TW202124944A - 確定單晶矽半導體晶圓中的缺陷密度的方法 - Google Patents

確定單晶矽半導體晶圓中的缺陷密度的方法 Download PDF

Info

Publication number
TW202124944A
TW202124944A TW109143001A TW109143001A TW202124944A TW 202124944 A TW202124944 A TW 202124944A TW 109143001 A TW109143001 A TW 109143001A TW 109143001 A TW109143001 A TW 109143001A TW 202124944 A TW202124944 A TW 202124944A
Authority
TW
Taiwan
Prior art keywords
semiconductor wafer
orientation
separation
along
plane
Prior art date
Application number
TW109143001A
Other languages
English (en)
Inventor
史戴芬 包爾
羅伯特 克雷茲雀默
Original Assignee
德商世創電子材料公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商世創電子材料公司 filed Critical 德商世創電子材料公司
Publication of TW202124944A publication Critical patent/TW202124944A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • G01N21/9503Wafer edge inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • G01N21/9505Wafer internal defects, e.g. microcracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • G01N2021/3568Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor applied to semiconductors, e.g. Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一種藉由雷射散射斷層掃描確定單晶矽半導體晶圓中的缺陷密度的方法,該方法包含藉由IR雷射沿著平行於分離平面的掃描路徑輻照所分離的半導體晶圓,分離平面與該半導體晶圓的一表面圍成90°的角度,其中藉由熱雷射光束分離沿著分離線將該半導體晶圓垂直於該半導體晶圓之該表面地分離,該半導體晶圓之該表面基本上是{111}取向。

Description

確定單晶矽半導體晶圓中的缺陷密度的方法
本發明是一種用於藉由雷射散射斷層掃描(LST)確定單晶矽半導體晶圓中的缺陷密度的方法,該方法包含:沿著平行於分離平面的掃描路徑,藉由在紅外線波長光譜(IR雷射)中操作的雷射器輻照所分離的半導體晶圓,該分離平面與該半導體晶圓的一表面圍成90°角。
現有技術/問題
雷射散射斷層掃描(LST)是一種用於確定由單晶矽製成的半導體晶圓中的缺陷密度的分析技術。分析技術的原理例如描述在JP 7-239 308 A中。用於執行分析技術的設備是商業上已提供的。
根據WO 2018/155 126 A1,該分析技術可以用於例如檢測晶格中空位的附聚物(agglomerate)。然而,更經常地,該分析技術被用於確定晶格中的體微缺陷(BMD)的密度。當氧在晶格中沉澱時,可能會發生BMD。該分析技術的一個應用例子係描述於例如JP 2010-48 795 A中。
上述分析方法的特徵是,半導體晶圓被分離以便暴露出與半導體晶圓的表面成90°角度的平面。通常利用以下特性來分離半導體晶圓:由矽製成的單晶半導體晶圓可以沿特定優先平面機械地分裂(split)。
JP 2015-211 045 A描述了如何機械地分裂直徑為300 mm的[100]取向的單晶矽半導體晶圓,以暴露{110}取向的分離平面,儘管事實是{111}取向的平面中的原子具有最低的結合力(bonding force)。
US 2011/095 399 A1揭露了將具有(111)取向的半導體晶圓也切割成矩形的可能性。
已經顯示,在上述分析技術的應用過程中,出於製備{111}取向的單晶矽半導體晶圓目的的用於產生分離平面的機械方法,並沒有提供品質夠好的分離平面。由於較低的結合力,晶格趨向於沿著{111}取向平面分裂,該{111}取向平面與半導體晶圓的{111}取向表面圍成大約70.5°的角度。
由所描述的問題情形產生本發明的目的。
本發明的目的是通過一種藉由雷射散射斷層掃描確定單晶矽半導體晶圓中的缺陷密度的方法實現的,該方法包含藉由IR雷射沿著平行於分離平面的掃描路徑輻照所分離的半導體晶圓,該分離平面與半導體晶圓的一表面圍成90°的角度,其中藉由熱雷射光束分離沿著分離線將半導體晶圓垂直於該半導體晶圓之該表面地分離,該半導體晶圓之該表面基本上是{111}取向。
半導體晶圓的分離產生分離平面,該分離平面與該半導體晶圓之該表面圍成90°的角度。
基本上{111}取向是指半導體晶圓的表面是{111}取向,或具有取向差不大於2°的{111}取向。
單晶矽半導體晶圓在分割之前較佳具有例如不小於150 mm至300 mm的直徑和不小於600 μm的厚度。在分離半導體晶圓之前,半導體晶圓的{111}取向表面較佳處於經過鏡面蝕刻或經過拋光的狀態。
熱雷射光束分離(TLS)的基本原理描述於例如DE 10 2017 202 426 A1和WO 2007/016 895 A1中。該技術涉及沿分離線的一部分對工件上或工件中的材料進行初始削減。為此,可以沿著分離線的部分機械地使半導體晶圓的表面凹入,或者可以藉由雷射燒蝕引起該部分中材料的削減。該部分具有較佳地不大於10 mm且不小於0.5 mm的長度,並且較佳地位於分離線的起點,半導體晶圓的期望分離係沿著該分離線發生。TLS操作本身涉及藉由激光輻射沿著分離線對半導體晶圓進行局部加熱,然後藉由冷卻介質沿著分離線對半導體晶圓進行局部冷卻。
沿著其分離半導體晶圓的分離線較佳係延著半導體晶圓的直徑。此外,較佳使分離線在{110}取向或與{110}平面成90°角度的平面中延伸。
對於在TLS操作之後形成的分離平面,沒有規定在藉由雷射散射斷層掃描確定缺陷密度之前必須被拋光。
本發明的方法較佳地用於確定體微缺陷(BMD)的密度和例如是晶體起源顆粒(COP)的空位附聚物的密度。

Claims (3)

  1. 一種藉由雷射散射斷層掃描確定單晶矽半導體晶圓中的缺陷密度的方法,該方法包含:沿著平行於分離平面的掃描路徑,藉由IR雷射輻照所分離的半導體晶圓,該分離平面與該半導體晶圓的一表面圍成90°的角度,其中,藉由熱雷射光束分離,沿著分離線將該半導體晶圓垂直於該半導體晶圓之該表面地分離,該半導體晶圓之該表面基本上是{111}取向。
  2. 如請求項1所述的方法,其中該半導體晶圓的該表面是{111}取向,或者與此取向具有不大於2°的取向差。
  3. 如請求項1或2所述的方法,其中該分離線沿著該半導體晶圓的直徑,並且在{110}取向的平面內延伸或者與{110}平面圍成90°的角度。
TW109143001A 2019-12-18 2020-12-07 確定單晶矽半導體晶圓中的缺陷密度的方法 TW202124944A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19217520.6A EP3839107A1 (de) 2019-12-18 2019-12-18 Verfahren zur bestimmung von defektdichten in halbleiterscheiben aus einkristallinem silizium
EP19217520 2019-12-18

Publications (1)

Publication Number Publication Date
TW202124944A true TW202124944A (zh) 2021-07-01

Family

ID=68944648

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109143001A TW202124944A (zh) 2019-12-18 2020-12-07 確定單晶矽半導體晶圓中的缺陷密度的方法

Country Status (3)

Country Link
EP (1) EP3839107A1 (zh)
TW (1) TW202124944A (zh)
WO (1) WO2021122014A1 (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07239308A (ja) 1994-02-28 1995-09-12 Mitsubishi Materials Corp 赤外線トモグラフィー装置
DE102004063180B4 (de) 2004-12-29 2020-02-06 Robert Bosch Gmbh Verfahren zum Herstellen von Halbleiterchips aus einem Siliziumwafer und damit hergestellte Halbleiterbauelemente
DE102005038027A1 (de) 2005-08-06 2007-02-08 Jenoptik Automatisierungstechnik Gmbh Verfahren zum Durchtrennen von spröden Flachmaterialien
JP4322881B2 (ja) * 2006-03-14 2009-09-02 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP2010048795A (ja) 2008-07-22 2010-03-04 Shin Etsu Handotai Co Ltd シリコン単結晶ウエーハの結晶欠陥の検出方法
JP6281401B2 (ja) 2014-04-23 2018-02-21 信越半導体株式会社 ウェーハのへき開方法及びウェーハの評価方法
DE102017202426A1 (de) 2017-02-15 2018-08-16 3D-Micromac Ag TLS-Verfahren und TLS-Vorrichtung
JP6627800B2 (ja) 2017-02-21 2020-01-08 信越半導体株式会社 シリコン単結晶ウエハの欠陥領域判定方法

Also Published As

Publication number Publication date
EP3839107A1 (de) 2021-06-23
WO2021122014A1 (de) 2021-06-24

Similar Documents

Publication Publication Date Title
US7605344B2 (en) Laser beam machining method, laser beam machining apparatus, and laser beam machining product
TW200425313A (en) Semiconductor wafer dividing method and apparatus
KR102062410B1 (ko) 웨이퍼의 분할 방법
CN110858550B (zh) 小面区域的检测方法和检测装置
TWI610357B (zh) 晶圓加工方法
TWI683359B (zh) 晶圓的加工方法
KR102633877B1 (ko) 검사용 웨이퍼 및 에너지 분포의 검사 방법
KR20180018353A (ko) SiC 웨이퍼의 생성 방법
JP2006208314A (ja) シリコン単結晶ウエーハの結晶欠陥の評価方法
US20080302295A1 (en) Method of Evaluating Quality of Silicon Single Crystal
TW202124944A (zh) 確定單晶矽半導體晶圓中的缺陷密度的方法
TW202211313A (zh) 晶圓的加工方法
JP2010103450A (ja) シリコンウェーハの製造方法
TW201808509A (zh) 晶圓之加工方法
JP6974986B2 (ja) 電子顕微鏡観察用の包埋樹脂試料の作製方法およびそれに用いる型枠。
WO2023106017A1 (ja) ウェハ製造方法
JP2004311700A (ja) 結晶欠陥の評価方法と評価用試料
JP2024043868A (ja) 被加工物の検査方法及び検査装置
JP2005503671A (ja) X線を用いて半導体材料のウェハを検査する方法
JP2021141107A (ja) ウェーハ表面の改質装置および方法
Skoglund et al. Laser Milling Techniques for Stacked Die Package Applications
KR20230038277A (ko) 단결정질 실리콘의 결정 단편
JP2010087375A (ja) シリコンウェーハの製造方法
JP5861333B2 (ja) 貼り合わせ基板の貼り合わせ面の評価方法
JP2000332078A (ja) 大口径ウェーハの評価方法