TW202129055A - 在反應空間中的基板上形成含矽薄膜的方法 - Google Patents

在反應空間中的基板上形成含矽薄膜的方法 Download PDF

Info

Publication number
TW202129055A
TW202129055A TW110101025A TW110101025A TW202129055A TW 202129055 A TW202129055 A TW 202129055A TW 110101025 A TW110101025 A TW 110101025A TW 110101025 A TW110101025 A TW 110101025A TW 202129055 A TW202129055 A TW 202129055A
Authority
TW
Taiwan
Prior art keywords
reactant
substrate
specific examples
silicon
film
Prior art date
Application number
TW110101025A
Other languages
English (en)
Inventor
瓦倫 夏瑪
Original Assignee
荷蘭商Asm Ip 控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asm Ip 控股公司 filed Critical 荷蘭商Asm Ip 控股公司
Publication of TW202129055A publication Critical patent/TW202129055A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45531Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

提供在反應空間中的基板上沉積含矽薄膜的方法。該方法可以包括包含至少一個沉積循環的氣相沉積製程,該至少一個沉積循環包括使基板與包含鹵矽烷的矽前驅物及包含醯基鹵的第二種反應物依序接觸。在一些具體例中,沉積Si(O,C,N)薄膜且藉由調節沉積條件能夠調節膜中的氮及碳濃度。

Description

碳氮氧化矽薄膜形成
本揭示大體上是關於半導體裝置製造領域,並且更特定而言,是關於氧化矽以及其他含矽膜的形成。 [相關申請案之參考]
本申請案主張2020年1月17申請之美國臨時申請案第62/962,667號的優先權,該美國臨時申請案以其全文引用的方式併入本文。
愈來愈需要介電常數(dielectric constant,k)相對較低並且基於酸或基於鹼之濕式蝕刻速率相對較低的介電材料。典型地,用於形成含有矽基膜之沉積製程需要單獨的氧反應物,例如臭氧或氧電漿,並且在熱處理的情況下需要相對較高的沉積溫度。
在一些態樣中,提供了用於沉積含矽膜的氣相沉積方法。在一些具體例中,氣相沉積方法是包含一個或多個沉積循環的循環方法,其中使基板與兩種或更多種反應物(包括矽反應物,例如鹵化矽,及胺反應物)依序接觸。
在一些具體例中,在反應空間中的基板上沉積含矽薄膜的方法包含循環氣相沉積製程,例如原子層沉積(ALD)製程,其中至少一個沉積循環包含使基板與氣相矽前驅物、胺反應物及醯基鹵或羧酸反應物接觸。在一些具體例中,矽反應物是鹵矽烷。在一些具體例中,使基板與醯基鹵或羧酸反應物、胺反應物及矽前驅物依此次序接觸。在一些具體例中,使基板與矽前驅物、胺反應物及醯基鹵或羧酸反應物依此次序接觸。在一些具體例中,在約100至約450℃的溫度下執行沉積循環。
在一些具體例中,還使基板與第二種胺反應物在一個或多個沉積循環中接觸。在一些具體例中,第二種胺反應物與第一種胺反應物相同。在一些具體例中,使基板與矽前驅物、第一種胺反應物、醯基鹵或羧酸反應物及第二種胺反應物依此次序接觸。在一些具體例中,使基板與醯基鹵或羧酸反應物、第一種胺反應物、矽反應物及第二種胺反應物依此次序接觸。在一些具體例中,使基板另外與氫反應物接觸,例如NH3 、N2 H2 或經烷基取代的肼。在一些具體例中,氫反應物是氮族元素氫化物。在一些具體例中,在沉積循環中,使基板依序與矽反應物、氫反應物、醯基鹵或羧酸反應物及胺反應物依此次序接觸。
在一些具體例中,矽反應物具有式Sin X2n+2 ,其中X是鹵素,並且n是1到4的整數。在一些具體例中,矽反應物是烷基鹵矽烷。在一些具體例中,矽反應物是八氯三矽烷。在一些具體例中,醯基鹵反應物包含二醯基鹵或三醯基鹵。在一些具體例中,羧酸反應物包含二羧酸或三羧酸。在一些具體例中,胺反應物包含二胺或三胺。
在一些具體例中,含矽薄膜包含約0至約30 at%氮及約0至約30 at%碳。在一些具體例中,含矽薄膜包含約3至約30 at%氮及約3至約30 at%碳。在一些具體例中,含矽膜是SiOCN膜。在一些具體例中,沉積的含矽膜在稀HF(0.5重量%水溶液)中具有大於30奈米/分鐘的濕式蝕刻速率。在一些具體例中,含矽薄膜具有小於約6.5的k值。
含矽薄膜,例如包含氧化矽、碳氧化矽、氮氧化矽及碳氮氧化矽中之一者或多者的膜,具有多種多樣的應用,例如用於積體電路製造。在一些具體例中,本文所述的含矽膜可以用作例如介電層、蝕刻終止層、犧牲層、低k間隔層、抗反射層(ARL)、鈍化層以及用於填隙應用。雖然在本文中寬泛地稱為Si(O,C,N)膜,但含矽膜中還可以存在氫。
在一些具體例中,利用氣相分子層沉積(MLD)製程沉積含矽膜。如下文更詳細地論述,在一些具體例中,氣相沉積製程利用矽前驅物,例如矽鹵化物,以及有機胺、有機醯基鹵或有機羧酸前驅物。根據一些具體例,矽鹵化物可以含有藉由烷基或芳基碳鏈或碳原子或氧或氮原子橋連的超過一個矽原子。在一些具體例中,有機胺可包括任何取代或未取代、飽和或不飽和的烷基或芳基二胺或三胺。在一些具體例中,有機醯基鹵可以包括任何取代或未取代、飽和或不飽和的烷基或芳基二醯基鹵或三醯基鹵。在一些具體例中,有機羧酸前驅物可以包括任何取代或未取代、飽和或不飽和的烷基或芳基二羧酸或三羧酸。
在一些具體例中,由MLD製程形成含矽膜,其中矽前驅物是胺基矽烷,例如六(乙基胺基)二矽烷、四(乙基胺基)矽烷或四(甲基胺基)矽烷,並且有機前驅物是二/三醯基鹵或二/三羧酸。在一些具體例中,有機前驅物是反丁烯二醯氯、丙二醯氯、對苯二甲醯氯、對苯二甲酸、乙二酸、反丁烯二酸等。
根據一些具體例,提供多種含矽膜、前驅物,及利用氣相沉積製程(例如原子層沉積(ALD))沉積所述膜的方法。在一些具體例中,藉由不使用電漿、自由基或受激態物質的製程沉積膜。在一些具體例中,該膜是使用非氧化製程沉積;亦即,不使用氧化劑的製程,例如O2 、O3 、H2 O2 、H2 O、氧電漿或氧自由基。
在一些具體例中,可以在沉積製程中間歇性地提供額外步驟,例如在一定數目個沉積循環之後,例如在每n個循環之後,其中n是整數。在額外步驟中,可以將基板暴露於一種或多種反應物以進一步微調膜特性、改良製程或選擇性地移除非期望的元素。在一些具體例中,化學暴露的額外步驟可有助於完成化學反應或自反應室中、自晶圓表面或反應室零件上減少或完全移除不必要的顆粒,例如氯化銨鹽。在一些具體例中,額外步驟包含將基板暴露於包含碳、氫及氮、或碳、氫、氧及氮、或碳、氫及硫、或碳、氫、硫及氮的反應物。在一些具體例中,額外步驟可以包含將基板暴露於一種或多種雜環化合物,例如吡啶、烷基取代的吡啶、吡咯、咪唑、噻吩等。在一些具體例中,額外步驟包含將基板暴露於環狀分子,該環狀分子可以包含雜原子,例如碳、氫、氮或碳、氫、氮及硫。
在一些具體例中,可以在用於移除一種或多種反應物及/或反應副產物的吹掃步驟中,而非在額外步驟中將基板暴露於一種或多種其他反應物,例如上文所述的反應物。在一些具體例中,提供了吹掃步驟,其中將基板暴露於一種或多種雜環化合物,例如吡啶、烷基取代的吡啶、吡咯、咪唑、噻吩等。在一些具體例中,吹掃包含使基板暴露於非反應氣體,如雙原子氮氣或氬氣;及雜環化合物,例如吡啶、烷基取代的吡啶、吡咯、咪唑、嘧啶、噻吩等。
在一些具體例中,Si(O,C,N)薄膜不藉由液相方法沉積。在一些具體例中,Si(O,C,N)薄膜是在三維結構上沉積,例如形成FinFET裝置時的鰭片。
為方便及簡單起見,氧化矽膜的化學式在本文中通常稱為Si(O,C,N)。Si(O,C,N)膜含有矽以及氧、碳及氮中之一者或多者。在一些具體例中,Si(O,C,N)膜是氧化矽膜,例如SiO2 或SiO。在一些具體例中,氧化矽可以具有化學式SiOx,其中x是0至2。在一些具體例中,Si(O,C,N)膜是碳氧化矽膜。在一些具體例中,碳氧化矽具有化學式SiOC。在一些具體例中,Si(O,C,N)膜是氮氧化矽膜。在一些具體例中,氮氧化矽具有化學式SiON。在一些具體例中,Si(O,C,N)膜是碳氮氧化矽膜。在一些具體例中,碳氮氧化矽具有化學式SiOCN。如本文所用,不希望Si(O,C,N)、SiO、SiOC、SiON及SiOCN限制、約束或限定該膜中的Si、O、C、N及/或任何其他元素中之任一者的鍵結或化學態,例如氧化態。另外,在一些具體例中,薄膜可以包含一種或多種除Si、O、C及/或N之外的元素。在一些具體例中,利用本文中方法沉積的薄膜可以包含有機組分,例如聚醯胺。在一些具體例中,沉積的SiO膜可以包含Si-O鍵。在一些具體例中,沉積的SiOCN膜可以包含Si-C鍵、Si-O鍵及Si-N鍵。在一些具體例中,Si(O,C,N)膜可以包含以原子計約0%至約50%矽。在一些具體例中,含矽膜可以包含富含矽的膜。在一些具體例中,Si(O,C,N)膜可以包含以原子計約0%至約60%氧。
ALD型製程是基於可控的、通常自限性表面反應。典型地藉由使基板與反應物交替並依序接觸來避免氣相反應。將氣相反應物彼此分開送入反應室中,例如藉由在反應物脈衝之間移除過量反應物及/或反應副產物。可以藉助於吹掃氣體及/或真空來移除基板表面附近的反應物。在一些具體例中,利用吹掃,例如利用惰性氣體,自反應空間中移除過量反應物及/或反應副產物。可以調節反應條件,例如溫度、反應物及/或壓力,以生產出具有期望特徵的膜。
在一些具體例中,使用氣相沉積製程,例如ALD製程來沉積Si(O,C,N)膜。在一些具體例中,氣相沉積製程不使用氧化反應物。舉例而言,在一些具體例中,氣相沉積製程不使用O2 、O3 、H2 O3 、H2 O、氧電漿或氧自由基。
簡單而言,將基板或工件置於反應室中並且進行交替重複的表面反應。在一些具體例中,藉由重複執行沉積循環來形成Si(O,C,N)薄膜。在一些具體例中,為了形成Si(O,C,N)膜,每個沉積循環包含至少三個明確劃分的階段。使反應物與基板接觸以及使反應物脫離基板可以被視為一個階段。下文論述了四個明確劃分的階段。在一些具體例中,沉積循環包含第一個矽階段以及下述第二、第三及第四個階段中的一者或多者。
在第一階段中,使包含鹵化矽(例如鹵矽烷)的第一氣相反應物與基板接觸並且在基板表面上形成不超過約一個單層。此反應物在本文中也稱為「矽前驅物」、「含矽前驅物」或「矽反應物」。此階段可以稱為「矽階段」。
在一些具體例中,矽前驅物包含具有至少一個鹵素的矽烷。在一些具體例中,矽前驅物是直鏈、分支鏈或環狀鹵矽烷。在一些具體例中,矽前驅物可以具有通式:
Sin X2n+2
其中n是大於或等於1的整數並且X是鹵素。在一些具體例中,X是Cl、F、Br或I。在一些具體例中,矽前驅物包含兩種或更多種不同的鹵化物。
在一些具體例中,矽前驅物可以具有通式:
Sin X2n
其中n是大於1的整數並且X是鹵素。在一些具體例中,X是Cl、F、Br或I。在一些具體例中,矽前驅物包含兩種或更多種不同的鹵化物。
在一些具體例中,矽前驅物是碳取代的鹵矽烷,例如烷基鹵矽烷。在一些具體例中,矽前驅物是烷基橋連的鹵矽烷。
在一些具體例中,矽前驅物可以具有通式:
Sin X2n (Y)
其中n是大於1的整數並且X是鹵素。在一些具體例中,X是Cl、F、Br或I,並且Y可為烷基、取代的烷基、氧或硫。在一些具體例中,Y可為分支鏈或直鏈基團並且可以含有一個或多個原子,例如碳、氮、氫及/或硫,例如碳及氫或碳、硫及氫。在一些具體例中,橋連的鏈可以含有鹵原子,例如氟、氯、溴或碘。
在一些具體例中,矽前驅物可為例如八氯三矽烷(OCTS)、六氯二矽烷(HCDS)、八氯三矽氧烷(OCTSE)或六氯二矽氧烷(HCDSE)。
在第二階段中,使包含胺反應物的第二種反應物與基板接觸。此階段可以稱為「胺階段」,並且反應物可以稱為「胺反應物」。在一些具體例中,胺是二胺或三胺。在一些具體例中,胺具有式Ca Nb Hc 其中a、b及c是整數。在一些具體例中,c大於2。在一些具體例中,胺可以包含飽和或不飽和配位體,例如飽和或不飽和烷基或芳基。在一些具體例中,胺可為芳族胺,例如芳族二胺或三胺。在一些具體例中,胺可具有式NH2 -R-NH2 ,其中R是飽和或不飽和烷基或芳基,或NH2 -Ar-NH2 ,其中Ar表示芳族。在一些具體例中,第二種反應物包含乙二胺。在一些具體例中,第二種反應物包含丙基三胺、二亞乙基三胺、丙烷三胺,或被三甲基矽烷基取代的烷二胺,例如雙(N-三甲基矽烷基亞乙基胺)醯胺[(Me3 SiNHCH2 CH2 )2 NH]等。在一些具體例中,胺反應物可含有至多20個碳原子。
在第三階段中,使包含醯基鹵的第三反應物與基板接觸。此階段可以稱為「醯基鹵階段」,並且反應物可以稱為「醯基鹵反應物」。在一些具體例中,醯基鹵包含(-C(O)-X)基團,例如(-C(O)-Cl)或(-C(O)-Br)或(-C(O)-F)或(-C(O)-I)基團。在一些具體例中,醯基鹵是通式R(Ar)-COX的單醯基鹵。在一些具體例中,醯基鹵是二醯基鹵。在一些具體例中,醯基鹵是三醯基鹵。在一些具體例中,具有二醯基鹵或三醯基鹵基團的分子可以含有不同的鹵化物配位體。具有混合型鹵化物配位體的醯基鹵的實例是COCl-C2 H4 -COBr、1,3-苯二羰基二溴化物、5-羰醯氯等。在一些具體例中,醯基鹵具有式COCl-R(Ar)-COCl,其中R是飽和或不飽和烷基或芳基。在一些具體例中,醯基鹵是反丁烯二醯氯或環己烷二醯氯或丙二醯氯或己二醯氯。在一些具體例中,醯基鹵反應物可以含有至多15個碳原子、至多10個碳原子、至多6個碳原子、至多5個碳原子、至多3個碳原子或至多2個碳原子。
在一些具體例中,醯基鹵反應物包含亞磺醯鹵。在此情況下,第三階段可以稱為「亞磺醯鹵階段」,並且反應物可以稱為「亞磺醯鹵反應物」。在一些具體例中,醯基鹵包含(-S(O)-X)基團,其中X是鹵素原子,例如氯、溴、碘或氟。在一些具體例中,亞磺醯鹵是具有通式R(Ar)-SOX的單亞磺醯鹵。在一些具體例中,亞磺醯鹵是具有通式S(O)X-R(Ar)-S(O)X的二亞磺醯鹵。在一些具體例中,亞磺醯鹵可以包含碳、硫、氧、氫及鹵素原子。在一些具體例中,亞磺醯鹵反應物可以包含飽和或不飽和配位體,例如飽和或不飽和烷基或芳基。
在一些具體例中,沉積循環包括第四階段,其中使基板與包含氫前驅物的第四反應物接觸。此階段可以稱為「氫階段」,並且反應物可以稱為「氫反應物」。在一些具體例中,第四反應物是NH3 、N2 H4 ,或取代的肼,例如二甲基肼。在一些具體例中,第四反應物是氮族元素氫化物,例如H2 S、PH3 ,或包含H-S鍵或P-H鍵的其他反應物。
在一些具體例中,可以在約200℃至約500℃的製程溫度下執行一個或多個沉積循環。在一些具體例中,可以在低於或等於約200℃的製程溫度下執行沉積循環。在一些具體例中,可以在約400℃或更高的製程溫度下執行沉積循環。可以調節沉積溫度以獲得具有所期望組成的薄膜。舉例而言,可以調節溫度以實現膜中的所期望N及/或C濃度。
在一些具體例中,在一個或多個沉積循環期間,使基板不與電漿產生的反應性物質接觸。在一些具體例中,在任何沉積循環中,不使基板與電漿產生的反應性物質接觸。
可以增添額外的階段並且可以視需要移除階段以調節最終膜的組成或改良膜品質或總體沉積製程。因此,在一些具體例中,省去一個或多個階段。在一些具體例中,在沉積製程中設置一個或多個不同的沉積循環。
在一些具體例中,一個或多個階段可以在單一沉積循環中重複兩次或更多次。舉例而言,在一些具體例中,沉積循環可以包含第一階段、第二階段、第三階段及第二階段的第二次迭代,隨後開始下一個循環。
一種或多種反應物可以藉助於載氣(例如Ar、N2 ,或He)提供。在一些具體例中,藉助於載氣提供矽前驅物、第二種反應物、第三反應物及/或第四反應物。
在一些具體例中,兩個或更多個階段可以重疊或組合。舉例而言,矽前驅物及胺反應物可以在部分或完全重疊的階段中同時與基板接觸。另外,儘管稱為第一、第二、第三及第四階段以及第一、第二、第三及第四反應物,但編號並非指定階段的次序或基板與反應物接觸的次序。亦即,可以改變階段的次序。每一個沉積循環可以始於該等階段中的任一個階段。除非另外說明,否則反應物能夠依任何次序與基板接觸,並且製程可以始於任一反應物。
如下文更詳細地論述,在沉積含矽膜的一些具體例中,一個或多個沉積循環始於將基板與矽前驅物接觸的矽階段,隨後為將基板與第二種反應物接觸的胺階段,接著為將基板與第三反應物接觸的醯基鹵階段,依此次序執行。
在一些具體例中,一個或多個沉積循環始於將基板與矽前驅物接觸的矽階段,隨後為將基板與第二種反應物接觸的胺階段,接著為將基板與第三反應物接觸的醯基鹵階段,接著為將基板與氫反應物接觸的氫階段,依此次序執行。
在一些具體例中,一個或多個沉積循環始於將基板與矽前驅物接觸的矽階段,隨後為將基板與第二種反應物接觸的胺階段,接著為將基板與第三反應物接觸的醯基鹵階段,接著為將基板與胺反應物第二次接觸的第二個胺階段,依此次序執行。
在一些具體例中,還可以設置羧酸階段,其中將基板與羧酸反應物接觸。在一些具體例中,羧酸階段可以替換醯基鹵階段或設置為醯基鹵階段的附加階段。在一些具體例中,在羧酸階段中,使芳基或烷基二羧酸或三羧酸反應物與基板接觸。在一些具體例中,羧酸反應物具有二羧酸(COOH -R(Ar)-COOH)、三羧酸(R(Ar)(COOH)3 )或單羧酸(R(Ar)-COOH)的通式,其中R是取代或未取代的直鏈或分支鏈飽和或不飽和烷基且Ar是取代或未取代的芳基。在一些具體例中,羧酸階段包含使基板與草酸、丙烷1,3二酸、己二酸或對苯二甲酸接觸。在一些具體例中,羧酸反應物可以含有至多15個碳原子、至多10個碳原子、至多6個碳原子、至多5個碳原子、至多3個碳原子或至多2個碳原子。在一些具體例中,醯基鹵階段被羧酸階段替換。
在一些具體例中,一個或多個沉積循環始於將基板與矽前驅物接觸的矽階段,隨後為將基板與醯基鹵反應物接觸的醯基鹵階段,接著為將基板與胺反應物接觸的胺階段,依此次序執行。
在一些具體例中,一個或多個沉積循環始於將基板與矽前驅物接觸的矽階段,隨後為將基板與醯基鹵反應物接觸的醯基鹵階段,接著為將基板與氫反應物接觸的氫階段,依此次序執行。
在其他具體例中,一個或多個沉積循環可以始於將基板與除矽前驅物之外的反應物接觸。舉例而言,在一些具體例中,一個或多個沉積循環可以始於將基板與第三種前驅物接觸,隨後與矽前驅物及第二種前驅物接觸。
在一些具體例中,將其上需要沉積的基板(例如半導體工件)裝載到反應空間或反應器中。反應器可為在形成積體電路時執行多種不同製程的組合設備工具的一部分。在一些具體例中,利用流動型反應器。在一些具體例中,利用噴頭型反應器。在一些具體例中,利用空間分隔型反應器。在一些具體例中,使用能夠進行大批量製造的單晶圓ALD反應器。在其他具體例中,使用包含多個基板的分批反應器。在使用分批ALD反應器的具體例中,基板的數量是在5至50的範圍內、10至200的範圍內、50至150的範圍內,或100至130的範圍內。
在一些具體例中,必要時,可以預處理工件的暴露表面,以提供可供在沉積循環第一階段中反應的反應性位點。在一些具體例中,不需要單獨的預處理步驟。在一些具體例中,對基板進行預處理以提供所期望的表面終止。
在一些具體例中,可以在沉積之後,對所沉積的含Si膜進行處理,例如以修改膜特性。在一些具體例中,不需要或不執行單獨的後處理步驟。在一些具體例中,對基板進行後處理以提供所期望的膜特徵。在一些具體例中,後處理步驟可為將膜熱暴露於氧反應物,例如氧氣、過氧化氫、水及/或臭氧。在一些具體例中,後處理步驟可為反應性氣氛或惰性氣氛下的退火步驟。在一些具體例中,後處理步驟可為電漿步驟,例如暴露於氦氣、氬氣、氫氣、氧氣、臭氧、H2 -N2 ,或NH3 電漿。
在反應物接觸階段之間,自基板附近,尤其自基板表面移除過量反應物及反應副產物(若存在)。在一些具體例中,自基板表面移除過量反應物及反應副產物(若存在),例如在反應物接觸階段之間,藉由吹掃反應室(例如藉由用惰性氣體吹掃)來移除。各種反應物的流量及接觸時間是可調的,移除步驟也是可調的,從而允許控制膜的質量及各種特性。在一些具體例中,可以移動基板,使得其每次與一種反應物接觸。
如上文所提及,在一些具體例中,在每一個沉積循環期間或在整個沉積製程期間,連續地向反應室提供氣體。在一些具體例中,氣體可以包含惰性氣體,例如氦氣或氬氣。流動氣體還可以充當第一、第二及/或第三種反應物的吹掃氣體。
重複執行沉積循環,直到獲得具有所期望的厚度及組成的膜為止。在一些具體例中,在沉積製程期間,在一個或多個沉積循環中,可以改變沉積參數,例如溫度、前驅物流量、接觸時間、移除時間及/或反應物本身,以便獲得具有期望特徵的膜。
在一些具體例中,向含有基板的反應空間中提供反應物脈衝。術語「脈衝」可以理解為包含向反應室中饋送反應物預定量的時間。術語「脈衝」不限制脈衝的長度或持續時間,並且脈衝可為任何時間長度。在一些具體例中,將基板移動至含有反應物的反應空間。在一些具體例中,隨後將基板自含有第一反應物的反應空間移動至不同的含有第二種反應物之第二反應空間。
在一些具體例中,首先使基板與矽反應物。初始的表面終止之後,必要或需要時,使基板與第一種鹵化矽反應物接觸。舉例而言,可以將第一個矽反應物脈衝供應到包含基板的反應空間。根據一些具體例,矽反應物包含與所關注的基板表面具有反應性的揮發性矽鹵矽烷物質,例如八氯三矽烷。因此,矽反應物的物質吸附在此等基板表面上。在一些具體例中,第一個反應物脈衝使基板表面自飽和,使得第一種反應物的任何過量成分在沉積循環的此部分中不進一步與基板上所形成的矽物質分子層反應。
各種反應物能夠以氣態形式供應。出於本說明書的目的,若物質在製程條件下展現足夠的蒸氣壓以便以足以使暴露表面飽和的濃度使該等物質輸送到工件,則反應物視為具有「揮發性」。
在一些具體例中,矽反應物與基板表面接觸約0.05秒至約30.0秒、約0.1秒至約10秒、約0.1秒至約3秒、或約0.2秒至約1.0秒的時間段。熟習此項技術者能夠基於特定情形確定最佳接觸時間。
在約一個分子層有足夠的時間吸附於基板表面之後,自基板表面移除過量的第一種矽反應物及反應副產物(若存在)。在一些具體例中,移除過量反應物及反應副產物(若存在)可以包含吹掃反應室。在一些具體例中,可以如下吹掃反應室:在繼續使載氣流動的同時,中止第一種反應物的流動;或使吹掃氣體流動足夠的時間以擴散或吹掃反應空間中的過量反應物及反應副產物(若存在)。在一些具體例中,藉助於可以在整個沉積循環中流動的惰性氣體(例如氮氣或氬氣)來吹掃過量的第一種矽前驅物。在一些具體例中,可以將基板自含有第一種反應物的反應空間移動至不同的第二個反應空間。在一些具體例中,將第一種反應物移除約0.1秒至約30秒、約0.1秒至約10秒、約0.3秒至約5秒,或約0.3秒至約1秒。接觸及移除矽反應物可以被視為沉積循環的第一階段或矽階段。
在第二階段中,使基板與包含胺(例如二胺或三胺)的第二種反應物接觸。胺可以藉由一個或多個反應物脈衝提供到基板。在一些具體例中,第二種反應物是藉由兩個或更多個不同脈衝提供,而兩個或更多個脈衝中的任一個之間不引入另一種反應物。舉例而言,在一些具體例中,二胺或三胺是藉由兩個或更多個連續脈衝提供,而連續脈衝之間不引入矽前驅物。
在一些具體例中,第二種反應物與基板接觸約0.1秒至約10秒。在一些具體例中,第二種反應物與基板接觸約0.1秒至約10秒、約0.5秒至約5秒,或0.5秒至約2.0秒。然而,視反應器類型、基板類型及其表面積而定,第二種反應物接觸時間甚至可以長於約10秒。在一些具體例中,接觸時間可為分鐘數量級。
在第二種反應物有足夠的時間與基板表面上的物質反應之後,自基板表面移除過量的第二種反應物及反應副產物(若存在)。在一些具體例中,移除過量的第二種反應物及反應副產物(若存在)可以包含吹掃反應室。在一些具體例中,可以如下吹掃反應室:在繼續使載氣流動的同時,中止第二種反應物的流動;或使吹掃氣體流動足夠的時間以擴散或吹掃反應空間中的過量反應物及反應副產物(若存在)。在一些具體例中,藉助於可以在整個沉積循環中流動的惰性氣體(例如氮氣或氬氣)來吹掃過量的第二種反應物。在一些具體例中,可以將基板自含有第二種反應物的反應空間移動至不同的反應空間。在一些具體例中,移除第二種反應物約0.1秒至約10秒、約0.3秒至約5秒,或約0.3秒至約1秒。第二種反應物的接觸及移除可以視為沉積循環的第二階段。
在第三階段中,使基板與包含醯基鹵的第三種反應物接觸。第三種反應物可以藉由一個或多個脈衝提供到容納基板的反應室中。第三種反應物與存在於基板表面上的物質反應。在一些具體例中,第三種反應物與基板接觸約0.1秒至約10秒。在一些具體例中,第三種反應物與基板接觸約0.1秒至約10秒、0.5秒至約5秒,或0.5秒至約2.0秒。然而,視反應器類型、基板類型及其表面積而定,第三種反應物接觸時間甚至可以長於約10秒。在一些具體例中,接觸時間可為分鐘數量級。
在一些具體例中,第三種反應物是藉由兩個或更多個不同脈衝提供,而兩個或更多個脈衝中的任一個之間不引入另一種反應物。舉例而言,在一些具體例中,二醯基鹵是藉由兩個或更多個連續脈衝提供,而連續脈衝之間不引入矽前驅物或其他反應物。
在第三種反應物有足夠的時間與基板表面上的物質反應之後,自基板表面移除過量的第三種反應物及反應副產物(若存在)。在一些具體例中,移除過量的第三種反應物及反應副產物(若存在)可以包含吹掃反應室。在一些具體例中,可以如下吹掃反應室:在繼續使載氣流動的同時,中止第三種反應物的流動;或使吹掃氣體流動足夠的時間以擴散或吹掃反應空間中的過量反應物及反應副產物(若存在)。在一些具體例中,藉助於可以在整個沉積循環中流動的惰性氣體(例如氮氣或氬氣)來吹掃過量的第三種前驅物。在一些具體例中,可以將基板自含有第三種反應物的反應空間移動至不同的反應空間。在一些具體例中,將第三種反應物移除約0.1秒至約10秒、約0.3秒至約5秒,或約0.3秒至約1秒。第三種反應物的接觸及移除可以被視為沉積循環的第三階段。
在第四階段中,使基板與包含氫前驅物(例如氨)的第四種反應物接觸,使得氫前驅物與基板表面上的物質反應。第四階段視情況存在且可以不納入一個或多個沉積循環中。在一些具體例中,沉積循環不使用第四階段。在一些具體例中,每個沉積循環包括第四階段。
在一些具體例中,第四種反應物(例如氨)與基板接觸約0.1秒至約10秒。在一些具體例中,第四種反應物與基板接觸約0.1秒至約10秒、約0.5秒至約5秒,或約0.5秒至約2.0秒。然而,視反應器類型、基板類型及其表面積而定,第四種反應物接觸時間甚至可以長於約10秒。在一些具體例中,接觸時間可為分鐘數量級。
在一些具體例中,第四種反應物是藉由兩個或更多個不同脈衝提供,而兩個或更多個脈衝中的任一個之間不引入另一種反應物。舉例而言,在一些具體例中,藉由兩個或更多個連續脈衝提供氨,而連續脈衝之間不引入Si前驅物。
在一些具體例中,移除過量反應物及反應副產物(若存在)可以包含吹掃反應室。在一些具體例中,可以如下吹掃反應室:在繼續使載氣流動的同時,中止第四種反應物的流動;或使吹掃氣體流動足夠的時間以擴散或吹掃反應空間中的過量反應物及反應副產物(若存在)。在一些具體例中,藉助於在整個沉積循環中流動的惰性氣體(例如氮氣或氬氣)來吹掃過量的第四種反應物。在一些具體例中,可以將基板自含有第四種反應物的反應空間移動至不同的反應空間。在一些具體例中,移除可以執行約0.1秒至約10秒、約0.1秒至約4秒,或約0.1秒至約0.5秒。第四種反應物的接觸及移除可以被視為沉積循環的第四階段。
其上沉積薄膜的基板可以包含多種類型的材料。在一些具體例中,基板可以包含積體電路工件。在一些具體例中,基板可以包含矽。在一些具體例中,基板可以包含氧化矽,例如熱氧化物。在一些具體例中,基板可以包含高k介電材料。在一些具體例中,基板可以包含碳。例如,基板可以包含非晶形碳層、石墨烯及/或碳奈米管。
在一些具體例中,基板可以包含金屬,包括(但不限於)Mo、Pt、Ir、Au、W、Cu、Ni、Co及/或Al。在一些具體例中,基板可以包含金屬氮化物,包括(但不限於)SiNx 、WNx 、CoNx 、NiNx 、TiN及/或TaN。在一些具體例中,基板可以包含金屬碳化物,包括(但不限於)TiC及/或TaC。在一些具體例中,基板可以包含金屬硫族化合物,包括(但不限於)MoS2 、Sb2 Te3 、Gex Sby Tez ,及/或GeTe。在一些具體例中,基板可以包含Si。在一些具體例中,基板可以包含藉由暴露於反應性氧源(例如氧電漿)而被氧化或以其他方式受損的材料。
在一些具體例中,本文所述方法中使用的基板可以包含有機材料。舉例而言,基板可以包含有機材料,例如塑膠、聚合物及/或光致抗蝕劑。在基板包含有機材料的一些具體例中,ALD製程的反應溫度可以低於約400℃、低於約350℃、低於約300℃或低於約200℃。在一些具體例中,反應溫度可以低於約150℃、低於約100℃、低於約75℃或低於約50℃。
在基板包含有機材料的一些具體例中,最大製程溫度可以低至約100℃。在基板包含有機材料的一些具體例中,電漿或氧化劑的缺乏可以允許在有機材料上沉積Si(O,C,N)薄膜,否則,有機材料可能會在沉積製程(包括由氧氣或其他活性氧物質產生的電漿)中降解。
根據一些具體例,反應室在處理期間的壓力維持在約0.01托至約50托,或約0.1托至約10托。在一些具體例中,反應室壓力大於約6托,或約20托。在一些具體例中,Si(O,C,N)沉積製程能夠在約20托至約500托、約20托至約50托、或約20托至約30托的壓力下執行。
在一些具體例中,Si(O,C,N)沉積製程可以包括多個沉積循環,其中至少一個沉積循環在高壓狀態下進行。舉例而言,沉積循環可以包含使基板與矽前驅物及第二種反應物在高壓下交替並且依序接觸。在一些具體例中,一個或多個沉積循環能夠在約6托至約500托、約6托至約50托、或約6托至約100托的製程壓力下執行。在一些具體例中,一個或多個沉積循環能夠在大於約20托(包括約20托至約500托、約30托至約500托、約40托至約500托或約50托至約500托)的製程壓力下進行。在一些具體例中,一個或多個沉積循環能夠在約20托至約30托、約20托至約100托、約30托至約100托、約40托至約100托或約50托至約100托的製程壓力下進行。
在一些具體例中,矽前驅物(例如鹵矽烷)與醯基鹵及胺反應物一起用於沉積循環中。參看圖1且根據一些具體例,利用ALD沉積製程100在反應空間中的基板上沉積含矽薄膜,該ALD沉積製程包含一個或多個沉積循環,該沉積循環包含:
在步驟120,使基板與氣相矽前驅物(例如鹵矽烷,例如八氯三矽烷)接觸,使得矽物質吸附於基板表面上;
在步驟140,使基板與包含醯基鹵(例如反丁烯二醯氯)的第二種反應物接觸;以及
在步驟160,使基板與包含胺(例如烷基二胺,例如乙二胺)的第三種反應物接觸。
接觸步驟120、140、160可以執行重複180以形成具有所期望厚度的含矽膜。
每個接觸步驟之間可以移除過量反應物及反應副產物(若存在)。
在一些具體例中,使基板與矽前驅物、醯基鹵及胺依此次序交替並且依序接觸。在一些具體例中,使基板與醯基鹵、隨後與胺、接著與矽前驅物交替並且依序接觸。在一些具體例中,能夠調整基板與反應物接觸的次序,以便得到所期望的膜特性,例如改良膜對基板的黏著力,或實現所期望的製程特徵,例如增強的生長速率或降低的生長速率。在一些具體例中,反應物的次序首先可為矽前驅物,接著為胺前驅物,隨後為醯基鹵或羧酸。在一些具體例中,反應物的次序首先可為醯基鹵或羧酸,隨後為胺反應物,最後為矽前驅物。在一些具體例中,一個沉積循環包含首先使基板與矽前驅物、接著與胺前驅物、隨後與醯基鹵或羧酸、最後與胺前驅物依此特定次序接觸。在一些具體例中,一個沉積循環包含首先使基板與醯基鹵或羧酸前驅物、接著與胺前驅物、隨後與矽前驅物、最後與胺前驅物依此特定次序接觸。
在循環沉積製程的一些具體例中,利用自反應空間中移除過量反應物及/或反應副產物的步驟分離各種前驅物。此可藉由吹掃(例如用惰性吹掃氣體)完成,及/或藉由簡單的抽真空或抽吸步驟完成。
在一些具體例中,使基板與八氯三矽烷、反丁烯二醯氯及乙二胺交替並且依序接觸。在一些具體例中,在一個或多個沉積循環中,使基板與三種反應物依此次序接觸。在一些具體例中,在一個或多個沉積循環中,使基板與反丁烯二醯氯、乙二胺及八氯三矽烷(Si3 Cl8 )依此次序交替並且依序接觸。
為了獲得所期望的膜,可以改變圖1所示的沉積製程的溫度。在一些具體例中,利用約300℃或更低的溫度且形成包含SiOCN的膜。氮及碳濃度可藉由調節溫度來調節。在約300℃或更低的沉積溫度下,膜可以具有約3至約30 at% N的氮含量及約3至約30 at% C的碳含量。在一些具體例中,在約200℃或更低的溫度下,可以沉積碳及氮含量更小(例如各約0至約10 at%)的膜。在一些具體例中,膜可為不包含N或C或N及/或C含量可以忽略的SiOx 膜。
在一些具體例中,使用約300℃或更低的溫度且以相對較高的濕式蝕刻速率形成膜,例如在稀HF中的濕式蝕刻速率大於30奈米/分鐘。在一些具體例中,使用約300℃或更低的溫度且以熱氧化矽於稀HF中的濕式蝕刻速率15至25倍大的濕式蝕刻速率形成薄膜。
在一些具體例中,使用約300℃或更低的溫度且形成k值小於約5的薄膜。
在一些具體例中,利用高於約300℃的溫度且形成包含SiOCN的膜。在一些具體例中,利用約300℃或更高的溫度且形成氮含量為約3至約30 at% N且碳含量為約3至約30 at% C的膜。碳及氮濃度可以藉由改變溫度而變化。
在一些具體例中,使用高於約300℃的溫度且形成在稀HF(0.5重量%水溶液)中的濕式蝕刻速率小於約50奈米/分鐘的膜。在一些具體例中,使用高於約300℃的溫度且以熱氧化矽在稀HF(0.5重量%水溶液)中的濕式蝕刻速率的高達15至25倍的濕式蝕刻速率形成薄膜。
在一些具體例中,使用高於300℃的溫度,並且形成k值大於約4.5的薄膜。在一些具體例中,k值小於約6.5。可以藉由調節沉積溫度來調節k值。
在一些具體例中,矽前驅物(例如鹵矽烷)與醯基鹵及氫反應物一起用於沉積循環中。參考圖2且根據一些具體例,利用包含至少一個循環的ALD沉積製程200在反應空間中的基板上沉積含矽薄膜,該至少一個循環包含:
在步驟220,使基板與氣相矽前驅物接觸,使得矽物質吸附於基板表面上;
在步驟240,使基板與包含醯基鹵(例如反丁烯二醯氯)的第二種反應物接觸;以及
在步驟260,使基板與包含氫反應物(例如肼或NH3 )的第三種反應物接觸。
接觸步驟220、240、260可以執行重複280以形成具有所期望厚度的含矽膜。
每個接觸步驟之間可以移除過量反應物及反應副產物(若存在)。
在一些具體例中,使基板與矽前驅物、醯基鹵及氫反應物依此次序交替並且依序接觸。在一些具體例中,使基板與氫反應物、隨後與胺、接著與矽前驅物交替並且依序接觸。
在一些具體例中,使基板與八氯三矽烷(Si3 Cl8 )、反丁烯二醯氯及氨交替並且依序接觸。在一些具體例中,在一個或多個沉積循環中,使基板與三種反應物依此次序接觸。在一些具體例中,在一個或多個沉積循環中,使基板與八氯三矽烷(Si3 Cl8 )、氨及反丁烯二醯氯依此次序交替並且依序接觸。
為了獲得所期望的膜,可以改變圖2中所說明的沉積製程溫度。在一些具體例中,利用約300℃或更低的溫度且形成主要包含SiO2 的膜。在一些具體例中,利用約300℃或更低的溫度且形成氮及碳含量較低或可以忽略的膜。舉例而言,該膜可以具有約0至約10 at% N的氮含量及約0至約10 at% C的碳含量。藉由改變溫度能夠改變碳及氮濃度。在一些具體例中,藉由在約250℃或更低的溫度下進行反應來降低或最小化碳及氮濃度。
在一些具體例中,使用約300℃或更低的溫度且形成在稀HF(例如0.5% HF)中的濕式蝕刻速率大於約30奈米/分鐘的膜。在一些具體例中,使用約300℃或更低的溫度且以熱氧化矽在稀HF(0.5重量%水溶液)中的濕式蝕刻速率的至少15至25倍大的濕式蝕刻速率形成薄膜。在一些具體例中,使用約300℃或更低的溫度且形成k值小於約5的薄膜。
在一些具體例中,使用高於約200℃(例如約200℃至約400℃)的溫度且形成包含SiOCN的膜。藉由調節溫度可以調節膜中的碳及氮濃度。在一些具體例中,利用約300℃或更高的溫度且形成具有約3至約30 at% N氮含量及約3至約30 at% C的膜。
在一些具體例中,使用高於約300℃的溫度且形成在稀HF中的濕式蝕刻速率小於約50奈米/分鐘的膜。在一些具體例中,使用高於約300℃的溫度且以熱氧化矽在稀HF(0.5重量%水溶液)中的濕式蝕刻速率的高達15至25倍的濕式蝕刻速率形成薄膜。
在一些具體例中,使用高於約300℃的溫度且形成k值大於約4.5的薄膜。可以藉由調節溫度來調節k值。
在一些具體例中,矽前驅物(例如鹵矽烷)與包含醯基鹵的反應物及胺反應物一起用於沉積循環中,其中在使基板與矽前驅物接觸之後並且在使基板與醯基鹵接觸之後,提供胺反應物。參考圖3,根據一些具體例,利用包含至少一個循環的ALD沉積製程300在反應空間中的基板上沉積含矽薄膜,該至少一個循環包含:
在步驟320,使基板與氣相矽前驅物(例如鹵矽烷)接觸,使得矽物質吸附於基板表面上;
在步驟340,使基板與包含胺(例如二胺或三胺,例如乙二胺)的第二種反應物接觸;
在步驟360,使基板與包含醯基鹵(例如反丁烯二醯氯)的第三種反應物接觸;以及
在步驟380,使基板與胺反應物(例如二胺或三胺,例如乙二胺)第二次接觸。在一些具體例中,步驟380所用的胺反應物與步驟340所用的胺反應物相同。在一些具體例中,步驟340及380使用不同的反應物。
接觸步驟320、340、360及380可以執行重複390以形成具有所期望厚度的含矽膜。在一些具體例中,沉積的膜是SiOCN膜。在一些具體例中,膜包含有機組分,例如聚醯胺。在一些具體例中,膜可為SiOCN與聚醯胺的奈米層合物。
每個接觸步驟之間可以移除過量反應物及反應副產物(若存在)。
在一些具體例中,使基板與矽前驅物、胺反應物、醯基鹵反應物及第二種胺反應物依此次序交替並且依序接觸。
在一些具體例中,使基板與八氯三矽烷(Si3 Cl8 )、乙二胺、反丁烯二醯氯及乙二胺交替並且依序接觸。在一些具體例中,在一個或多個沉積循環中,使基板與四種反應物依此次序接觸。
在一些具體例中,在步驟340及380中的一個或兩個步驟,氫反應物(例如氨)可以取代胺反應物。在一些具體例中,使基板與矽前驅物、氫反應物、醯基鹵反應物及胺反應物交替並且依序接觸。舉例而言,在一些具體例中,可以使基板與鹵矽烷(例如八氯三矽烷)、氨、反丁烯二醯氯及乙二胺交替並且依序接觸。在一些具體例中,在一個或多個沉積循環中,使基板與四種反應物依此次序接觸。
在一些具體例中,矽前驅物(例如鹵矽烷)與包含醯基鹵的反應物及氫反應物一起用於沉積循環中,其中在使基板與矽前驅物接觸之後並且在使基板與醯基鹵接觸之後,提供氫反應物。參考圖4,根據一些具體例,利用包含至少一個循環的ALD沉積製程400在反應空間中的基板上沉積含矽薄膜,該至少一個循環包含:
在步驟420,使基板與氣相矽前驅物(例如鹵矽烷)接觸,使得矽物質吸附於基板表面上;
在步驟440,使基板與包含氫反應物(例如氨)的第二種反應物接觸;
在步驟460,使基板與包含醯基鹵(例如反丁烯二醯氯)的第三種反應物接觸;以及
在步驟480,使基板與氫反應物(例如氨)第二次接觸。在一些具體例中,步驟480所用的氫反應物與步驟440所用的胺反應物相同。在一些具體例中,步驟440及480使用不同的反應物。
接觸步驟420、440、460及480可以執行重複490以形成具有所期望厚度的含矽膜。在一些具體例中,沉積的膜是SiOCN膜。
每個接觸步驟之間可以移除過量反應物及反應副產物(若存在)。
在一些具體例中,使基板與矽前驅物、氫反應物、醯基鹵反應物及第二種氫反應物依此次序交替並且依序接觸。
在一些具體例中,使基板與八氯三矽烷(Si3 Cl8 )、氨、反丁烯二醯氯及氨交替並且依序接觸。在一些具體例中,在一個或多個沉積循環中,使基板與四種反應物依此次序接觸。
在一些具體例中,在步驟440及480中的一個或兩個步驟,可以用胺反應物(例如乙二胺)取代氫反應物。在一些具體例中,使基板與矽前驅物、胺反應物、醯基鹵反應物及氫反應物交替並且依序接觸。舉例而言,在一些具體例中,可以使基板與鹵矽烷(例如八氯三矽烷)、乙二胺、反丁烯二醯氯及氨交替並且依序接觸。在一些具體例中,在一個或多個沉積循環中,使基板與四種反應物依此次序接觸。 Si(O,C,N)膜特徵
根據本文所論述的一些具體例沉積的Si(O,C,N)薄膜可以達到一種或多種雜質的含量或濃度為低於約3 at%、低於約1 at%、低於約0.5 at%或低於約0.1 at%。在一些薄膜中,不包括氫在內的總雜質含量可以低於約5 at%、低於約2 at%、低於約1 at%,或低於約0.2 at%。並且在一些薄膜中,氫含量可以低於約45 at%、低於約30 at%、低於約20 at%、低於約15 at%,或低於約10 at%。如本文所用,雜質可以視為除Si、O、C及/或N之外的任何元素。
在一些具體例中,沉積的Si(O,C,N)膜不包含明顯量的氫。然而,在一些具體例中,沉積包含氫的Si(O,C,N)膜。在一些具體例中,沉積的Si(O,C,N)膜包含小於約45 at%、小於約30 at%、小於約20 at%、小於約15 at%、小於約10 at%或小於約5 at%的氫。在一些具體例中,薄膜不含氬。
根據一些具體例,Si(O,C,N)薄膜可以展現大於約50%、大於約80%、大於約90%或大於約95%的步階覆蓋率及圖案負載效應。在一些情況下,步階覆蓋率及圖案負載效應能夠大於約98%並且在一些情況下約100%(在測量工具或方法的精確度內)。在一些具體例中,步階覆蓋率及圖案負載效應能夠大於約100%、大於約110%、大於約120%、大於約130%、大於約140%或大於約200%。此等值能夠在縱橫比為約2或更大(在一些具體例中,縱橫比為約3或更大;在一些具體例中,縱橫比為約5或更大;並且在一些具體例中,縱橫比為約8或更大)的特徵中實現。
在一些具體例中,步階覆蓋率可以在約50%與約110%之間、約80%與約110%之間、約90%與約110%之間、約95%與約110%之間、約98%與約110%之間或約100%與約110%之間。在一些具體例中,步階覆蓋率可以在約50%與約100%之間、約80%與約100%之間、約90%與約100%之間、約95%與約100%之間或約98%與約100%之間。
在一些具體例中,步階覆蓋率可以取決於整個矽或玻璃晶圓的圖案的凹坑或尺寸。在一些具體例中,基板可為聚合物、玻璃、氧化銦錫(ITO)、碳基物質等。
在一些具體例中,膜生長速率是每個循環約0.01 Å至每個循環約5 Å,或每個循環約0.1 Å至每個循環約1 Å。在一些具體例中,膜生長速率超過每個循環約0.05 Å、超過每個循環約0.1 Å、超過每個循環約0.15 Å、超過每個循環約0.3 Å、超過每個循環約0.3 Å,或超過每個循環約0.4 Å。
在一些具體例中,Si(O,C,N)膜沉積直至約3 nm至約50 nm、約5 nm至約30 nm、約5 nm至約20 nm的厚度。此等厚度能夠在低於約100 nm、低於約50 nm、低於約30 nm、低於約20 nm且在一些情況下低於約15 nm的特徵尺寸(寬度)中實現。根據一些具體例,在三維結構上沉積Si(O,C,N)膜且側壁的厚度甚至可以稍微超過10 nm。在一些具體例中,能夠沉積大於約50 nm的Si(O,C,N)膜。在一些具體例中,能夠沉積大於約100 nm的Si(O,C,N)膜。在一些具體例中,Si(O,C,N)膜沉積直至超過約1 nm、超過約2 nm、超過約3 nm、超過約5 nm或超過約10 nm的厚度。
根據一些具體例,Si(O,C,N)膜可以不同的濕式蝕刻速率(WER)沉積。當在0.5% dHF中使用毯覆式WER(奈米/分鐘)時,Si(O,C,N)膜可以具有小於約50奈米/分鐘的WER值。在一些具體例中,SiOCN膜在0.5% dHF中可以具有大於30奈米/分鐘的WER值。
在低於約300℃的溫度下執行ALD製程的一些具體例中,0.5% dHF中的毯覆式WER(奈米/分鐘)可以大於約30奈米/分鐘。另外,毯覆式濕式蝕刻速率相對於熱氧化物的WER可為大於15至25倍。
在高於約300℃的溫度下執行ALD製程的一些具體例中,0.5% dHF中的毯覆式WER(奈米/分鐘)可以小於約50奈米/分鐘。另外,毯覆式濕式蝕刻速率可為熱氧化物WER的高達15至25倍。
在高於約300℃的溫度下執行ALD製程的一些具體例中,Si(O,C,N)膜中的氮濃度可為約3至約30 at%並且Si(O,C,N)膜中的碳濃度可為約3至約30 at%。可以藉由調節溫度來調節N及C濃度。
在低於約300℃的溫度下執行ALD製程的一些具體例中,Si(O,C,N)膜中的氮濃度可為約0至約10 at%並且Si(O,C,N)膜中的碳濃度可為約0至約10 at%。可以藉由調節溫度來調節N及C濃度。
除非另外指明,否則本文所提供的全部原子百分比(即at%)值為了簡單起見而不包括氫在內,因為氫難以精確地以定量方式分析。然而,在一些具體例中,若能夠以合理的精確度分析氫,那麼膜中的氫含量小於約20 at%、小於約10 at%或小於約5 at%。
在一些具體例中,沉積的Si(O,C,N)薄膜可以含有以原子計(at%)至多約70%氧。在一些具體例中,Si(O,C,N)膜可以包含以原子計約10%至約70%、約15%至約50%,或約20%至約40%的氧。在一些具體例中,Si(O,C,N)膜可以包含以原子計至少約20%、約40%或約50%的氧。
在一些具體例中,沉積的Si(O,C,N)薄膜可以含有以原子計(at%)至多約40%的碳。在一些具體例中,Si(O,C,N)膜可以包含以原子計約0.5%至約40%、約1%至約30%、或約5%至約20%的碳。在一些具體例中,Si(O,C,N)膜可以包含以原子計至少約1%、約10%或約20%的碳。
在一些具體例中,沉積的Si(O,C,N)薄膜可以含有以原子計(at%)至多約50%的氮。在一些具體例中,Si(O,C,N)膜可以包含以原子計約0.5%至約30%、約1%至約20%、或約3%至約15%的氮。在一些具體例中,Si(O,C,N)膜可以包含以原子計至少約1%、約5%或約10%的氮。
在一些具體例中,沉積的Si(O,C,N)薄膜可以含有以原子計(at%)至多約50%的矽。在一些具體例中,Si(O,C,N)膜可以包含以原子計約10%至約50%、約15%至約40%、或約20%至約35%的矽。在一些具體例中,Si(O,C,N)膜可以包含以原子計至少約15%、約20%、約25%或約30%的矽。
在一些具體例中,沉積的Si(O,C,N)薄膜可以包含約30 at%至約40 at%矽、約25 at%至約40 at%氧、約10 at%至約20 at% C,及約10 at%氮。在一些具體例中,沉積的Si(O,C,N)膜可以包含約33 at%矽及約67 at%氧。
如上文所論述,在一些具體例中,Si(O,C,N)膜可以包含Si-C鍵、Si-O鍵及/或Si-N鍵。在一些具體例中,Si(O,C,N)膜可以包含Si-C鍵及Si-O鍵並且可以不含Si-N鍵。在一些具體例中,Si(O,C,N)膜可以包含Si-N鍵及Si-O鍵並且可以不含Si-C鍵。在一些具體例中,Si(O,C,N)膜可以包含Si-N鍵及Si-C鍵並且可以不含Si-O鍵。在一些具體例中,Si(O,C,N)膜可以包含比Si-C鍵更多的Si-O鍵,例如Si-O鍵與Si-C鍵的比率可為約1:1至約10:1。在一些具體例中,沉積的Si(O,C,N)膜可以包含SiN、SiOx、SiC、SiCN、SiON、SiOC及SiOCN中之一者或多者。
在一些具體例中,Si(O,C,N)膜是連續膜。在一些具體例中,Si(O,C,N)膜具有小於約10的k值。在一些具體例中,Si(O,C,N)膜具有小於約5的k值。舉例而言,在一些具體例中,在約300℃或更低溫度下沉積的Si(O,C,N)膜可以具有小於約5的k值。在一些具體例中,Si(O,C,N)膜具有約3.9至約10的k值。在一些具體例中,Si(O,C,N)膜具有大於約4.5的k值。舉例而言,在一些具體例中,Si(O,C,N)是高於約300℃的溫度下沉積且具有大於約4.5的k值。在一些具體例中,k值小於6.5。可以藉由調節沉積溫度來調節k值。
在一些具體例中,根據本揭示所沉積的SiOCN膜不包含層合物或奈米層合物結構。在一些具體例中,沉積的膜包含Si(O,C,N)膜及有機膜(例如聚醯胺膜)的奈米層合物。
在一些具體例中,根據本揭示所沉積的Si(O,C,N)膜不由彼此不鍵結的Si、O、C及/或N的個別單獨分子組成。
利用如本文所述的ALD製程沉積例示性Si(O,C,N)薄膜。
為了簡單起見,本文中使用術語「膜」及「薄膜」。「膜」及「薄膜」意指藉由本文所揭示的方法沉積的任何連續或非連續結構及材料。舉例而言,「膜」及「薄膜」可以包括2D材料、奈米棒、奈米管、奈米顆粒,或甚至單一、部分或整個分子層,或部分或整個原子層,或原子及/或分子簇。「膜」及「薄膜」可以包含具有小孔的材料或層,但仍然是至少部分連續的。
熟習此項技術者應理解,可作多種多樣的修改而不偏離本發明的精神。所述特點、結構、特徵及前驅物可以依任何合適的方式組合。因此,應清楚地理解,本發明的形式僅為說明性的,並且不希望限制本發明的範圍。希望所有修改及變化屬於本發明的範圍內,如所附申請專利範圍所限定。
100、200、300、400:ALD沉積製程 120、140、160、220、240、260、320、340、360、380、420、440、460、480:步驟 180、280、390、490:重複
圖1是根據一些具體例利用原子層沉積(ALD)製程沉積含矽薄膜的製程流程圖。 圖2是根據一些具體例利用ALD製程沉積含矽薄膜的製程流程圖。 圖3是根據一些具體例利用ALD製程沉積含矽薄膜的製程流程圖。 圖4是根據一些具體例利用ALD製程沉積含矽薄膜的製程流程圖。
100:ALD沉積製程
120、140、160、180:步驟
180:重複

Claims (20)

  1. 一種利用包含至少一個沉積循環的循環氣相沉積製程在反應空間中的基板上形成含矽薄膜的方法,該至少一個沉積循環包含: 使該基板與包含鹵矽烷的氣相矽前驅物接觸; 使該基板與胺反應物接觸;以及 使該基板與醯基鹵反應物或羧酸反應物接觸。
  2. 如請求項1所述的方法,其中該至少一個沉積循環依序包含: 使該基板與該醯基鹵反應物或該羧酸反應物接觸; 使該基板與該胺反應物接觸;以及 使該基板與包含鹵矽烷的該氣相矽前驅物接觸。
  3. 如請求項1所述的方法,其中該至少一個沉積循環依序包含: 使該基板與包含鹵矽烷的該氣相矽前驅物接觸; 使該基板與該胺反應物接觸;以及 使該基板與該醯基鹵反應物或該羧酸反應物接觸。
  4. 如請求項1所述的方法,其中該至少一個沉積循環依序包含: 使該基板與包含鹵矽烷的該氣相矽前驅物接觸; 使該基板與該醯基鹵反應物或該羧酸反應物接觸;以及 使該基板與該胺反應物接觸。
  5. 如請求項1所述的方法,其中該至少一個沉積循環更包含使該基板與第二種胺反應物接觸。
  6. 如請求項1所述的方法,其中該矽反應物具有式Sin X2n+2 ,其中X是鹵素並且n是1到4的整數。
  7. 如請求項1所述的方法,其中該矽反應物包含烷基鹵矽烷或八氯三矽烷。
  8. 如請求項1所述的方法,其中該醯基鹵反應物包含反丁烯二醯氯、丙二醯氯、丁二醯氯、均苯三甲醯氯、戊二醯氯、己二醯二氯或鄰苯二甲醯氯。
  9. 如請求項1所述的方法,其中該羧酸反應物包含1,3二酸、己二酸或對苯二甲酸。
  10. 如請求項1所述的方法,其中該胺反應物包含乙二胺、苯二胺、丁二胺、二胺基己烷、二胺基丙烷或丙三胺。
  11. 如請求項1所述的方法,其中該至少一個沉積循環更包含使該基板與氫反應物接觸。
  12. 如請求項11所述的方法,其中該至少一個沉積循環依序包含: 使該基板與包含鹵矽烷的該氣相矽前驅物接觸; 使該基板與該氫反應物接觸; 使該基板與該醯基鹵反應物或該羧酸反應物接觸;以及 使該基板與該胺反應物接觸。
  13. 如請求項11所述的方法,其中該氫反應物包含NH3 、N2 H2 、任何烷基取代的肼或氮族元素氫化物。
  14. 如請求項1所述的方法,其中該至少一個沉積循環包含使該基板與該矽前驅物、該胺反應物及該醯基鹵反應物在低於300℃的溫度下交替並且依序接觸。
  15. 如請求項14所述的方法,其中該含矽薄膜包含約3 at%至約30 at%的氮及約3 at%至約30 at%的碳。
  16. 如請求項14所述的方法,其中該含矽薄膜在稀HF中具有大於約30奈米/分鐘的濕式蝕刻速率。
  17. 如請求項14所述的方法,其中該含矽薄膜具有小於約5的k值。
  18. 如請求項1所述的方法,其中該至少一個沉積循環包含使該基板與該矽前驅物、該胺反應物及該醯基鹵反應物在高於300℃的溫度下交替並且依序接觸。
  19. 如請求項18所述的方法,其中該含矽薄膜具有超過約4.5的k值。
  20. 如請求項1所述的方法,其中該含矽薄膜包含SiOCN。
TW110101025A 2020-01-17 2021-01-12 在反應空間中的基板上形成含矽薄膜的方法 TW202129055A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062962667P 2020-01-17 2020-01-17
US62/962,667 2020-01-17

Publications (1)

Publication Number Publication Date
TW202129055A true TW202129055A (zh) 2021-08-01

Family

ID=76810260

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110101025A TW202129055A (zh) 2020-01-17 2021-01-12 在反應空間中的基板上形成含矽薄膜的方法

Country Status (4)

Country Link
US (1) US20210225633A1 (zh)
KR (1) KR20210093764A (zh)
CN (1) CN113140444A (zh)
TW (1) TW202129055A (zh)

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3429899A1 (de) * 1983-08-16 1985-03-07 Canon K.K., Tokio/Tokyo Verfahren zur bildung eines abscheidungsfilms
WO1998058936A1 (fr) * 1997-06-20 1998-12-30 Hitachi, Ltd. Nanostructure d'organosilicie et son procede de fabrication
US6391785B1 (en) * 1999-08-24 2002-05-21 Interuniversitair Microelektronica Centrum (Imec) Method for bottomless deposition of barrier layers in integrated circuit metallization schemes
WO2003025243A2 (en) * 2001-09-14 2003-03-27 Asm International N.V. Metal nitride deposition by ald using gettering reactant
US8268409B2 (en) * 2006-10-25 2012-09-18 Asm America, Inc. Plasma-enhanced deposition of metal carbide films
US8501637B2 (en) * 2007-12-21 2013-08-06 Asm International N.V. Silicon dioxide thin films by ALD
JP5518499B2 (ja) * 2009-02-17 2014-06-11 株式会社日立国際電気 半導体デバイスの製造方法および基板処理装置
US20100330425A1 (en) * 2009-06-29 2010-12-30 Applied Materials, Inc. Passivation film for solid electrolyte interface of three dimensional copper containing electrode in energy storage device
JP5809152B2 (ja) * 2009-10-20 2015-11-10 エーエスエム インターナショナル エヌ.ヴェー.Asm International N.V. 誘電体膜をパッシベーションする方法
KR20130135261A (ko) * 2010-11-03 2013-12-10 어플라이드 머티어리얼스, 인코포레이티드 실리콘 카바이드 및 실리콘 카보나이트라이드 막들을 증착하기 위한 장치 및 방법들
US8647993B2 (en) * 2011-04-11 2014-02-11 Novellus Systems, Inc. Methods for UV-assisted conformal film deposition
US9243324B2 (en) * 2012-07-30 2016-01-26 Air Products And Chemicals, Inc. Methods of forming non-oxygen containing silicon-based films
US10023958B2 (en) * 2013-11-22 2018-07-17 Applied Materials, Inc. Atomic layer deposition of films comprising silicon, carbon and nitrogen using halogenated silicon precursors
US9401273B2 (en) * 2013-12-11 2016-07-26 Asm Ip Holding B.V. Atomic layer deposition of silicon carbon nitride based materials
US11124876B2 (en) * 2015-03-30 2021-09-21 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Si-containing film forming precursors and methods of using the same
US9777025B2 (en) * 2015-03-30 2017-10-03 L'Air Liquide, Société pour l'Etude et l'Exploitation des Procédés Georges Claude Si-containing film forming precursors and methods of using the same
JP6415730B2 (ja) * 2015-08-26 2018-10-31 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
US9633838B2 (en) * 2015-12-28 2017-04-25 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Vapor deposition of silicon-containing films using penta-substituted disilanes
US10053775B2 (en) * 2015-12-30 2018-08-21 L'air Liquide, Societé Anonyme Pour L'etude Et L'exploitation Des Procédés Georges Claude Methods of using amino(bromo)silane precursors for ALD/CVD silicon-containing film applications
US9865455B1 (en) * 2016-09-07 2018-01-09 Lam Research Corporation Nitride film formed by plasma-enhanced and thermal atomic layer deposition process
KR102292077B1 (ko) * 2016-12-09 2021-08-23 에이에스엠 아이피 홀딩 비.브이. 열적 원자층 식각 공정
US10186424B2 (en) * 2017-06-14 2019-01-22 Rohm And Haas Electronic Materials Llc Silicon-based hardmask
TWI729285B (zh) * 2017-06-14 2021-06-01 荷蘭商Asm Ip控股公司 金屬薄膜的選擇性沈積
TWI784022B (zh) * 2017-07-31 2022-11-21 中國大陸商南大光電半導體材料有限公司 1,1,1-參(二甲胺基)二矽烷及其製備方法
US10818758B2 (en) * 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10988490B1 (en) * 2019-10-03 2021-04-27 Entegris, Inc. Triiodosilylamine precursor compounds

Also Published As

Publication number Publication date
KR20210093764A (ko) 2021-07-28
CN113140444A (zh) 2021-07-20
US20210225633A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
TWI781889B (zh) 形成氮碳氧化矽薄膜的方法
US10186420B2 (en) Formation of silicon-containing thin films
US11107673B2 (en) Formation of SiOCN thin films
US10818489B2 (en) Atomic layer deposition of silicon carbon nitride based material
TWI810617B (zh) 形成及沈積碳氧化矽薄膜的方法
US20180350587A1 (en) Plasma enhanced deposition processes for controlled formation of metal oxide thin films
JP2024023223A (ja) 低温でのSiNの堆積用Si前駆体
CN112951729A (zh) 用于在衬底上选择性地形成目标膜的方法
US20210225634A1 (en) FORMATION OF SiCN THIN FILMS
TW202129055A (zh) 在反應空間中的基板上形成含矽薄膜的方法
TW202403076A (zh) 有機材料之選擇性沉積
KR20240071325A (ko) 실리콘과 질소를 포함하는 재료의 선택적 증착