TW202127842A - 用於多相和幅度編碼傳輸器的驅動器架構 - Google Patents

用於多相和幅度編碼傳輸器的驅動器架構 Download PDF

Info

Publication number
TW202127842A
TW202127842A TW109126475A TW109126475A TW202127842A TW 202127842 A TW202127842 A TW 202127842A TW 109126475 A TW109126475 A TW 109126475A TW 109126475 A TW109126475 A TW 109126475A TW 202127842 A TW202127842 A TW 202127842A
Authority
TW
Taiwan
Prior art keywords
wire
symbol
wire link
symbols
link
Prior art date
Application number
TW109126475A
Other languages
English (en)
Other versions
TWI766333B (zh
Inventor
李澈圭
達哈瓦 賽帕爾
喬治艾倫 威利
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202127842A publication Critical patent/TW202127842A/zh
Application granted granted Critical
Publication of TWI766333B publication Critical patent/TWI766333B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0272Arrangements for coupling to multiple lines, e.g. for differential transmission
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4282Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4004Coupling between buses
    • G06F13/4022Coupling between buses using switching circuits, e.g. switching matrix, connection or expansion network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4917Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using multilevel codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2003Modulator circuits; Transmitter circuits for continuous phase modulation
    • H04L27/2007Modulator circuits; Transmitter circuits for continuous phase modulation in which the phase change within each symbol period is constrained
    • H04L27/2014Modulator circuits; Transmitter circuits for continuous phase modulation in which the phase change within each symbol period is constrained in which the phase changes in a piecewise linear manner during each symbol period, e.g. minimum shift keying, fast frequency shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/227Demodulator circuits; Receiver circuits using coherent demodulation
    • H04L27/2275Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses the received modulated signals
    • H04L27/2278Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses the received modulated signals using correlation techniques, e.g. for spread spectrum signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/233Demodulator circuits; Receiver circuits using non-coherent demodulation
    • H04L27/2332Demodulator circuits; Receiver circuits using non-coherent demodulation using a non-coherent carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Dc Digital Transmission (AREA)

Abstract

某些所揭示的方法、裝置和系統經由改良的編碼技術和協定來實現在多相通訊鏈路上的改良的通訊。一種資料通訊裝置具有複數個線路驅動器,該複數個線路驅動器被配置為將該裝置耦合到3線鏈路,以及資料編碼器,該資料編碼器被配置為將至少3位元元的二進位資料編碼到由該複數個線路驅動器在3線鏈路上連續傳輸的兩個符號之間的每個轉變中,以使得每一對連續傳輸的符號包括兩個不同的符號。每個符號定義3線鏈路在相關聯的符號傳輸間隔期間的信號傳遞狀態,以使得3線鏈路中的每條導線在相關聯的符號傳輸間隔期間處於與該3線鏈路中的其他導線不同的信號傳遞狀態。可以使用3相和脈衝幅度調制的組合來對資料進行編碼。

Description

用於多相和幅度編碼傳輸器的驅動器架構
本專利申請案主張於2020年8月4日向美國專利局提出申請的非臨時專利申請案第16/984,896,以及於2019年8月19日向美國專利局提出申請的臨時專利申請案第62/888,995的優先權和權益。
大體而言,本案內容係關於高速資料通訊介面,並且更具體而言,係關於改良多線多相資料通訊鏈路上的資料輸送量。
行動設備(例如蜂巢式電話)的製造商可以從各種源(包括不同的製造商)獲得行動設備的元件。例如,蜂巢式電話中的應用處理器可以從第一製造商獲得,而成像設備或相機可以從第二製造商獲得並且顯示器可以從第三製造商獲得。應用處理器、成像設備、顯示器控制器,或其他類型的設備可以使用基於標準的或專有實體介面來互連。在一個實例中,成像設備可以使用由行動行業處理器介面(MIPI)聯盟定義的相機序列介面(CSI)來連接。在另一實例中,顯示器可以包括符合由行動行業處理器介面(MIPI)聯盟指定的顯示器序列介面(DSI)標準的介面。
由MIPI聯盟定義的多相三線(C-PHY)介面使用導線三元組在各設備之間傳輸資訊。該三條導線中的每一條導線在C-PHY介面上傳輸符號期間可以處於三個信號傳遞狀態之一。將時鐘資訊編碼到在C-PHY介面上傳輸的符號序列中,並且接收器從連續符號之間的轉變來產生時鐘信號。C-PHY介面的最大速度以及時鐘和資料恢復(CDR)電路恢復時鐘資訊的能力可以受限於與在通訊鏈路的不同導線上傳輸的信號的轉變相關的最大時間變化,該最大時間變化在針對增加的資料輸送量的需求不斷增長時會限制由C-PHY介面提供的資料輸送量。
本文所揭示的某些實施例提供了經由改良的編碼技術和協定來實現在多線及/或多相通訊鏈路上的改良的通訊的系統、方法和裝置。在一些實施例中,經由使用3相編碼和脈衝振幅調制(PAM)的組合對二進位資料進行編碼來增加每個符號轉變所編碼的位元數,從而改良資料輸送量。可以在諸如具有多個積體電路(IC)元件的行動終端之類的裝置中部署通訊鏈路。
在本案內容的各個態樣中,一種資料通訊裝置具有:複數個線路驅動器,其被配置為:將該裝置耦合到3線鏈路;及資料編碼器,其被配置為:將至少3位元的二進位資料編碼到由該複數個線路驅動器在該3線鏈路上連續傳輸的兩個符號之間的每個轉變中,以使得每一對連續傳輸的符號包括兩個不同的符號。每個符號定義該3線鏈路在相關聯的符號傳輸間隔期間的信號傳遞狀態,以使得該3線鏈路中的每條導線在該相關聯的符號傳輸間隔期間處於與該3線鏈路中的其他導線不同的信號傳遞狀態。
在本案內容的各個態樣中,一種用於資料通訊的方法包括以下步驟:在3線鏈路上傳輸複數個符號;及將至少3位元的二進位資料編碼器到在該3線鏈路上連續傳輸的兩個符號之間的每個轉變中,其中每一對連續傳輸的符號包括兩個不同的符號。每個符號定義該3線鏈路在相關聯的符號傳輸間隔期間的信號傳遞狀態,以使得該3線鏈路中的每條導線在該相關聯的符號傳輸間隔期間處於與該3線鏈路中的其他導線不同的信號傳遞狀態。
在某些態樣中,揭示一種儲存電腦可執行代碼的非暫時性處理器可讀取媒體。該處理器可讀取媒體保持被配置為使得電腦進行以下操作的資料和指令:在3線鏈路上傳輸複數個符號;及將至少3位元的二進位資料編碼到在該3線鏈路上連續傳輸的兩個符號之間的每個轉變中。每一對連續傳輸的符號可以包括兩個不同的符號,其中每個符號定義該3線鏈路在相關聯的符號傳輸間隔期間的信號傳遞狀態,以使得該3線鏈路中的每條導線在該相關聯的符號傳輸間隔期間處於與該3線鏈路中的其他導線不同的信號傳遞狀態。
在本案內容的各個態樣中,一種資料通訊裝置包括:用於在3線鏈路上傳輸複數個符號的構件;及用於將至少3位元的二進位資料編碼到在該3線鏈路上連續傳輸的兩個符號之間的每個轉變中的構件。每一對連續傳輸的符號可以包括兩個不同的符號。每個符號可以定義該3線鏈路在相關聯的符號傳輸間隔期間的信號傳遞狀態,以使得該3線鏈路中的每條導線在該相關聯的符號傳輸間隔期間處於與該3線鏈路中的其他導線不同的信號傳遞狀態。
在某些態樣中,在該3線鏈路上傳輸的至少一個符號定義針對該3線鏈路中的每條導線的非零電流,其中非零電流的總和為零。該3線鏈路的導線的信號傳遞狀態可以包括七個電壓位準,並且在該3線鏈路上傳輸的至少一個符號針對該3線鏈路中的每條導線定義高於或低於該七個電壓位準的中間電壓位準的電壓位準。
在某些態樣中,該資料編碼器亦被配置為:使用3相編碼和PAM的組合來對二進位資料進行編碼。可以在3線鏈路2420上傳輸第一符號。在一個實例中,當該資料編碼器被配置用於第一編碼方案時,該資料編碼器從12個符號的集合中選擇該第一符號。在另一實例中,當該資料編碼器被配置用第二編碼方案時,該資料編碼器從18個符號的集合中選擇該第一符號。在另一實例中,當該資料編碼器被配置用第一編碼方案時,該資料編碼器從42個符號的集合中選擇該第一符號。裝置2700可以在3線鏈路2420上傳輸第二符號。該資料編碼器亦可以被配置為從排除該第一符號的可用符號集合中選擇該第二符號。
在某些態樣中,該裝置具有導線狀態編碼器,其被配置為:從該資料編碼器接收符號序列,並向該複數個線路驅動器提供控制信號,該控制信號使得該複數個線路驅動器之每一者線路驅動器在針對第一符號提供的符號傳輸間隔期間將該3線鏈路中的一條導線驅動到由該符號序列中的第一符號定義的信號傳遞狀態。
在某些態樣中,該複數個線路驅動器包括三個電壓驅動器,並且該導線狀態編碼器亦可以被配置為:配置每個電壓驅動器中的複數個開關,以使得該3線鏈路中的每條導線在每個符號傳輸間隔期間經由該三個電壓驅動器中的一個電壓驅動器中的兩個或更多個電阻器耦合到一或多個電壓位準。可以在每個符號傳輸間隔中配置每個電壓驅動器中的該複數個開關,以使得耦合到該3線鏈路中的對應導線的電阻器組合與該3線鏈路的該對應導線的特徵阻抗相匹配。
在某些態樣中,該複數個線路驅動器包括三個電流驅動器,並且該導線狀態編碼器亦被配置為:配置複數個開關,其使得該三個電流驅動器之每一者電流驅動器在該3線鏈路的對應導線中提供電流,該電流具有由在當前符號傳輸間隔中傳輸的符號定義的幅度。該裝置可以包括耦合到該3線鏈路的電阻器,每個電阻器與該3線鏈路的特徵阻抗相匹配。
以下結合附圖闡述的具體實施方式意欲作為各種配置的描述,並非意欲表示可以實踐本文所描述的概念的唯一配置。本具體實施方式包括具體細節以提供對各種概念的透徹理解。然而,對於熟習此項技術者將顯而易見的是,可以在沒有該等具體細節的情況下實踐該等概念。在一些例子中,以方塊圖形式圖示公知的結構和元件以避免混淆該等概念。
如本案中所使用的,術語「元件」、「模組」、「系統」等意欲包括電腦相關實體,例如但不限於硬體、韌體、硬體和軟體的組合、軟體,或執行的軟體。例如,元件可以是但不限於在處理器上執行的過程、處理器、物件、可執行件、執行的執行緒、程式及/或電腦。作為說明,在計算設備上執行的應用程式和該計算設備兩者皆可以是元件。一或多個元件可以常駐在過程及/或執行的執行緒內,並且元件可以集中在一個電腦上及/或分佈在兩個或更多個電腦之間。另外,該等元件可以從其上儲存有各種資料結構的各種處理器可讀取媒體執行。元件可以經由本端及/或遠端過程進行通訊,例如根據具有一或多個資料封包的信號(例如,來自一個元件的資料與在本端系統、分散式系統中的另一元件及/或經由該信號跨網路(例如網際網路)與其他系統中的另一元件進行互動)來通訊。
此外,術語「或」意欲表示包含性的「或」而非排他性的「或」。亦即,除非另外指定,或者從上下文能清楚得知,否則短語「X採用A或者B」意欲表示任何自然的包括性置換。亦即,以下實例中的任何例子滿足短語「X採用A或者B」:X採用A;X採用B;或者X採用A和B二者。另外,除非另外指定或從上下文能清楚得知是單數形式,否則如本案和所附申請專利範圍中所使用的冠詞「一」和「一個」通常應當解釋為表示「一或多個」。 概覽
本發明的某些態樣可以應用於改良由MIPI聯盟指定的C-PHY介面,通常部署該C-PHY介面以連接作為行動裝置(例如電話、行動計算設備、家用電器、車載電子設備、航空電子系統等等)的子元件的電子設備。行動裝置的實例包括蜂巢式電話、智慧型電話、通信期啟動協定(SIP)電話、膝上型設備、筆記本、小筆電、智慧型電腦、個人數位助理(PDA)、衛星無線電裝置、全球定位系統(GPS)設備、多媒體設備、視訊設備、數位音訊播放機(例如,MP3播放機)、相機、遊戲控制台、可穿戴計算設備(例如,智慧手錶、健康或健身追蹤器等等)、家用電器、無人機、感測器、自動售貨機,或任何其他類似功能設備。
本文所揭示的某些態樣使得設備能夠在三線通訊鏈路上以比使用習知C-PHY符號速率可能的資料速率更高的資料速率來進行通訊。在本案內容的各個態樣中,資料通訊裝置具有複數個線路驅動器,該複數個線路驅動器被配置為將該裝置耦合到3線鏈路;及資料編碼器,該資料編碼器被配置為:將至少3位元的二進位資料編碼到由該複數個線路驅動器在3線鏈路上連續傳輸的兩個符號之間的每個轉變中,以使得每一對連續傳輸的符號包括兩個不同的符號。每個符號定義3線鏈路在相關聯的符號傳輸間隔期間的信號傳遞狀態,以使得3線鏈路中的每條導線在相關聯的符號傳輸間隔期間處於與該3線鏈路中的其他導線不同的信號傳遞狀態。可以使用3相和PAM的組合來對資料進行編碼。該裝置可以包括導線狀態編碼器,其被配置為:從資料編碼器接收符號序列,並向該複數個線路驅動器提供控制信號。控制信號使得該複數個線路驅動器之每一者線路驅動器在針對符號序列之每一者符號提供的符號傳輸間隔期間將3線鏈路中的一條導線驅動到由每個符號定義的信號傳遞狀態。導線狀態編碼器可以被配置用於或者可配置用於PAM-2、PAM-3、PAM-4、PAM-8和其他PAM實現方式。
C-PHY介面是能夠在頻寬受限通道上提供高輸送量的高速序列介面。可以部署C-PHY介面以將應用處理器連接到周邊設備,包括顯示器和相機。C-PHY介面將資料編碼到在一組三條導線上在三相信號中傳輸的符號中,該組三條導線可以被稱為三元組(trio),或被稱為導線三元組。在三元組中的每條導線上在不同相位中傳輸三相信號。每個三線三元組提供通訊鏈路上的通道。符號間隔可以被定為其中單個符號控制三元組的信號傳遞狀態的時間間隔。在每個符號間隔中,一條導線「未被驅動」或被驅動到中間位準電壓狀態,而該三條導線中的剩餘兩條導線被差分驅動,以使得該兩條差分驅動導線中的一條導線採用第一電壓位準,並且另一差分驅動導線採用與第一電壓位準不同的第二電壓位準。在一些實現方式中,第三導線未被驅動或是浮動的,以使得該第三導線由於端接動作而採用處於或接近第一和第二電壓位準之間的中間位準電壓的第三電壓位準。在一些實現方式中,第三導線被驅動朝向中間位準電壓。在一個實例中,在未被驅動電壓是0 V的情況下,被驅動電壓位準可以是+V和–V。在另一實例中,在未被驅動電壓是+V/2的情況下,被驅動電壓位準可以是+V和0 V。在每一連續傳輸的符號對中傳輸不同的符號,並且在不同符號間隔中可以差分地驅動不同的導線對。
圖1圖示了可以採用C-PHY 3相協定以實現一或多條通訊鏈路的裝置100的實例。裝置100可以包括SoC,或具有多個電路或設備104、106及/或108的處理電路102,該等電路或設備可以在一或多個ASIC中實現。在一個實例中,裝置100可以操作為通訊設備,並且處理電路102可以包括在ASIC 104中提供的處理設備、一或多個周邊設備106,以及使得該裝置能夠經由天線124與無線電存取網路、核心存取網路、網際網路及/或另一網路進行通訊的收發機108。
ASIC 104可以具有一或多個處理器112、一或多個數據機110、板載記憶體114、匯流排介面電路116及/或其他邏輯電路或功能單元。處理電路102可以由可以提供應用程式設計介面(API)層的作業系統來控制,該API層使得該一或多個處理器112能夠執行常駐在板載記憶體114或在處理電路102上提供的其他處理器可讀取儲存122中的軟體模組。軟體模組可以包括儲存在板載記憶體114或處理器可讀取儲存122中的指令和資料。ASIC 104可以存取其板載記憶體114、處理器可讀取儲存122,及/或處理電路102外部的儲存。板載記憶體114、處理器可讀取儲存122可以包括唯讀記憶體(ROM)或隨機存取記憶體(RAM)、電子可抹除可程式設計ROM(EEPROM)、快閃記憶卡,或可以用於處理系統和計算平臺中的任何記憶體設備。處理電路102可以包括、實現或能夠存取可以保持用於配置和操作裝置100及/或處理電路102的操作參數和其他資訊的本端資料庫或其他參數儲存。本端資料庫可以使用暫存器、資料庫模組、快閃記憶體、磁性媒體、EEPROM、軟碟或硬碟等等來實現。處理電路102亦可以操作地耦合到外部設備,例如天線124、顯示器126、操作者控制裝置,例如開關或按鈕128、130或外部鍵盤132,以及其他元件。使用者介面模組可以被配置為:經由專用通訊鏈路或經由一或多個串列資料互連來對顯示器126、外部鍵盤132等等進行操作。
處理電路102可以提供使得某些設備104、106及/或108能夠通訊的一或多條匯流排118a、118b、120。在一個實例中,ASIC 104可以包括匯流排介面電路116,其包括電路、計數器、計時器、控制邏輯和其他可配置電路或模組的組合。在一個實例中,匯流排介面電路116可以被配置為根據通訊規範或協定來操作。處理電路102可以包括或控制對裝置100的操作進行配置和管理的功率管理功能。
圖2圖示包括複數個IC元件202和230的裝置200的某些態樣,該等IC元件202和230能夠經由通訊鏈路220交換資料和控制資訊。通訊鏈路220可以用於連接位於彼此緊鄰,或實體地位於裝置200的不同部分的一對IC元件202和230。在一個實例中,可以在承載IC元件202和230的晶片載體、基板或電路板上提供通訊鏈路220。在另一實例中,第一IC元件202可以位於翻蓋電話的鍵盤部分中,而第二IC元件230可以位於翻蓋電話的顯示部分中。在另一實例中,通訊鏈路220的一部分可以包括電纜或光學連接。
通訊鏈路220可以包括多條通道222、224和226。一或多條通道226可以是雙向的,並且可以在半雙工或全雙工模式中操作。一或多條通道222和224可以是單向的。通訊鏈路220可以是非對稱的,從而在一個方向上提供更高的頻寬。在本文所描述的一個實例中,第一通道222可以被稱為前向通道222,而第二通道224可以被稱為反向通道224。第一IC元件202可以被標示為主機系統或傳輸器,而第二IC元件230可以被標示為客戶端系統或接收器,即使該兩個IC元件202和230皆被配置為在通道222上進行傳輸和接收。在一個實例中,前向通道222在從第一IC元件202向第二IC元件230傳送資料時可以在較高資料速率下操作,而反向通道224在從第二IC元件230向第一IC元件202傳送資料時可以在較低資料速率下操作。
IC元件202和230均可以包括處理器206、236或其他處理及/或計算電路或設備。在一個實例中,第一IC元件202可以執行裝置200的核心功能,包括經由無線收發機204和天線214建立和維持無線通訊,而第二IC元件230可以支援使用者介面,該使用者介面管理或操作顯示器控制器232,並且可以使用相機控制器234來控制相機或視訊輸入設備的操作。由IC元件202和230中的一或多個IC元件支援的其他特徵可以包括鍵盤、語音辨識元件,以及其他輸入或輸出設備。顯示器控制器232可以包括支援顯示器(例如液晶顯示器(LCD)面板、觸控式螢幕顯示器、指示器等等)的電路和軟體驅動器。儲存媒體208和238可以包括被調適為維持由IC元件202和230的各個處理器206和236及/或其他元件使用的指令和資料的暫時性及/或非暫時性儲存設備。可以經由一或多條內部匯流排212和242及/或通訊鏈路220的通道222、224及/或226來促進每個處理器206、236與其對應儲存媒體208和238以及其他模組和電路之間的通訊。
反向通道224可以以與前向通道222相同的方式來操作。前向通道222和反向通道224可以以相當的速度或以不同的速度來進行傳輸,其中速度可以被表達為資料傳輸速率及/或時脈速率。取決於應用,前向和反向資料速率可以基本上相同或者可以在幅度量級上不同。在一些應用中,單個雙向通道226可以支援第一IC元件202與第二IC元件230之間的通訊。前向通道222及/或反向通道224可以被配置為:例如在前向通道222和反向通道224共用相同的實體連接並以半雙工方式操作時在雙向模式中操作。在一個實例中,可以操作通訊鏈路220以根據行業或其他標準在第一IC元件202與第二IC元件230之間傳送控制、命令和其他資訊。
圖2的通訊鏈路220可以根據C-PHY的MIPI聯盟規範來實現並且可以提供包括複數條信號線(被標記為M 線)的有線匯流排。M 線可以被配置為:在高速數位介面(例如行動顯示數位介面(MDDI))中攜帶N 相編碼資料。M 線可以促進將N 相極性編碼到通道222、224和226中的一或多個通道上。實體層驅動器210和240可以被配置或調適為:產生N 相極性編碼資料以供在通訊鏈路220上傳輸。N 相極性編碼的使用提供高速度資料傳輸並且可以消耗其他介面的功率的一半或更少,此情形是因為在N 相極性編碼資料連結中更少的驅動器是活躍的。
實體層驅動器210和240在被配置用於N 相極性編碼時通常可以在通訊鏈路220上的每個轉變對多個位元進行編碼。在一個實例中,3相編碼和極性編碼的組合可以用於支援寬視訊圖形陣列(WVGA)80訊框每秒的LCD驅動器IC而無需訊框緩衝器,從而傳遞810 Mbps的圖元資料以供顯示器刷新。
圖3是圖示可以用於實現圖2中所圖示的通訊鏈路220的某些態樣的3線3相極性編碼器的圖300。3線3相編碼的實例僅僅是為了簡化對本發明的某些態樣的描述而選擇的。針對3線3相編碼器所揭示的原理和技術可以適用於MN 相極性編碼器的其他配置。
針對3線3相極性編碼串列匯流排中的3條導線中的每條導線所定義的信號傳遞狀態可以包括未被驅動或中間位準狀態、正驅動狀態,以及負驅動狀態。可以經由在信號線318a、318b及/或318c中的兩條信號線之間提供電壓差分,及/或經由驅動電流經過信號線318a、318b及/或318c中的串聯連接的兩條信號線以使得電流在該兩條信號線318a、318b及/或318c中在不同方向上流動來獲得正驅動狀態和負驅動狀態。可以經由將信號線318a、318b或318c的驅動器的輸出置於高阻抗模式來實現未被驅動狀態。在一些例子中,可以經由被動地或主動地使得信號線318a、318b或318c達到位於在被驅動信號線318a、318b及/或318c上提供的正電壓位準和負電壓位準之間基本上一半的電壓位準來在信號線318a、318b或318c上獲得中間位準狀態。通常,沒有顯著的電流流經未驅動或中間位準信號線318a、318b或318c。針對3線3相極性編碼方案所定義的信號傳遞狀態可以使用該三個電壓或電流狀態(+1、-1、和0)來標示。
3線3相極性編碼器可以採用線路驅動器308來控制信號線318a、318b和318c的信號傳遞狀態。驅動器308可以實現為單元位元準電流模式或電壓模式驅動器。在一個實例中,每個驅動器308可以接收兩個或更多個信號316a、316b和316c的集合,該等信號的集合決定對應信號線318a、318b和318c的輸出狀態。在一個實例中,兩個信號316a、316b和316c的集合可以包括上拉信號(PU信號)和下拉信號(PD信號),該PU信號和PD信號在為高時啟用將信號線318a、318b和318c分別驅動朝向較高位準或較低位元準電壓的上拉電路和下拉電路。在該實例中,當PU信號和PD信號兩者皆為低時,信號線318a、318b和318c可以端接至中間位準電壓。
對於在MN 相極性編碼方案之每一者所傳輸符號間隔,至少一條信號線318a、318b或318c處於中間位準/未被驅動(0)電壓或電流狀態,而正驅動(+1電壓或電流狀態)信號線318a、318b或318c的數量等於負驅動(-1電壓或電流狀態)信號線318a、318b或318c的數量,以使得流向接收器的電流總和總是為零。對於每個符號,至少一條信號線318a、318b或318c的信號傳遞狀態從前一傳輸間隔中所傳輸的導線狀態改變。
在操作中,映射器302可接收16位元資料310並將該16位元資料310映射到7個符號312。在3線實例中,7個符號312之每一者符號針對一個符號間隔定義信號線318a、318b和318c的狀態。該7個符號312可以使用並聯-串聯轉換器304來序列化,該並聯-串聯轉換器304針對每條信號線318a、318b和318c提供定時的符號序列314。該符號序列314通常使用傳輸時鐘來進行定時。3線3相編碼器306接收由映射器產生的7個符號的序列314,一次接收一個符號,並針對每個符號間隔計算每條信號線318a、318b和318c的狀態。3線3相編碼器306基於當前輸入符號314和信號線318a、318b和318c的先前狀態來選擇信號線318a、318b和318c的狀態。
使用MN 相編碼允許多個位元被編碼到複數個符號中,其中每符號的位元不是整數。在3線通訊鏈路的實例中,存在可以同時被驅動的2條導線的3種可能組合,並且被驅動的導線對上存在2種可能的極性組合,從而產生6個可能狀態。由於每個轉變從當前狀態發生,因此在每個轉變時有6個狀態中的5個狀態可用。每個轉變時需要改變至少一條導線的狀態。在5個狀態的情況下,每個符號可以對log2 (5)
Figure 02_image001
2.32位元進行編碼。因此,映射器可以接受16位元的字並將其轉換為7個符號,是因為每個符號攜帶2.32位元的7個符號可以對16.24位元進行編碼。換言之,對五個狀態進行編碼的七個符號的組合具有57 (78,125)種置換。因此,可以使用該7個符號來對16位元的216 (65,536)種置換進行編碼。
圖4包括用於使用三相調制資料編碼方案來編碼的信號的時序圖400的實例,該時序圖400基於環形狀態圖450。資訊可以被編碼到信號傳遞狀態的序列中,其中例如導線或連接線處於由環形狀態圖450所定義的三個相位狀態S 1S 2S 3 中的一種相位狀態。每個狀態可以與其他狀態分開120°相移。在一個實例中,可以將資料編碼到在導線或連接線上的相位狀態的旋轉方向中。信號的相位狀態可以在順時針方向452和452’或者逆時針方向454和454’上旋轉。例如,在順時針方向452和452’上,相位狀態可以在包括以下一或多個轉變的序列中前進:從S 1S 2 、從S 2S 3 ,以及從S 3S 1 。在逆時針方向454和454’上,相位狀態可以在包括以下一或多個轉變的序列中前進:從S 1S 3 、從S 3S 2 ,以及從S 2S 1 。該三條信號線318a、318b和318c攜帶相同信號的不同版本,其中各版本可以相對於彼此相移120°。每個信號傳遞狀態可以被表示為導線或連接線上的不同電壓位準及/或流經導線或連接線的電流方向。在3線系統中的信號傳遞狀態序列之每一者狀態期間,每條信號線318a、318b和318b處於與其他導線不同的信號傳遞狀態。當在3相編碼系統中使用大於3條信號線318a、318b和318c時,兩條或更多條信號線318a、318b及/或318c可以在每個信號傳遞間隔處於相同的信號傳遞狀態,儘管在每個信號傳遞間隔中每個狀態存在於至少一條信號線318a、318b及/或318c上。
可以將資訊編碼到在每個相位轉變410處的旋轉方向中,並且3相信號可以針對每個信號傳遞狀態改變方向。可以經由考慮在相位轉變之前和之後何者信號線318a、318b及/或318c處於「0」狀態來決定旋轉方向,是因為未被驅動的信號線318a、318b及/或318c在旋轉三相信號之每一者信號傳遞狀態處改變而不管旋轉方向。
編碼方案亦可以將資訊編碼到被主動驅動的兩條信號線318a、318b及/或318c的極性408中。在3線實現方式中的任何時間,利用在相反方向上的電流及/或利用電壓差分來驅動信號線318a、318b、318c中的恰好兩條信號線。在一種實現方式中,可以使用兩位元值412來對資料進行編碼,其中一個位元被編碼到相位轉變410的方向中並且第二位元被編碼到當前狀態的極性408中。
時序圖400圖示使用相位旋轉方向和極性兩者的資料編碼。曲線402、404和406係關於分別針對多相狀態在三條信號線318a、318b和318c上攜帶的信號。初始地,相位轉變410在順時針方向上並且最高有效位元被設置為二進位「1」,直至相位轉變410的旋轉在時間414處切換為逆時針方向,如由最高有效位元的二進位「0」所表示的。最低有效位元反映信號在每個狀態中的極性408。
根據本文所揭示的某些態樣,一位元資料可以被編碼到3線3相編碼系統的旋轉或相位改變中,並且另外的位元可以被編碼到兩條被驅動導線的極性中。經由允許從當前狀態轉變到任何可能狀態可以將另外的資訊編碼到3線3相編碼系統的每個轉變中。給定3個旋轉相位和每個相位兩個極性,在3線3相編碼系統中有6個狀態可用。因此,從任何當前狀態有5個狀態可用,並且每個符號(轉變)可以對log2 (5)
Figure 02_image001
2.32位元進行編碼,此舉允許映射器302接受16位元的字並將其編碼到7個符號中。
圖5是圖示3線3相解碼器500的某些態樣的圖。差分接收器502a、502b、502c和導線狀態解碼器504被配置為:提供對三條傳輸線(例如,圖3中所圖示的信號線318a、318b和318c)相對於彼此的狀態的數位表示,並偵測該三條傳輸線的狀態相比於在先前符號週期中傳輸的狀態的變化。由串聯-並聯轉換器506組裝七個連續狀態以獲得7個符號的集合以由解映射器508處理。解映射器508產生可以被緩存在先進先出(FIFO)暫存器510中的16位元資料518,該FIFO暫存器510提供解碼器500的輸出520。
導線狀態解碼器504可以從差分信號522提取出符號514的序列,其中差分信號522是從由差分接收器502a、502b、502c從信號線318a、318b和318c接收到的相位編碼信號推導出的。符號514被編碼為相位旋轉和極性的組合,如本文所揭示的。導線狀態解碼器可以包括提取時鐘526的CDR電路524,該時鐘526可以用於從信號線318a、318b和318c可靠地擷取導線狀態。在每個符號邊界處在信號線318a、318b和318c中的至少一條信號線上出現轉變,並且CDR電路524可以被配置為:基於一轉變或多個轉變的出現而產生時鐘526。可以使時鐘的邊沿延遲以允許使所有信號線318a、318b和318c穩定的時間並從而確保當前導線狀態被擷取以用於解碼目的。
圖6是圖示三條導線的可能信號傳遞狀態602、604、606、612、614、616的狀態圖600,其中從每個狀態圖示可能的轉變。在3線3相通訊鏈路的實例中,6個狀態和30個狀態轉變可用。狀態圖600中的可能狀態602、604、606、612、614和616包括在圖4的環形狀態圖450中圖示的狀態並在該等狀態上擴展。如狀態元素628的實例中所圖示的,狀態圖600之每一者狀態602、604、606、612、614和616定義了信號線318a、318b、318c(分別被標記為A、B和C)的電壓信號傳遞狀態。例如,在狀態602(+x)中,導線A=+1,導線B=-1,並且導線C=0,從而產生以下輸出:差分接收器602a(A-B)=+2,差分接收器602b(B-C)=-1,並且差分接收器602c(C-A)=-1。由接收器中的相位變化偵測電路作出的轉變決定基於由差分接收器502a、502b、502c產生的5個可能位準,其包括-2、-1、0、+1和+2電壓狀態。
狀態圖600中的轉變可以由翻轉、旋轉、極性(Flip, Rotate, Polarity)符號(例如,FRP符號626)表示,該符號具有以下集合中的三位元元二進位值中的一個值:{000, 001, 010, 011, 100}。FRP符號626中的旋轉位元622指示與至下一狀態的轉變相關聯的相位旋轉方向。當至下一狀態的轉變涉及極性變化時,FRP符號626中的極性位元624被設置為二進位1。當FRP符號626的翻轉位元620被設置為二進位1時,旋轉和極性值可以忽略及/或置零。翻轉表示僅涉及極性變化的狀態轉變。因此,當翻轉發生時3相信號的相位不被視為旋轉,並且當翻轉發生時極性位元是冗餘的。FRP符號626對應於每個轉變的導線狀態變化。狀態圖600可以被分成包括正極性狀態602、606、606的內圈608以及涵蓋負極性狀態612、614、616的外圈618。
圖7和圖8圖示可以根據本文所揭示的某些態樣來調適的C-PHY介面的操作的某些態樣。圖7圖示在C-PHY 3相介面中的接收器中提供的匯流排介面電路700。每個差分接收器702、704和706被配置為:觀察其輸入端存在的電壓差,並在存在差分電壓的情況下產生與電壓帶相對應的一位元數位差分信號710、712、714。每個差分接收器702、704、706接收三條信號線318a、318b、318c中的兩條信號線作為輸入。在所圖示的實例中,第一差分接收器702比較信號線318a和318b的狀態,第二差分接收器704比較信號線318b和318c的狀態,並且第三差分接收器706比較信號線318a和318c的狀態。每個差分接收器702、704、706輸出指示三元組中信號線318a、318b及/或318c的各個輸入對之間的減法差的差分信號710、712、714。將差分信號710、712、714提供給解碼器,該解碼器例如可以被配置為根據圖6的狀態圖600來操作。在與圖6的狀態圖600相對應的3線3相介面的實例中,解碼器708可以將每個差分信號710、712、714與零伏基準進行比較,以決定針對表示三元組的信號傳遞狀態的三位元符號之每一者位元的二進位值。解碼器708可以產生符號序列,可以對該符號序列進行解碼以提取出經解碼資料作為解碼器708的輸出716。
圖8圖示在匯流排介面電路700的操作期間預計的信號傳遞的某些態樣。第一時序圖800圖示針對C-PHY介面中的三條信號線318a、318b、318c中的每條信號線定義的三個信號傳遞狀態802、804、806。可以圍繞在信號線318a、318b、318c上觀察到的電壓位準,或者如第一時序圖800中所圖示的圍繞流經信號線318a、318b、318c的電流來定義每個信號傳遞狀態802、804、806。電流的安培數在每個狀態中被表示為 
Figure 02_image002
I安培或0安培。在第一信號傳遞狀態802中,+I安培的電流在C-PHY匯流排的導線中流動,在第二信號傳遞狀態804中,0安培的電流在導線中流動,並且在第三信號傳遞狀態806中,-I安培的電流在導線中流動。I的值可以由應用要求或目標及/或設備規範來決定。在一個實例中,可以選擇I的值以在耦合到C-PHY匯流排的接收器處產生電壓位準或電壓範圍。
提供表810作為符號至在三條信號線318a、318b、318c(被標識為導線A、B和C)中的電流的映射的實例。所圖示的符號集合{+x, -x, +y, -y, +z, -z}之每一者符號可以對應於圖6中所圖示的狀態602、604、606、612、614和616。轉變間隔808表示連續符號之間的持續時間,在該持續時間期間預期可以完成信號傳遞狀態802、804、806之間的轉變。從每個信號傳遞狀態802、804、806圖示兩個轉變,並且某一符號轉變可能不產生三條信號線318a、318b、318c中的一條信號線的信號傳遞狀態變化。
第二時序圖820圖示由差分接收器702、704、706產生的差分信號710、712、714的四個信號傳遞狀態822、824、826、828。每個信號傳遞狀態822、824、826、828可以定義在差分信號710、712、714中觀察到的額定電壓位準或電壓範圍。每個狀態的電壓位準可以被表達為單位電壓(Vstate (V狀態 ))的倍數。第一信號傳遞狀態822由+2VState 的額定電壓位準表示,第二信號傳遞狀態824由+1VState 的額定電壓位準表示,第三信號傳遞狀態826由-1VState 的額定電壓位準表示,並且第四信號傳遞狀態822由-2VState 的額定電壓位準表示。VState 的額定值可以由應用要求或目標及/或設備規範來決定。
提供表840作為符號至針對圖6中所圖示的符號集合{+x, -x, +y, -y, +z, -z}所產生的三個差分信號710、712、714(被標識為DiffA-B 、DiffB-C 、DiffC-A )中的信號傳遞狀態822、824、826、828的映射的實例。轉變間隔830表示連續符號之間的持續時間,在該持續時間期間可以預計信號傳遞狀態822、824、826、828是不確定的。從每個信號傳遞狀態802、804、806圖示至不同信號傳遞狀態802、804、806的三個可能轉變。某一符號轉變可能不產生兩個中間信號傳遞狀態824、826的變化。
圖9圖示可以在C-PHY介面中採用的線路驅動器900、940的實例。電壓模式線路驅動器900採用開關910、912、914a、914b來選擇C-PHY匯流排的導線916的電壓狀態。在一個實例中,開關910、912、914a、914b可以由圖3的3線3相編碼器306來控制。表920圖示開關狀態組合,其提供了針對根據C-PHY協定的導線916定義的三個信號傳遞狀態。當表920中指示二進位1時,開關910、912、914a、914b封閉或啟用,並且當表920中指示二進位0時,開關910、912、914a、914b斷開或停用(deactivated)。
在電壓模式線路驅動器900的所圖示實例中,當導線916經由封閉第一開關910經過第一電阻器902耦合到高電壓位準918時,達到高信號傳遞狀態922。當導線916經由封閉第二開關912經過第二電阻器904耦合到系統接地或另一低電壓位準時,達到低信號傳遞狀態924。當導線916經由封閉第一中間位準開關914a經過第三電阻器906耦合到高電壓位準918,同時第二中間位準開關914b被封閉並將導線916經由第四電阻器908耦合到系統接地或另一低電壓位準時,達到中間位準信號傳遞狀態926。第一電阻器902和第二電阻器904之每一者電阻器具有與關聯於導線916的特徵阻抗(Z 0 )相匹配的電阻值(R )。當僅封閉第一開關910或僅封閉第二開關912時,電壓模式線路驅動器900呈現與Z 0 相匹配的阻抗。第三電阻器902和第四電阻器904之每一者電阻器具有電阻值(2R ),該電阻值在中間位準開關914a和914b兩者皆封閉時使得電壓模式線路驅動器900呈現與Z 0 相匹配的阻抗。
電流模式線路驅動器940採用開關946、948,開關946、948可以被操作為選擇與針對C-PHY匯流排的導線950所定義的每個信號傳遞狀態相對應的電流。在一個實例中,開關946、948可以由圖3的3線3相編碼器306來控制。表960圖示開關狀態組合,其提供了針對根據C-PHY協定的導線950定義的三個信號傳遞狀態。當表960中指示二進位1時,開關946、948封閉或啟用,並且當表960中指示二進位0時,開關946、948斷開或停用。
在電流模式線路驅動器940的所圖示實例中,當導線950經由封閉第一開關946耦合到第一電流源942從而得到流向導線950的電流時,達到高信號傳遞狀態962。在一些例子中,電流模式線路驅動器940具有與關聯於導線950的特徵阻抗(Z 0 )相匹配的電阻值(R )的端接電阻器952。端接電阻器952在一端耦合到中點電壓,並且流經端接電阻器952的電流產生高電壓狀態。當導線950經由封閉第二開關948耦合到第二電流源944從而得到從導線950流出的電流時,達到低信號傳遞狀態964。當電流流經端接電阻器952時,在導線950上產生低電壓狀態。第一電流源942和第二電流源944通常產生相同額定幅度的電流,並且當開關946、948兩者皆封閉從而使來自電流源942和944的電流取消而沒有電流流經導線950時,達到中間位準信號傳遞狀態966。
經由增加用於控制C-PHY匯流排上的傳輸的時鐘頻率可以在某種程度上滿足針對C-PHY鏈路上增加的資料輸送量的需求。增加時鐘頻率的能力受限於轉變間隔808、830,並且受限於源自設備切換速度、傳輸線特性等其他時序限制。
本案內容的某些態樣使得設備能夠以比在習知C-PHY實現方式中可能的資料速率更高的資料速率在三線通訊鏈路上進行通訊。3線3相編碼器的理論編碼速率是log2 ⁡(6)≅2.58位元每符號。在C-PHY介面中,經由禁止在連續符號間隔中傳輸相同符號來嵌入時鐘資訊,從而提供降低log2 ⁡(6-1)≅2.32位元每符號的冗餘編碼速率。在本案內容的某些態樣中,C-PHY介面中的每符號編碼位元數可以使用將3相編碼與PAM組合的編碼方案來增加超過2.32位元每符號。
圖10圖示被配置為使用四個信號傳遞狀態(PAM-4)來對兩位元資料進行編碼的PAM驅動器1000的實例。在所圖示的實例中,PAM驅動器1000包括兩個電流單元1002、1004。第一電流單元1002提供單位安培數的電流( 
Figure 02_image002
I),而第二電流單元1004提供較大安培數的電流(此處 
Figure 02_image002
2I)。將由第一電流單元1002和第二電流單元1004產生的電流相加以產生輸出電流(I 輸出 ),該輸出電流在PAM驅動器1000端接時產生電壓位準(V 輸出 )。如時序圖1020中所圖示的,四個狀態1022、1024、1026、1028可用於編碼。該四個狀態使得每個所傳輸的符號可以對log2 ⁡(4)=2位元資料進行編碼。
本文所揭示的某些態樣係關於將PAM與3相編碼進行組合的編碼方案以增加所傳輸符號之間的每個轉變中可以編碼的位元數。PAM可以用於增加能夠用於定義3線鏈路的信號傳遞狀態的電壓或電流位準數量。三個電壓或電流位準用於定義根據習知C-PHY協定(其有效地使用PAM-2調制)操作的3線鏈路的信號傳遞狀態。本案內容的某些態樣提供提供定義如下符號的編碼方案:該等符號表示或定義當至少5個電壓或電流位準可用於每條導線時在符號傳輸間隔期間3線鏈路的信號傳遞狀態。在一個實例中,PAM-3調制向3線鏈路中的每條導線提供5個電壓或電流位準。在另一實例中,PAM-4調制向3線鏈路中的每條導線提供7個電壓或電流位準。在另一實例中,PAM-8調制向3線鏈路中的每條導線提供15個電壓或電流位準。
在PAM-4編碼的3相信號的實例中,資料被編碼到從符號集合中選擇的符號之間的轉變中,該符號集合表示及/或決定在符號傳輸間隔中的相位和電壓幅度,或相位和電流。在每個符號傳輸間隔期間在3線鏈路中的每條導線上在不同相位中傳輸PAM調制的3相信號。在PAM-4調制的實例中,18個符號可以用於對資料進行編碼。在一些例子中,資料單元的某些位元可以被有效地編碼到符號之間的轉變中,及/或資料單元的其他位元可以被編碼到PAM-4電壓位準中。在一些例子中,資料單元可以用於基於緊接的前一符號以及要被編碼到轉變中的資料單元來選擇要傳輸的符號。在一些例子中,較大的資料單元(例如,位元組或字)可以用於選擇要傳輸的符號序列。
下表A說明根據本文所揭示的某些態樣可以實現的編碼方案的實例的取樣。
PAM 提供的狀態 log2 (狀態) log2 (狀態-1)
PAM-2
Figure 02_image003
2.58 2.32
PAM-3
Figure 02_image004
3.58 3.46
PAM-4
Figure 02_image005
4.17 4.09
PAM-8
Figure 02_image006
5.39 5.36
表A 每個編碼方案採用3相編碼以獲得多相信號,該多相信號是使用PAM來調制的。C-PHY介面中所使用的3相編碼方案可以被表徵為採用PAM-2調制。編碼方案的編碼容量可以被表示為位元元每符號,被計算為多線鏈路上可用於對每個符號進行編碼的狀態數量的以2為底的對數。根據本文所揭示的某些態樣,當在所傳輸信號中嵌入時鐘資訊時,可用狀態的數量減少一。在某些實現方式中,編碼方案可以使用各種其他數量的脈衝幅度,包括PAM-16、PAM-32等等。
圖11圖示根據本案內容的某些態樣的介面1100的實例,該介面包括經由3線鏈路1106耦合的傳輸器1102和接收器1104,其中介面1100被配置為支援採用3相和PAM編碼的組合的一或多個編碼方案。3線鏈路1106中的每條導線1112、1114、1116可以在接收器處由電阻器1118、1120、1122端接,該電阻器1118、1120、1122與導線1112、1114、1116的特徵阻抗相匹配。在所圖示的實例中,特徵阻抗可以對應於50
Figure 02_image007
的電阻。傳輸器1102具有三個線路驅動器1108,每個線路驅動器被配置為:根據所選擇或所配置的編碼方案(參見例如表A)來驅動對應的導線1112、1114、1116。線路驅動器1108可以實現為電流驅動器或電壓驅動器。接收器1104具有產生多狀態差分信號1124、1126、1128的三個差分接收器1110。將多狀態差分信號1124、1126、1128提供給解碼器1130,解碼器1130可以被配置為:在由3相編碼和PAM的組合產生的所有可能信號傳遞狀態之間進行區分。解碼器1130可以被配置為:從使用3相編碼來編碼的信號中解碼資料,其中3相編碼的信號亦可以使用PAM來調制。解碼器1130可以被配置為:支援在本案內容中作為實例提供的編碼方案。
3線鏈路1106的導線1112、1114、1116的信號傳遞狀態可以基於電流的幅度和方向,或者基於電壓位準和極性來定義。在一個實例中,可以圍繞額定單位電流(I)來定義導線上的可用信號傳遞狀態,並且狀態包括零電流狀態、N 個正電流信號傳遞狀態{I, …N I}和N 個負電流信號傳遞狀態{-I, … -N I},總共2N +1個信號傳遞狀態。亦可以圍繞在接收器處偵測到的電壓來表達5種可用狀態。例如,每個狀態的電壓(VState )可以被計算為V State =I State x R Term ,其中I State 表示與正被傳輸的信號傳遞狀態相關聯的電流,並且R Term 對應於對應導線1112、1114、1116的端接電阻或特徵阻抗。
在一些實現方式中,差分接收器1110提供具有被提供給解碼器的類比信號形式的差分信號1124、1126、1128,該解碼器包括比較電路,其被配置為:將差分信號1124、1126、1128轉換為表示使用3相編碼和PAM的組合來傳輸的符號的數位值。在一些實現方式中,差分接收器1110可以包括比較電路,其被配置為:提供差分信號1124、1126、1128作為表示使用3相編碼和PAM的組合來傳輸的符號的多位元數位值。
在本案內容的一個態樣中,在由本文所揭示的編碼方案定義的每個符號的傳輸期間在傳輸器1102與接收器1104之間流動的淨電流為零。每個符號定義導線三元組1112、1114、1116的信號傳遞狀態,該信號傳遞狀態使得流向傳輸器1102的經組合電流等於流向接收器1104的經組合電流。當流經3線鏈路1106的電流的總和為零時,3線鏈路1106可以呈現增強的共模雜訊抑制。
圖12-圖14圖示根據本案內容的某些態樣的其中3相編碼與PAM-4調制相組合的編碼方案的第一實例。圖11的介面1100可以被調適為支援圖12和圖13中所圖示的3相編碼和PAM-4調制方案。圖12中的表1200圖示從由3相編碼和PAM-4調制的組合提供的符號中選擇的18個可用符號。如圖12的時序圖1220中所圖示的,3相信號的PAM-4調制可以在C-PHY 3相信號中提供的3個信號傳遞狀態之上提供4個另外的信號傳遞狀態(參見圖8中的時序圖800)。所得到的7個信號傳遞狀態的集合{3I, 2I, I, 0, -I, -2I, -3I}定義流經3線匯流排中的導線的可能電流,此處被表達為額定電流(I)的倍數。亦可以圍繞在接收器處偵測到的電壓來表達7種信號傳遞狀態。
在各符號之間的轉變時段1236中,從每個信號傳遞狀態1222、1224、1226、1228、1230、1232、1234圖示六個可能轉變。在所圖示的編碼方案中,當考慮另外兩條導線上出現的轉變時,少於六個轉變在三條導線中的一或多條導線上是可用的或可能的。在表1200中的18個符號的每個符號中,3線鏈路1106中沒有兩條導線1112、1114、1116處於相同的信號傳遞狀態。圖12和圖13中所圖示的編碼方案提供了兩條導線1112、1114、1116不能轉變成使得其落入相同的信號傳遞狀態1222、1224、1226、1228、1230、1232或1234。在一個實例中,在第一導線1112、1114或1116轉變到2I狀態的情況下,其他導線1112、1114或1116中任何導線皆不能轉變到2I狀態。在連續符號之間的轉變時段1236期間在導線1112、1114、1116中的至少一條導線上出現信號傳遞狀態的改變。可以由接收器1104從在每一對連續傳輸的符號之間在一或多條導線中發生的轉變推導出時鐘資訊。
3相編碼和PAM-4調制的組合使得能夠在每個符號傳輸間隔中傳輸4位元資料。如表1200中所圖示的,當3相編碼和PAM-4調制組合時,可以定義表示可相互區分的信號傳遞狀態或相位組合的18個符號。18個符號的可用性使得可以在每個符號傳輸間隔中傳輸最多達log2 ⁡(18)≅4.17位元。可以經由禁止在連續符號傳輸間隔中傳輸相同符號來在連續傳輸的符號之間的轉變中嵌入時鐘資訊,以便保證在至少一條導線1112、1114、1116上的信號傳遞狀態改變。當在符號傳輸間隔之間在每個邊界處18個符號中的17個符號可用於傳輸時,所得到的編碼速率可以計算為log2 ⁡(18-1)=log2 ⁡(17)≅4.08位元每符號傳輸間隔。
圖13包括時序圖1300,該時序圖1300圖示由圖11中所圖示的該組差分接收器1110針對圖12的表1200中所定義的每個符號產生的差分信號1124、1126、1128的信號傳遞狀態。每個信號傳遞狀態可以定義在差分信號1124、1126、1128中觀察到的額定電壓位準或電壓範圍。在所圖示的編碼方案中,定義了18個符號,並且在接收器1104處可以偵測到差分信號1124、1126、1128的信號傳遞狀態的對應18種組合。由每個差分信號1124、1126、1128表示的電壓位準的差值可以是單位電壓(VState )的倍數,並且差值的範圍可以在+6VState 差值1304至-6VState 差值1306之間。在沒有信號傳遞誤差或傳輸器1102或接收器1104故障的情況下,在轉變時段1312之外不預計產生零伏差值1302、+2VState 差值1308和-2VState 差值1310。VState 的額定值可以由應用要求或目標及/或設備規範來決定。表1320說明針對圖12的表1200中所定義的每個符號的差分信號1124、1126、1128的信號傳遞狀態。
圖14包括根據本案內容的一態樣的表1400,該表1400包括不具有3線鏈路1106中的未被驅動或被驅動到中間位準信號傳遞狀態1228的導線1112、1114、1116的符號。表1400包括兩組符號1402、1404。當傳輸來自第一組符號1402的符號時,3線鏈路1106中的一條導線1112、1114、1116未被驅動或者被驅動到中間位準信號傳遞狀態1228。未被驅動的導線1112、1114、1116可以不攜帶電流及/或採用中點電壓位準。當傳輸來自第一組符號1402的符號時,在傳輸器1102與接收器1104之間流動的電流總和為零。當傳輸來自第二組符號1404的符號時,3線鏈路1106中沒有導線1112、1114、1116未被驅動或者被驅動到中間位準信號傳遞狀態1228。當傳輸來自第二組符號1404的符號時,在傳輸器1102與接收器1104之間流動的電流總和為零。不需要3線鏈路1106中的至少一條導線1112、1114、1116未被驅動或者被驅動到中間位準信號傳遞狀態1228的符號的可用性在選擇符號集合時增加了靈活性並且可以簡化線路驅動器1108的設計。
圖15-圖17圖示根據本案內容的某些態樣的其中3相編碼與PAM-3調制相組合的編碼方案的第二實例。圖11的介面1100可以被調適為支援圖15和圖16中所圖示的3相編碼和PAM-3調制編碼方案。在一些例子中,PAM-3編碼器或解碼器可以使用PAM-4編碼器或解碼器來實現,其中兩個最大幅度的PAM級別在編碼期間未使用。圖15中的表1500包括從經由3相編碼和PAM-3調制的組合提供的符號中選擇的12個符號。如圖15的時序圖1520中所圖示的,3相信號的PAM-3調制可以在C-PHY 3相信號中提供的3個信號傳遞狀態之上提供2個另外的信號傳遞狀態(參見圖8中的時序圖800)。所得到的5個信號傳遞狀態的集合{2I, I, 0, -I, -2I}定義流經3線匯流排中的導線的可能電流,此處被表達為額定電流(I)的倍數。亦可以圍繞在接收器1104處偵測到的電壓來表達5個信號傳遞狀態1522、1524、1526、1528、1530。
在各符號之間的轉變時段1532中,從每個信號傳遞狀態1522、1524、1526、1528、1530圖示四個可能轉變。在所圖示的編碼方案中,當考慮另外兩條導線上出現的轉變時,少於四個轉變在三條導線中的每條導線上是可用的或可能的。在本案內容的一個態樣中,兩條導線1112、1114或1116處於一組六個符號1502的相同信號傳遞狀態。在連續符號之間的轉變時段1532期間在導線中的至少一條導線上出現信號傳遞狀態的改變。可以由接收器從在每一對連續傳輸的符號之間在一或多條導線中發生的轉變推導出時鐘資訊。
3相編碼和PAM-3調制的組合使得能夠在每個符號傳輸間隔中傳輸3.46位元資料。如表1500中所圖示的,當3相編碼和PAM-3調制組合時,可以定義表示可相互區分的信號傳遞狀態或相位組合的12個符號。12個符號使得可以在每個符號傳輸間隔中傳輸最多達log2 ⁡(12)≅3.58位元。可以經由禁止在連續符號傳輸間隔中傳輸相同符號來在連續傳輸的符號之間的轉變中嵌入時鐘資訊,以便保證在至少一條導線1112、1114、1116上的信號傳遞狀態改變。當要保證至少一條導線上的信號傳遞狀態改變時,在符號傳輸間隔之間的每個邊界處12個符號中的11個符號可用於傳輸,從而得到log2 ⁡(12-1)=log2 ⁡(11)≅3.46位元每符號傳輸間隔的編碼速率。
圖16包括時序圖1600,該時序圖1600圖示由圖11中所圖示的該組差分接收器1110針對圖15的表1500中所定義的每個符號產生的差分信號1124、1126、1128的信號傳遞狀態。每個信號傳遞狀態可以定義在差分信號1124、1126、1128中觀察到的額定電壓位準或電壓範圍。在所圖示的編碼方案中,定義了12個符號,並且在接收器1104處可以偵測到差分信號1124、1126、1128的信號傳遞狀態的對應12種組合。由每個差分信號1124、1126、1128表示的電壓位準的差值可以是導線的單位電壓(VState )的倍數,並且差值的範圍可以在+4VState 差值1604至-4VState 差值1606之間。在沒有信號傳遞誤差或傳輸器或接收器故障的情況下,在轉變時段1612之外不預計產生VState 差值1608和-VState 差值1610。VState 的額定值可以由應用要求或目標及/或設備規範來決定。表1620說明針對圖15的表1500中所定義的每個符號的差分信號1124、1126、1128的信號傳遞狀態。
圖17圖示根據本案內容的某些態樣來定義的符號集合1700,以包括不需要3線鏈路1106中的一條導線1112、1114、1116未被驅動或者被驅動到中間位準信號傳遞狀態1526的一些符號。符號集合1700包括兩組符號1702、1704。當傳輸來自第一組符號1702的符號時,3線鏈路1106中的一條導線1112、1114、1116未被驅動或者被驅動到中間位準信號傳遞狀態1526。未被驅動的導線可以不攜帶電流及/或採用中點電壓位準。當傳輸來自第一組符號1702的符號時,在傳輸器1102與接收器1104之間流動的電流總和為零。當傳輸來自第二組符號1704的符號時,3線鏈路1106中沒有導線1112、1114、1116未被驅動或者被驅動到中間位準信號傳遞狀態1526。此外,第二組符號1704之每一者符號定義三條導線1112、1114、1116中的兩條導線的相同信號傳遞狀態。在所圖示的實例中,當傳輸來自第二組符號中的符號時,定義處於相同信號傳遞狀態的兩條導線1112、1114、1116使得在傳輸器1102與接收器1104之間流動的電流總計為零。不需要3線鏈路1106中的至少一條導線1112、1114、1116未被驅動或者被驅動到中間位準信號傳遞狀態1526的符號的可用性在選擇符號集合時增加了靈活性並且可以簡化線路驅動器1108的設計。
圖18和圖19圖示根據本案內容的某些態樣的將3相編碼與PAM-8調制進行組合的編碼方案的第三實例。圖11的介面1100可以被調適為支援圖18和圖19中所圖示的3相編碼和PAM-8調制編碼方案。圖18中的表1800包括從經由3相編碼和PAM-8調制的組合提供的符號中選擇的42個符號。3相信號的PAM-8調制可以在C-PHY 3相信號中提供的3個信號傳遞狀態之上提供42個另外的信號傳遞狀態。所得到的15個信號傳遞狀態的集合{7I, 6I, 5I, 4I, 3I, 2I, I, 0, -I, -2I, -3I, -4I, -5I, -6I, -7I}定義流經3線匯流排中的導線的可能電流,此處被表達為額定電流(I)的倍數。亦可以圍繞在接收器處偵測到的電壓來表達15種信號傳遞狀態。
從每個信號傳遞狀態可能有十四個可能的轉變。在表1800中的42個符號之每一者符號中,沒有兩條導線1112、1114、1116處於相同信號傳遞狀態。在連續傳輸的符號之間的轉變時段期間在導線1112、1114、1116中的至少一條導線上出現信號傳遞狀態的改變。可以由接收器1104從在每一對連續傳輸的符號之間在一或多條導線1112、1114、1116中發生的轉變推導出時鐘資訊。3相編碼和PAM-8調制的組合使得能夠在每個符號傳輸間隔中傳輸5.36位元資料。如表1800中所圖示的,當3相編碼和PAM-8調制組合時,可以定義由可相互區分的信號傳遞狀態或相位組合表示的42個符號。42個信號傳遞狀態使得可以在每個符號傳輸間隔中傳輸最多達log2 ⁡(42)≅5.39位元。可以經由禁止在連續符號傳輸間隔中傳輸相同符號來在連續傳輸的符號之間的轉變中嵌入時鐘資訊。當要保證至少一條導線上的信號傳遞狀態改變時,在符號傳輸間隔之間的每個邊界處42個符號中的41個符號可用於傳輸,從而得到log2 ⁡(42-1)=log2 (41)≅5.36位元每符號傳輸間隔的編碼速率。
在本案內容的一個態樣中,可以定義包括不需要3線鏈路1106中的一條導線1112、1114、1116未被驅動或者被驅動到中間位準信號傳遞狀態的一些符號的符號集合。表1800展示兩組符號1802、1804。當傳輸來自第一組符號1802的符號時,3線鏈路1106中的一條導線1112、1114、1116未被驅動或者被驅動到中間位準信號傳遞狀態。未被驅動的導線1112、1114、1116可以不攜帶電流及/或採用中點電壓位準。當傳輸來自第一組符號1802的符號時,在傳輸器1102與接收器1104之間流動的電流總和為零。當傳輸來自第二組符號1804的符號時,3線鏈路1106中沒有導線1112、1114、1116未被驅動或者被驅動到中間位準信號傳遞狀態。當傳輸來自第二組符號1804的符號時,在傳輸器1102與接收器1104之間流動的電流總和為零。不需要3線鏈路1106中的至少一條導線1112、1114、1116未被驅動或者被驅動到中間位準信號傳遞狀態的符號的可用性在選擇符號集合時增加了靈活性並且可以簡化線路驅動器1108的設計。
圖19包括表1900,該表1900說明由圖11中所圖示的該組差分接收器1110針對圖18的表1800中所定義的每個符號產生的差分信號1124、1126、1128的信號傳遞狀態。每個信號傳遞狀態可以定義在差分信號1124、1126、1128中觀察到的額定電壓位準或電壓範圍。在所圖示的編碼方案中,定義了42個符號,並且在接收器1104處可以偵測到差分信號1124、1126、1128的信號傳遞狀態的對應42種組合。由每個差分信號1124、1126、1128表示的電壓位準的差值可以是單位電壓(VState )的倍數,並且差值的範圍可以在+14VState 差值至-14VState 差值之間。在沒有信號傳遞誤差或傳輸器1102或接收器1104的故障的情況下,在轉變時段之外不預計產生零伏差值和 
Figure 02_image002
2VState 、 
Figure 02_image002
4VState ,以及 
Figure 02_image002
6VState 差值。VState 的額定值可以由應用要求或目標及/或設備規範來決定。
圖20圖示在接收器中提供的解碼器架構2000,該接收器被配置為支援根據本案內容的某些態樣來提供的一或多個經組合的3相和PAM編碼方案。所圖示的解碼器架構2000提供三個PAM差分接收器2002、2004、2006。PAM差分接收器2002、2004、2006被配置為:在其相應的輸出信號2010、2012、2014中提供多位元差分值,該等差分值表示3線鏈路1106中的三條導線1112、1114、1116的不同對之間的電壓差。在根據本案內容的某些態樣提供的一些實現方式中,每個PAM差分接收器2002、2004、2006提供差值,該差值指示包括兩條導線1112、1114、1116的信號傳遞狀態之差的差值帶。
在圖12-圖14中所圖示的編碼方案的實例中,PAM差分接收器2002、2004、2006被配置用於解碼使用3相和PAM-4編碼的組合來產生的符號。PAM差分接收器2002、2004、2006可以被調適或被配置為:支援使用其他級別的PAM(包括PAM-3和PAM-8)的編碼方案。第一PAM差分接收器2002比較3線鏈路1106中的A導線1112和B導線1114的信號傳遞狀態,第二PAM差分接收器2004比較3線鏈路1106中的B導線1114和C導線1116的信號傳遞狀態,並且第三PAM差分接收器2006比較3線鏈路1106中的C導線1116和A導線1112的信號傳遞狀態。每個PAM差分接收器2002、2004、2006基於在其輸入端存在的差分電壓的比較來產生輸出。PAM差分接收器2002、2004、2006基於定義電壓帶的閾值來產生表示存在差分電壓的電壓帶的多位元數位輸出信號2010、2012、2014。在一個實例中,閾值可以被設置為-2.0VState 、0.0 V和+2.0VState ,其中VState 對應於表示可能電壓位準之間的最小分隔的單位電壓。將輸出信號2010、2012、2014提供給解碼器2008,該解碼器2008使用在每個符號間隔中接收到的多位元數位輸出信號2010、2012、2014來組裝導線狀態序列,隨後可以對該導線狀態序列進行解碼以提取出經編碼的符號資料作為解碼器2008的輸出2016。
圖21圖示根據本案內容的某些態樣的採用接收器2120的介面2100的實例,該接收器2120被配置為在使用3相編碼和PAM-4調制的組合來傳輸的符號之間進行區分。接收器2120可以被調適或被配置為:支援使用其他級別的PAM(包括PAM-3和PAM-8)的編碼方案。在一個實例中,接收器電路可以對應於圖11中所圖示的接收器1104及/或可以採用圖20中所圖示的解碼器架構2000。介面2100包括耦合到3線鏈路2104的傳輸器2102。3線鏈路2104中的每條導線2108、2110、2112可以在接收器處由電阻器2114、2116、2118端接,該等電阻器2114、2116、2118與導線2108、2110、2112的特徵阻抗相匹配。在所圖示的實例中,特徵阻抗可以對應於50
Figure 02_image007
的電阻。根據本案內容的某些態樣,傳輸器2102具有三個線路驅動器2106,其被配置為:使用3相編碼和PAM-4調制的組合來驅動對應的導線2108、2110、2112。線路驅動器2106可以實現為電流驅動器或電壓驅動器。
在所圖示的實例中,接收器2120包括緩衝器電路2122和比較器電路2132。緩衝器電路2122可以包括耦合到3線鏈路2104的差分接收器2124,並且緩衝器電路2122可以將類比差分信號2126、2128、2130提供給比較器電路2132。比較器電路2132可以包括類比數位轉換器(ADC)電路2134、2136、2138,該等ADC電路產生表示類比差分信號2126、2128、2130的電壓位準的多位元數位值2142、2144、2146。在所圖示的實例中,ADC電路2134、2136、2138是使用針對每個差分信號2126、2128、2130的一組比較器來實現的,其中每一組中的比較器將差分信號2126、2128、2130與多個閾值電壓位準2140進行比較。在一個實例中,閾值電壓可以包括圖16中所圖示的零伏位準1602、+2VState 差值1608和-2VState 差值1610。
在一些實現方式中,由緩衝器電路2122和比較器電路2132執行的功能可以組合。ADC電路2134、2136、2138可以使用不同類型的類比和數位電路來實現。
圖22圖示根據本案內容的某些態樣來配置或調適的電壓模式驅動器2200。傳輸器可以針對3線鏈路的每條導線包括電壓模式驅動器2200的例子。電壓模式驅動器2200採用開關2212、2214、2216、2232、2234、2236來選擇3線鏈路中的一條導線2210的電壓狀態。在一個實例中,開關2212、2214、2216、2232、2234、2236可以由編碼器來控制,該編碼器被調適或被配置為選擇如在圖14中的表1400中定義的符號並且因此可以將資料編碼到所傳輸的符號之間的轉變中。圖22中的第一張表2240說明根據本案內容的某些態樣的提供針對導線2210定義的七個信號傳遞狀態2242的開關狀態組合。當在圖22中的第一張表2240中指示二進位1時,開關2212、2214、2216、2232、2234、2236封閉或啟用,並且當在圖22中的第一張表2240中指示二進位0時,開關2212、2214、2216、2232、2234、2236斷開或停用。
開關2212、2214、2216、2232、2234、2236可以用於配置電壓模式驅動器2200中的電阻器網路。每個開關2212、2214、2216、2232、2234、2236耦合到對應的電阻器2202、2204、2206、2222、2224、2226。選擇電阻器2202、2204、2206、2222、2224、2226的值以使得電阻2250的每個組合可以經由將兩個或更多個電阻器2202、2204、2206、2222、2224、2226耦合到導線2210來提供,其呈現與關聯於導線2210的特徵阻抗相匹配的經組合電阻。在所圖示的實例中,可以將耦合到正電壓2208的三個電阻器2202、2204、2206和耦合到接地或低於正電壓2208的另一電壓的三個電阻器2222、2224、2226進行組合,以提供由圖14中的表1400中定義的符號所定義的每個狀態。針對所圖示的實例定義了三個電阻值:電阻器2202、2222具有電阻值6R,電阻器2204、2224具有電阻值3R,並且電阻器2206、2226具有電阻值1.5R,其中R是與關聯於導線2210的特徵阻抗相關聯的電阻值。耦合到導線2210的兩個或更多個電阻器2202、2204、2206、2222、2224、2226呈現為相對於特徵阻抗的並聯電阻。圖22中的第二張表2260定義了產生與電阻值2262或中間電阻值2264相匹配的阻抗的並聯電阻的組合,該等中間電阻值2264是產生與電阻值2262相匹配的一個阻抗的更大並聯組合的一部分。圖22中的第二張表2260可以與電壓模式驅動器2200一起使用。電阻器對(R 1和R 2)的並聯電阻可以計算為:
Figure 02_image008
使用在圖22中的第一張表2240中所標識的開關狀態的對應組合來獲得七個信號傳遞狀態2242。
圖23圖示可以根據本案內容的某些態樣來配置或調適的電流模式驅動器2300、2350的實例。傳輸器可以針對3線鏈路的每條導線包括電流模式驅動器2300或2350的例子。第一電流模式驅動器2300採用開關2312、2314、2316、2332、2334、2336來選擇3線鏈路中的一條導線2310的信號傳遞狀態。在一個實例中,開關2312、2314、2316、2332、2334、2336可以由編碼器來控制,該編碼器被調適或被配置為:將資料編碼到圖14中的表1400中所定義的符號中。圖23中的第一張表2340圖示根據本案內容的某些態樣的提供針對導線2310定義的七個信號傳遞狀態2342的開關狀態組合。當在圖23中的第一張表2340中指示二進位1時,開關2312、2314、2316、2332、2334、2336封閉或啟用,並且當在圖23中的第一張表2340中指示二進位0時,開關2312、2314、2316、2332、2334、2336斷開或停用。
每個開關2312、2314、2316、2332、2334、2336耦合到對應的電流源2302、2304、2306、2322、2324、2326。在所圖示的實例中,每個電流源2302、2304、2306、2322、2324、2326在由對應的開關2312、2314、2316、2332、2334、2336耦合到導線2310時供應或汲取單位電流(I)。當兩個或更多個電流源2302、2304、2306、2322、2324、2326同時耦合到導線2310時,供應或汲取多個單位電流。導線2310可以使用與電阻2338相匹配的阻抗來端接。
第二電流模式驅動器2350可以以比第一電流模式驅動器2300更少的電流源2352、2354、2362、2364來操作。第一電流模式驅動器2300中的電流源2302、2304、2306、2322、2324、2326被認為供應或汲取相同的額定單位電流值。第二電流模式驅動器2350包括供應或汲取單位電流值的第一電流源2352、2362以及供應或汲取單位電流值的兩倍的第二電流源2354、2364。第二電流模式驅動器2350操作開關2356、2358、2366、2368以選擇產生3線鏈路的一條導線2360的期望信號傳遞狀態的總電流。
圖23中的第二張表2380圖示根據本案內容的某些態樣的提供針對導線2360定義的七個信號傳遞狀態2382的開關狀態組合。當在圖23中的第二張表2380中指示二進位1時,開關2356、2358、2366、2368封閉或啟用,並且當在圖23中的第二張表2380中指示二進位0時,開關2356、2358、2366、2368斷開或停用。導線2360可以使用與電阻2372相匹配的阻抗來端接。
圖24圖示根據本文所揭示的某些態樣的已被調適為支援使用3相編碼和PAM的組合的編碼方案的系統2400的實例。傳輸器2402由3線鏈路2420耦合到接收器2422。
傳輸器2402包括接收並保持要被傳送給接收器2422的資料的資料緩衝器2404。可由資料緩衝器2404從應用處理器、周邊設備、感測器、儲存設備、成像設備、顯示器,或另一資料來源接收資料。在一些實例中,資料被儲存為8位元的位元組、16位元、32位元或64位元的字,或另一大小的字。在一些實例中,每個資料單元與同位位元及/或檢錯位元一起儲存;例如,可以為每個位元組提供同位位元,及/或可以為資料位元組或字的區塊計算同位位元或循環冗餘位元並作為另外的位元組或字來傳輸。在一些例子中,資料可以與控制資訊封裝在根據通訊協定的一層或多層來產生的封包或其他資料結構中。可以將資料緩衝器2404提供給由應用定義的大小的資料編碼器2406。資料編碼器2406可以包括被配置為進行以下操作的元件:重新格式化從資料緩衝器2404接收到的資料,將經重新格式化的資料映射到一或多個符號,以及序列化或以其他方式序列化符號以供根據傳輸時鐘進行傳輸。
在某些實現方式中,資料編碼器2406從資料緩衝器2404接收到單位大小的資料,該單位大小是根據與編碼方案相關聯的編碼速率來設定大小的。在一些實例中,資料編碼器2406被配置為處理8位元元位元組、16位元字或32位元字的資料。在一些實例中,資料編碼器2406可以包括將由資料緩衝器2404提供的資料重新組織成一組8位元位元組或16位元字的電路,以使得資料的單位大小是恆定的,而不管被配置用於資料編碼器2406的編碼方案。在一個實例中,資料編碼器2406在每個符號傳輸間隔期間產生表示3線鏈路2420中的每條導線的信號傳遞狀態的三個多位元碼2416。資料編碼器2406將該三個多位元碼2416提供給導線狀態編碼器2410。導線狀態編碼器2410產生被提供給線路驅動器2414的控制信號2418。每個線路驅動器2414接收一或多個控制信號2418,使用該等控制信號來定義3線鏈路2420中的對應導線的信號傳遞狀態。
在某些實現方式中,三個多位元碼2416中的每一個可以使得導線狀態編碼器2410產生一組控制信號2418,該組控制信號2418配置線路驅動器2414中的開關,其中開關的狀態(例如封閉或斷開)可以選擇要提供給3線鏈路2420的導線的電流或電壓位準。由導線狀態編碼器2410回應於三個多位元碼2416而產生的控制信號2418的狀態可以基於主動編碼方案或者基於用於實現線路驅動器2414的線路驅動電路的類型來配置。不同類型的線路驅動電路可以具有不同數量的開關,以控制該等開關來選擇期望的信號傳遞狀態。例如,控制圖22的電壓模式驅動器2200的開關所需要的信號數量可以大於控制圖23的電流模式驅動器2300的開關所需要的信號數量。資料編碼器2406和導線狀態編碼器2410的操作可以根據在由時鐘產生器提供的時鐘信號中所指示的時序資訊來執行。
資料編碼器2406操作為使得在3線鏈路2420上傳輸符號串流,其中每個符號是作為3線鏈路2420的3條導線的信號傳遞狀態的組合來傳輸的。圖12、圖15和圖18中的表1200、1500和1800圖示針對某些編碼方案產生的符號的實例以及針對每個符號定義的對應信號傳遞狀態。資料編碼器2406可以被配置用於一或多個操作模式以及一或多個編碼方案。
在第一實例中,傳輸器2402可以主動地在3線鏈路2420上傳輸符號串流,其中資料編碼器2406已產生第N 個符號(S N )並已將S N 添加到符號串流。資料編碼器2406可以被配置用於第一操作模式,其中對每個資料單元進行獨立編碼。在該第一模式中,資料編碼器2406使用要進行編碼的下一資料單元來選擇下一符號以供傳輸。在一個實例中,資料編碼器2406可以產生用於選擇下一符號(S N+1 )的索引,其中至S N+1 的索引是使用接下去的四個位元作為與至S N 的索引的偏移來產生的。以防止選擇相同的符號作為S N 和S N+1 的方式來產生索引。在一個實例中,至S N+1 的索引可以經由將接下去的四個位元與至S N 的索引相加或相減來計算。在另一實例中,至S N+1 的索引可以使用接收接下去的四個位元和至S N 的索引作為變數的演算法來計算的。
在第二實例中,傳輸器2402可以主動地在3線鏈路2420上傳輸符號串流,其中資料編碼器2406已產生第N 個符號(S N )並已將S N 添加到符號串流。資料編碼器2406可以被配置用於第二操作模式,其中一或多個位元組的資料被編碼到符號序列{S N+1 , S N+2 , …}中。在一個實例中,資料編碼器2406使用S N 的值和一或多個資料位元組來對維持符號序列的表進行索引。在另一實例中,資料編碼器2406使用該一或多個資料位元組來對維持用於基於S N 的值來選擇符號序列的偏移集合的表進行索引。資料編碼器2406經由以下操作來產生符號序列:使用經組合的偏移來從用於產生先前產生的符號的索引產生至下一符號的索引。例如,資料編碼器2406可以基於偏移集合中的第一偏移的值以及用於選擇S N 的索引來產生至符號表2408的索引以用於選擇S N+1 。在一些例子中,可以經由使用一或多個位元組的內容作為索引來對表進行索引,進而獲得偏移集合。在一些例子中,可以經由將資料單元分解為一或多個位元組或字來產生偏移集合。
在一些實現方式中,資料編碼器2406可以包括或耦合到並聯-串聯轉換器,該等並聯-串聯轉換器將被表達為表示3線鏈路2420的信號傳遞狀態的多位元碼塊的符號轉換為時間定序的符號序列。符號序列{S1 , S2 , … S N , S N+1 , …}可以在對應的符號傳輸間隔{t1 , t2 ,… t N , t N+1 , …}中傳輸,其中符號傳輸間隔是基於由時鐘產生器2412提供的時鐘信號來定義的。提供給導線狀態編碼器2410的多位元碼2416的序列包括用於在對應的第N 個符號傳輸間隔(t N )符號期間產生3線鏈路2420的信號傳遞狀態的第N 個符號(S N )、之後是用於在對應的第(N+1 )個符號傳輸間隔(t N+1 )期間產生3線鏈路2420的信號傳遞狀態的第(N+1 )個符號(S N+1 )。
接收器2422包括從3線鏈路2420接收信號的差分接收器2434。差分接收器2434可以操作為:在編碼方案中定義的N 個信號傳遞狀態之間進行區分,該編碼方案根據本文所揭示的某些態樣使用PAM對多相信號進行調制。差分接收器2434將差分輸出信號提供給導線狀態解碼器2430,該導線狀態解碼器2430被配置為從差分輸出信號提取出符號。隨後將該符號提供給資料解碼器2426,該資料解碼器2426可以被配置為對各個符號或者對各組符號進行操作。資料解碼器2426可以包括被配置為對接收到的符號解序列化並將一或多個符號解映射以獲得經解碼資料的元件。資料解碼器2426可以包括被配置為將經解碼資料重新組裝並重新格式化的元件。
在一種模式操作中,資料解碼器2426可以使用接收到的符號(S N+1 )與前一符號(S N )之間的差來對符號表2428進行索引以獲得4位元元的經解碼資料。在另一模式操作中,資料解碼器2426可以使用接收到的符號序列和前一符號(S N )來對符號表2428進行索引以獲得8、16、32或更多位元的經解碼資料。可以將經解碼資料提供給先進先出暫存器(FIFO 2424)或另一緩衝器。
導線狀態解碼器2430可以包括時鐘和資料恢復電路(CDR 2432),該電路偵測3線鏈路2420的一或多條導線上的信號傳遞狀態轉變,並基於轉變的時序來產生時鐘信號。時鐘信號可以由資料解碼器2426、FIFO 2424使用,並且接收器2422的其他元件可以根據時鐘信號來操作。 處理電路和方法的實例
圖25是圖示採用可以被配置為執行本文所揭示的一或多個功能的處理電路2502的裝置的硬體實現方式的實例的概念圖2500。根據本案內容的各個態樣,如本文所揭示的元素、元素的任何部分,或元素的任何組合可以使用處理電路2502來實現。處理電路2502可以包括支援本文所揭示的各種編碼方案的某些設備、電路及/或邏輯。在一個實例中,處理電路2502可以包括促進將資料編碼到符號中的電路系統和模組的某種組合,以及被調適為斷言串列匯流排的導線上的三個或更多個電壓位準的線路驅動器。在另一實例中,處理電路2502可以包括促進經由根據本文所揭示的某些態樣的3相編碼和PAM的組合來使用編碼方案將資料編碼到符號中的電路系統和模組的某種組合。處理電路2502可以包括管理如本文所揭示的編碼及/或解碼過程的狀態機或另一類型的處理設備。
處理電路2502可以包括由硬體和軟體模組的某種組合來控制的一或多個處理器2504。處理器2504的實例包括微處理器、微控制器、數位信號處理器(DSP)、現場可程式設計閘陣列(FPGA)、可程式設計邏輯設備(PLD)、狀態機、定序器、閘控邏輯、離散硬體電路,以及被配置為執行貫穿本案內容所描述的各種功能的其他適當硬體。該一或多個處理器2504可以包括執行特定功能、並且可以由軟體模組2516中的一個軟體模組來配置、增強或控制的專用處理器。該一或多個處理器2504可以經由在初始化期間載入的軟體模組2516的組合來配置,並且亦經由在操作期間載入或卸載一或多個軟體模組2516來配置。
在所圖示的實例中,可以利用匯流排架構(通常由匯流排2510表示)來實現處理電路2502。取決於處理電路2502的具體應用和整體設計約束,匯流排2510可以包括任意數量的互連匯流排和橋接。匯流排2510將各種電路連結在一起,包括該一或多個處理器2504,以及處理器可讀取儲存媒體2506。處理器可讀取儲存媒體2506可以包括記憶體設備和大型儲存設備,並且在本文中可以被稱為電腦可讀取媒體及/或處理器可讀取媒體。匯流排2510亦可以連結各種其他電路,例如定時源、計時器、周邊設備、電壓調節器,以及功率管理電路。匯流排介面2508可以提供匯流排2510與一或多個收發機2512之間的介面。可以為處理電路所支援的每種聯網技術提供收發機2512。在一些例子中,多種聯網技術可以共用在收發機2512中找到的一些或全部電路系統或處理模組。每個收發機2512提供一種用於在傳輸媒體上與各種其他裝置進行通訊的手段。取決於裝置的性質,亦可以提供使用者介面2518(例如,鍵盤、顯示器、揚聲器、麥克風、操縱桿),並且可以直接或經由匯流排介面2508通訊地耦合到匯流排2510。
處理器2504可以負責管理匯流排2510並負責一般處理,該處理可以包括執行儲存在處理器可讀取媒體(其可以包括處理器可讀取儲存媒體2506)中的軟體。在該態樣,處理電路2502(包括處理器2504)可以用於實現本文所揭示的任何方法、功能和技術。處理器可讀取儲存媒體2506可以用於儲存由處理器2504在執行軟體時操作的資料,並且軟體可以被配置為實現本文所揭示的任何一種方法。
處理電路2502中的一或多個處理器2504可以執行軟體。軟體應該被廣義地解釋為表示指令、指令集、代碼、程式碼片段、程式碼、程式、副程式、軟體模組、應用程式、軟體應用程式、套裝軟體、常式、子常式、物件、可執行程式、執行的執行緒、程式、功能、演算法等等,無論被稱為軟體、韌體、中間軟體、微代碼、硬體描述語言還是其他術語。軟體可以以電腦可讀取形式常駐在處理器可讀取儲存媒體2506中或在另一外部處理器可讀取媒體中。處理器可讀取儲存媒體2506可以包括非暫時性處理器可讀取媒體。舉例而言,非暫時性處理器可讀取媒體包括磁儲存設備(例如,硬碟、軟碟、磁帶)、光碟(例如,壓縮光碟(CD)或數位多功能光碟(DVD))、智慧卡、快閃記憶體設備(例如,「快閃記憶體驅動器」、卡、棒或鍵式驅動)、隨機存取記憶體(RAM)、ROM、PROM、可抹除PROM(EPROM)、EEPROM、暫存器、可移除磁碟,以及用於儲存可以由電腦存取和讀取的軟體及/或指令的任何其他適當媒體。舉例而言,處理器可讀取儲存媒體2506亦可以包括載波、傳輸線,以及用於傳輸可以由電腦存取和讀取的軟體及/或指令的任何其他適當媒體。處理器可讀取儲存媒體2506可以常駐在處理電路2502中、處理器2504中、處理電路2502外部,或跨包括處理電路2502的多個實體分佈。處理器可讀取儲存媒體2506可以體現在電腦程式產品中。舉例而言,電腦程式產品可以包括封裝材料中的處理器可讀取媒體。熟習此項技術者將認識到,如何根據具體應用和施加在整體系統上的整體設計約束來最佳地實現貫穿本案內容所描述的功能。
處理器可讀取儲存媒體2506可以維持在可載入程式碼片段、模組、應用程式、程式等等中維持及/或組織的軟體,其在本文中可以被稱為軟體模組2516。每個軟體模組2516可以包括在安裝或載入到處理電路2502上並由該一或多個處理器2504執行時對控制該一或多個處理器2504的操作的運行時間鏡像2514有貢獻的指令和資料。在被執行時,某些指令可以使得處理電路2502執行根據本文所描述的某些方法、演算法和過程的功能。
一些軟體模組2516可以在處理電路2502的初始化期間載入,並且該等軟體模組2516可以將處理電路2502配置為實現本文所揭示的各種功能的執行。例如,一些軟體模組2516可配置處理器2504的內部設備及/或邏輯電路2522,並且可以管理對外部設備(例如收發機2512、匯流排介面2508、使用者介面2518、計時器、數學輔助處理器等等)的存取。軟體模組2516可以包括與中斷處理常式和設備驅動程式互動、並控制對由處理電路2502提供的各種資源的存取的控製程式及/或作業系統。資源可以包括記憶體、處理時間、對收發機2512的存取、使用者介面2518等等。
處理電路2502的一或多個處理器2504可以是多功能的,由此一些軟體模組2516被載入並被配置為執行不同功能或相同功能的不同例子。該一或多個處理器2504可以另外被調適為管理回應於來自例如使用者介面2518、收發機2512,以及設備驅動程式的輸入而啟動的幕後工作。為了支援多個功能的執行,該一或多個處理器2504可以被配置為提供多工環境,由此複數個功能之每一者功能被實現為由該一或多個處理器2504依須求或按期望進行服務的一組任務。在一個實例中,多工環境可以使用在不同任務之間傳遞對處理器2504的控制的分時共用程式2520來實現,由此每個任務在完成任何待處理操作之後及/或回應於輸入(例如中斷)將對該一或多個處理器2504的控制返回到分時共用程式2520。當任務具有對該一或多個處理器2504的控制時,處理電路有效地專用於由與控制任務相關聯的功能所陳述的目的。分時共用程式2520可以包括作業系統、在循環基礎上傳遞控制的主迴路、根據功能的優先順序來分配對該一或多個處理器2504的控制的功能,及/或與將對該一或多個處理器2504的控制提供給處理功能的外部事件相對應的中斷驅動主迴路。
圖26是可以在耦合到多線通訊鏈路的傳輸器處執行的資料通訊方法的流程圖2600。在一個實例中,通訊鏈路可以具有三條導線,並且資料可以被編碼到在該三條導線中的每條導線上在不同相位中傳輸的信號的相位狀態和幅度中。可以至少部分地在圖24中所圖示的傳輸器2402處執行該方法。在方塊2602處,傳輸器2402可以在3線鏈路上傳輸複數個符號。每個符號定義3線鏈路在相關聯的符號傳輸間隔期間的信號傳遞狀態,以使得3線鏈路中的每條導線在相關聯的符號傳輸間隔期間處於與該3線鏈路中的其他導線不同的信號傳遞狀態。在方塊2604處,傳輸器2402可以將至少3位元的二進位資料編碼到在3線鏈路上連續傳輸的兩個符號之間的每個轉變中,其中每一對連續傳輸的符號包括兩個不同的符號。
在一些實現方式中,在3線鏈路上傳輸的至少一個符號定義針對3線鏈路中的每條導線的非零電流,其中非零電流的總和為零。3線鏈路的導線的信號傳遞狀態可以包括七個電壓位準,其中在3線鏈路上傳輸的至少一個符號針對3線鏈路中的每條導線定義高於或低於該七個電壓位準的中間電壓位準的電壓位準。傳輸器2402可以從針對3線鏈路定義的符號集合中選擇用於傳輸的每個符號。在某些實例中,主動編碼方案可以提供包括最多達12、18、42個可用符號的符號集合。
在一些實現方式中,傳輸器2402可以使用3相編碼和PAM的組合來對該至少3位元的二進位資料進行編碼。傳輸器2402可以在3線鏈路上傳輸第一符號。當資料編碼器被配置用於第一編碼方案時,資料編碼器可以從12個符號的集合中選擇第一符號。當資料編碼器被配置用於第二編碼方案時,資料編碼器可以從18個符號的集合中選擇第一符號。當資料編碼器被配置用於第三編碼方案時,資料編碼器可以從42個符號的集合中選擇第一符號。傳輸器2402可以在3線鏈路上傳輸第二符號。資料編碼器可以從排除第一符號的可用符號集合中選擇第二符號。
在一些實現方式中,傳輸器2402可以向複數個線路驅動器提供控制信號,該等控制信號使得該複數個線路驅動器之每一者線路驅動器在針對每個符號提供的符號傳輸間隔期間將3線鏈路中的一條導線驅動到由每個符號定義的信號傳遞狀態。
在一個實例中,該複數個線路驅動器可以包括三個電壓驅動器,並且傳輸器2402可以配置每個電壓驅動器中的複數個開關,以使得3線鏈路中的每條導線在每個符號傳輸間隔期間經由該三個電壓驅動器中的一個電壓驅動器中的兩個或更多個電阻器耦合到一或多個電壓位準。傳輸器2402可以在每個符號傳輸間隔中配置每個電壓驅動器中的該複數個開關,以使得耦合到3線鏈路中的對應導線的電阻器組合與3線鏈路的對應導線的特徵阻抗相匹配。在另一實例中,該複數個線路驅動器包括三個電流驅動器,並且傳輸器2402可以配置複數個開關,該等開關使得該三個電流驅動器之每一者電流驅動器在3線鏈路的對應導線中提供電流,該電流具有由在當前符號傳輸間隔中傳輸的符號定義的幅度。在一些例子中,電阻器耦合到3線鏈路並與3線鏈路的特徵阻抗相匹配。
在一些例子中,可以向線路驅動器提供控制信號,該等控制信號使得每個線路驅動器將3線鏈路中的一條導線驅動到由在符號傳輸間隔期間傳輸的符號所定義的信號傳遞狀態。當使用電壓模式線路驅動器時,控制信號可以配置線路驅動器中的複數個開關,以使得3線鏈路中的每條導線在每個符號傳輸間隔期間經由一或多個電阻器耦合到一或多個電壓位準。可以在每個符號傳輸間隔期間配置該複數個開關,以使得耦合到3線鏈路的導線的電阻器的每個組合與3線鏈路的特徵阻抗相匹配。當使用電流模式線路驅動器時,控制信號可以配置該複數個線路驅動器中的複數個開關,以使得3線鏈路中的每條導線耦合到在每條導線中提供電流的電流驅動器,其中該電流具有由在其對應的符號傳輸間隔中傳輸的符號所定義的幅度。電流模式線路驅動器可以包括耦合到3線鏈路以與3線鏈路的特徵阻抗相匹配的電阻器。
圖27是圖示採用處理電路2702的裝置2700的硬體實現方式的實例的圖。處理電路通常具有處理器2716,該處理器2716可以包括微處理器、微控制器、數位信號處理器、定序器和狀態機中的一或多個。處理電路2702可以利用通常由匯流排2710表示的匯流排架構來實現。取決於處理電路2702的具體應用和整體設計約束,匯流排2710可以包括任意數量的互連匯流排和橋接。匯流排2710將各種電路連結在一起,包括一或多個處理器及/或硬體模組(由處理器2716表示)、模組或電路2704、2706和2708、被配置為驅動3線鏈路2420(例如參見圖24)的導線的線路驅動器2712,以及處理器可讀取儲存媒體2718。匯流排2710亦可以連結諸如定時源、周邊設備、電壓調節器,以及功率管理電路等各種其他電路,該等在本領域公知,因此將不再進一步描述。
處理器2716負責一般處理,包括執行儲存在處理器可讀取儲存媒體2718上的軟體。軟體在由處理器2716執行時使得處理電路2702執行上文針對任何特定裝置描述的各種功能。處理器可讀取儲存媒體2718亦可以用於儲存由處理器2716在執行軟體時操作的資料,包括符號表以及用於存取符號表的中間索引。處理電路2702亦包括模組2704、2706和2708中的至少一個模組。模組2704、2706和2708可以實現為在處理器2716中執行的軟體模組、常駐/儲存在處理器可讀取儲存媒體2718中的軟體模組、耦合到處理器2716的一或多個硬體模組,或其某種組合。模組2704、2706及/或2708可以包括微控制器指令、狀態機配置參數,或其某種組合。
在一種配置中,裝置2700可以被配置用於在多線介面上的資料通訊。裝置2700可以包括被配置為以支援3線鏈路2420中的每條導線上的多個信號傳遞狀態的方式來控制線路驅動器2712的模組及/或電路2704。在一個實例中,線路驅動器2712在每條導線上提供7個或更多個信號傳遞狀態,並且每條導線被驅動到與3線鏈路2420中的其他導線不同的信號傳遞狀態。裝置2700可以包括編碼模組及/或電路2706,其被配置為:使用3相編碼和PAM-4調制的組合來將資料編碼到符號中。在一個實例中,編碼模組及/或電路2706可以包括、管理符號表管理和映射模組及/或電路2708或與其合作。
在一個實例中,裝置2700具有被配置為將裝置耦合到3線鏈路2420的複數個線路驅動器,以及資料編碼器。資料編碼器可以被配置為:將至少3位元的二進位資料編碼到由該複數個線路驅動器在3線鏈路2420上連續傳輸的兩個符號之間的每個轉變中,以使得每一對連續傳輸的符號包括兩個不同的符號。在一個實例中,每個符號定義3線鏈路2420在相關聯的符號傳輸間隔期間的信號傳遞狀態,以使得在相關聯的符號傳輸間隔期間3線鏈路2420中的每條導線處於與該3線鏈路2420中的其他導線不同的信號傳遞狀態。
在一些實現方式中,在3線鏈路2420上傳輸的至少一個符號定義針對3線鏈路2420中的每條導線的非零電流,其中非零電流的總和為零。3線鏈路2420的導線的信號傳遞狀態可以包括七個電壓位準。在一些例子中,在3線鏈路2420上傳輸的至少一個符號針對3線鏈路2420中的每條導線定義高於或低於該七個電壓位準的中間電壓位準的電壓位準。
在一些實現方式中,資料編碼器亦被配置為:使用3相編碼和PAM的組合來對二進位資料進行編碼。裝置2700可以在3線鏈路2420上傳輸第一符號。在一個實例中,當資料編碼器被配置用於第一編碼方案時,資料編碼器可以從12個符號的集合中選擇第一符號。在另一實例中,當資料編碼器被配置用第二編碼方案時,資料編碼器可以從18個符號的集合中選擇第一符號。在另一實例中,當資料編碼器被配置用第一編碼方案時,資料編碼器可以從42個符號的集合中選擇第一符號。裝置2700可以在3線鏈路2420上傳輸第二符號。資料編碼器亦可以被配置為從排除第一符號的可用符號集合中選擇第二符號。
在一些實現方式中,裝置2700具有導線狀態編碼器,其被配置為:從資料編碼器接收符號序列,並向該複數個線路驅動器提供控制信號,該等控制信號使得該複數個線路驅動器之每一者線路驅動器在針對符號序列之每一者符號提供的符號傳輸間隔期間將3線鏈路2420中的一條導線驅動到由每個符號定義的信號傳遞狀態。
在一個實例中,該複數個線路驅動器包括三個電壓驅動器,並且導線狀態編碼器亦可以被配置為:配置每個電壓驅動器中的複數個開關,以使得3線鏈路2420中的每條導線在每個符號傳輸間隔期間經由該三個電壓驅動器中的一個電壓驅動器中的兩個或更多個電阻器耦合到一或多個電壓位準。可以在每個符號傳輸間隔中配置每個電壓驅動器中的該複數個開關,以使得耦合到3線鏈路2420中的對應導線的電阻器組合與3線鏈路2420的對應導線的特徵阻抗相匹配。
在一個實例中,該複數個線路驅動器包括三個電流驅動器,並且導線狀態編碼器亦被配置為:配置複數個開關,此舉使得該三個電流驅動器之每一者電流驅動器在3線鏈路2420的對應導線中提供電流,該電流具有由在當前符號傳輸間隔中傳輸的符號定義的幅度。在一些實現方式中,電阻器耦合到3線鏈路2420,每個電阻器與3線鏈路2420的特徵阻抗相匹配。
在一些例子中,可以向線路驅動器提供控制信號,該等控制信號使得每個線路驅動器將3線鏈路中的一條導線驅動到由在符號傳輸間隔期間傳輸的符號所定義的信號傳遞狀態。當使用電壓模式線路驅動器時,控制信號可以配置線路驅動器中的複數個開關,以使得3線鏈路中的每條導線在每個符號傳輸間隔期間經由一或多個電阻器耦合到一或多個電壓位準。可以在每個符號傳輸間隔期間配置該複數個開關,以使得耦合到3線鏈路的導線的電阻器的每個組合與3線鏈路的特徵阻抗相匹配。當使用電流模式線路驅動器時,控制信號可以配置該複數個線路驅動器中的複數個開關,以使得3線鏈路中的每條導線耦合到在每條導線中提供電流的電流驅動器,其中該電流具有由在其對應的符號傳輸間隔中傳輸的符號所定義的幅度。電流模式線路驅動器可以包括耦合到3線鏈路以與3線鏈路的特徵阻抗相匹配的電阻器。
處理器可讀取儲存媒體2718可以儲存與圖26中所圖示的方法相關的指令和其他資訊。例如,處理器可讀取儲存媒體2718可以包括使得處理電路2702進行以下操作的指令:在3線鏈路2420上傳輸複數個符號,並將至少3位元的二進位資料編碼到在3線鏈路2420上連續傳輸的兩個符號之間的每個轉變中。每一對連續傳輸的符號可以包括兩個不同的符號。每個符號可以定義3線鏈路2420在相關聯的符號傳輸間隔期間的信號傳遞狀態,以使得在相關聯的符號傳輸間隔期間3線鏈路2420中的每條導線處於與該3線鏈路2420中的其他導線不同的信號傳遞狀態。
在一些實現方式中,在3線鏈路2420上傳輸的至少一個符號定義針對3線鏈路2420中的每條導線的非零電流,其中非零電流的總和為零。3線鏈路2420的導線的信號傳遞狀態可以包括七個電壓位準,其中在3線鏈路2420上傳輸的至少一個符號針對3線鏈路2420中的每條導線定義高於或低於該七個電壓位準的中間電壓位準的電壓位準。可以從針對3線鏈路2420定義的18個符號的集合中選擇每個符號以供傳輸。
在一個實例中,儲存媒體2718包括使得處理電路2702配置資料以使用3相編碼和PAM的組合來對二進位資料進行編碼的指令。指令可以使得處理電路2702在3線鏈路2420上傳輸第一符號。在一個實例中,當資料編碼器被配置用於第一編碼方案時,從12個符號的集合中選擇第一符號。在另一實例中,當資料編碼器被配置用於第二編碼方案時,從18個符號的集合中選擇第一符號。在另一實例中,當資料編碼器被配置用於第一編碼方案時,從42個符號的集合中選擇第一符號。指令可以使得處理電路2702在3線鏈路2420上傳輸第二符號。可以從排除第一符號的可用符號集合中選擇第二符號。
在某些實現方式中,儲存媒體2718包括使得處理電路2702進行以下操作的指令:向複數個線路驅動器提供控制信號,該等控制信號使得該複數個線路驅動器之每一者線路驅動器在針對每個符號提供的符號傳輸間隔期間將3線鏈路2420中的一條導線驅動到由每個符號定義的信號傳遞狀態。在一個實例中,該複數個線路驅動器包括三個電壓驅動器,並且儲存媒體2718可以包括使得處理電路2702進行以下操作的指令:配置每個電壓驅動器中的複數個開關,以使得3線鏈路2420中的每條導線在每個符號傳輸間隔期間經由該三個電壓驅動器中的一個電壓驅動器中的兩個或更多個電阻器耦合到一或多個電壓位準。儲存媒體2718可以包括使得處理電路2702進行以下操作的指令:配置每個符號傳輸間隔中每個電壓驅動器中的該複數個開關,以使得耦合到3線鏈路2420中的對應導線的電阻器組合與3線鏈路2420的對應導線的特徵阻抗相匹配。
在一個實例中,該複數個線路驅動器包括三個電流驅動器,並且儲存媒體2718可以包括使得處理電路2702進行以下操作的指令:配置複數個開關,此舉使得該三個電流驅動器之每一者電流驅動器在3線鏈路2420的對應導線中提供電流,該電流具有由在當前符號傳輸間隔中傳輸的符號定義的幅度。
在一些例子中,可以向線路驅動器提供控制信號,該等控制信號使得每個線路驅動器將3線鏈路中的一條導線驅動到由在符號傳輸間隔期間傳輸的符號所定義的信號傳遞狀態。當使用電壓模式線路驅動器時,控制信號可以配置線路驅動器中的複數個開關,以使得3線鏈路中的每條導線在每個符號傳輸間隔期間經由一或多個電阻器耦合到一或多個電壓位準。可以在每個符號傳輸間隔期間配置該複數個開關,以使得耦合到3線鏈路的導線的電阻器的每個組合與3線鏈路的特徵阻抗相匹配。當使用電流模式線路驅動器時,控制信號可以配置該複數個線路驅動器中的複數個開關,以使得3線鏈路中的每條導線耦合到在每條導線中提供電流的電流驅動器,其中該電流具有由在其對應的符號傳輸間隔中傳輸的符號所定義的幅度。電流模式線路驅動器可以包括耦合到3線鏈路以與3線鏈路的特徵阻抗相匹配的電阻器。
應理解,所揭示的過程中的步驟的特定順序或層次是示例性方法的說明。基於設計偏好,應理解,可以重新排列過程中的步驟的特定順序或層次。此外,一些步驟可以組合或省略。所附方法請求項以取樣順序呈現各個步驟的元素,並不意味著受限於所呈現的特定順序或層次。
提供以上的描述以使得任何熟習此項技術者能夠實施本文所描述的各個態樣。對於熟習此項技術者而言,對該等態樣的各種修改將是顯而易見的,並且可以將本文定義的整體原理應用於其他態樣。因此,各請求項並非意欲限制於本文所展示的態樣,而是應被給予與字面請求項相一致的完整範疇,其中除非特別如此聲明,否則對單數形式元素的引用並非意欲表示「有且僅有一個」,而是「一或多個」。除非另外特別聲明,否則術語「一些」是指一或多個。貫穿本案內容所描述的各個態樣的元素的對於一般技術者而言是公知的或即將成為公知的所有結構性和功能性等效項,其經由引用被明確地併入本文中並且意欲被包含在請求項中。此外,本文中沒有任何揭示內容意欲捐獻給公眾,不管此種揭示內容是否明確記載在申請專利範圍中。請求項元素不應被解讀為構件加功能,除非該元素是使用短語「用於…的構件」明確記載的。
100:裝置 102:處理電路 104:ASIC 106:周邊設備 108:收發機 110:數據機 112:處理器 114:板載記憶體 116:匯流排介面電路 118a:匯流排 118b:匯流排 120:匯流排 122:處理器可讀取儲存 124:天線 126:顯示器 128:開關/按鈕 130:開關/按鈕 132:外部鍵盤 200:裝置 202:IC元件 204:無線收發機 206:處理器 208:儲存媒體 210:實體層驅動器 212:內部匯流排 214:天線 220:通訊鏈路 222:前向通道 224:反向通道 226:雙向通道 230:IC元件 232:顯示器控制器 234:相機控制器 236:處理器 238:儲存媒體 240:實體層驅動器 242:內部匯流排 300:圖 302:映射器 304:並聯-串聯轉換器 306:3線3相編碼器 308:線路驅動器 310:16位元資料 312:7個符號 314:符號序列 316a:信號 316b:信號 316c:信號 318a:信號線 318b:信號線 318c:信號線 400:時序圖 402:曲線 404:曲線 406:曲線 408:極性 410:相位轉變 412:兩位元值 414:時間 450:環形狀態圖 452:順時針方向 452’:順時針方向 454:逆時針方向 454’:逆時針方向 500:3線3相解碼器 502a:差分接收器 502b:差分接收器 502c:差分接收器 504:導線狀態解碼器 506:串聯-並聯轉換器 508:解映射器 510:FIFO暫存器 514:符號 518:16位元資料 520:輸出 522:差分信號 524:CDR電路 526:時鐘 600:狀態圖 602:可能狀態 604:可能狀態 606:可能狀態 608:內圈 612:可能狀態 614:可能狀態 616:可能狀態 618:外圈 620:翻轉位元 622:旋轉位元 624:極性位元 626:FRP符號 628:狀態元素 700:匯流排介面電路 702:差分接收器 704:差分接收器 706:差分接收器 708:解碼器 710:差分信號 712:差分信號 714:差分信號 716:輸出 800:第一時序圖 802:信號傳遞狀態 804:信號傳遞狀態 806:信號傳遞狀態 808:轉變間隔 820:第二時序圖 822:信號傳遞狀態 824:信號傳遞狀態 826:信號傳遞狀態 828:信號傳遞狀態 830:轉變間隔 840:表 900:電壓模式線路驅動器 902:第一電阻器 904:第二電阻器 906:第三電阻器 908:第四電阻器 910:開關 912:開關 914a:開關 914b:開關 916:導線 918:高電壓位準 920:表 922:高信號傳遞狀態 924:低信號傳遞狀態 926:中間位準信號傳遞狀態 940:電流模式線路驅動器 942:第一電流源 944:第二電流源 946:開關 948:開關 950:導線 952:端接電阻器 960:表 962:高信號傳遞狀態 964:低信號傳遞狀態 966:中間位準信號傳遞狀態 1000:PAM驅動器 1002:第一電流單元 1004:第二電流單元 1020:時序圖 1022:狀態 1024:狀態 1026:狀態 1028:狀態 1100:介面 1102:傳輸器 1104:接收器 1106:3線鏈路 1108:線路驅動器 1110:差分接收器 1112:導線 1114:導線 1116:導線 1118:電阻器 1120:電阻器 1122:電阻器 1124:多狀態差分信號 1126:多狀態差分信號 1128:多狀態差分信號 1130:解碼器 1200:表 1220:時序圖 1222:信號傳遞狀態 1224:信號傳遞狀態 1226:信號傳遞狀態 1228:信號傳遞狀態 1230:信號傳遞狀態 1232:信號傳遞狀態 1234:信號傳遞狀態 1236:轉變時段 1300:時序圖 1302:零伏差值 1304:+6VState 差值 1306:-6VState 差值 1308:+2VState 差值 1310:-2VState 差值 1312:轉變時段 1320:表 1400:表 1402:第一組符號 1404:第二組符號 1500:表 1502:符號 1520:時序圖 1522:信號傳遞狀態 1524:信號傳遞狀態 1526:信號傳遞狀態 1528:信號傳遞狀態 1530:信號傳遞狀態 1532:轉變時段 1600:時序圖 1602:零伏位準 1604:+4VState 差值 1606:-4VState 差值 1608:+2VState 差值 1610:-2VState 差值 1612:轉變時段 1620:表 1700:符號集合 1702:第一組符號 1704:第二組符號 1800:表 1802:第一組符號 1804:第二組符號 1900:表 2000:解碼器架構 2002:PAM差分接收器 2004:PAM差分接收器 2006:PAM差分接收器 2008:解碼器 2010:輸出信號 2012:輸出信號 2014:輸出信號 2016:輸出 2100:介面 2102:傳輸器 2104:3線鏈路 2106:線路驅動器 2108:導線 2110:導線 2112:導線 2114:電阻器 2116:電阻器 2118:電阻器 2120:接收器 2122:緩衝器電路 2124:差分接收器 2126:類比差分信號 2128:類比差分信號 2130:類比差分信號 2132:比較器電路 2134:類比數位轉換器(ADC)電路 2136:類比數位轉換器(ADC)電路 2138:類比數位轉換器(ADC)電路 2140:閾值電壓位準 2142:多位元數位值 2144:多位元數位值 2146:多位元數位值 2200:電壓模式驅動器 2202:電阻器 2204:電阻器 2206:電阻器 2208:正電壓 2210:導線 2212:開關 2214:開關 2216:開關 2222:電阻器 2224:電阻器 2226:電阻器 2232:開關 2234:開關 2236:開關 2240:第一張表 2242:信號傳遞狀態 2250:電阻 2260:第二張表 2262:電阻值 2264:中間電阻值 2300:電流模式驅動器 2302:電流源 2304:電流源 2306:電流源 2310:導線 2312:開關 2314:開關 2316:開關 2322:電流源 2324:電流源 2326:電流源 2332:開關 2334:開關 2336:開關 2338:電阻 2340:第一張表 2342:信號傳遞狀態 2350:電流模式驅動器 2352:第一電流源 2354:第二電流源 2356:開關 2358:開關 2360:導線 2362:第一電流源 2364:第二電流源 2366:開關 2368:開關 2372:電阻 2380:第二張表 2382:信號傳遞狀態 2400:系統 2402:傳輸器 2404:資料緩衝器 2406:資料編碼器 2408:符號表 2410:導線狀態編碼器 2412:時鐘產生器 2414:線路驅動器 2416:多位元碼 2418:控制信號 2420:3線鏈路 2422:接收器 2424:FIFO 2426:資料解碼器 2428:符號表 2430:導線狀態解碼器 2432:CDR 2434:差分接收器 2500:概念圖 2502:處理電路 2504:處理器 2506:處理器可讀取儲存媒體 2508:匯流排介面 2510:匯流排 2512:收發機 2514:運行時間鏡像 2516:軟體模組 2518:使用者介面 2520:分時共用程式 2522:邏輯電路 2600:流程圖 2602:方塊 2604:方塊 2700:裝置 2702:處理電路 2704:模組或電路 2706:模組或電路 2708:模組或電路 2710:匯流排 2712:線路驅動器 2716:處理器 2718:處理器可讀取儲存媒體
圖1圖示了在IC元件之間採用根據複數種可用標準或協定(其可以包括C-PHY協定)中的一種來選擇性地操作的資料連結的裝置。
圖2圖示用於在IC元件之間採用根據複數種可用標準中的一種選擇性地操作的資料連結的裝置的系統架構。
圖3圖示C-PHY 3相傳輸器。
圖4圖示C-PHY 3相編碼介面中的信號傳遞。
圖5圖示C-PHY 3相接收器。
圖6是圖示C-PHY 3相編碼介面中的潛在狀態轉變的狀態圖。
圖7圖示可以根據本文所揭示的某些態樣來調適的C-PHY接收器的接收器中提供的匯流排介面電路。
圖8圖示與圖7的匯流排介面電路相關聯的信號傳遞。
圖9圖示可以根據本文所揭示的某些態樣來調適的C-PHY驅動器電路的實例。
圖10圖示被配置為使用四種信號傳遞狀態來編碼兩位元資料的PAM驅動器的實例。
圖11圖示被配置為支援根據本案內容的某些態樣來提供的一或多個經組合的3相和PAM編碼方案的介面。
圖12-圖14圖示根據本案內容的某些態樣的其中3相編碼與PAM-4調制相組合的編碼方案的第一實例。
圖15-圖17圖示根據本案內容的某些態樣的其中3相編碼與PAM-3調制相組合的編碼方案的第二實例。
圖18和圖19圖示根據本案內容的某些態樣的將3相編碼與PAM-8調制進行組合的編碼方案的第三實例。
圖20圖示支援根據本案內容的某些態樣來提供的一或多個經組合的3相和PAM編碼方案的解碼器。
圖21圖示根據本案內容的某些態樣的採用被配置為在使用3相編碼和PAM-4調制的組合來傳輸的符號之間進行區分的接收器電路的介面。
圖22圖示根據本案內容的某些態樣來配置或調適的電壓模式驅動器。
圖23圖示根據本案內容的某些態樣來配置或調適的電流模式驅動器的實例。
圖24圖示根據本文所揭示的某些態樣的已被調適為支援使用PAM來調制多相信號的編碼方案的系統的實例。
圖25圖示採用已根據本文所揭示的某些態樣來調適的處理電路的裝置的實例。
圖26是根據本文所揭示的某些態樣的在接收器處執行的方法的流程圖。
圖27是圖示根據文字所揭示的某些態樣的用於接收裝置的硬體實現方式的實例的圖。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
2400:系統
2402:傳輸器
2404:資料緩衝器
2406:資料編碼器
2408:符號表
2410:導線狀態編碼器
2412:時鐘產生器
2414:線路驅動器
2416:多位元碼
2418:控制信號
2420:3線鏈路
2422:接收器
2424:FIFO
2426:資料解碼器
2428:符號表
2430:導線狀態解碼器
2432:CDR
2434:差分接收器

Claims (30)

  1. 一種用於資料通訊的裝置,包括: 複數個線路驅動器,該複數個線路驅動器被配置為:將該裝置耦合到一3線鏈路;及 一資料編碼器,該資料編碼器被配置為:將至少3位元的二進位資料編碼到由該複數個線路驅動器在該3線鏈路上連續傳輸的兩個符號之間的每個轉變中, 其中在該3線鏈路上傳輸的每個符號定義該3線鏈路在一相關聯的符號傳輸間隔期間的信號傳遞狀態,以使得該3線鏈路中的每條導線在該相關聯的符號傳輸間隔期間處於與該3線鏈路中的其他導線不同的一信號傳遞狀態,並且 其中每一對連續傳輸的符號包括兩個不同的符號。
  2. 根據請求項1之裝置,其中在該3線鏈路上傳輸的至少一個符號定義針對該3線鏈路中的每條導線的非零電流,並且其中該等非零電流的一總和為零。
  3. 根據請求項1之裝置,其中針對該3線鏈路中的該等導線定義的信號傳遞狀態包括至少5個電壓或電流位準,並且其中在該3線鏈路上傳輸的至少一個符號定義針對該3線鏈路中的每條導線的一電壓或電流位準,該電壓或電流位準高於或低於該至少5個電壓或電流位準的一中間電壓位準。
  4. 根據請求項1之裝置,其中該資料編碼器亦被配置為: 使用3相編碼和脈衝幅度調制的一組合來對該至少3位元的二進位資料進行編碼;及 在該3線鏈路上傳輸一第一符號,其中當該資料編碼器被配置用於一第一編碼方案時,該第一符號是從12個符號的一集合中選擇的,當該資料編碼器被配置用於一第二編碼方案時,該第一符號是從18個符號的一集合中選擇的,並且當該資料編碼器被配置用於一第三編碼方案時,該第一符號是從42個符號的一集合中選擇的。
  5. 根據請求項4之裝置,其中該資料編碼器亦被配置為: 在該3線鏈路上傳輸一第二符號,其中該第二符號是從排除該第一符號的一可用符號集合中選擇的。
  6. 根據請求項1之裝置,亦包括一導線狀態編碼器,該導線狀態編碼器被配置為: 從該資料編碼器接收一符號序列;及 向該複數個線路驅動器提供控制信號,該等控制信號使得該複數個線路驅動器之每一者線路驅動器將該3線鏈路中的一條導線驅動到由該符號序列定義的信號傳遞狀態。
  7. 根據請求項6之裝置,其中該等控制信號配置該複數個線路驅動器中的複數個開關,以使得該3線鏈路中的每條導線在每個符號傳輸間隔期間經由一或多個電阻器耦合到一或多個電壓位準。
  8. 根據請求項7之裝置,其中該複數個開關在每個符號傳輸間隔中被配置,以使得耦合到該3線鏈路中的一導線的電阻器的每個組合與該3線鏈路的一特徵阻抗相匹配。
  9. 根據請求項6之裝置,其中該等控制信號配置該複數個線路驅動器中的複數個開關,以使得該3線鏈路中的每條導線耦合到在該每條導線中提供一電流的一電流驅動器,該電流具有由在一對應的符號傳輸間隔中傳輸的一符號所定義的一幅度。
  10. 根據請求項9之裝置,其中該3線鏈路中的每條導線耦合到與該3線鏈路的一特徵阻抗相匹配的一電阻器。
  11. 一種用於資料通訊的方法,包括以下步驟: 在一3線鏈路上傳輸複數個符號,其中每個符號定義該3線鏈路在一相關聯的符號傳輸間隔期間的信號傳遞狀態,以使得該3線鏈路中的每條導線在該相關聯的符號傳輸間隔期間處於與該3線鏈路中的其他導線不同的一信號傳遞狀態;及 將至少3位元的二進位資料編碼到在該3線鏈路上連續傳輸的兩個符號之間的每個轉變中,其中每一對連續傳輸的符號包括兩個不同的符號。
  12. 根據請求項11之方法,其中在該3線鏈路上傳輸的至少一個符號定義針對該3線鏈路中的每條導線的非零電流,並且其中該等非零電流的一總和為零。
  13. 根據請求項11之方法,其中針對該3線鏈路中的該等導線定義的信號傳遞狀態包括至少5個電壓或電流位準,並且其中在該3線鏈路上傳輸的至少一個符號定義針對該3線鏈路中的每條導線的一電壓或電流位準,該電壓或電流位準高於或低於該至少5個電壓或電流位準的一中間電壓位準。
  14. 根據請求項11之方法,亦包括以下步驟: 使用3相編碼和脈衝幅度調制的一組合來對該至少3位元的二進位資料進行編碼;及 在該3線鏈路上傳輸一第一符號, 其中當使用一第一編碼方案時,該第一符號是從12個符號的一集合中選擇的,其中當使用一第二編碼方案時,該第一符號是從18個符號的一集合中選擇的,並且其中當使用一第三編碼方案時,該第一符號是從42個符號的一集合中選擇的。
  15. 根據請求項14之方法,亦包括以下步驟: 在該3線鏈路上傳輸一第二符號,其中該第二符號是從排除該第一符號的一可用符號集合中選擇的。
  16. 根據請求項11之方法,亦包括以下步驟: 向複數個線路驅動器提供控制信號,該等控制信號使得該複數個線路驅動器之每一者線路驅動器將該3線鏈路中的一條導線驅動到由在一符號傳輸間隔期間傳輸的一符號所定義的一信號傳遞狀態。
  17. 根據請求項16之方法,其中該等控制信號配置該複數個線路驅動器中的複數個開關,以使得該3線鏈路中的每條導線在每個符號傳輸間隔期間經由一或多個電阻器耦合到一或多個電壓位準。
  18. 根據請求項17之方法,其中該複數個開關在每個符號傳輸間隔中被配置,以使得耦合到該3線鏈路中的一導線的電阻器的每個組合與該3線鏈路的一特徵阻抗相匹配。
  19. 根據請求項16之方法,其中該等控制信號配置該複數個線路驅動器中的複數個開關,以使得該3線鏈路中的每條導線耦合到在該每條導線中提供一電流的一電流驅動器,該電流具有由在其對應的符號傳輸間隔中傳輸的一符號所定義的一幅度。
  20. 根據請求項19之方法,其中耦合到該3線鏈路的電阻器與該3線鏈路的一特徵阻抗相匹配。
  21. 一種處理器可讀取儲存媒體,其包括用於以下操作的代碼: 在一3線鏈路上傳輸複數個符號,其中每個符號定義該3線鏈路在一相關聯的符號傳輸間隔期間的信號傳遞狀態,以使得該3線鏈路中的每條導線在該相關聯的符號傳輸間隔期間處於與該3線鏈路中的其他導線不同的一信號傳遞狀態;及 將至少3位元的二進位資料編碼到在該3線鏈路上連續傳輸的兩個符號之間的每個轉變中,其中每一對連續傳輸的符號包括兩個不同的符號。
  22. 根據請求項21之儲存媒體,其中在該3線鏈路上傳輸的至少一個符號定義針對該3線鏈路中的每條導線的非零電流,並且其中該等非零電流的一總和為零。
  23. 根據請求項21之儲存媒體,其中該3線鏈路中的該等導線的該等信號傳遞狀態包括至少5個電壓或電流位準,並且其中在該3線鏈路上傳輸的至少一個符號定義針對該3線鏈路中的每條導線的一電壓或電流位準,該電壓或電流位準高於或低於該至少5個電壓或電流位準的一中間電壓位準。
  24. 根據請求項21之儲存媒體,亦包括: 使用3相編碼和脈衝幅度調制的一組合來對該至少3位元的二進位資料進行編碼; 在該3線鏈路上傳輸一第一符號,其中當使用一第一編碼方案時,該第一符號是從12個符號的一集合中選擇的,其中當使用一第二編碼方案時,該第一符號是從18個符號的一集合中選擇的,並且其中當使用一第三編碼方案時,該第一符號是從42個符號的一集合中選擇的;及 在該3線鏈路上傳輸一第二符號,其中該第二符號是從排除該第一符號的一可用符號集合中選擇的。
  25. 根據請求項21之儲存媒體,亦包括: 向複數個線路驅動器提供控制信號,該等控制信號使得該複數個線路驅動器之每一者線路驅動器將該3線鏈路中的一條導線驅動到由在一符號傳輸間隔期間傳輸的一符號所定義的一信號傳遞狀態, 其中該等控制信號配置該複數個線路驅動器中的複數個開關,以使得該3線鏈路中的每條導線在每個符號傳輸間隔期間經由一或多個電阻器耦合到一或多個電壓位準,並且 其中該複數個開關在每個符號傳輸間隔中被配置,以使得耦合到該3線鏈路中的一導線的電阻器的每個組合與該3線鏈路的一特徵阻抗相匹配。
  26. 根據請求項21之儲存媒體,亦包括: 向複數個線路驅動器提供控制信號,該等控制信號使得該複數個線路驅動器之每一者線路驅動器將該3線鏈路中的一條導線驅動到由一符號序列定義的信號傳遞狀態, 其中該等控制信號配置該複數個線路驅動器中的複數個開關,以使得該3線鏈路中的每條導線耦合到在該每條導線中提供一電流的一電流驅動器,該電流具有由在其對應的符號傳輸間隔中傳輸的一符號所定義的一幅度。
  27. 一種資料通訊裝置,包括: 用於在一3線鏈路上傳輸複數個符號的構件,其中每個符號定義該3線鏈路在一相關聯的符號傳輸間隔期間的信號傳遞狀態,以使得該3線鏈路中的每條導線在該相關聯的符號傳輸間隔期間處於與該3線鏈路中的其他導線不同的一信號傳遞狀態;及 用於將至少3位元的二進位資料編碼到在該3線鏈路上連續傳輸的兩個符號之間的每個轉變中的構件,其中每一對連續傳輸的符號包括兩個不同的符號。
  28. 根據請求項27之裝置,其中在該3線鏈路上傳輸的至少一個符號定義針對該3線鏈路中的每條導線的非零電流,並且其中該等非零電流的一總和為零。
  29. 根據請求項27之裝置,其中該3線鏈路中的該等導線的該等信號傳遞狀態包括至少5個電壓或電流位準,並且其中在該3線鏈路上傳輸的至少一個符號定義針對該3線鏈路中的每條導線的一電壓或電流位準,該電壓或電流位準高於或低於該至少5個電壓或電流位準的一中間電壓位準。
  30. 根據請求項27之裝置,亦包括: 用於向複數個線路驅動器提供控制信號的構件,該等控制信號使得該複數個線路驅動器之每一者線路驅動器將該3線鏈路中的一條導線驅動到由一符號序列定義的信號傳遞狀態。
TW109126475A 2019-08-19 2020-08-05 用於多相和幅度編碼傳輸器的驅動器架構 TWI766333B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962888995P 2019-08-19 2019-08-19
US62/888,995 2019-08-19
US16/984,896 US11108604B2 (en) 2019-08-19 2020-08-04 Driver architecture for multiphase and amplitude encoding transmitters
US16/984,896 2020-08-04

Publications (2)

Publication Number Publication Date
TW202127842A true TW202127842A (zh) 2021-07-16
TWI766333B TWI766333B (zh) 2022-06-01

Family

ID=74646905

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109126475A TWI766333B (zh) 2019-08-19 2020-08-05 用於多相和幅度編碼傳輸器的驅動器架構

Country Status (8)

Country Link
US (1) US11108604B2 (zh)
EP (1) EP4018609A1 (zh)
JP (1) JP7179223B2 (zh)
KR (1) KR102373324B1 (zh)
CN (1) CN114258537B (zh)
BR (1) BR112022002601A2 (zh)
TW (1) TWI766333B (zh)
WO (1) WO2021034503A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11240077B2 (en) * 2019-10-29 2022-02-01 Qualcomm Incorporated C-PHY half-rate wire state encoder and decoder
US11121850B1 (en) * 2020-07-02 2021-09-14 Rohde & Schwarz Gmbh & Co. Kg Signal analysis method and signal analysis module
KR20220138100A (ko) * 2021-04-05 2022-10-12 에스케이하이닉스 주식회사 듀오바이너리 신호를 송신하는 송신기
US20220350522A1 (en) * 2021-04-29 2022-11-03 Micron Technology, Inc. Multi-driver signaling
US11545980B1 (en) 2021-09-08 2023-01-03 Qualcomm Incorporated Clock and data recovery for multi-phase, multi-level encoding
US11942968B2 (en) * 2022-04-25 2024-03-26 Samsung Electronics Co., Ltd. Transmitter and receiver for 3-level pulse amplitude modulation signaling and system including the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333508A (ja) * 2004-05-21 2005-12-02 Sony Corp 信号変換装置およびドライバ装置
US7983347B2 (en) * 2006-04-27 2011-07-19 Panasonic Corporation Multiple differential transmission system including signal transmitter and signal receiver connected via three signal lines
JP2008048305A (ja) * 2006-08-21 2008-02-28 Elite Semiconductor Memory Technology Inc ハーフスイングパルス幅変調を備えたd級音響増幅器
US10318158B2 (en) 2012-05-17 2019-06-11 Brilliant Points, Inc. System and method for digital signaling and digital storage
US9137008B2 (en) * 2013-07-23 2015-09-15 Qualcomm Incorporated Three phase clock recovery delay calibration
US9961174B2 (en) 2014-01-15 2018-05-01 Qualcomm Incorporated Analog behavior modeling for 3-phase signaling
US9252997B1 (en) * 2014-07-10 2016-02-02 Qualcomm Incorporated Data link power reduction technique using bipolar pulse amplitude modulation
US9548876B2 (en) * 2015-05-06 2017-01-17 Mediatek Inc. Multiple transmitter system and method for controlling impedances of multiple transmitter system
US9584227B2 (en) * 2015-07-17 2017-02-28 Qualcomm Incorporated Low-power mode signal bridge for optical media
US9520988B1 (en) * 2015-08-04 2016-12-13 Qualcomm Incorporated Adaptation to 3-phase signal swap within a trio
US9577854B1 (en) * 2015-08-20 2017-02-21 Micron Technology, Inc. Apparatuses and methods for asymmetric bi-directional signaling incorporating multi-level encoding
US9485080B1 (en) * 2015-09-01 2016-11-01 Qualcomm Incorporated Multiphase clock data recovery circuit calibration

Also Published As

Publication number Publication date
BR112022002601A2 (pt) 2022-05-03
WO2021034503A1 (en) 2021-02-25
JP7179223B2 (ja) 2022-11-28
TWI766333B (zh) 2022-06-01
CN114258537A (zh) 2022-03-29
CN114258537B (zh) 2023-03-28
US11108604B2 (en) 2021-08-31
US20210058280A1 (en) 2021-02-25
KR20220025226A (ko) 2022-03-03
KR102373324B1 (ko) 2022-03-10
EP4018609A1 (en) 2022-06-29
JP2022536203A (ja) 2022-08-12

Similar Documents

Publication Publication Date Title
TWI766333B (zh) 用於多相和幅度編碼傳輸器的驅動器架構
JP6325537B2 (ja) N相極性出力ピンモードマルチプレクサ
JP2018526889A (ja) 2つの集積回路デバイス間での3ワイヤ通信リンクにおける3相信号スワップへの適合のための方法、装置、および記憶媒体
WO2015021262A1 (en) Run-length detection and correction
KR102652302B1 (ko) 다상 다중 레벨 인코딩을 위한 클록 및 데이터 복구
TWI691168B (zh) C-phy接收器均衡
CN114631291B (zh) C-phy半速率线状态编码器和解码器
WO2019139729A1 (en) Simplified c-phy high-speed reverse mode
TWI822732B (zh) 獨立配對的3相眼圖取樣電路
US11764733B2 (en) C-PHY receiver with self-regulated common mode servo loop
WO2019060198A1 (en) MAPPING AND CODING IN THREE SIMPLE PHASES
US20240160516A1 (en) C-phy receiver corrupt post pattern filter
EP4381394A1 (en) C-phy receiver with self-regulated common mode servo loop
TW202147138A (zh) 在c-phy介面中的單位間隔訊號干擾改進
EP4381683A1 (en) Clock and data recovery for multi-phase, multi-level encoding