單位面積重量不同。此處之纖維集合體之單位面積重量係纖維集合體之每單位面積之質量,此處為每1平方米之克數(g/m2 )。
《單位面積重量比率》 定量而言,負極電極14之單位面積重量W4 相對於正極電極13之單位面積重量W3 之比率[(W4 /W3 )×100]超出100%,W3 <W4 。以下,將上述比率稱為單位面積重量比率。
由於正極電極13之單位面積重量W3 相對較小,故若充電進展,則正極電極13之電池反應性易低於負極電極14之電池反應性。
具體而言,若對RF電池單元1充電使其運轉,則隨著充電進展,於具備負極電極14之負極單元中,若電解液為釩系電解液般之水溶液,則易產生水之電解。另一方面,於具備正極電極13之正極單元中,隨著充電進展,充電離子、例如釩系電解液中5價之釩離子增加。單位面積重量相對較少之正極電極13中,相較於單位面積重量與負極電極14相同之情形而言,可謂5價釩離子之類之氧化劑離子相對較多。因此,單位面積重量相對較少之正極電極13中,氧化易進展。隨著正極電極13之氧化,於正極側產生碳酸氣體。
由此,可基於碳酸氣體之產生量而於負極電解液成為過度充電之前停止充電。因此,於負極電解液中不易產生水之電解。進而,於負極側氫氣之產生量降低。
上述單位面積重量比率越大,則越容易降低氫氣之產生量。單位面積重量比率例如可例舉105%以上。
若於相同運轉條件下加以比較,則單位面積重量比率為105%以上之情形相較於單位面積重量比率超出100%且未達105%之情形而言,若充電進展,則碳酸氣體之產生量易變多。由此,只要基於碳酸氣體之產生量而停止充電,則可更確實地防止負極電解液之過度充電。其結果,氫氣之產生量易變少。
若上述單位面積重量比率為110%以上,進而為115%以上、120%以上,則可於不易產生水之電解、或實質上不產生水之電解之範圍內停止充電。因此,氫氣之產生量易更進一步變少。
關於上述單位面積重量比率,認為例如若為190%以下,則即便充電進展,碳酸氣體之產生量亦易成為容許之範圍。若單位面積重量比率為185%以下,進而為180%以下,則碳酸氣體之產生量易變得更少。又,可防止電池容量變得極低。
《絕對值》 正極電極13之單位面積重量W3 及負極電極14之單位面積重量W4 例如可例舉20 g/m2 以上500 g/m2 以下。
若單位面積重量W3 、W4 均為20 g/m2 以上,則碳纖維之填充量不會過少,正極電極13及負極電極14可作為電池反應場所而適當地發揮功能。因此,可作為單元電阻並不過大而易利用之RF電池單元1。單位面積重量W3 、W4 越多,則正極電極13及負極電極14之電池反應性越優異。因此,可作為單元電阻較小之RF電池單元1。
若單位面積重量W3 、W4 均為500 g/m2 以下,則碳纖維之填充量不會過多,電解液易流動。由於易供給電解液,故正極電極13及負極電極14可良好地進行電池反應。就該點而言,可作為單元電阻較小之RF電池單元1。
綜上所述,對於上述單位面積重量比率滿足超出100%,並且單位面積重量W3 、W4 滿足20 g/m2 以上500 g/m2 以下之範圍之RF電池單元1而言,易將單元電阻調整為實用之範圍。
若單位面積重量W3 、W4 均為50 g/m2 以上,進而為60 g/m2 以上、100 g/m2 以上,則電池反應性提高。若單位面積重量W3 、W4 均為490 g/m2 以下,進而為480 g/m2 以下、470 g/m2 以下,則電解液之流通性優異,可將電解液良好地供給至正極電極13及負極電極14。
若上述單位面積重量比率滿足超出100%,並且單位面積重量W3 、W4 為50 g/m2 以上490 g/m2 以下,進而為100 g/m2 以上470 g/m2 以下,則RF電池單元1之電池反應性及電解液之流通性優異。尤其是,若上述單位面積重量比率滿足超出100%,並且單位面積重量W3 、W4 為50 g/m2 以上200 g/m2 以下,則RF電池單元1之電池反應性優異,並且電解液之流通性更加優異,單元電阻亦易變小。若上述單位面積重量比率滿足超出100%,並且單位面積重量W3 、W4 例如為300 g/m2 以上450 g/m2 以下,則電池反應性優異。
<纖維徑> 於構成正極電極13及負極電極14之纖維集合體中,一般而言,碳纖維之平均纖維徑越小,則單元電阻越易變小。其理由如下。於單位面積重量固定之情形時,平均纖維徑越細,則纖維集合體中包含之碳纖維之數量越易變多。碳纖維之數量越多,則碳集合體中之碳纖維之共計表面積越易變大。纖維集合體之表面積越大,則電池反應性越易變高。其結果可良好地進行電池反應,故單元電阻易變小。根據降低單元電阻之觀點,例如可例舉平均纖維徑為20 μm以下。
另一方面,於構成正極電極13之纖維集合體中,若碳纖維之平均纖維徑為20 μm以下,則與超出20 μm之情形相比較,若充電進展則電池反應性易降低。作為其理由之一,認為正極電極13被氧化而碳成分減少。除單位面積重量不同之外,根據纖維徑不同亦易導致正極電極13之電池反應性變低,由此,若充電進展,則碳酸氣體之產生量易變多。由此,只要基於碳酸氣體之產生量而停止充電,則可更確實地防止負極電解液之過度充電。
若平均纖維徑例如為18 μm以下,進而為15 μm以下,則可作為單元電阻較小之RF電池單元1,並且易防止負極電解液之過度充電。若平均纖維徑例如為1 μm以上且20 μm以下,則纖維集合體之電池反應性優異,並且機械強度亦優異。
平均纖維徑以如下方式求出。對纖維集合體,取沿著與厚度方向平行之平面切斷所得之剖面。於一剖面,將具有與碳纖維之截面面積相等面積之圓之直徑作為該碳纖維之纖維徑。於一剖面,取5個視野以上,且自各視野測定3個以上碳纖維之纖維徑。將所測定出之15個以上纖維徑之平均作為平均纖維徑。
<其他> 於正極電極13及負極電極14中,平面面積、厚度可於滿足上述單位面積重量比率之範圍適當選擇。正極電極13及負極電極14之平面形狀可適當選擇。作為代表性之平面形狀,可例舉圖2所例示之長方形。
(主要之作用效果) 實施方式之RF電池單元1中,負極電極14之單位面積重量W4 大於正極電極13之單位面積重量W3 ,故可將基於正極電極13之電池反應性與負極電極14之電池反應性之差的現象用於運轉控制。若基於上述現象、例如由正極電極13之氧化引起碳酸氣體之產生而停止充電,則即便不測定SOC或OCV,亦可防止負極電解液成為過度充電。進而,可降低負極側之氫氣之產生量。
實施方式之單元堆2及實施方式之RF電池系統10具備實施方式之RF電池單元1。因此,若如上所述基於碳酸氣體之產生而停止充電,則即便不測定SOC或OCV,亦可降低負極側之氫氣之產生量。
[試驗例1] 將正極電極之單位面積重量與負極電極之單位面積重量之組合進行各種變更而構建RF電池單元進行充放電,研究單位面積重量與氫氣之產生量之關係。
此處,正極電極及負極電極均為碳纖維之平均纖維徑為20 μm以下之碳氈,滿足表1所示之單位面積重量(g/m2 )。又,將各試樣之單位面積重量比率(%)示於表1。單位面積重量比率(%)係將正極電極之單位面積重量設為100%時之負極電極之單位面積重量之比率,由(負極電極之單位面積重量/正極電極之單位面積重量)×100求出。
各試樣之RF電池單元係除單位面積重量不同之外具備實質上相同規格之單一單元電池。上述規格係單一單元電池之構造、或構成單一單元電池之構件之大小、例如電極之平面面積等。因單位面積重量不同,故各試樣之單元電阻率之初始值不同。關於各試樣之單元電阻率之初始值,將以試樣No.100之單元電阻率之初始值為基準時之相對值示於表1。此處之單元電阻率(Ω∙cm2 )之初始值係使用各試樣之單一單元電池,於以下條件下進行充放電而求出。
(充放電之條件) 於在達到預先設定之特定之切換電壓後切換充電與放電之條件下,進行3個循環之充放電。充放電係於將電流密度設為90 mA/cm2 之定電流下進行。所使用之電解液為釩系電解液,即硫酸釩水溶液。該電解液中之釩離子濃度為2 mol/L。
求出第1個循環中之平均電壓及平均電流,進而求出電阻值=(平均電壓/平均電流)。單元電阻率之初始值設為由上述電阻值與電極之平面面積之積而算出之值。
分別研究直至上述條件下之3個循環之充放電結束為止在正極側產生之碳酸氣體之量、及在負極側產生之氫氣之量,且將結果示於表1。碳酸氣體之產生量係相對於貯存正極電解液之槽內所存在之氣相之體積之比率(體積ppm)。氫氣之產生量係相對於貯存負極電解液之槽內所存在之氣相之體積之比率(體積ppm)。碳酸氣體之產生量、氫氣之產生量均藉由氣相層析法測定。
於上述條件下之3個循環之充放電結束之後,研究各試樣之單元電阻率。該單元電阻率係求出第3個循環中之平均電壓及平均電流,進而由電阻值=(平均電壓/平均電流)與電極之平面面積之積而算出的值。研究第3個循環中之單元電阻率中相對於上述單元電阻率之初始值之增加量,且將結果示於表1。該單元電阻之增加量係藉由(第3個循環中之單元電阻率/單元電阻率之初始值)而算出。
[表1]
試樣 No. 單位面積重量 g/m2 單位面積重量比率 % 碳酸氣體產生量 氫氣產生量 單元電阻率初始值 單元電阻之增加量
正極 負極 正極 負極 體積ppm 體積ppm 相對值 相對於初始值之相對值
1 220 232 100 105 644 24 0.91 1.18
2 24 28 100 117 402 12 0.59 1.23
3 238 289 100 121 353 2 0.89 1.35
4 378 494 100 131 801 5 0.86 1.43
5 280 394 100 141 552 9 0.84 1.60
6 115 182 100 158 491 7 0.87 1.72
7 79 140 100 177 303 2 0.69 1.96
100 11 11 100 100 15 690 1 1
101 555 564 100 102 46 420 1.32 1.04
102 301 311 100 103 63 420 0.91 1.04
103 16 18 100 113 12 558 1.21 1.05
104 600 670 100 112 88 387 1.36 1.09
如表1所示,可知因單位面積重量之不同,而導致負極側之氫氣之產生量不同。詳細而言,於正極電極之單位面積重量與負極電極之單位面積重量相等、即單位面積重量比率為100%之試樣No.100中,氫氣之產生量為700體積ppm左右。相對於此,於負極電極之單位面積重量大於正極電極之單位面積重量、即單位面積重量比率超出100%之試樣No.1~No.7中,氫氣之產生量為30體積ppm以下,相較試樣No.100少。由此,可以說,於試樣No.1~No.7中,相較於試樣No.100而言,充電結束時不易產生水之電解。以下,有時將試樣No.1~No.7稱為特定試樣群。
又,於特定試樣群之電池單元中,碳酸氣體之產生量相較試樣No.100多。認為其理由如下。於特定試樣群之正極單元中,若充電進展,則因5價之釩離子而正極電極之氧化易進展。伴隨正極電極之氧化,碳酸氣體、即二氧化碳氣體之產生量變多。此處,由於碳纖維之平均纖維徑為20 μm以下,故亦認為碳酸氣體之產生量易變多。
進而,於特定試樣群之電池單元中,單元電阻之增加量相較試樣No.100大。作為其理由之一,認為若充電進展,則如上所述正極電極之氧化進展等,從而無法良好地進行電池反應。
由此,於使單位面積重量比率超出100%之RF電池單元運轉時,可以說,只要基於正極側之碳酸氣體之產生量而停止充電,則負極側之氫氣之產生量易變少。又,充電停止之觸發為SOC、OCV以外之參數。因此,即便於無法測定SOC、OCV之情形時,亦可防止氫氣之產生量變多。
該試驗係將切換電壓設為固定而進行充放電。切換電壓係以電解液之開路電壓(OCV)與電流×單元電阻之和表示。因此,若切換電壓為固定,則單元電阻增大後,OCV相對變低。若OCV降低,則SOC亦降低。即,於負極側氫氣之產生量變少。於特定試樣群中,可以說,存在試樣編號越大則單元電阻之增加量越大的傾向,氫氣之產生量較少。由此,過度充電之風險降低。該試驗中,研究了單元電阻率,但於單元電阻之增加量較大之情形時,碳酸氣體之產生量較多。由此,可以說,碳酸氣體之產生量可用於充電停止之觸發。
此外,根據該試驗可得出以下結論。 將特定試樣群與試樣No.101、No.102加以比較。根據該比較,可以說若單位面積重量比率超出103%、尤其105%以上,則氫氣之產生量易變少。又,於特定試樣群中,相較於試樣No.101、No.102而言,碳酸氣體之產生量較多,單元電阻之增加量亦較大。因此,若單位面積重量比率為105%以上,則可期待基於碳酸氣體之產生量而停止充電,由此可有效地降低氫氣之產生量。又,鑒於碳酸氣體之產生量及正極電極之氧化劣化,認為單位面積重量比率較佳為190%以下。
將試樣No.103、No.104與試樣No.100加以比較。試樣No.103、No.104之氫氣之產生量少於試樣No.100之氫氣之產生量。根據該比較可知,若如上所述般單位面積重量比率超出100%、進而為105%以上,則氫之產生量降低。
進而,將特定試樣群與試樣No.103、No.104加以比較。根據該比較,對於正極電極及負極電極,若單位面積重量比率超出100%,且單位面積重量超出18 g/m2 且未達600 g/m2 ,尤其為20 g/m2 以上且500 g/m2 以下,則氫氣之產生量易變得更少,而且單元電阻率之初始值易變小。又,碳酸氣體之產生量易變多,故易用於充電停止之觸發。
再者,該試驗中,使用單一單元電池,但多單元電池亦會顯示相同之傾向。
本發明並不限定於該等例示,而意圖包含由申請專利範圍所示、且與申請專利範圍均等之意義及範圍內之所有變更。 例如,試驗例1中,可變更正極電極之單位面積重量及負極電極之單位面積重量、電解液之組成、單元數等。
1:氧化還原液流電池單元(RF電池單元) 2:單元堆 3:單元架 9:變電設備 10:氧化還原液流電池系統(RF電池系統) 11:隔膜 13:正極電極 14:負極電極 15:雙極板 16:槽 17:槽 18:泵 19:泵 20:子單元堆 21:端板 22:緊固構件 23:給排板 30:框體 33:供液歧管 34:供液歧管 35:排液歧管 36:排液歧管 38:密封材 90:交流/直流轉換器 91:發電部 92:負載 160:配管 161:去路配管 162:返路配管 170:配管 171:去路配管 172:返路配管
圖1係表示實施方式之氧化還原液流電池系統之概況之構成圖。 圖2係表示實施方式之氧化還原液流電池單元及實施方式之單元堆之概況之立體圖。
1:氧化還原液流電池單元(RF電池單元)
2:單元堆
3:單元架
9:變電設備
10:氧化還原液流電池系統(RF電池系統)
11:隔膜
13:正極電極
14:負極電極
15:雙極板
16:槽
17:槽
18:泵
19:泵
21:端板
22:緊固構件
30:框體
38:密封材
90:交流/直流轉換器
91:發電部
92:負載
160:配管
161:去路配管
162:返路配管
170:配管
171:去路配管
172:返路配管

Claims (6)

  1. 一種氧化還原液流電池單元,其具備正極電極與負極電極, 上述正極電極及上述負極電極分別為包含複數個碳纖維之集合體, 上述負極電極之單位面積重量大於上述正極電極之單位面積重量。
  2. 如請求項1之氧化還原液流電池單元,其中上述負極電極之單位面積重量相對於上述正極電極之單位面積重量之比率為105%以上。
  3. 如請求項1或2之氧化還原液流電池單元,其中上述正極電極之單位面積重量及上述負極電極之單位面積重量為20 g/m2 以上500 g/m2 以下。
  4. 如請求項1或2之氧化還原液流電池單元,其中上述碳纖維之平均纖維徑為20 μm以下。
  5. 一種單元堆,其具備複數個如請求項1至4中任一項之氧化還原液流電池單元。
  6. 一種氧化還原液流電池系統,其具備如請求項1至4中任一項之氧化還原液流電池單元、或如請求項5之單元堆。
TW109121103A 2019-07-18 2020-06-22 氧化還原液流電池單元、單元堆及氧化還原液流電池系統 TW202130025A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/028372 WO2021009929A1 (ja) 2019-07-18 2019-07-18 レドックスフロー電池セル、セルスタック、及びレドックスフロー電池システム
WOPCT/JP2019/028372 2019-07-18

Publications (1)

Publication Number Publication Date
TW202130025A true TW202130025A (zh) 2021-08-01

Family

ID=74210418

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109121103A TW202130025A (zh) 2019-07-18 2020-06-22 氧化還原液流電池單元、單元堆及氧化還原液流電池系統

Country Status (7)

Country Link
US (1) US11901597B2 (zh)
EP (1) EP4002532A4 (zh)
JP (1) JP7286063B2 (zh)
CN (1) CN114072944B (zh)
AU (1) AU2019457171A1 (zh)
TW (1) TW202130025A (zh)
WO (1) WO2021009929A1 (zh)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3601581B2 (ja) 1999-06-11 2004-12-15 東洋紡績株式会社 バナジウム系レドックスフロー電池用炭素電極材
JP2003142141A (ja) 2001-11-06 2003-05-16 Sumitomo Electric Ind Ltd バナジウムレドックスフロー電池の運転方法
WO2005124907A1 (ja) 2004-06-21 2005-12-29 Mitsubishi Rayon Co., Ltd. 多孔質電極基材およびその製造方法
CN100527496C (zh) 2004-06-21 2009-08-12 三菱丽阳株式会社 多孔质电极基材及其制造方法
JP2006147374A (ja) * 2004-11-19 2006-06-08 Kansai Electric Power Co Inc:The バナジウムレドックスフロー電池システムの運転方法
JP2010277810A (ja) * 2009-05-28 2010-12-09 Abe Tomomi レドックスフロー電池の電極板
JP6206186B2 (ja) 2012-08-24 2017-10-04 東レ株式会社 燃料電池用ガス拡散電極基材
KR101437322B1 (ko) * 2012-11-30 2014-09-02 롯데케미칼 주식회사 레독스 흐름 전지의 전극 제조용 슬러리 조성물 및 레독스 흐름 전지의 전극의 제조 방법
JP2017010809A (ja) * 2015-06-23 2017-01-12 住友電気工業株式会社 レドックスフロー電池、及びレドックスフロー電池用電極
US10622638B2 (en) 2015-10-22 2020-04-14 Sumitomo Electric Industries, Ltd. Electrode for redox flow battery, and redox flow battery
JP6775300B2 (ja) 2016-02-10 2020-10-28 住友電気工業株式会社 レドックスフロー電池用電極、及びレドックスフロー電池
JP2017050297A (ja) * 2016-12-15 2017-03-09 住友電気工業株式会社 レドックスフロー電池用電極、レドックスフロー電池、及び電極の特性評価方法
EP3565048A4 (en) * 2016-12-28 2020-07-29 Showa Denko K.K. REDOX FLOW BATTERY

Also Published As

Publication number Publication date
JPWO2021009929A1 (zh) 2021-01-21
AU2019457171A1 (en) 2022-02-17
CN114072944B (zh) 2024-01-09
EP4002532A4 (en) 2023-09-06
CN114072944A (zh) 2022-02-18
JP7286063B2 (ja) 2023-06-05
US11901597B2 (en) 2024-02-13
WO2021009929A1 (ja) 2021-01-21
US20220320560A1 (en) 2022-10-06
EP4002532A1 (en) 2022-05-25

Similar Documents

Publication Publication Date Title
Reed et al. Performance of a low cost interdigitated flow design on a 1 kW class all vanadium mixed acid redox flow battery
JP6403009B2 (ja) レドックスフロー電池システム、及びレドックスフロー電池の運転方法
JP2013037857A (ja) レドックスフロー電池
US11005111B2 (en) Redox flow battery, electrical quantity measurement system, and electrical quantity measurement method
CN105144455A (zh) 维持液流电池健康的方法
US20150140471A1 (en) Redox flow battery electrolyte and redox flow battery
JP5979551B2 (ja) バナジウムレドックス電池
EP3327839A1 (en) Redox flow battery electrode, redox flow battery, and method for evaluating electrode properties
TW202130025A (zh) 氧化還原液流電池單元、單元堆及氧化還原液流電池系統
TW202111991A (zh) 氧化還原液流電池單元、單元堆及氧化還原液流電池系統
WO2019030844A1 (ja) レドックスフロー電池
WO2022070671A1 (ja) レドックスフロー電池システム、及びレドックスフロー電池の運転方法
WO2023132152A1 (ja) 電極、電池セル、セルスタック、及びレドックスフロー電池システム
KR102441603B1 (ko) 레독스 흐름 전지 시스템 및 그의 충전도 밸런싱 방법
JP2017174541A (ja) レドックスフロー電池の正・負極の過電圧測定方法およびその方法を行うための装置
WO2021070311A1 (ja) 電極、電池セル、セルスタック、及びレドックスフロー電池システム
JP2024028006A (ja) 電力供給システム
WO2019150570A1 (ja) セルフレーム、電池セル、セルスタック、及びレドックスフロー電池
JP2023100373A (ja) 電極、電池セル、セルスタック、及びレドックスフロー電池システム