JP2024043868A - 被加工物の検査方法及び検査装置 - Google Patents

被加工物の検査方法及び検査装置 Download PDF

Info

Publication number
JP2024043868A
JP2024043868A JP2022149086A JP2022149086A JP2024043868A JP 2024043868 A JP2024043868 A JP 2024043868A JP 2022149086 A JP2022149086 A JP 2022149086A JP 2022149086 A JP2022149086 A JP 2022149086A JP 2024043868 A JP2024043868 A JP 2024043868A
Authority
JP
Japan
Prior art keywords
workpiece
layer
peeling
light
peeling layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022149086A
Other languages
English (en)
Inventor
勇人 伊賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2022149086A priority Critical patent/JP2024043868A/ja
Priority to KR1020230120077A priority patent/KR20240040030A/ko
Priority to DE102023208887.8A priority patent/DE102023208887A1/de
Priority to US18/467,871 priority patent/US20240094143A1/en
Priority to CN202311199565.2A priority patent/CN117747457A/zh
Publication of JP2024043868A publication Critical patent/JP2024043868A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • G01N21/9505Wafer internal defects, e.g. microcracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0823Devices involving rotation of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0011Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1734Sequential different kinds of measurements; Combining two or more methods
    • G01N2021/1736Sequential different kinds of measurements; Combining two or more methods with two or more light sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/021Special mounting in general

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Quality & Reliability (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Laser Beam Processing (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】インゴットの内部に形成された剥離層を、生産性を低下させることなく、なおかつ、ソーマークの影響を受けることなく判定することが可能な被加工物の検査方法及び検査装置を提供すること。【解決手段】被加工物の検査方法は、被加工物100の内部に上面101に平行な改質層及び改質層から伸展するクラックとからなる剥離層110を形成する剥離層形成ステップと、剥離層形成ステップを実施した後、被加工物100を透過するとともに剥離層110のクラックで反射する波長の光25を剥離層110が形成された被加工物100の上面101の全面に対して照射する照射ステップと、照射ステップで照射され、クラックにより反射された反射光35を受光する受光ステップと、受光ステップで受光した反射光35の強度に基づいて、剥離層110の状態を判定する判定ステップと、を備える。【選択図】図6

Description

本発明は、単結晶シリコンからなる被加工物の検査方法及び検査装置に関する。
シリコンインゴットや化合物半導体インゴット等からウエーハを切り出す手段として、ワイヤソーが知られている。ワイヤソーは、複数のローラの周囲に切断用ワイヤが多数巻き掛けられることによりワイヤ列が形成されており、この切断用ワイヤをインゴットに対して切り込み送りすることによりワイヤ位置で切断するものである(例えば、特許文献1参照)。しかしながら、ワイヤソーの切り代は300μm前後と比較的大きく、また、切断後の表面を平坦化するためにラッピングやエッチング、ポリッシングを行う必要があるため、ウエーハとして用いられる素材量は元のインゴットの1/3程度となり生産性が悪いという課題があった。
そこで、インゴットに対してレーザービームを照射することでインゴット内部に改質部とクラックからなる剥離層を形成し、この剥離層を起点としてインゴットからウエーハを剥離する技術が考案された(特許文献2参照)。これにより、ワイヤソーと比較して格段に材料損失を低減させることが可能となったが、剥離層を起点として剥離する際に、剥離層の形成や剥離処理(超音波の付与等)が不十分なことにより剥離できないケースがあることが分かってきた。
そこで、剥離層が形成されていない領域を特定し、追加で加工処理や剥離処理をするために、インゴットに対して光を照射することでインゴット内部に形成された剥離層を検出する方法が考案された(特許文献3、4参照)。
特開平09-262826号公報 特開2022-025566号公報 特開2021-068819号公報 特開2018-147928号公報
ところが、特許文献3の方法においては、加工送り方向と平行な方向に沿って集光レンズと剥離層検知ユニットとが隣接して設けられているため、レーザー加工が終わった時点では検知できない領域が発生してしまう。従って、加工は終了しているにも関わらず剥離層を検知するために集光レンズと剥離層検知ユニットとをオーバーランさせる必要が生じ、インゴットの大径化等に伴って生産性の低下を招く恐れがあった。また、特許文献4の方法においては、所謂魔鏡の原理を用いてインゴットの内部に生じた剥離層の状態を判定しているが、インゴット表面のソーマークの影響を受けやすいという問題があった。
本発明は、かかる問題点に鑑みてなされたものであり、その目的は、インゴットの内部に形成された剥離層を、生産性を低下させることなく、なおかつ、ソーマークの影響を受けることなく判定することが可能な被加工物の検査方法及び検査装置を提供することである。
上述した課題を解決し、目的を達成するために、本発明の被加工物の検査方法は、結晶面{100}に含まれる特定の結晶面が上面および下面のそれぞれに露出するように製造された単結晶シリコンからなる被加工物の検査方法であって、該被加工物に対して透過性を有する波長のレーザービームの集光点を該被加工物の上面から製造するウエーハの厚みに相当する深さに位置づけるとともに、該集光点と該被加工物とを相対的に加工送り方向に移動しながらレーザービームを照射して、該被加工物の内部に該上面に平行な改質層及び該改質層から伸展するクラックを形成する剥離層形成ステップと、該剥離層形成ステップを実施した後、該被加工物を透過するとともに該剥離層のクラックで反射する波長の光を該剥離層が形成された被加工物の上面全面に対して照射する照射ステップと、該照射ステップで照射され、該クラックにより反射された反射光を受光する受光ステップと、該受光ステップで受光した反射光の強度に基づいて、該剥離層の状態を判定する判定ステップと、を備えることを特徴とする。
該判定ステップでは、該反射光強度が、第一の所定値より大きいか否かで、該剥離層の隣接するクラック同士が繋がって形成されているか否かを判定し、該判定ステップで剥離層の隣接する該クラック同士が繋がっていると判定された場合、該被加工物に対して外力を付与して該剥離層を起点として該被加工物からウエーハを剥離する剥離ステップを更に実施してもよい。
該剥離層形成ステップを実施した後、該被加工物に対して外力を付与して該剥離層を起点として該被加工物からウエーハを剥離する剥離ステップを更に実施し、該剥離ステップで該被加工物から該ウエーハを剥離できなかった場合に、該照射ステップ、該受光ステップおよび該判定ステップを実施してもよい。
該判定ステップでは、該反射光強度が、該剥離層の隣接するクラック同士が繋がって形成されているか否かの判定基準である第一の所定値よりも大きい第二の所定値より大きいか否かで、該剥離層を起点として該被加工物からウエーハが剥離しているか否かを判定してもよい。
該剥離層形成ステップは、該レーザービームの集光点と該被加工物とを結晶方位<100>と平行な方向に沿って移動しながらレーザービームを照射して、該被加工物の内部に該上面に平行な改質層及び該改質層から伸展するクラックを形成するレーザービーム照射ステップと、該レーザービーム照射ステップで改質層を形成した方向と直交する方向に、レーザービームの該集光点と該被加工物とを相対的に割り出し送りする割り出し送りステップと、を交互に行うことにより、該被加工物の内部に複数の改質層およびクラックを含む剥離層を形成してもよい。
該照射ステップにおいて照射される光は、該加工送り方向を含み該被加工物の上面に垂直な平面と平行な方向から、所定の入射角で該被加工物の上面に照射されてもよい。
上述した課題を解決し、目的を達成するために、本発明の検査装置は、結晶面{100}に含まれる特定の結晶面が上面および下面のそれぞれに露出するように製造された単結晶シリコンからなる被加工物に透過性を有する波長のレーザービームが該上面側から照射されることで、該被加工物の内部に改質層と該改質層から伸展するクラックとからなる剥離層が形成された被加工物の該剥離層を検査する検査装置であって、該被加工物の上面側を露出させて該被加工物を保持する保持テーブルと、該保持テーブルに保持された被加工物の該上面全面に対して、該被加工物を透過するとともに該クラックで反射する波長の光を照射する光源と、該光源により該被加工物の上面全面に照射され、該剥離層に含まれる該クラックで反射した反射光を受光する受光ユニットと、該受光ユニットで受光した反射光強度に基づいて該剥離層の状態を判定する判定手段と、を備えることを特徴とする。
該判定手段は、該反射光強度が第一の所定値より大きいか否かで、該剥離層の隣接するクラック同士が繋がって形成されているか否かを判定してもよい。
該判定手段は、該反射光強度が、該剥離層の隣接するクラック同士が繋がって形成されているか否かの判定基準である第一の所定値よりも大きい第二の所定値より大きいか否かで、該剥離層を起点として該被加工物からウエーハが剥離しているか否かを判定してもよい。
該被加工物は、結晶方位<100>と平行な方向に沿ってレーザービームを照射されることで該上面に平行な改質層および該改質層から伸展するクラックを含む剥離層が形成されており、該光源は、該レーザービームを照射した方向である加工送り方向を含み該被加工物の上面に垂直な平面と平行な方向から、所定の入射角で該被加工物の上面に光を照射することが可能な位置に配設されてもよい。
該光源は、少なくとも2つあってもよい。
本発明は、被加工物(Siインゴット)を透過するとともに剥離層(クラック)で反射される波長の光を被加工物の上面の全面に対して照射し、剥離層で反射してきた反射光の強度を観察することで、被加工物の内部の剥離層の状態を判定するため、被加工物の上面の全面に一度光を照射するのみで剥離層の状態が判定可能であるので、被加工物のサイズに依らず、生産性を低下させることなく、短時間で剥離層の判定が可能となる。また、本発明は、反射光の強度により、剥離層の形成状況、より詳しくは、隣接するクラック同士が繋がっているか否かや、繋がったクラックが広がり被加工物のインゴット側とウエーハ側とが剥離しているか否か等が判定できるため、ソーマークの影響を受けることなく剥離層の状態を判定できる。
図1は、実施形態1に係る被加工物の検査方法及び検査装置の検査対象である被加工物の一例を示す斜視図である。 図2は、図1の被加工物を示す上面図である。 図3は、実施形態1に係る被加工物の検査方法の処理手順を示すフローチャートである。 図4は、図3の剥離層形成ステップを説明する断面図である。 図5は、図3の剥離層形成ステップを説明する斜視図である。 図6は、実施形態1に係る検査装置の構成例及び図3の照射ステップ及び受光ステップの一例を説明する断面図である。 図7は、実施形態1に係る検査装置の別の構成例及び図3の照射ステップ及び受光ステップの別の一例を説明する断面図である。 図8は、図3の判定ステップを説明する図である。 図9は、図3の判定ステップの一例を示す平面図である。 図10は、図3の剥離ステップを説明する斜視図である。 図11は、図3の剥離ステップを説明する斜視図である。 図12は、実施形態2に係る被加工物の検査方法の処理手順を示すフローチャートである。
本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成の種々の省略、置換又は変更を行うことができる。
〔実施形態1〕
本発明の実施形態1に係る被加工物の検査方法及び検査装置1,1-2を図面に基づいて説明する。図1は、実施形態1に係る被加工物の検査方法及び検査装置1,1-2の検査対象である被加工物100の一例を示す斜視図である。図2は、図1の被加工物100を示す上面図である。被加工物100は、図1に示すように、結晶面{100}に含まれる特定の結晶面が上面101及び下面102にそれぞれ露出するように製造された単結晶シリコンからなるSi(シリコン)インゴットである。被加工物100は、図1及び図2に示すように、実施形態1では、全体として円柱状に形成され、結晶面{100}に含まれる特定の結晶面を平坦面とした円形状の上面101と、上面101と反対側の、上面101と同じ特定の結晶面を平坦面とした円形状の下面102と、上面101及び下面102の間に位置する周面103とを有する。上面101及び下面102は、実施形態1では、図2に示すように、結晶面{100}に含まれる特定の結晶面(100)を平坦面としているが、本発明ではこれに限定されず、結晶面(010)や結晶面(001)を平坦面としてもよい。
被加工物100の周面103には、図1及び図2に示すように、平坦な矩形状のオリエンテーションフラット104が形成されている。オリエンテーションフラット104は、実施形態1では、図2に示すように、結晶方位[011]の方向に被加工物100の中心軸105がある位置に、結晶面(011)に平行に形成されている。なお、被加工物100は、本発明ではこれに限定されず、周面103には、オリエンテーションフラット104に代えて、軸方向に延びるノッチが同様の位置に形成されていてもよい。
次に、本明細書は、実施形態1に係る被加工物の検査方法を図面に基づいて説明する。図3は、実施形態1に係る被加工物の検査方法の処理手順を示すフローチャートである。実施形態1に係る被加工物の検査方法は、被加工物100を検査する方法であって、剥離層形成ステップ1001と、照射ステップ1002と、受光ステップ1003と、判定ステップ1004と、剥離ステップ1006と、を備える。
図4及び図5は、それぞれ、図3の剥離層形成ステップ1001を説明する断面図及び斜視図である。剥離層形成ステップ1001は、図4及び図5に示すように、被加工物100に対して透過性を有する波長のレーザービーム58の集光点59を被加工物100の上面101から製造するウエーハの厚みに相当する深さ120に位置づけるとともに、集光点59と被加工物100とを相対的に加工送り方向に移動しながらレーザービーム58を照射して、被加工物100の内部に上面101に平行な改質層及び改質層から伸展するクラックを含む剥離層110を形成するステップである。
剥離層形成ステップ1001は、実施形態1では、図4及び図5に示すレーザー加工装置50により実施する。レーザー加工装置50は、図4及び図5に示すように、保持面52で被加工物100を保持する保持テーブル51と、発振器53と、出力調整ユニット54と、分岐ユニット55と、ミラー56と、集光器57と、不図示の移動ユニットと、不図示の制御ユニットと、を備える。
保持テーブル51は、例えば、保持面52で被加工物100を上面101側を露出させて下面102側から吸引保持するチャックテーブルである。発振器53は、被加工物100に対して透過性を有する波長のレーザービーム58を発振する。出力調整ユニット54は、発振器53が発振したレーザービーム58の出力を調整する。分岐ユニット55は、出力調整ユニット54が出力を調整したレーザービーム58を、Y軸方向に所定間隔をおいて複数本(図4に示す例では5本)に分岐させる。ミラー56は、分岐ユニット55が分岐させた複数本のレーザービーム58を反射して光軸方向を変更する。集光器57は、ミラー56によって反射した複数本のレーザービーム58を集光して被加工物100に照射する。移動ユニットは、保持テーブル51及び保持テーブル51に保持された被加工物100と、集光器57及び集光器57によって形成される複数本のレーザービーム58の集光点59と、を相対的に、加工送り方向及び割り出し送り方向に沿って移動させる。ここで、実施形態1では、加工送り方向は、レーザー加工装置50のX軸方向であり、割り出し送り方向は、レーザー加工装置50のY軸方向である。レーザー加工装置50の制御ユニットは、レーザー加工装置50の各構成要素の動作を制御して、剥離層形成ステップ1001をレーザー加工装置50に実施させる。レーザー加工装置50の制御ユニットは、後述する検査装置1の制御ユニットと同様のコンピュータシステムを含む。
剥離層形成ステップ1001では、まず、レーザー加工装置50の制御ユニットは、不図示の搬送ユニット等により被加工物100を保持テーブル51上に搬送して、保持テーブル51により被加工物100を保持する。剥離層形成ステップ1001では、次に、レーザー加工装置50の制御ユニットは、保持テーブル51をZ軸回りに回転させる等して、保持テーブル51で保持した被加工物100の上面101に平行でかつ結晶方位<100>に含まれる特定の結晶方位を、加工送り方向に合わせる。レーザー加工装置50の制御ユニットは、実施形態1では、被加工物100の特定の結晶方位[010]を加工送り方向に合わせるが、本発明ではこれに限定されず、被加工物100の特定の結晶方位[001]を加工送り方向に合わせてもよい。
剥離層形成ステップ1001は、実施形態1では、図3に示すように、レーザービーム照射ステップ1011と、割り出し送りステップ1012とを含む。剥離層形成ステップ1001は、保持テーブル51により被加工物100を保持し、被加工物100の特定の結晶方位を加工送り方向に合わせた後、レーザービーム照射ステップ1011と、割り出し送りステップ1012とを交互に行うことにより、被加工物100の内部に複数の改質層およびクラックを含む剥離層110を形成する。
レーザービーム照射ステップ1011は、レーザー加工装置50の制御ユニットが、移動ユニットにより、レーザービーム58の集光点59と被加工物100とを加工送り方向、すなわち、被加工物100の上面101に平行でかつ結晶方位<100>に含まれる特定の結晶方位(実施形態1では、結晶方位[010])と平行な方向に沿って移動しながら、集光器57によりレーザービーム58を照射して、被加工物100の内部に上面101に平行な改質層及び改質層から伸展するクラックを形成するステップである。被加工物100は、レーザービーム照射ステップ1011でレーザービーム58を照射すると、レーザービーム58を照射した加工送り方向に平行なラインに沿って、レーザービーム58の集光点59付近に上面101に平行な改質層が形成され、改質層の両側から上面101に平行な方向に沿って伸展するクラックが形成される。なお、改質層は、例えば、密度、屈折率、機械的強度やその他の物理的特性が周囲のそれとは異なる状態になった領域である。
割り出し送りステップ1012は、レーザー加工装置50の制御ユニットが、移動ユニットにより、割り出し送り方向、すなわち、レーザービーム照射ステップ1011で改質層を形成した方向と直交する方向に、レーザービーム58の集光点59と被加工物100とを相対的に割り出し送りするステップである。
被加工物100は、レーザービーム照射ステップ1011と割り出し送りステップ1012とを交互に行うことにより、加工送り方向に平行な複数のラインに沿って、レーザービーム58の集光点59付近に上面101に平行な改質層が形成され、隣接するラインに沿って形成された改質層から伸展したクラック同士が互いに繋がる。これにより、被加工物100は、所定の外力を付与することによりこれらの改質層及びクラックを含む剥離層110を起点として、上面101を含む深さ120に相当する厚みのウエーハが剥離可能となる。
図6は、実施形態1に係る検査装置1の構成例及び図3の照射ステップ1002及び受光ステップ1003の一例を説明する断面図である。図7は、実施形態1に係る検査装置1-2の別の構成例及び図3の照射ステップ1002及び受光ステップ1003の別の一例を説明する断面図である。図8は、図3の判定ステップ1004を説明する図である。図9は、図3の判定ステップ1004の一例を示す平面図である。照射ステップ1002、受光ステップ1003及び判定ステップ1004は、実施形態1では、図6に示す実施形態1に係る検査装置1や、図7に示す実施形態1に係る検査装置1-2により実施する。
実施形態1に係る検査装置1は、結晶面{100}に含まれる特定の結晶面が上面101及び下面102のそれぞれに露出するように製造された単結晶シリコンからなる被加工物100に透過性を有する波長のレーザービーム58が上面101側から照射されることで、被加工物100の内部に改質層と改質層から伸展するクラックとからなる剥離層110が形成された被加工物100の剥離層110を検査する装置であり、実施形態1に係る被加工物の検査方法の照射ステップ1002、受光ステップ1003及び判定ステップ1004を実施する装置である。実施形態1に係る検査装置1は、図6に示すように、保持テーブル10と、光源20と、受光ユニット30と、判定手段40と、不図示のカバーと、不図示の表示ユニットと、を備える。
保持テーブル10は、被加工物100の上面101側を露出させて被加工物100を保持する。保持テーブル10は、実施形態1では、凹部が形成された円盤状の枠体と、凹部内に嵌め込まれた円盤形状の吸着部と、を備える所謂チャックテーブルである。保持テーブル10の吸着部は、多数のポーラス孔を備えたポーラスセラミック等から形成され、図示しない真空吸引経路を介して図示しない真空吸引源と接続されている。保持テーブル10の吸着部の上面は、図6に示すように、被加工物100が載置されて、真空吸引源から導入される負圧により、載置された被加工物100を吸引保持する保持面11である。保持面11は、実施形態1では、被加工物100が上面101を上方に向けて載置され、載置された被加工物100を下面102側から吸引保持する。保持面11と保持テーブル10の枠体の上面とは、同一平面上に配置されており、水平面であるXY平面に平行に形成されている。
保持テーブル10は、不図示の回転駆動源により鉛直方向であり保持面11に対して垂直なZ軸方向と平行な軸心周りに回転自在に設けられている。保持テーブル10は、実施形態1では、回転駆動源により回転することで、保持テーブル10に保持された被加工物100において被加工物100にレーザービーム58を照射した方向である加工送り方向を、検査装置1のX軸方向に合わせることができる。なお、被加工物100において被加工物100にレーザービーム58を照射した方向である加工送り方向は、レーザービーム照射ステップ1011で被加工物100においてレーザービーム58の集光点59を相対的に移動させた方向であり、すなわち、被加工物100の上面101に平行でかつ結晶方位<100>に含まれる特定の結晶方位(実施形態1では、結晶方位[010])と平行な方向である。
光源20は、保持テーブル10に保持された被加工物100の上面101の全面に対して、被加工物100を透過するとともにクラックで反射する波長の光25を照射する。光源20は、例えば、赤外線を発光するハロゲンライトや、1450nmの波長の赤外線を発光する発光ダイオードなどが使用される。光源20は、実施形態1では、検査装置1のX軸方向と平行な方向から被加工物100の上面101の全面に対して光25を照射する位置に配設される。すなわち、光源20は、上記のように保持テーブル10に保持された被加工物100において被加工物100にレーザービーム58を照射した方向である加工送り方向を検査装置1のX軸方向に合わせることで、当該加工送り方向を含み被加工物100の上面101に垂直な平面と平行な方向から、所定の入射角で被加工物100の上面101に光25を照射することが可能な位置に配設される。ここで、所定の入射角は、実施形態1では、例えば、20度以上70度以下である。
受光ユニット30は、光源20により被加工物100の上面101の全面に照射され、剥離層110に含まれるクラックで反射した反射光35を受光する。受光ユニット30は、実施形態1では、保持テーブル10に保持された被加工物100の上面101の中央領域に対向して設けられており、保持テーブル10に保持された被加工物100の上面101の全面を覆う受光視野を有し、1回の受光処理で、保持テーブル10に保持された被加工物100の剥離層110の全面に含まれるクラックからの反射光35の強度分布を取得できる。ここで、保持テーブル10に保持された被加工物100の剥離層110の全面に含まれるクラックからの反射光35の強度分布は、反射光35を受光した位置と反射光35の強度とを互いに対応付けたデータである。また、保持テーブル10に保持された被加工物100の剥離層110の全面に含まれるクラックからの反射光35の強度分布は、反射光35を受光した位置が、保持テーブル10に保持された被加工物100の上面101に投影された各位置で表され、保持テーブル10に保持された被加工物100の上面101の全面を含む。なお、以下において、保持テーブル10に保持された被加工物100の剥離層110の全面に含まれるクラックからの反射光35の強度分布を、適宜、反射光35の全面の強度分布、と称する。
受光ユニット30は、例えば、保持テーブル10に保持された被加工物100の上面101の全面を撮像する撮像素子を備えている。撮像素子は、例えば、CCD(Charge-Coupled Device)撮像素子又はCMOS(Complementary MOS)撮像素子である。受光ユニット30は、反射光35の全面の強度分布の画像200(図9参照)を取得できる。画像200は、実施形態1では、反射光35の強度の高さに応じた輝度で、すなわち、反射光35の強度が高い位置が高い輝度で、反射光35の強度が低い位置が低い輝度で、表される。
判定手段40は、受光ユニット30で受光した反射光35の強度に基づいて剥離層110の状態を判定する。判定手段40は、受光ユニット30と情報通信可能に電気的に接続されており、受光ユニット30から、反射光35の全面の強度分布を取得し、この強度分布に基づいて、保持テーブル10に保持された被加工物100の上面101に投影される位置ごとに、剥離層110の状態を判定する。
受光ユニット30で受光した反射光35の強度は、図8に示すように、被加工物100の剥離層110の状態に応じて変化する。図8のAは、被加工物100が加工されていない場合を示しており、この場合、被加工物100の内部に光源20からの光25を反射するものが何もないため、受光ユニット30で受光した反射光35の強度は非常に弱い。図8のBは、被加工物100がレーザービーム58を照射されて改質層及びクラックを含む剥離層110が形成されたものの改質層の隣接するクラック同士が繋がっていない場合を示しており、この場合、被加工物100の内部のクラックは光25を反射するもののクラック同士が繋がっていない部分が光25を反射しないため、受光ユニット30で受光した反射光35の強度は比較的弱い。
図8のCは、被加工物100がレーザービーム58を照射されて改質層及びクラックを含む剥離層110が形成されて改質層の隣接するクラック同士が繋がっているものの剥離していない場合を示しており、この場合、被加工物100の内部のクラック及びクラック同士が繋がっている部分が光25を反射するため、受光ユニット30で受光した反射光35の強度は比較的強い。図8のDは、被加工物100がレーザービーム58を照射されて改質層及びクラックを含む剥離層110が形成されて改質層の隣接するクラック同士が繋がって剥離している場合を示しており、この場合、被加工物100の内部の剥離している部分が光25を強く反射するため、受光ユニット30で受光した反射光35の強度は非常に強い。
特に、剥離層110においてクラック同士が繋がっているものの剥離していない場合と、剥離層110において剥離している場合とでは、反射光35の強度は大きく異なり、後者の方が反射光35の強度は大きくなる。クラック同士が繋がっているものの剥離していない場合、被加工物100の下面102を含む側(インゴット側)と上面101を含む側(ウエーハ側)との間には例えば1μm以下程度とほとんど隙間がなく、この隙間が光源20の光25の波長よりも小さいため、クラックを透過してしまう光25が生じる。一方で、剥離している場合、被加工物100の下面102を含む側(インゴット側)と上面101を含む側(ウエーハ側)との間には例えば5μm以上20μ以下程度の隙間ができ、この隙間が大気や水で満たされるので、光源20の光25がこの隙間を透過することなく完全に反射して反射光35となる。
このように、受光ユニット30で受光した反射光35の強度は、被加工物100の剥離層110の状態に応じて変化するので、判定手段40は、これを利用して、受光ユニット30で受光した反射光35の強度に基づいて剥離層110の状態を判定することができる。判定手段40は、図8のBとCとの境界にあたる反射光35の強度を、第一の所定値41として予め登録されており、図8のCとDとの境界にあたる反射光35の強度を、第二の所定値42として予め登録されており、図8のAとBとの境界にあたる反射光35の強度を、第三の所定値43として予め登録されている。第一の所定値41は、第二の所定値42よりも小さく、第三の所定値43よりも大きい。第二の所定値42は、第一の所定値41よりも大きく、第三の所定値43よりも大きい。第三の所定値43は、第一の所定値41よりも小さく、第二の所定値42よりも小さい。第一の所定値41、第二の所定値42及び第三の所定値43は、光源20による光25の照射強度や照射条件等によっても変化し、受光ユニット30による反射光35の受光条件等によっても変化するため、予め準備した加工されていない被加工物100のサンプル、剥離層110を形成したもののクラック同士が繋がっていない被加工物100のサンプル、クラック同士が繋がっているものの剥離していない被加工物100のサンプル、剥離している被加工物100のサンプルを用いて調べ、予め判定手段40に登録される。
判定手段40は、このような予め登録された第一の所定値41、第二の所定値42及び第三の所定値43を用いて、受光ユニット30で受光した反射光35の強度に基づいて被加工物100の剥離層110の状態を判定する。判定手段40は、反射光35の強度が第一の所定値41より大きいか否かで、剥離層110の隣接するクラック同士が繋がっているか否かを判定する。すなわち、第一の所定値41は、剥離層110の隣接するクラック同士が繋がって形成されているか否かの判定基準である。また、判定手段40は、反射光35の強度が第二の所定値42より大きいか否かで、剥離層110を起点として被加工物100からウエーハが剥離しているか否かを判定する。すなわち、第二の所定値42は、剥離層110を起点として被加工物100からウエーハが剥離しているか否かの判定基準である。判定手段40は、反射光35の強度が第三の所定値43より大きいか否かで、剥離層110を形成する加工(例えば、剥離層形成ステップ1001のレーザー加工)をしているか否かを判定する。すなわち、第三の所定値43は、剥離層110を形成する加工をしているか否かの判定基準である。
不図示のカバーは、保持テーブル10と、光源20と、受光ユニット30と、を覆うように配設され、外からの光を遮断する素材で形成される。不図示のカバーは、外からの光を遮断することにより、受光ユニット30が受光する反射光35の強度の精度を高めて、判定手段40による被加工物100の剥離層110の状態の判定の精度を高めることができる。
不図示の表示ユニットは、検査装置1の不図示のカバーに、表示面側を外側に向けて設けられており、検査装置1の受光ユニット30が取得した反射光35の全面の強度分布の画像200や、この強度分布に基づく判定手段40による判定結果を表す画像等をオペレータに視認可能に表示する。表示ユニットは、液晶表示装置等により構成される。表示ユニットは、オペレータが検査装置1の各種動作や光25の照射条件、反射光35の受光条件、画像の表示等に関する指令情報等を入力する際に使用する入力ユニットが設けられている。表示ユニットに設けられた入力ユニットは、表示ユニットに設けられたタッチパネルと、キーボード等とのうち少なくとも一つにより構成される。なお、表示ユニットは検査装置1に固定されておらず、任意の通信機器に備えられ、任意の通信機器が無線または有線により検査装置1と接続されてもよい。
実施形態1に係る検査装置1は、不図示の制御ユニットを備える。検査装置1の制御ユニットは、検査装置1の各構成要素の動作を制御して、照射ステップ1002、受光ステップ1003及び判定ステップ1004を検査装置1に実施させる。検査装置1の制御ユニットは、実施形態1では、コンピュータシステムを含む。検査装置1の制御ユニットが含むコンピュータシステムは、CPU(Central Processing Unit)のようなマイクロプロセッサを有する演算処理装置と、ROM(Read Only Memory)又はRAM(Random Access Memory)のようなメモリを有する記憶装置と、入出力インターフェース装置とを有する。検査装置1の制御ユニットの演算処理装置は、検査装置1の制御ユニットの記憶装置に記憶されているコンピュータプログラムに従って演算処理を実施して、検査装置1を制御するための制御信号を、検査装置1の制御ユニットの入出力インターフェース装置を介して検査装置1の各構成要素に出力する。判定手段40の機能は、実施形態1では、検査装置1の制御ユニットの演算処理装置が記憶装置に記憶されているコンピュータプログラムを実行することにより実現される。
実施形態1に係る検査装置1-2は、図7に示すように、実施形態1に係る検査装置1において、光源20を少なくとも2つ(図7に示す例では2つ)に増やしたものであり、その他の構成は同様である。実施形態1に係る検査装置1-2は、このように光源20が複数あるので、光25の光量を稼ぐことができるとともに、被加工物100の上面101の全面に照射される光25の均一性が向上するので、受光ユニット30が受光する反射光35の光量を稼ぐことができるとともに、被加工物100の剥離層110の全面に含まれるクラックからの反射光35の均一性を向上することができ、これにより、判定手段40による被加工物100の剥離層110の状態の判定の精度を高めることができる。
照射ステップ1002は、図6及び図7に示すように、被加工物100を透過するとともに剥離層110のクラックで反射する波長の光25を剥離層110が形成された被加工物100の上面101の全面に対して照射するステップである。照射ステップ1002では、まず、検査装置1,1-2の制御ユニットは、不図示の搬送ユニット等により被加工物100を保持テーブル10上に搬送して、保持テーブル10により被加工物100を保持する。照射ステップ1002では、次に、検査装置1,1-2の制御ユニットは、回転駆動源により、保持テーブル10をZ軸回りに回転させる等して、保持テーブル10に保持された被加工物100において被加工物100にレーザービーム58を照射した方向である加工送り方向を、検査装置1のX軸方向に合わせる。
照射ステップ1002では、そして、実施形態1では、検査装置1,1-2の制御ユニットは、図6及び図7に示すように、光源20により、検査装置1のX軸方向と平行な方向から被加工物100の上面101の全面に対して光25を照射する。照射ステップ1002は、このように、加工送り方向を含み被加工物100の上面101に垂直な平面と平行な方向から、所定の入射角で被加工物100の上面101に光25を照射するので、光25をクラックにより反射した光である反射光35のちらつきを抑制し、追って実施する受光ステップ1003で受光ユニット30により受光する反射光35をよりクリアにすることができる。
受光ステップ1003は、照射ステップ1002で照射され、クラックにより反射された反射光35を受光するステップである。受光ステップ1003では、検査装置1,1-2の制御ユニットは、図6及び図7に示すように、受光ユニット30により、光源20により保持テーブル10に保持された被加工物100の上面101の全面に照射され、剥離層110に含まれるクラックで反射した反射光35を受光し、反射光35の全面の強度分布を取得する。
判定ステップ1004は、受光ステップ1003で受光した反射光35の強度に基づいて、剥離層110の状態を判定するステップである。判定ステップ1004では、判定手段40は、受光ステップ1003で受光した反射光35の強度が第一の所定値41より大きいか否かで、剥離層110の隣接するクラック同士が繋がっているか否かを判定する。判定ステップ1004では、また、判定手段40は、受光ステップ1003で受光した反射光35の強度が第二の所定値42より大きいか否かで、剥離層110を起点として被加工物100からウエーハが剥離しているか否かを判定する。判定ステップ1004では、また、判定手段40は、反射光35の強度が第三の所定値43より大きいか否かで、剥離層110を形成する加工をしているか否かを判定する。
判定ステップ1004では、例えば、判定手段40は、受光ステップ1003で反射光35の全面の強度分布として図9に示す画像200を取得した場合、反射光35の強度が第一の所定値41より大きく第二の所定値42より小さい領域201が剥離層110の隣接するクラック同士が繋がっている領域であると判定し、反射光35の強度が第二の所定値42より大きい領域202が剥離層110を起点として被加工物100からウエーハが剥離している領域であると判定し、被加工物100の剥離層110の全面において剥離層110の状態がクラック同士が繋がっている状態もしくはウエーハが剥離している状態、すなわち、被加工物100の剥離層110の全面において剥離層110の状態が少なくともクラック同士が繋がっている状態であると判定する。
実施形態1に係る被加工物の検査方法は、このように、判定ステップ1004で、判定手段40が、被加工物100の剥離層110の全面において剥離層110の状態が少なくともクラック同士が繋がっている状態であると判定した場合(図3のステップ1005でYES)、処理を剥離ステップ1006に進めて、被加工物100に対して外力を付与して剥離層110を起点として被加工物100からウエーハを剥離する剥離ステップ1006を更に実施する。一方、実施形態1に係る被加工物の検査方法は、判定ステップ1004で、判定手段40が、被加工物100の剥離層110の少なくとも一部において剥離層110の状態が少なくともクラック同士が繋がっていない状態であると判定した場合(図3のステップ1005でNO)、処理を終了して、例えば剥離層形成ステップ1001からの処理を見直すことをオペレータに促す。
剥離ステップ1006は、被加工物100に対して外力を付与して剥離層110を起点として被加工物100からウエーハを剥離するステップである。外力は、実施形態1では、例えば後述する剥離装置60によって付与される超音波振動であるが、本発明ではこれに限定されず、剥離層110を起点として被加工物100からウエーハを剥離可能であればどのような力でもよい。
図10及び図11は、図3の剥離ステップ1006を説明する斜視図である。剥離ステップ1006は、実施形態1では、図10及び図11に示す剥離装置60により実施する。剥離装置60は、図10及び図11に示すように、保持面62で被加工物100を保持する保持テーブル61と、アーム63と、モータ64と、円板状の吸着片65と、不図示の液体供給ユニットと、不図示の超音波振動付与手段と、不図示の移動ユニットと、不図示の制御ユニットと、を備える。
保持テーブル61は、例えば、保持面62で被加工物100を上面101側を露出させて下面102側から吸引保持するチャックテーブルである。アーム63は、水平に延びて形成されている。モータ64は、円板状に形成されており、アーム63の先端に設けられている。円板状の吸着片65は、モータ64の下面に、軸心回りに回転自在に設けられており、下面で被加工物100を吸着する。液体供給ユニットは、被加工物100の上面101上と被加工物100の上面101に対面するように配設された超音波振動付与手段との間に液体を供給する。超音波振動付与手段は、下面から、液体供給ユニットが供給した液体を介して、被加工物100に上面101側から超音波振動を付与する。移動ユニットは、保持テーブル61及び保持テーブル61に保持された被加工物100と、アーム63、モータ64及び吸着片65と、を相対的に、X軸方向、Y軸方向及びZ軸方向に沿って移動させる。また、移動ユニットは、保持テーブル61及び保持テーブル61に保持された被加工物100と、液体供給ユニット及び超音波振動付与手段と、を相対的に、X軸方向、Y軸方向及びZ軸方向に沿って移動させる。剥離装置60の制御ユニットは、剥離装置60の各構成要素の動作を制御して、剥離ステップ1006を剥離装置60に実施させる。剥離装置60の制御ユニットは、検査装置1の制御ユニットと同様のコンピュータシステムを含む。なお、超音波振動付与手段は、この形態に限定されず、吸着片65に内蔵されており、吸着片65の下面から超音波振動を付与してもよい。
剥離ステップ1006では、まず、剥離装置60の制御ユニットは、不図示の搬送ユニット等により剥離層形成ステップ1001を実施した後の被加工物100を保持テーブル61上に搬送して、図10に示すように、保持テーブル61により被加工物100を保持する。
剥離ステップ1006では、次に、剥離装置60の制御ユニットは、移動ユニットにより超音波振動付与手段の下面を保持テーブル61に保持された被加工物100の上面101に対面する位置に超音波振動付与手段を移動させるとともに、液体供給ユニットの液体供給口を被加工物100の上面101と超音波振動付与手段の下面との間に向ける位置に液体供給ユニットを移動させる。剥離ステップ1006では、そして、剥離装置60の制御ユニットは、液体供給ユニットにより被加工物100の上面101と超音波振動付与手段の下面との間に液体を供給しつつ、超音波振動付与手段により液体供給ユニットが供給した液体を介して被加工物100に上面101側から超音波振動を付与する。剥離ステップ1006では、超音波振動の付与後、移動ユニットにより、液体供給ユニット及び超音波振動付与手段を保持テーブル61に保持された被加工物100から退避させる。
剥離ステップ1006では、そして、剥離装置60の制御ユニットは、移動ユニットにより、図11に示すように、吸着片65を、吸着片65の下面が保持テーブル61に保持された被加工物100の上面101に接触する位置に移動させる。剥離ステップ1006では、そして、剥離装置60の制御ユニットは、吸着片65により吸着片65の下面で被加工物100の上面101を吸着し、モータ64により吸着片65を回転させる。剥離ステップ1006では、これにより、先に付与した超音波振動、及び、この回転によって生じる外力により、被加工物100から剥離層110を起点として、上面101を含む深さ120に相当する厚みのウエーハを剥離できる。
なお、剥離ステップ1006では、本発明ではこれに限定されず、超音波振動付与手段が吸着片65に内蔵されている場合、剥離装置60の制御ユニットは、移動ユニットにより、図11に示すように、吸着片65を、吸着片65の下面が保持テーブル61に保持された被加工物100の上面101に接触する位置に移動させた後、吸着片65により吸着片65の下面で被加工物100の上面101を吸着し、超音波振動付与手段により吸着片65の下面から被加工物100の上面101に向けて超音波振動を付与するとともに、モータ64により吸着片65を回転させることで、被加工物100から剥離層110を起点として、上面101を含む深さ120に相当する厚みのウエーハを剥離してもよい。
また、剥離ステップ1006は、本発明では上記の剥離装置60を使用する形態に限定されず、例えば、剥離層形成ステップ1001を実施した後の被加工物100を上面101側を露出させて水を十分に入れた水槽内に浸漬させて載置し、被加工物100の上面101の上方に位置付けた超音波発振部材から超音波を発振し、この超音波により水槽内の水を介して剥離層110を刺激することにより、被加工物100から剥離層110を起点として、上面101を含む深さ120に相当する厚みのウエーハを剥離してもよい。
なお、実施形態1に係る被加工物の検査方法は、判定ステップ1004の判定結果に基づき剥離ステップ1006を実施しているが、本発明ではこれに限定されず、判定ステップ1004の判定結果に依らず剥離ステップ1006を実施せずに処理を終了してもよい。
以上のような構成を有する実施形態1に係る被加工物の検査方法及び検査装置1,1-2は、被加工物100(Siインゴット)を透過するとともに剥離層110(クラック)で反射される波長の光25を被加工物100の上面101の全面に対して照射し、剥離層110で反射してきた反射光35の強度を観察することで、被加工物100の内部の剥離層110の状態を判定する。このため、実施形態1に係る被加工物の検査方法及び検査装置1,1-2は、被加工物100の上面101の全面に一度光25を照射するのみで剥離層110の全面において剥離層110の状態が判定可能であるため、被加工物100のサイズに依らず、生産性を低下させることなく、短時間で剥離層110の判定が可能となる。また、実施形態1に係る被加工物の検査方法及び検査装置1,1-2は、反射光35の強度により、剥離層110の形成状況、より詳しくは、隣接するクラック同士が繋がっているか否かや、繋がったクラックが広がり被加工物100のインゴット側とウエーハ側とが剥離しているか否か等が判定できるため、ソーマークの影響を受けることなく剥離層110の状態を判定できるという作用効果を奏する。
また、実施形態1に係る被加工物の検査方法及び検査装置1,1-2は、反射光35の強度が、第一の所定値41より大きいか否かで、剥離層110の隣接するクラック同士が繋がって形成されているか否かを判定するので、隣接するクラック同士が繋がっているか否かを短時間で効率良く、ソーマークの影響を受けることなく精度良く、判定できる。
また、実施形態1に係る被加工物の検査方法及び検査装置1,1-2は、反射光35の強度が第一の所定値41よりも大きい第二の所定値42より大きいか否かで、剥離層110を起点として被加工物100からウエーハが剥離しているか否かを判定するので、被加工物100のインゴット側とウエーハ側とが剥離しているか否かを短時間で効率良く、ソーマークの影響を受けることなく精度良く、判定できる。
また、実施形態1に係る被加工物の検査方法及び検査装置1,1-2は、レーザービーム58を照射した方向である加工送り方向を含み被加工物100の上面101に垂直な平面と平行な方向から、所定の入射角で被加工物100の上面101に光25を照射するので、光25をクラックにより反射した光である反射光35のちらつきを抑制し、追って実施する受光ステップ1003で受光ユニット30により受光する反射光35をよりクリアにすることができ、これにより、反射光35の強度に基づく判定をよりクリアに実施できる。
また、実施形態1に係る被加工物の検査方法は、判定ステップ1004で剥離層110の隣接するクラック同士が繋がっていると判定された場合、剥離ステップ1006を更に実施するので、効率よくウエーハの剥離処理を進めることができる。
また、実施形態1に係る被加工物の検査方法は、剥離層形成ステップ1001を、レーザービーム照射ステップ1011と割り出し送りステップ1012とを交互に行うことにより、被加工物100の内部に複数の改質層及びクラックを含む剥離層110を形成するので、加工送り方向に平行な複数のラインに沿って、レーザービーム58の集光点59付近に上面101に平行な改質層を形成でき、隣接するラインに沿って形成された改質層からクラックを伸展させてクラック同士を互いに繋げることができるので、所定の外力を付与することによりこれらの改質層及びクラックを含む剥離層110を起点として、被加工物100から上面101を含む深さ120に相当する厚みのウエーハを剥離可能とすることができる。
また、実施形態1に係る検査装置1-2は、光源20が少なくとも2つあるので、光25の光量を稼ぐことができるとともに、被加工物100の上面101の全面に照射される光25の均一性が向上するので、受光ユニット30が受光する反射光35の光量を稼ぐことができるとともに、被加工物100の剥離層110の全面に含まれるクラックからの反射光35の均一性を向上することができ、これにより、判定手段40による被加工物100の剥離層110の状態の判定の精度を高めることができる。
〔実施形態2〕
本発明の実施形態2に係る被加工物の検査方法を図面に基づいて説明する。図12は、実施形態2に係る被加工物の検査方法の処理手順を示すフローチャートである。図12は、実施形態と同一部分に同一符号を付して説明を省略する。
実施形態2に係る被加工物の検査方法は、図12に示すように、実施形態1において、判定ステップ1004で剥離層110の隣接するクラック同士が繋がっていると判定された場合に剥離ステップ1006を実施することに代えて、剥離層形成ステップ1001を実施した後に剥離ステップ1006を更に実施し、剥離ステップ1006で被加工物100からウエーハを剥離できなかった場合に(図12のステップ1007でNO)、照射ステップ1002、受光ステップ1003及び判定ステップ1004を実施するように変更したものであり、その他の構成は実施形態1と同様である。
剥離ステップ1006を実施しても、被加工物100の内部の上面101に平行な面において剥離層110が形成されていない部分がある等に起因して、被加工物100からウエーハを剥離できない場合がある。実施形態2に係る被加工物の検査方法は、このように剥離ステップ1006で被加工物100からウエーハを剥離できなかった場合に(図12のステップ1007でNO)、照射ステップ1002、受光ステップ1003及び判定ステップ1004と実施して、例えば、判定ステップ1004において、剥離層110を起点として被加工物100からウエーハが剥離しているか否かを判定するものである。なお、実施形態2に係る被加工物の検査方法は、剥離ステップ1006で被加工物100からウエーハを剥離できた場合(図12のステップ1007でYES)、処理を終了する。
実施形態2に係る被加工物の検査方法は、剥離層形成ステップ1001を実施した後、被加工物100に対して外力を付与して剥離層110を起点として被加工物100からウエーハを剥離する剥離ステップ1006を更に実施し、剥離ステップ1006で被加工物100からウエーハを剥離できなかった場合に、照射ステップ1002、受光ステップ1003及び判定ステップ1004を実施する。このように、実施形態1に係る被加工物の検査方法は、剥離層110に不具合が生じている可能性がある場合にのみ照射ステップ1002、受光ステップ1003及び判定ステップ1004を実施するので、効率よく剥離層110の状態を判定できる。
なお、本発明は、上記実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。
1,1-2 検査装置
10 保持テーブル
20 光源
25 光
30 受光ユニット
35 反射光
40 判定手段
41 第一の所定値
42 第二の所定値
58 レーザービーム
59 集光点
100 被加工物
101 上面
102 下面
110 剥離層
120 深さ

Claims (11)

  1. 結晶面{100}に含まれる特定の結晶面が上面および下面のそれぞれに露出するように製造された単結晶シリコンからなる被加工物の検査方法であって、
    該被加工物に対して透過性を有する波長のレーザービームの集光点を該被加工物の上面から製造するウエーハの厚みに相当する深さに位置づけるとともに、該集光点と該被加工物とを相対的に加工送り方向に移動しながらレーザービームを照射して、該被加工物の内部に該上面に平行な改質層及び該改質層から伸展するクラックを形成する剥離層形成ステップと、
    該剥離層形成ステップを実施した後、該被加工物を透過するとともに該剥離層のクラックで反射する波長の光を該剥離層が形成された被加工物の上面全面に対して照射する照射ステップと、
    該照射ステップで照射され、該クラックにより反射された反射光を受光する受光ステップと、
    該受光ステップで受光した反射光の強度に基づいて、該剥離層の状態を判定する判定ステップと、
    を備えることを特徴とする、被加工物の検査方法。
  2. 該判定ステップでは、該反射光強度が第一の所定値より大きいか否かで、該剥離層の隣接するクラック同士が繋がって形成されているか否かを判定し、
    該判定ステップで剥離層の隣接する該クラック同士が繋がっていると判定された場合、該被加工物に対して外力を付与して該剥離層を起点として該被加工物からウエーハを剥離する剥離ステップを更に実施することを特徴とする、請求項1に記載の被加工物の検査方法。
  3. 該剥離層形成ステップを実施した後、該被加工物に対して外力を付与して該剥離層を起点として該被加工物からウエーハを剥離する剥離ステップを更に実施し、
    該剥離ステップで該被加工物から該ウエーハを剥離できなかった場合に、該照射ステップ、該受光ステップおよび該判定ステップを実施することを特徴とする、請求項1に記載の被加工物の検査方法。
  4. 該判定ステップでは、該反射光強度が、該剥離層の隣接するクラック同士が繋がって形成されているか否かの判定基準である第一の所定値よりも大きい第二の所定値より大きいか否かで、該剥離層を起点として該被加工物からウエーハが剥離しているか否かを判定することを特徴とする、請求項3に記載の被加工物の検査方法。
  5. 該剥離層形成ステップは、
    該レーザービームの集光点と該被加工物とを結晶方位<100>と平行な方向に沿って移動しながらレーザービームを照射して、該被加工物の内部に該上面に平行な改質層及び該改質層から伸展するクラックを形成するレーザービーム照射ステップと、
    該レーザービーム照射ステップで改質層を形成した方向と直交する方向に、レーザービームの該集光点と該被加工物とを相対的に割り出し送りする割り出し送りステップと、
    を交互に行うことにより、該被加工物の内部に複数の改質層およびクラックを含む剥離層を形成することを特徴とする、請求項2、3または4に記載の被加工物の検査方法。
  6. 該照射ステップにおいて照射される光は、該加工送り方向を含み該被加工物の上面に垂直な平面と平行な方向から、所定の入射角で該被加工物の上面に照射されることを特徴とする、請求項5に記載の被加工物の検査方法。
  7. 結晶面{100}に含まれる特定の結晶面が上面および下面のそれぞれに露出するように製造された単結晶シリコンからなる被加工物に透過性を有する波長のレーザービームが該上面側から照射されることで、該被加工物の内部に改質層と該改質層から伸展するクラックとからなる剥離層が形成された被加工物の該剥離層を検査する検査装置であって、
    該被加工物の上面側を露出させて該被加工物を保持する保持テーブルと、
    該保持テーブルに保持された被加工物の該上面全面に対して、該被加工物を透過するとともに該クラックで反射する波長の光を照射する光源と、
    該光源により該被加工物の上面全面に照射され、該剥離層に含まれる該クラックで反射した反射光を受光する受光ユニットと、
    該受光ユニットで受光した反射光強度に基づいて該剥離層の状態を判定する判定手段と、
    を備えることを特徴とする検査装置。
  8. 該判定手段は、該反射光強度が第一の所定値より大きいか否かで、該剥離層の隣接するクラック同士が繋がって形成されているか否かを判定することを特徴とする、請求項7に記載の検査装置。
  9. 該判定手段は、該反射光強度が、該剥離層の隣接するクラック同士が繋がって形成されているか否かの判定基準である第一の所定値よりも大きい第二の所定値より大きいか否かで、該剥離層を起点として該被加工物からウエーハが剥離しているか否かを判定することを特徴とする、請求項7に記載の検査装置。
  10. 該被加工物は、結晶方位<100>と平行な方向に沿ってレーザービームを照射されることで該上面に平行な改質層および該改質層から伸展するクラックを含む剥離層が形成されており、
    該光源は、該レーザービームを照射した方向である加工送り方向を含み該被加工物の上面に垂直な平面と平行な方向から、所定の入射角で該被加工物の上面に光を照射することが可能な位置に配設されることを特徴とする、請求項7乃至9のいずれか一項に記載の検査装置。
  11. 該光源は、少なくとも2つあることを特徴とする、請求項10に記載の検査装置。
JP2022149086A 2022-09-20 2022-09-20 被加工物の検査方法及び検査装置 Pending JP2024043868A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022149086A JP2024043868A (ja) 2022-09-20 2022-09-20 被加工物の検査方法及び検査装置
KR1020230120077A KR20240040030A (ko) 2022-09-20 2023-09-11 피가공물의 검사 방법 및 검사 장치
DE102023208887.8A DE102023208887A1 (de) 2022-09-20 2023-09-13 Untersuchungsverfahren für ein werkstück unduntersuchungsvorrichtung
US18/467,871 US20240094143A1 (en) 2022-09-20 2023-09-15 Inspection method of workpiece and inspection apparatus
CN202311199565.2A CN117747457A (zh) 2022-09-20 2023-09-15 被加工物的检查方法和检查装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022149086A JP2024043868A (ja) 2022-09-20 2022-09-20 被加工物の検査方法及び検査装置

Publications (1)

Publication Number Publication Date
JP2024043868A true JP2024043868A (ja) 2024-04-02

Family

ID=90062404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022149086A Pending JP2024043868A (ja) 2022-09-20 2022-09-20 被加工物の検査方法及び検査装置

Country Status (5)

Country Link
US (1) US20240094143A1 (ja)
JP (1) JP2024043868A (ja)
KR (1) KR20240040030A (ja)
CN (1) CN117747457A (ja)
DE (1) DE102023208887A1 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3656317B2 (ja) 1996-03-27 2005-06-08 信越半導体株式会社 ワイヤソーによるワーク切断方法及び装置
JP6797481B2 (ja) 2017-03-01 2020-12-09 株式会社ディスコ 半導体インゴットの検査方法、検査装置及びレーザー加工装置
JP7321888B2 (ja) 2019-10-24 2023-08-07 株式会社ディスコ SiCインゴットの加工方法およびレーザー加工装置
JP2022025566A (ja) 2020-07-29 2022-02-10 株式会社ディスコ Si基板生成方法

Also Published As

Publication number Publication date
KR20240040030A (ko) 2024-03-27
DE102023208887A1 (de) 2024-03-21
US20240094143A1 (en) 2024-03-21
CN117747457A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
US11633804B2 (en) Laser processing apparatus and laser processing method
KR102186219B1 (ko) 웨이퍼 생성 방법 및 가공 이송 방향 검출 방법
KR102285101B1 (ko) 피가공물의 검사 방법, 검사 장치, 레이저 가공 장치 및 확장 장치
JP2018147928A (ja) 半導体インゴットの検査方法、検査装置及びレーザー加工装置
US10852240B2 (en) Facet region detecting method and detecting apparatus
TW201828341A (zh) 雷射加工裝置
KR20180018353A (ko) SiC 웨이퍼의 생성 방법
JP2017204574A (ja) サファイアウェーハの加工方法及びレーザー加工装置
JP2023052577A (ja) シリコンウェハの研削後表面のレーザー照射修復装置及び修復方法
JP6152013B2 (ja) ウェーハの加工方法
JP7366637B2 (ja) ワークの確認方法、及び、加工方法
JP2024043868A (ja) 被加工物の検査方法及び検査装置
JP2020188117A (ja) ウェーハの製造方法、及びインゴットの分断装置
TW201834049A (zh) 加工方法
TW202413932A (zh) 被加工物的檢查方法及檢查裝置
JP6989392B2 (ja) 板状物の加工方法
JP2013152995A (ja) ウエーハの加工方法
US11456260B2 (en) Wafer processing method
TWI697040B (zh) 晶圓的加工方法
TWI837411B (zh) 工件之確認方法以及加工方法
US11417570B2 (en) Wafer processing method
JP7093158B2 (ja) 検査装置
JP2022076543A (ja) ウエーハの生成方法
TW202416370A (zh) 晶圓之加工方法及晶圓處理裝置
JP2023021864A (ja) ウエーハの検査方法および検査装置