TW202115894A - 影像感測器結構 - Google Patents

影像感測器結構 Download PDF

Info

Publication number
TW202115894A
TW202115894A TW109134209A TW109134209A TW202115894A TW 202115894 A TW202115894 A TW 202115894A TW 109134209 A TW109134209 A TW 109134209A TW 109134209 A TW109134209 A TW 109134209A TW 202115894 A TW202115894 A TW 202115894A
Authority
TW
Taiwan
Prior art keywords
light
stack
layer
light pipe
image sensor
Prior art date
Application number
TW109134209A
Other languages
English (en)
Inventor
雅文 安瑪迪
阿里 阿加
秀雨 蔡
克萊格 李 赫林頓
Original Assignee
美商伊路米納有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商伊路米納有限公司 filed Critical 美商伊路米納有限公司
Publication of TW202115894A publication Critical patent/TW202115894A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本發明揭示一種影像感測器結構,其包括經安置於裝置堆疊上方之影像堆疊。該影像堆疊包括複數個光偵測器。第一濾光器堆疊經安置於該影像堆疊上方。該第一濾光器堆疊包括光導層。光管腔經安置於該光導層中。每個光管腔與光偵測器相關聯。每個光管腔具有大於約2.5比1之縱橫比。奈米井層經安置於該第一濾光器堆疊上方。奈米井經安置於該奈米井層中。每個奈米井與光偵測器相關聯。

Description

影像感測器結構
本發明關於一種影像感測器結構。 相關申請案的交叉參考
本專利申請案主張於2019年10月9日提交的且名稱為「Image Sensor Structure」的美國臨時專利申請案第62/912,908號的優先權。上述申請案的全部內容以引用的方式併入本文中。
影像感測器結構(諸如CMOS影像感測器)通常利用經安置於奈米井層中之複數個高密度奈米井對經安置於奈米井中之分析物執行反應。奈米井層經安置於影像感測器結構之正面或背面上,該影像感測器結構自反應收集及分析資料。舉例而言,可用螢光標籤對分析物(諸如DNA片段之簇團或其類似物)進行標記,且可將激發光引導至經標定分析物上,以致使其發出螢光發射光。
然後,分析物可發射螢光發射光之光子,所述光子可自奈米井透射至與奈米井相關聯的複數個光偵測器(例如,光電二極體)。光偵測器偵測發射光子。裝置電路系統可自裝置堆疊內連接至光偵測器。然後,裝置電路系統可基於彼等所偵測到光子處理及傳輸資料信號。然後可分析資料信號,以揭示分析物之特性。
在正面照明(FSI)影像感測器結構中,奈米井層經安置於影像感測器結構之正面上,該正面由激發光照明。在FSI影像感測器結構中,裝置堆疊位於奈米井層與複數個光偵測器之間。然而,在此等影像感測器結構中,光偵測器之作用(例如,光感測)區域至部分可由裝置堆疊中之裝置電路系統阻擋。隨著光偵測器大小及間距越來越小,由裝置堆疊阻擋之作用區域之部分可增加,從而降低光偵測器之敏感度。
在背面照明(BSI)影像感測器結構中,奈米井層經安置於影像感測器結構之背面上,該背面由激發光照明。在BSI影像感測器結構中,裝置堆疊不位於奈米井層與複數個光偵測器之間。因此,裝置堆疊可不阻擋光偵測器之作用區域。
然而,裝置堆疊之裝置電路系統通常用於幫助減少FSI影像感測器結構中之串擾。此類裝置電路系統可無法幫助減少BSI影像感測器結構中之串擾。串擾包括自奈米井透射之發射光,該發射光由與奈米井相關聯的光偵測器無意間偵測到。
亦與FSI影像感測器結構不同,裝置堆疊不可用於BSI影像感測器結構中以輔助充分地阻擋激發光到達光偵測器。此外,裝置堆疊亦不可用於BSI影像感測器結構中以輔助高效地收集自奈米井發射之發射光並將其聚焦至光偵測器上。
本發明提供之實例可克服上述挑戰。舉例而言,一個實例提供了一種BSI影像感測器結構,其減少奈米井與不相關聯的光偵測器之間的串擾,而無需裝置堆疊之輔助。此外,另一實例提供了一個BSI影像感測器結構,其可充分地阻擋來自光偵測器之激發光,並且其可高效地收集發射光並將其聚焦至光偵測器上,而無需裝置堆疊之輔助。
本發明藉由提供影像感測器結構提供優於先前技術的優勢及替代方案,該影像感測器結構,當用自其背面引導朝向奈米井之激發光照明時,可減少奈米井與經安置於影像感測器結構中之不相關聯的光偵測器之間的串擾,而無需裝置堆疊之輔助。此外,經安置於影像感測器結構中之光管腔具有縱橫比及側壁角度,該縱橫比及側壁角度可經定大小以充分阻擋激發光並且高效地收集發射光,而無需裝置堆疊之輔助。此外,縱橫比並非如此大,且側壁角度亦非如此小,以使得影像感測器結構製造不可靠。
根據本發明之一或多個態樣,影像感測器結構包括經安置於裝置堆疊上方之影像堆疊。該影像堆疊包括複數個光偵測器。第一濾光器堆疊經安置於該影像堆疊上方。第一濾光器堆疊包括光導層;及複數個光管腔,其經安置於該光導層中。複數個光管腔中之每個光管腔與複數個光偵測器中之光偵測器相關聯。每個光管腔具有大於約2.5:1之縱橫比。奈米井層經安置於該第一濾光器堆疊上方。複數個奈米井經安置於奈米井層中。每個奈米井與複數個光偵測器中之光偵測器相關聯。
在一些實例中,影像感測器結構之光管腔具有側壁角度,該側壁角度在約11至約1.2度之範圍內。
在一些實例中,影像感測器結構包括經安置於光管腔中之濾光器材料。濾光器材料在光管腔之側壁處與光導層直接接觸。
在一些實例中,影像感測器結構包括第二濾光器堆疊,該第二濾光器堆疊經安置於第一濾光器堆疊上方。第一濾光器堆疊及第二濾光器堆疊具有大於該第一濾光器堆疊及該第二濾光器堆疊中之任何一者的一總縱橫比。
在一些實例中,影像感測器結構之光導層包括聚合物材料、半導體材料及介電材料中之一者。
在一些實例中,影像感測器結構之第一光學堆疊包括中間層,其經安置於影像堆疊上方;及光導層,其經安置於中間層上方。光導層為金屬層,其經安置於光管腔之側壁上,且未經安置於光管腔之底部表面上。光導層具有約100奈米或更少之厚度。
在一些實例中,影像感測器結構之影像堆疊包括基板層、複數個隔離溝槽及介電材料。基板層經安置於複數個光偵測器上方。基板層操作以使發射光及激發光通過。複數個隔離溝槽經安置於基板層中。每個隔離溝槽經安置相鄰於複數個光偵測器中之一光偵測器。介電材料經安置於每個隔離溝槽中。介電材料操作以電隔離複數個光偵測器中之每個光偵測器。
在影像感測器結構之一些實例中,安置於第一濾光器堆疊中之中間層及影像堆疊之基板層由相同材料構成。
在影像感測器結構之一些實例中,中間層及基板層由矽構成。
在一些實例中,影像感測器結構包括光導層,該光導層由吸光材料構成。透光材料經安置於光管腔中。透光材料具有的折射率大於吸光材料之折射率。
在一些實例中,影像感測器結構包括串擾層、串擾屏障、擴散層及光管延伸部。串擾層經安置於濾光器堆疊之頂部表面上方,介於光管腔中之一或多者之間。串擾屏障自濾光器堆疊之頂部表面向下延伸,介於光管腔中之一或多者之間。擴散層經安置於濾光器堆疊與影像堆疊之間。光管延伸部經安置於光管腔中之一或多者之底部處。光管延伸部延伸穿過擴散層。
根據本發明之一或多個態樣,另一影像感測器結構包括經安置於裝置堆疊上方之影像堆疊。該影像堆疊包括複數個光偵測器。第一濾光器堆疊經安置於該影像堆疊上方。第一濾光器堆疊包括光導層;複數個光管腔,其經安置於該光導層中;及濾光器材料,其經安置於光管腔中。每個光管腔與在複數個光偵測器中之光偵測器相關聯。濾光器材料在光管腔之側壁處與光導層直接接觸。奈米井層經安置於該第一濾光器堆疊上方。複數個奈米井經安置於奈米井層中。每個奈米井與在複數個光偵測器中之光偵測器相關聯。
在影像感測器結構之一些實例中,光管腔具有大於約2.5:1之縱橫比。
在影像感測器結構之一些實例中,光管腔具有在約11至約1.2度之範圍內之側壁角度。
在影像感測器結構之一些實例中,光導層包括聚合物材料、半導體材料及介電材料中之一者。
在影像感測器結構之一些實例中,第一濾光器堆疊包括經安置在影像堆疊上方之中間層。光導層經安置於中間層上方。光導層為金屬層,其經安置於光管腔之側壁上,且未經安置於光管腔之底部表面上。光導層具有約100奈米或更少之厚度。
在影像感測器結構之一些實例中,影像堆疊包括基板層、複數個隔離溝槽及介電材料。基板層經安置於複數個光偵測器上方。基板層操作以使發射光及激發光通過。複數個隔離溝槽經安置於基板層中。每個隔離溝槽經安置相鄰於複數個光偵測器中之一光偵測器。介電材料經安置於每個隔離溝槽中。介電材料操作以電隔離複數個光偵測器中之每個光偵測器。
在影像感測器結構之一些實例中,經安置於第一濾光器堆疊中之中間層及經安置於影像堆疊中之基板層由相同的材料構成。
在一些實例中,影像感測器結構包括第二濾光器堆疊,該第二濾光器堆疊經安置於第一濾光器堆疊上方。第一濾光器堆疊及第二濾光器堆疊具有大於該第一濾光器堆疊及該第二濾光器堆疊中之任何一者的總縱橫比。
在一些實例中,影像感測器結構包括串擾層、串擾屏障、擴散層及光管延伸部。串擾層經安置於濾光器堆疊之頂部表面上方,介於光管腔中之一或多者之間。串擾屏障自濾光器堆疊之頂部表面向下延伸,介於光管腔中之一或多者之間。擴散層經安置於濾光器堆疊與影像堆疊之間。光管延伸部經安置於光管腔中之一或多者之底部處。光管延伸部延伸穿過擴散層。
根據本發明之一或多個態樣,另一影像感測器結構包括經安置於裝置堆疊上方之影像堆疊。該影像堆疊包括複數個光偵測器。第一濾光器堆疊經安置於該影像堆疊上方。第一濾光器堆疊包括光導層,其由吸光材料構成;複數個光管腔,其經安置於該光導層中;及透光材料,其經安置於光管腔中。每個光管腔與複數個光偵測器中之光偵測器相關聯。透光材料具有的折射率大於吸光材料之折射率。一奈米井層經安置於該第一濾光器堆疊上方。複數個奈米井經安置於奈米井層中。每個奈米井與複數個光偵測器中之光偵測器相關聯。
在影像感測器結構之一些實例中,光管腔具有在約11至約1.2度之範圍內之側壁角度,及大於約2.5:1之縱橫比。
在影像感測器結構之一些實例中,吸光材料在光管腔之側壁處與透光材料直接接觸。
在一些實例中,影像感測器結構包括串擾層、串擾屏障、擴散層及光管延伸部。串擾層經安置於濾光器堆疊之頂部表面上方,介於光管腔中之一或多者之間。串擾屏障自濾光器堆疊之頂部表面向下延伸,介於光管腔中之一或多者之間。擴散層經安置於濾光器堆疊與影像堆疊之間。光管延伸部經安置於光管腔中之一或多者之底部處。光管延伸部延伸穿過擴散層。
根據本發明之一或多個態樣,形成影像感測器結構之方法包括將影像堆疊安置於裝置堆疊上方。該影像堆疊包括複數個光偵測器。光導層經安置於影像堆疊上方。在光導層中蝕刻複數個光管腔。每個光管腔與複數個光偵測器中之光偵測器相關聯。每個光管腔具有大於約2.5:1之縱橫比。奈米井層經安置於光導層上方。複數個奈米井經安置於奈米井層中。每個奈米井與在複數個光偵測器中之光偵測器相關聯。光導層、複數個光管腔及濾光器材料構成第一濾光器堆疊,該第一濾光器堆疊經安置於影像堆疊上方。
在一些實例中,該方法包括將中間層安置於影像堆疊上方。光導層經安置於中間層上方。光導層為金屬層,其經安置於光管腔之側壁上,且未經安置於光管腔之底部表面上。光導層具有約100奈米或更少之厚度。
在一些實例中,該方法包括將濾光材料安置於光管腔中。濾光器材料在光管腔之側壁處與光導層直接接觸。
在一些實例中,該方法包括將第二濾光器堆疊安置於第一濾光器堆疊上方。第一濾光器堆疊及第二濾光器堆疊具有大於該第一濾光器堆疊及該第二濾光器堆疊中之任何一者的總縱橫比。
在一些實例中,該方法包括光導層,該光導層由吸光材料構成。透光材料經安置於光管腔中。透光材料具有的折射率大於吸光材料之折射率。
應瞭解,上述概念及下文較詳細論述之額外概念的所有組合(假設此類概念不相互矛盾)被認為係本文中所揭示的發明標的物之一部分且可用於實現如本文中所描述之益處及優勢。
現在將描述某些實例,以提供對本文中所揭示之方法、系統及裝置的結構、功能、製造及使用的原理。隨附圖式中說明了一或多個實例。所屬技術領域中具有通常知識者將理解,本文中具體描述並隨附圖式中說明之方法、系統及裝置為非限制實例,且本發明之範圍僅由申請專利範圍界定。結合一個實例所說明或描述之功能可與其他實例之特徵組合。此等修改及變化意欲包括在本發明之範圍內。
術語「實質上」、「大約」、「約」、「相對地」或可貫穿本發明(包括申請專利範圍)使用之其他此類相似術語用於描述並考慮諸如由於自參考或參數在處理之變化所致的小波動此類小波動亦包括參考或參數之零波動。舉例而言,所述術語可係指小於或等於±10%,諸如小於或等於±5%,諸如小於或等於±2%,諸如小於或等於±1%,諸如小於或等於±0.5%,諸如小於或等於±0.2,諸如小於或等於±0.1%,諸如小於或等於±0.05%。
參考圖1至圖16,相同參考編號用於慣出該數個視圖指示相同或類似組件。圖1至圖6、圖8至圖9及圖11至圖13分別根據本文中所描述之態樣說明在各種製造的中間階段之影像感測器結構100、200及300之實例。圖7、圖10、圖14、圖15及圖16分別說明在製造的完成階段之影像感測器結構100、200、300、400及500之實例。
參考圖1,根據本文中所描述之態樣,描繪在製造的中間階段之影像感測器結構100之實例的剖面視圖。在此製造階段,影像感測器結構100包括影像堆疊102,該影像堆疊經安置於裝置堆疊104上方。如本文中將更詳細地論述,影像感測器結構100為背面照明(BSI)影像感測器結構。
為了為影像感測器結構100提供機械支撐,載體基板106經接合至裝置堆疊104。載體基板106可包含或為矽或其他半導體材料。載體基板106可在400至800微米厚之範圍內。
自裝置堆疊104至接合於載體基板106之正面上之導電墊108之電氣輸入/輸出連接可利用穿矽通孔(TSV)110進行。TSV可具有金屬襯裡109或經填充有金屬,諸如鎢(W)、鋁(Al)或銅(Cu)。
裝置堆疊104可含有複數個介電層111。介電層111可包含或為SiO2 、SiN、SiON或其他介電材料。
介電層111可含有各種裝置電路系統112,諸如例如電阻器、電容器、二極體及/或電晶體及其互連件。裝置堆疊104之裝置電路系統112與經安置於影像堆疊102中之複數個光偵測器114A、114B、114C、114D、114E(統稱為114)介接。裝置電路系統112可操作以使用發射光158(在圖7中所見最佳)之所偵測到光子處理來自光偵測器114之資料信號。
如本文中所使用之光偵測器114可為例如半導體。半導體可包含光電二極體、互補金屬氧化物半導體(CMOS)材料,或兩者。光偵測器114亦可為半導體材料中之光電二極體接面區域或植入物。舉例而言,光電二極體114可為p型基板中之n型摻雜區域、n型摻雜基板上之p型井上之n型摻雜區域或任何其他二極體組合。
影像堆疊102包括經安置於裝置堆疊104上方之複數個光偵測器114。基板層116經安置於複數個光偵測器114上方。基板層116可包含或為矽、矽鍺、砷化鎵或其他半導體材料。正本文中將更詳細地解釋,基板層116操作以使自經安置於影像堆疊102上面之奈米井148發出之發射光158及激發光156(在圖7中所見最佳)兩者通過。舉例而言,發射光158可在約500奈米(nm)至約650 nm之波長範圍內。舉例而言,激發光156可在約400 nm至約570 nm之波長範圍內。發射光158可具有大於激發光156之波長。更具體而言,發射光158可具有在比激發光156之波長大約40 nm至140 nm之間的範圍內的波長。
影像堆疊102亦包括複數個隔離溝槽118A、118B、118C、118D及118E(統稱為118),所述隔離溝槽經安置於基板層116中。每個隔離溝槽118經安置相鄰複數個光偵測器114中之光偵測器114。隔離溝槽118可為深溝槽,且可包括自約5:1至約25:1之間的大縱橫比AR。如本文中所使用的縱橫比AR為特徵之高度(在此狀況下為隔離溝槽118)與特徵之最大寬度的比率。
由於製造容限,隔離溝槽118可並非皆具有相同高度。舉例而言,隔離溝槽118A至118D經說明為未橫跨基板層116之全部厚度延伸,且隔離溝槽118E至118F經說明為橫跨基板層116之整個厚度延伸。
影像堆疊102亦包括經安置於每個隔離溝槽118中之介電材料120。介電材料118操作以電氣隔離複數個光偵測器114中之每個光偵測器114。介電材料118亦藉由阻擋或顯著減少光偵測器之間的光或光生成電子之間的透射來顯著減少光偵測器114之間的串擾。介電材料可包含或為SiO2 、SiN、SiON或其他介電材料。
在圖1中所說明之製造的中間階段製作影像感測器結構100的方法之實例可包括首先提供基板層116。此後,可利用各種摻雜技術在基板層116中形成n型摻雜及p型摻雜光電二極體接面區域,以便形成光偵測器114。然後可在光偵測器114之間各向異性地蝕刻(例如,藉助反應離子蝕刻(RIE)製程)隔離溝槽118。然後,隔離溝槽118可填充有介電材料120,以便提供電氣深溝槽隔離(DTI),並且顯著減地減少光偵測器114之間的串擾。可例如藉由化學機械平坦化(CMP)製程將任何多餘的介電材料120向下平坦化至光偵測器114之層級。然後,可將裝置堆疊104直接安置於光偵測器114上方,以完成影像感測器結構100之影像堆疊102及裝置堆疊104的形成。然後,可將載體基板106接合至裝置堆疊104,以為影像感測器結構100提供機械支撐。
參考圖2,根據本文中所描述之態樣描繪在製造的中間階段之圖1之影像感測器結構100之實例的剖面視圖,其中光導層122經安置於影像堆疊102上方。光導層122可包含或為例如聚合物材料、半導體材料或介電材料。若光導層為聚合物,則其可包含或為SU-8光阻劑材料、苯并環丁烯(BCB)、聚醯胺、聚甲基丙烯酸甲酯(PMMA)或其他染料著色膜。若光導層為電介質,則其可包含或為SiO2 、SiN、SiC、矽氧氮化碳或其他電介質。若其為半導體材料,則其可包含或為矽或其他半導體材料。
參考圖3,根據本文中所描述之態樣描繪在製造的中間階段之圖2之影像感測器結構100之實例的剖面視圖,其中將複數個光管腔124A、124B、124C、124D、124E(統稱為124)形成至光導層122中。每個光管腔124與複數個光偵測器114中之光偵測器114相關聯。更具體而言,每個光管腔124A、124B、124C、124D、124E分別與相關聯的光偵測器114A、114B、114C、114D、114E對準。因此,穿過光管腔124之光可經引導至其相關聯的光偵測器114上,而非引導至任何未相關聯的光偵測器上。
光管腔124可經各向異性蝕刻及/或微影圖案化至光導層122中。由於製造容限,光管腔124可並非始終穿透光導層122之整個厚度。舉例而言,光管腔124D經說明為具有經安置於光管腔之底部處之小厚度之光導層122材料。然而,光管腔124D之底部處之光導層122之厚度足夠小,使得其不會顯著阻擋引導朝向光感測器114之光。為了不顯著阻擋光,光管腔124之底部處之光導層122之厚度可為約50奈米厚或更少,或可為約20奈米厚或更少。
光導層122顯著減少或阻止光自一個光管腔124至另一光管腔之透射,以輔助減少光偵測器114之間的串擾。術語「顯著」在本文中可係指大於或等於約50%。舉例而言,光導層122可將光自一個光管腔124至另一光管腔之透射減少50%,減少60%,減少75%或更多。光導層122亦輔助導引顯著一部分發射光156穿過光管腔124並導引至其相關聯光偵測器114上。舉例而言,光導層可輔助導引50%、60%、75%以上的發射光156至其相關聯的光偵測器114上。
參考圖4,根據本文中所描述之態樣,描繪圖3之圓形區域4-4之實例的放大剖面視圖,其中說明光管腔124之縱橫比AR及側壁角度θ。如本文中將較詳細地闡釋,光管腔124之縱橫比AR範圍可為約2.5:1至約25:1,此具體取決於阻擋激發光及收集發射光之需要,該發射光自奈米井148發出,該奈米井直接安置於影像感測器結構100中之光管腔124上面。更具體而言,圖3及圖4之光管腔124之縱橫比AR為光管腔124之實際高度H與最大寬度W的比率,最大寬度正好為光管腔124之頂部處之頂部寬度W。
可靠地製造此類高縱橫比光管腔124可能是不實際或不成本有效的,像是腔124之底部處之底部寬度W'等於腔124之頂部處之頂部寬度W。換言之,對於此等高縱橫比光管腔124之可靠且成本有效的製造製程很可能包括側壁130,所述側壁相對於垂直參考線126(亦即,實質上垂直於光導層122之頂部表面128之線126)具有非零側壁角度θ。
光管腔124之兩側上之側壁角度θ很可能實質上相等。因此,底部寬度W'距自腔124之頂部邊緣129向下延伸之垂直參考線126之水平距離d(在光管腔124之兩側上)亦可實質上相等。
此類非零側壁角度θ將限制最大可達到高度Hmax,且因此最大可達到縱橫比ARmax,即光管腔124可達到任何給定側壁角度θ。亦即,最大可達到高度Hmax經限制於光管腔124之底部處之底部寬度W'可變為零的高度。換言之,最大可達到高度Hmax經限制於側壁130可針對任何給定側壁角度θ在點132處交會之高度。由於光管腔124之兩側上之側壁角度θ實質上相等,因此點132水平位於空腔124之頂部處之寬度W的中間。因此,底部點132距垂直參考線126之水平距離亦可實質上等於W/2。
實際縱橫比AR、最大可達到縱橫比ARmax、實際高度H、最大可達到高度Hmax、側壁角度θ、頂部寬度W、底部寬度W'及距離d之間的關係可表達如下: AR = H/W; tan θ= d/H = 0.5W/Hmax;且 ARmax = Hmax/W =H/(2d) = H/(W-W') = 0.5/(tan θ)。
因此,由於ARmax = 0.5/(tan θ),側壁角度θ越小,可達到的最大可達到縱橫比ARmax越大。
參考圖5,根據本文中所描述之態樣,描繪在製造的中間階段之圖3之影像感測器結構100之實例的剖面視圖,其中濾光器材料134經安置於光管腔124中。在此製造階段,光導層122、複數個光管腔124及濾光器材料134形成完整的第一濾光器堆疊136,該第一濾光器堆疊經安置於影像堆疊102上方。
濾光器材料134可能阻擋激發光之顯著一部分。舉例而言,濾光器材料可使在約500 nm至650 nm之範圍內之發射光波長之顯著一部分通過,且可阻擋在約400 nm至570 nm之範圍內之激發光之顯著一部分。
濾光器材料134經安置於光管腔124中,使得其在光管腔124之側壁130處與光導層122直接接觸。使濾光器材料134在光管腔124之側壁130處直接接觸光導層122保證無大量的激發光156可在濾光器材料134與光導層122之間無意間透射以到達光偵測器114下面。
濾光器材料134可包含或為染料聚合物混合物,其中染料可具有低螢光性。舉例而言,染料可包含金屬化偶氮染料錯合物類或為其中之成員,諸如奧麗素(Orasol)橙色型染料、奧麗素黃色型染料、溶劑黃色型染料、溶劑橙色型染料或溶劑紅色型染料。舉例而言,聚合物可包含或為醋酸丁酸纖維素。
材料134可旋塗或噴塗至光管腔124中,烘乾及/或固化。任何多餘的濾光器材料134可向下平坦化至光導層122之頂部表面128之層級。
光管腔124及濾光器材料130有效地充當光導,所述光導阻擋大多數激發光156,並將發射光158的顯著一部分透射至複數個光偵測器114。為了高效地操作為光導,一些實施方案中之光管腔124具有高度H,該高度H足夠高以使得選定光導材料134能夠阻擋激發光156之顯著部分透射至下面的光偵測器114。
此外,為了高效地操作為光導,在一些實施方案中腔124之頂部寬度W足夠大,以高效地收集大量發射光158,甚至在光偵測器114之間的間距較小(例如,小於約0.5微米)時。當光偵測器114之間的間距與頂部寬度W相比較為較小時,光管腔124之底部寬度W'與頂部寬度W相比較亦可為較小。
實現大高度H及光管腔頂部之頂部寬度W與底部寬度W'之間的較大差的一個方式為具有高縱橫比。舉例而言,縱橫比H/W可大於約2.5:1,可大於約5:1,可大於約10:1,且可大於約20:1。
實際縱橫比H/W可能越高,最大可達到縱橫比Hmax/W可能越高,側壁角度θ可能越小。例如: • 對於約2.5:1的實際縱橫比,最大可達到縱橫比可為約2.5:1或更大,且側壁角度θ可為約11度或更小; • 對於約5:1的實際縱橫比,最大可達到縱橫比可為約5:1或更大,且側壁角度θ可為約6度或更小; • 對於約10:1的實際縱橫比,最大可達到縱橫比可為約10:1或更大,且側壁角度θ可為約3度或更小;且 • 對於約20:1的實際縱橫比,最大可達到縱橫比可為約20:1或更大,且側壁角度θ可為約1.5度或更小;
然而,高最大可達到縱橫比及對應的小側壁角度θ可為不實際的、不可靠的且製造昂貴的。舉例而言,約大於25:1的最大可達到縱橫比及約小於1.2度的對應的側壁角度θ可難以可靠地大量地製造。
因此,為了能夠可靠地製造高效地阻擋激發光156及收集發射光158的光導軌(亦即,填充有濾光器材料134之光管腔124),可使光管腔之縱橫比H/W及側壁角度θ在某些預定範圍內。舉例而言,光管腔可具有: • 約2.5:1或更大的縱橫比,及在約11度至約1.2度範圍內之側壁角度; • 約5:1或更大的縱橫比,及在約6度至約1.2度範圍內之側壁角度; • 約5:1或更大的縱橫比,及在約6度至約1.5度範圍內之側壁角度; • 約10:1或更大的縱橫比,及在約3度至約1.2度範圍內之側壁角度;及 • 約10:1或更大d的縱橫比,及在約3至約1.5度範圍內之的側壁角度。
參考圖6,根據本文中所描述之態樣描繪在製造的中間階段之圖5之影像感測器結構之實例的剖面視圖,其中第二濾光器堆疊138經安置於圖5之第一濾光器堆疊136上方。組合的第一濾光器堆疊136及第二濾光器堆疊138具有大於第一濾光器堆疊及第二濾光器堆疊中之任何一者的總縱橫比。
通常可難以可靠地製造的高縱橫比可為期望的,以實現諸如實質上阻擋激發光156或高效地收集發射光158的參數。舉例而言,可期望大於約10、大於約15、大於約20及大於約25的總縱橫比。為了實現此類高縱橫比,但仍有側壁角度θ在合理的製造限制內,第二濾光器堆疊138可經安置於第一濾光器堆疊136上方。側壁角度θ的此類合理製造限制可為例如1.2度或更多、1.5度或更多以及3度或更多。
第二濾光器堆疊138可包括第二光導層140,該第二光導層經安置於第一濾光器堆疊136上方。第二複數個光管腔142可形成至第二光導層140中。每個第二光管腔與複數個光偵測器中之光偵測器114相關聯。第二濾光器材料144可經安置於每個第二光管腔142內。第二光管腔可具有第二光管腔高度H2及第二光管腔頂部寬度W2。
總縱橫比可約等於組合的第一光管腔124及第二光管腔140之總高度HTOT 除以組合的第一光管腔124及第二光管腔140之最大寬度。若第二濾光器堆疊138與第一濾光器堆疊136在幾何上實質上相同,則總縱橫比可實際上為第一光管腔124之縱橫比的約兩倍,且側壁角度θ可保持約相同。
亦即,總縱橫比可約等於第一光管腔124及第二光管腔140之組合高度H、H2 之總高度HTOT 除以組合的第一光管腔124及第二光管腔140之最大寬度。最大寬度可為兩個頂部寬度W、W2中較寬者。由於總高度HTOT 可約為第一光管腔124之高度H的兩倍,且最大寬度可約等於第一光管腔之寬度W,總縱橫比可約為第一光管腔124之縱橫比的兩倍。然而,側壁角度θ可在整個第一光管腔124及第二光管腔142保持約相同。
儘管第二濾光器堆疊138在圖6中經說明為與第一濾光器堆疊136實質上相同,但可利用第二濾光器堆疊138之其他組態。舉例而言,第二濾光器堆疊138可與第一濾光器堆疊136就以下方面不同:第二光導層140之材料及大小、第二光管腔142之材料及大小以及第二濾光材料之材料及大小。
參考圖7,根據本文中所描述之態樣描繪在製造的完成階段之圖5之影像感測器結構100之實例的剖面視圖,其中具有複數個奈米井148A、148B、148C、148D、148E(統稱為148)之奈米井層146經安置於第一濾光器堆疊136上方。每個奈米井148與複數個光偵測器中之光偵測器114相關聯。更具體而言,每個奈米井148A、148B、148C、148D、148E可分別與相關聯的光管腔124A、124B、124C、124D、124E及相關聯的光偵測器114A、114B、114C、114D、114E對準。因此,自奈米井148發出的某些光可穿過其相關聯的光管腔124,且可經引導至其相關聯的光偵測器114上,而不是引導至任何未相關聯的光偵測器上。
奈米井層146可為一或多層介電材料,諸如氮化矽SiN或一類型氧化鉭(諸如五氧化鉭Ta2 O5 )。奈米井148可經微影圖案化及蝕刻至奈米井層146中。
鈍化堆疊150可視情況經直接安置於第一濾光器堆疊136上方,其中奈米井層146可經安置於鈍化堆疊上方。鈍化堆疊可為一或多層介電材料,諸如SiO2或SiN。鈍化堆疊亦可為一或多層聚合物,諸如BCB或SU8。鈍化堆疊可用於降低第一濾光器堆疊136之化學反應性,其中化學反應在奈米井148中執行。
在操作期間,可用螢光標定分子154對某些分析物152(諸如DNA片段簇團或其類似物)進行標記,並將其安置於奈米井148中。然後可將各種類型的激發光156輻射至奈米井148中之分析物152上,致使標定分子154發出螢光發射光158。發射光158之大多數光子可透射穿過鈍化堆疊150,並且進入其相關聯的光管腔124。光管腔124及其濾光器材料134一起充當光導,所述光導可濾除激發光156之大部分並且將發射光158之顯著一部分引導至直接定位於光導下面的相關聯的光偵測器114。
光偵測器114偵測發射光子158。位於裝置堆疊104內之裝置電路系統112然後基於發射光158之彼等所偵測到的光子處理及傳輸資料信號。然後可分析資料信號,以揭示分析物152之特性。
影像感測器結構100為背面照明(BSI)影像感測器結構,此係因為奈米井148經安置於影像感測器結構100之背面上,並且因為裝置堆疊104未經安置於奈米井層146與複數個光偵測器114之間。換言之,裝置堆疊104及奈米井層146經安置於複數個光偵測器114之相對面上。因此,奈米井148由來自影像感測器結構100之背面的激發光156照明。
然而,由於裝置堆疊104之位置,裝置電路系統112可無法輔助減少自奈米井148發出至不相關聯的光偵測器114上之發射光子158之串擾。為補償裝置堆疊104的不足,利用光導層122來阻擋大部分發射光158及激發光156自一個光管腔124透射至另一光管腔。換言之,光導層122操作以阻止或至少實質上阻止發射光158(自奈米井148中之螢光標定分子154發射)及激發光156(自影像感測器結構之背面100照明奈米井148)從中通過。
另外,光導層122在光管腔124之側壁130處與濾光器材料134直接接觸。如此,幾乎無激發光156可透射穿過光管腔124,而無需穿過濾光材料134。濾光器材料134操作以阻擋激發光156,並且使發射光158穿過光偵測器114。
光管腔124之高縱橫比H/W幾何塑形填充腔124之濾光器材料134。因此,光管腔124之高縱橫比輔助為濾光器材料134提供足夠高度H,此使得濾光器材料134能夠阻擋激發光156之顯著一部分從中穿過。
光管腔124之高縱橫比H/W亦相對於光管腔124之底部寬度W'提供顯著較寬的頂部寬度W。如此,光管腔124可高效地收集發射光158,甚至在光偵測器114之間的間距小至例如約0.6至0.5微米或更少。
光管腔124之高縱橫比H/W可高達約2.5:1、約5:1、約10:1、約20:1或更多。此外,側壁角度θ足夠小,以允許光管腔124中之高縱橫比,但並未大得使得光管腔之製造不可靠及/或過於昂貴。光管腔124之側壁角度θ可在約11度至約1.2度之範圍內,在約10度至1.5度之範圍內,在約6度至約1.2度範圍內,在約3度至約1.2度範圍內,及在約3度至約1.5度範圍內。
參考圖8,根據本文中所描述之態樣描繪在製造的中間階段之另一影像感測器結構200之實例的剖面視圖,其中將複數個光管腔124蝕刻至中間層160中,且金屬光導層162經安置於光管腔124之側壁130上。光導層162可包含或為金屬,諸如鋁、金或銅。然而,若光管腔124之間的金屬光導層162之厚度過大,則金屬可在發射光158到達光偵測器114之前吸收過多的發射光。為了不吸收過多的發射光158,在光管腔124之間的金屬光導層162之厚度可為例如約100奈米或更少,約50奈米或更少,或約40奈米或更少。
中間層160經安置於影像堆疊102上方,且為相對薄的金屬光導層162提供機械支撐。光導層162經安置於中間層160上方在光管腔124之側壁130上。在一個實施方案中,金屬層經直接安置於側壁上。
金屬光導層162可未經安置於光管腔124之底部表面164上。此係因為金屬光導層162,甚至薄至100奈米或更少,可在其經安置於光管腔124之底部表面164上的情況下阻止發射光158之顯著部分透射至影像堆疊102中。
中間層160可包含或為例如聚合物材料、半導體材料或介電材料。若中間層包含聚合物,則該聚合物可包含或為SU-8光阻劑材料、苯并環丁烯(BCB)、聚醯胺、聚甲基丙烯酸甲酯(PMMA)或其他染料著色膜。若光導層包含電介質,則電介質可包含或為SiO2 、SiN、SiC或其他電介質。若其為半導體材料,則其可包含或為矽或其他半導體材料。光管腔124可經各向異性蝕刻及/或微影圖案化至中間層160中。
中間層160可由一材料構成,該材料過於透明而無法用作光導層,但可輕易且可靠地蝕刻至本文中較早論述之高縱橫比。在所述狀況下,使用中間層160來實現此高縱橫比光管腔124之製造,且然後用薄金屬光導層162塗覆腔側壁130可為有利的。
金屬光導層162可塗覆於光管腔124之側壁130上,例如,利用全面性沉積製程(blank deposition process)、原子層沉積、無電極電鍍或電鍍。可藉由例如各向異性蝕刻製程(諸如反應離子蝕刻製程)將無意間安置於光管腔124之底部表面164上之任何金屬光導層162移除。各向異性蝕刻製程使金屬光導層162位於光管腔124之側壁130上。
參考圖9,根據本文中所描述之態樣描繪在製造的中間階段之圖8之影像感測器結構200之實例的剖面視圖,其中濾光器材料134經安置於光管腔124中,且其中中間層160、光導層162、複數個光管腔124及濾光器材料134形成第一濾光器堆疊136。
濾光器材料134經安置於光管腔124中,使得其在光管腔124之側壁130處與光導層162直接接觸。使濾光器材料134在光管腔124之側壁130處直接接觸光導層162保證沒有大量的激發光156可在濾光器材料134與光導層162之間無意間透射以到達光偵測器114下面。
濾光器材料134可為一基於染料之聚合物。材料134可旋塗或噴塗至光管腔124中,烘乾及/或固化。任何多餘的濾光器材料134可向下平坦化至中間層160之頂部表面128之層級。
參考圖10,根據本文中所描述之態樣描繪在製造的完成階段之圖9之影像感測器結構200之實例的剖面視圖,其中具有複數個奈米井148之奈米井層146經安置於第一濾光器堆疊136上方。影像感測器結構200之所有態樣與較早論述之影像感測器結構100之態樣實質上相同或相似,惟除金屬光導層162經安置於光管導引件124之側壁130上,且中間層160機械支撐光導層162。
在操作期間,可用螢光標定分子154對某些分析物152(諸如DNA片段簇團或其類似物)進行標記,並將其安置於奈米井148中。然後可將各種類型的激發光156輻射至奈米井148中之分析物152上,致使標定分子154發出螢光發射光158。發射光158之大多數光子可透射穿過鈍化堆疊150,並且進入其相關聯的光管腔124。光管腔124及其濾光器材料134一起充當光導,所述光導可濾除激發光156之大部分並且將發射光158之顯著一部分引導至直接定位於光導下面的相關聯的光偵測器114。
光偵測器114偵測發射光子158。位於裝置堆疊104內之裝置電路系統112然後基於發射光158之彼等所偵測到的光子處理及傳輸資料信號。然後可分析資料信號,以揭示分析物152之特性。
影像感測器結構200為背面照明(BSI)影像感測器結構,此係因為奈米井148經安置於影像感測器結構200之背面上,並且因為裝置堆疊104未經安置於奈米井層146與複數個光偵測器114之間。因此,奈米井148由來自影像感測器結構200之背面的激發光156照明。
然而,由於裝置堆疊104之位置,裝置電路系統112可無法輔助減少自奈米井148發出至不相關聯的光偵測器114上之發射光子158之串擾。為了補償裝置堆疊104的不足,光導層162經安置於中間層160上方,且用於阻擋大多數發射光158及激發光156自一個光管腔124透射至另一光管腔。
另外,光導層162在光管腔124之側壁130處與濾光器材料134直接接觸。如此,幾乎無激發光156可透射穿過光管腔124,而無需穿過濾光材料134。濾光器材料134操作以阻擋激發光156,並且使發射光158穿過光偵測器114。
光管腔124之高縱橫比H/W幾何塑形填充腔124之濾光器材料134。因此,光管腔124之高縱橫比輔助為濾光器材料134提供足夠高度H,此使得濾光器材料134能夠阻擋激發光156之顯著一部分從中穿過。
光管腔124之高縱橫比H/W亦相對於光管腔124之底部寬度W'提供顯著較寬的頂部寬度W。如此,光管腔124可高效地收集發射光158,甚至在光偵測器114之間的間距小至例如約0.6至0.5微米或更少。
光管腔124之高縱橫比H/W可高達約2.5:1、約5:1、約10:1、約20:1或更多。此外,側壁角度θ足夠小,以允許光管腔124中之高縱橫比,但並未大得使得光管腔之製造不可靠及/或過於昂貴。光管腔124之側壁角度θ可在約11度至約1.2度之範圍內,在約10度至1.5度之範圍內,在約6度至約1.2度範圍內,在約3度至約1.2度範圍內,及在約3度至約1.5度範圍內。
參考圖11,根據本文中所描述之態樣,描繪在製造的中間階段之影像感測器結構300之實例的剖面視圖。在結構300中,中間層166經安置於影像堆疊102之基板層116上方。中間層166及基板層116由相同的材料構成。中間層166及基板層116可包含或為矽、矽鍺、砷化鎵或其他半導體材料。
在製造的早期階段期間,組合層168可以一高度安置於裝置堆疊104上方,該高度至少與組合的影像堆疊102及第一濾光器堆疊136之高度一樣高。然後,可將組合層168向下平坦化至預定高度170,該預定高度實質上等於影像堆疊102及第一濾光器堆疊136之組合高度。在所述製造階段,中間層166構成組合層168之上部部分,且基板層116構成組合層168之下部部分。
複數個光管腔124可經各向異性蝕刻至中間層166中。舉例而言,此可藉由反應離子蝕刻製程完成。因為中間層166為半導體材料,所以較容易蝕刻至高縱橫比。然而,中間層166過於透明而不能用作光導層。
參考圖12,根據本文中所描述之態樣描繪在製造的中間階段之圖11之影像感測器結構300之實例的剖面視圖,其中金屬光導層172經安置於光管腔124之側壁130上。與影像感測器結構200極其相似,金屬光導層172經安置於光管腔124之側壁130上,此係因為中間層166過於透明而無法用作光導層。
光導層172可包含或為金屬,諸如鋁、金或銅。然而,若光管腔124之間的金屬光導層172之厚度過大,則金屬可在發射光158到達光偵測器114之前吸收過多的發射光。為了不吸收過多的發射光158,在光管腔124之間的金屬光導層172之厚度可為例如約100奈米或更少,約50奈米或更少,或約40奈米或更少。
中間層166經安置於影像堆疊102上方,且為相對薄的金屬光導層172提供機械支撐。光導層172經安置於光管腔124之側壁130之中間層166上方。
金屬光導層172可未經安置於光管腔124之底部表面174上。此係因為金屬光導層162,甚至薄至100奈米或更少,可在其經安置於光管腔124之底部表面174上的情況下減少且在一些情況下甚至阻止發射光158之顯著部分透射至影像堆疊102中。
金屬光導層172可塗覆於光管腔124之側壁130上,例如,利用全面性沉積製程、原子層沉積、無電極電鍍或電鍍。可藉由例如各向異性蝕刻製程(諸如反應離子蝕刻製程)將無意間安置於光管腔124之底部表面174上之任何金屬光導層172移除。各向異性蝕刻製程使金屬光導層172位於光管腔124之側壁130上。
參考圖13,根據本文中所描述之態樣描繪在製造的中間階段之圖12之影像感測器結構300之實例的剖面視圖,其中濾光器材料134經安置於光管腔124中,且其中中間層166、光導層172、複數個光管腔124及濾光器材料134形成第一濾光器堆疊136。
濾光器材料134經安置於光管腔124中,使得其在光管腔124之側壁130處與光導層172直接接觸。使濾光器材料134在光管腔124之側壁130處直接接觸光導層172保證沒有大量的激發光156可在濾光器材料134與光導層172之間無意間透射以到達光偵測器114下面。
濾光器材料134可為基於染料之聚合物。材料134可旋塗或噴塗至光管腔124中,烘乾及/或固化。任何多餘的濾光器材料134可向下平坦化至中間層166之頂部表面128之層級。
參考圖14,根據本文中所描述之態樣描繪在製造的完成階段之圖13之影像感測器結構300之實例的剖面視圖,其中具有複數個奈米井148之奈米井層146經安置於第一濾光器堆疊136上方。影像感測器結構300之所有態樣與較早論述之影像感測器結構200之態樣基本相同或相似,惟除中間層166及基板層116為相同材料。
在操作期間,可用螢光標定分子154對某些分析物152(諸如DNA片段簇團或其類似物)進行標記,並將其安置於奈米井148中。然後可將各種類型的激發光156輻射至奈米井148中之分析物152上,致使標定分子154發出螢光發射光158。發射光158之大多數光子可透射穿過鈍化堆疊150,並且進入其相關聯的光管腔124。光管腔124及其濾光器材料134一起充當光導,所述光導可濾除激發光156之大部分並且將發射光158之顯著一部分引導至直接定位於光導下面的相關聯的光偵測器114。
光偵測器114偵測發射光子158。位於裝置堆疊104內之裝置電路系統112然後基於發射光158之彼等所偵測到的光子處理及傳輸資料信號。然後可分析資料信號,以揭示分析物152之特性。
影像感測器結構300為背面照明(BSI)影像感測器結構,此係因為奈米井148經安置於影像感測器結構300之背面上,並且因為裝置堆疊104未經安置於奈米井層146與複數個光偵測器114之間。因此,奈米井148由來自影像感測器結構300之背面的激發光156照明。
然而,由於裝置堆疊104之位置,裝置電路系統112可無法輔助減少自奈米井148發出至不相關聯的光偵測器114上之發射光子158之串擾。為了補償裝置堆疊104的不足,光導層172經安置於中間層166上方,且用於阻擋大多數發射光158及激發光156自一個光管腔124透射至另一光管腔。
另外,光導層172在光管腔124之側壁130處與濾光器材料134直接接觸。如此,幾乎無激發光156可透射穿過光管腔124,而無需穿過濾光材料134。濾光器材料134操作以阻擋激發光156,並且使發射光158穿過光偵測器114。
光管腔124之高縱橫比H/W幾何塑形填充腔124之濾光器材料134。因此,光管腔124之高縱橫比輔助為濾光器材料134提供足夠高度H,此使得濾光器材料134能夠阻擋激發光156之顯著一部分從中穿過。
光管腔124之高縱橫比H/W亦相對於光管腔124之底部寬度W'提供顯著較寬的頂部寬度W。如此,光管腔124可高效地收集發射光158,甚至在光偵測器114之間的間距小至例如約0.6至0.5微米或更少。
光管腔124之高縱橫比H/W可高達約2.5:1、約5:1、約10:1、約20:1或更多。此外,側壁角度θ足夠小,以允許光管腔124中之高縱橫比,但並未大得使得光管腔之製造不可靠及/或過於昂貴。光管腔124之側壁角度θ可在約11度至約1.2度之範圍內,在約10度至1.5度之範圍內,在約6度至約1.2度範圍內,在約3度至約1.2度範圍內,及在約3度至約1.5度範圍內。
參考圖15,根據本文中所描述之態樣,描繪在製造的完成階段之另一影像感測器結構400之實例的剖面視圖。影像感測器結構400與影像感測器結構200相似,惟除增加了串擾阻擋層180及擴散層182。
串擾層180可經安置於濾光器堆疊136之頂部表面上方,介於一或多個光管腔124之間。串擾層180有助於減少光管腔124之間的串擾。
串擾層180可由金屬材料構成。串擾層180可由W、Al、AlSi、Cu或Ta構成。串擾層材料可包含能夠形成CMOS材料之金屬材料。層180之厚度可在約20 nm至150 nm之範圍內。
儘管在影像感測器結構400之此實例中說明串擾層180,但串擾層180亦可用於其他影像感測器結構中。舉例而言,串擾層180可用於影像感測器結構100、200、300或500(參見圖16)之實例中之任一者中。
擴散層182可經安置於濾光器堆疊136與影像堆疊102之間。擴散層182可用作擴散障壁層。擴散層182可用於減少來自濾光器材料134或其他雜質(諸如包裝或濕度)的自由離子的流動。擴散層182亦可用作平坦化層,以平坦化基板層116之表面。
擴散層182可由介電金屬氧化物材料或氮化物材料構成。擴散層182可由例如SiO2 、TaOx 、SiN或SiON構成。擴散層182之厚度可在約50 nm至約350 nm之範圍內。
儘管在影像感測器結構400之此實例中說明擴散層182,但擴散層182亦可用於其他影像感測器結構中。舉例而言,擴散層182可用於影像感測器結構100、200、300或500(參見圖16)之實例中之任一者中。
參考圖16,根據本文中所描述之態樣,描繪在製造的完成階段之另一影像感測器結構500之實例的剖面視圖。影像感測器結構500與先前的影像感測器結構100至400不同之處主要在於其濾光器堆疊136。
在影像感測器結構500之濾光器堆疊136中,光導層184由吸光材料構成。舉例而言,吸光材料可為與用於填充影像感測器結構100至400中之光管腔124之濾光器材料134之材料相同的材料。舉例而言,吸光材料可具有在約1.5與1.8之間的範圍內之折射率。
舉例而言,濾光器材料184可包含或為染料聚合物混合物,其中染料可具有低螢光性。舉例而言,染料可包含金屬化偶氮染料錯合物類或為其中之成員,諸如奧麗素(Orasol)橙色型染料、奧麗素黃色型染料、溶劑黃色型染料、溶劑橙色型染料或溶劑紅色型染料。舉例而言,聚合物可包含或為醋酸丁酸纖維素。
此外,與先前的影像感測器結構100至400(其具有經安置於其光管腔124中之濾光器材料134)不同,透光材料186經安置於影像感測器結構500之光管腔124中。舉例而言,透明材料186可由五氧化鉭(Ta2 O5 )、二氧化鈦(TiO2 )或氮化矽(SiN)構成。
透光材料186具有的折射率大於吸光材料184之折射率。透明材料186之折射率可具有在約1.8與2.7之間的範圍內之折射率。
構成光導層184之吸光材料與經安置於光管腔124中之透光材料186之間的折射率差異顯著地減少光管腔124之間的串擾,並有助於導引發射光158穿過光管腔並至影像堆疊102中之光偵測器114上。同時,吸光材料吸收激發光156之主要部分且用於顯著地減少或阻止激發光156到達光偵測器114。
光管腔124之高度H與光管腔之最大寬度W的比率(亦即,光管腔之實際縱橫比AR)越大,光導層184中之吸光材料可吸收之激發光156之量越大。因此,縱橫比可為較高的。舉例而言,光管腔之縱橫比可為約2.5:1或更大;5:1或更大;10:1或更大;15:1或更大;或20:1或更大,以便最佳化激發光156之吸收。
然而,如本文中較早所論述,側壁角度θ可在使得光管腔可合理製造的範圍內。舉例而言,側壁角度可在約1.2度至約11度、約1.2度至約6度、約1.2度至約3度、約1.5度至約11度、約1.5度至約6度或約1.5度至約3度之範圍內。
此外,重要的是,構成光導層184之吸光材料在光管腔之側壁130處與經安置於光管腔124中之透光材料186直接接觸。藉由直接接觸,鄰接的吸光材料與透光材料186之間的折射差異有助於導引發射光158向下至光偵測器114。另外,藉由吸光材料及透光材料直接接觸,較少的激發光156可輻射於兩種材料之間,且無意間到達光偵測器114。
濾光器堆疊136亦包括金屬串擾屏障188,所述金屬串擾屏障經安置於光導層184中介於光管腔124之間。串擾屏障188自濾光器堆疊136之頂部表面向下延伸且延伸至光導層184中。串擾屏障188用於進一步減少光管腔124之間的串擾。串擾屏障188可結合串擾層180一起工作,以幫助將光管腔124之間的任何串擾減小至微不足道的程度。
串擾屏障188可由金屬材料構成。舉例而言,串擾屏障188可由W、Al、AlSi、Cu、Ta或其他CMOS相容金屬構成。
儘管影像感測器結構500之此實例中說明串擾屏障188,但串擾屏障188亦可用於其他影像感測器結構中。舉例而言,串擾屏障188可用於影像感測器結構100、200、300或400之實例中之任一者中。
影像感測器結構500之濾光器堆疊136亦可包括光管延伸部190,所述光管延伸部可經安置於光管腔124之底部處,且其可穿透擴散層182。光管延伸部190可由氮化物(諸如氮化矽)構成,其具有約1.7至2.1之間的折射率。
光管延伸部190具有的折射率大於擴散層182之折射率。舉例而言,擴散層182可由SiO2 構成,具有約在1.4至1.55之間的一折射率。若如此,則包含氮化矽(SiN)之光管延伸190可為合適的,此係因為SiN具有約在1.7至2.1之間的折射率。光導管延伸部190之折射率大於擴散層182的折射率,與發射光穿過擴散層182而非光導管延伸部190相比,更有助於將發射光158聚焦至光檢測器114上。
儘管影像感測器結構500之此實例中說明光管延伸部190,但光管延伸部190亦可用於其他影像感測器結構中。舉例而言,光管延伸部190可用於影像感測器結構100、200、300或400之實例中之任一者中。
應瞭解,上述概念及本文中較詳細論述之額外概念的所有組合(假設此類概念不相互矛盾)被認為係本文中所揭示的發明標的物之一部分且實現如本文中所描述之益處及優勢。特定而言,出現在本發明之結尾處的所主張標的物的所有組合被認為係本文中所揭示之發明標的物之一部分。
儘管本發明已參考具體實例描述,但應理解,在所描述發明概念之精神及範圍內,可做出眾多改變。因此,本發明並不意欲限制於所描述之實例,但其具有由以下如申請專利範圍之語言所界定之全部範圍。
100:影像感測器結構 102:影像堆疊 104:裝置堆疊 106:載體基板 108:導電墊 109:金屬襯裡 110:穿矽通孔(TSV) 111:介電層 112:裝置電路系統 114A:光偵測器 114B:光偵測器 114C:光偵測器 114D:光偵測器 114E:光偵測器 116:基板層 118A:隔離溝槽 118B:隔離溝槽 118C:隔離溝槽 118D:隔離溝槽 118E:隔離溝槽 118F:隔離溝槽 120:介電材料 122:光導層 124:光管腔 124A:光管腔 124B:光管腔 124C:光管腔 124D:光管腔 124E:光管腔 126:垂直參考線 128:頂部表面 129:頂部邊緣 130:側壁 132:點 134:濾光器材料 136:第一濾光器堆疊 138:第二濾光器堆疊 140:第二光導層 142:光管腔 144:第二濾光器材料 146:奈米井層 148A:奈米井 148B:奈米井 148C:奈米井 148D:奈米井 148E:奈米井 150:鈍化堆疊 152:分析物 154:螢光標定分子/標定分子 156:激發光 158:發射光 160:中間層 162:金屬光導層 164:底部表面 166:中間層 168:組合層 170:預定高度 172:金屬光導層 174:底部表面 180:串擾阻擋層 182:擴散層 184:光導層 186:透光材料 188:金屬串擾屏障/串擾屏障 190:光管延伸部 200:影像感測器結構 300:影像感測器結構 400:影像感測器結構 500:影像感測器結構 d:距離 H:實際高度 H2:第二光管腔高度 HMAX :最大可達到高度 HTOT :總高度 W:寬度/頂部寬度 W':寬度/底部寬度 W/2:水平距離 W2:第二光管腔頂部寬度 θ:側壁角度
結合隨附圖式來進行之以下詳細描述將較完全理解本發明,在隨附圖式中:
[圖1]根據本文中所描述之態樣描繪在製造的中間階段之影像感測器結構之實例的剖面視圖,其中在裝置堆疊上方安置包括複數個光偵測器的影像堆疊;
[圖2]根據本文中所描述之態樣描繪在製造的中間階段之圖1之影像感測器結構之實例的剖面視圖,其中光導層經安置於影像堆疊上方;
[圖3]根據本文中所描述之態樣描繪在製造的中間階段之圖2之影像感測器結構之實例的剖面視圖,其中複數個光管腔經蝕刻至光導層中,使得每個光管腔與複數個光偵測器中之光偵測器相關聯;
[圖4]根據本文中所描述之態樣描繪圖3之圓形區域4-4的放大視圖之實例的剖面視圖,其中說明了光管腔之縱橫比及側壁角度;
[圖5]根據本文中所描述之態樣描繪在製造的中間階段之圖3之影像感測器結構之實例的剖面視圖,其中濾光器材料經安置於光管腔中,且其中光導層、複數個光管腔及濾光器材料形成第一濾光器堆疊;
[圖6]根據本文中所描述之態樣描繪在製造的中間階段之圖5之影像感測器結構之實例的剖面視圖,其中第二濾光器堆疊經安置於圖5之第一濾光器堆疊上方;
[圖7]根據本文中所描述之態樣描繪在製造的完成階段之圖5之影像感測器結構之實例的剖面視圖,其中具有複數個奈米井之奈米井層經安置於第一濾光器堆疊上方;
[圖8]根據本文中所描述之態樣描繪在製造的中間階段之影像感測器結構之實例的剖面視圖,其中複數個光管腔經蝕刻至中間層中,且金屬光導層經安置於光管腔之側壁上;
[圖9]根據本文中所描述之態樣描繪在製造的中間階段之圖8之影像感測器結構之實例的剖面視圖,其中濾光器材料經安置於光管腔中,且其中中間層、光導層、複數個光管腔及濾光器材料形成第一濾光器堆疊;
[圖10]根據本文中所描述之態樣描繪在製造的完成階段之圖9之影像感測器結構之實例的剖面視圖,其中具有複數個奈米井之奈米井層經安置於第一濾光器堆疊上方;
[圖11]根據本文中所描述之態樣描繪製造的中間階段之影像感測器結構之實例的剖面視圖,其中中間層及基板層由相同材料構成,且其中複數個光管腔經蝕刻至中間層中;
[圖12]根據本文中所描述之態樣描繪在製造的中間階段之圖11之影像感測器結構之實例的剖面視圖,其中金屬光導層經安置於光管腔之側壁上;
[圖13]根據本文中所描述之態樣描繪在製造的中間階段之圖12之影像感測器結構之實例的剖面視圖,其中濾光器材料經安置於光管腔中,且其中中間層、光導層、複數個光管腔及濾光器材料形成第一濾光器堆疊;
[圖14]根據本文中所描述之態樣描繪在製造的完成階段之圖13之影像感測器結構之實例的剖面視圖,其中具有複數個奈米井之奈米井層經安置於第一濾光器堆疊上方;
[圖15]根據本文中所描述之態樣描繪在製造的完成階段之另一影像感測器結構400之實例的剖面視圖,其中擴散層經安置於影像堆疊與濾光器堆疊之間;及
[圖16]根據本文中所描述之態樣描繪在製造的完成階段之另一影像感測器結構500之實例的剖面視圖,其中光導層由濾光器材料構成,且光管腔填充有透光材料。
100:影像感測器結構
102:影像堆疊
104:裝置堆疊
106:載體基板
108:導電墊
109:金屬襯裡
110:穿矽通孔(TSV)
111:介電層
112:裝置電路系統
114A:光偵測器
114B:光偵測器
114C:光偵測器
114D:光偵測器
114E:光偵測器
118A:隔離溝槽
118B:隔離溝槽
118C:隔離溝槽
118D:隔離溝槽
118E:隔離溝槽
118F:隔離溝槽
120:介電材料
122:光導層
124A:光管腔
124B:光管腔
124C:光管腔
124D:光管腔
124E:光管腔
130:側壁
134:濾光器材料
136:第一濾光器堆疊
146:奈米井層
148A:奈米井
148B:奈米井
148C:奈米井
148D:奈米井
148E:奈米井
150:鈍化堆疊
152:分析物
154:螢光標定分子/標定分子
156:激發光
158:發射光
W:頂部寬度
W’:底部寬度

Claims (50)

  1. 一種影像感測器結構,其包含: 影像堆疊,其經安置於裝置堆疊上方,該影像堆疊包含複數個光偵測器; 第一濾光器堆疊,其經安置於該影像堆疊上方,該第一濾光器堆疊包含: 光導層, 光管腔,其經安置於該光導層中,每個光管腔與在該複數個光偵測器中之光偵測器相關聯,且每個光管腔具有大於約2.5:1之縱橫比,及奈米井層,其經安置於該第一濾光器堆疊上方;及 複數個奈米井,其經安置於該奈米井層中,每個奈米井與在該複數個光偵測器中之光偵測器相關聯。
  2. 如請求項1之影像感測器結構,其中所述光管腔具有在約11至約1.2度之範圍內之側壁角度。
  3. 如請求項1之影像感測器結構,其包含濾光器材料,其經安置於所述光管腔中,該濾光器材料在所述光管腔之側壁處與該光導層直接接觸。
  4. 如請求項1之影像感測器結構,其包含: 第二濾光器堆疊,其經安置於該第一濾光器堆疊上方; 其中該第一濾光器堆疊及該第二濾光器堆疊具有大於該第一濾光器堆疊及該第二濾光器堆疊中之任何一者的總縱橫比。
  5. 如請求項1之影像感測器結構,其中該光導層由聚合物材料、半導體材料及介電材料中之一者所構成。
  6. 如請求項1之影像感測器結構,其中該第一濾光器堆疊包含: 中間層,其經安置於該影像堆疊上方;並且 該光導層,其經安置於該中間層上方; 其中該光導層為金屬層,其經安置於所述光管腔之所述側壁上,且未安置於所述光管腔之底部表面上;且 其中該光導層具有約100奈米或更少之厚度。
  7. 如請求項6之影像感測器結構,其中該影像堆疊包含: 基板層,其經安置於該複數個光偵測器上方,該基板層操作以使發射光及激發光通過; 複數個隔離溝槽,其經安置於該基板層中,每個隔離溝槽經安置相鄰於該複數個光偵測器中之光偵測器;及 介電材料,其經安置於每個隔離溝槽中,該介電材料操作以電氣隔離該複數個光偵測器中之每個光偵測器。
  8. 如請求項7之影像感測器結構,其中經安置於該第一濾光器堆疊中之該中間層及該影像堆疊之該基板層由相同材料構成。
  9. 如請求項8之影像感測器結構,其中該中間層及該基板層由矽構成。
  10. 如請求項1之影像感測器結構,其包含: 該光導層,其由吸光材料構成;及 透光材料,其經安置於所述光管腔中,該透光材料所具有的折射率大於該吸光材料的折射率。
  11. 如請求項1之影像感測器結構,其包含: 串擾層,其經安置於該濾光器堆疊之頂部表面上方,介於所述光管腔中之一或多者之間; 串擾屏障,其從該濾光器堆疊之該頂部表面向下延伸,介於所述光管腔中之一或多者之間; 擴散層,其經安置於該濾光器堆疊與該影像堆疊之間;及 光管延伸部,其經安置於所述光管腔中之一或多者之底部處,該光管延伸部延伸穿過該擴散層。
  12. 如請求項3至11中任一項之影像感測器結構,其中所述光管腔具有在約11至約1.2度範圍內之側壁角度。
  13. 如請求項4至11中任一項之影像感測器結構,其包含經安置於所述光管腔中之濾光器材料,該濾光器材料在所述光管腔之側壁處與該光導層直接接觸。
  14. 如請求項5至11中任一項之影像感測器結構,其包含: 第二濾光器堆疊,其經安置於該第一濾光器堆疊上方; 其中該第一濾光器堆疊及該第二濾光器堆疊具有大於該第一濾光器堆疊及該第二濾光器堆疊中之任何一者的總縱橫比。
  15. 如請求項6至11中任一項之影像感測器結構,其中該光導層由聚合物材料、半導體材料及介電材料中之一者構成。
  16. 如請求項7之影像感測器結構,其中該中間層及該基板層由矽構成。
  17. 如請求項11之影像感測器結構,其包含: 該光導層,其由吸光材料構成;及 透光材料,其經安置於所述光管腔中,該透光材料具有之折射率是大於該吸光材料之折射率。
  18. 如請求項6至10中任一項之影像感測器結構,其包含: 串擾層,其經安置於該濾光器堆疊之頂部表面上方,介於所述光管腔中之一或多者之間; 串擾屏障,其自該濾光器堆疊之該頂部表面向下延伸,介於所述光管腔中之一或多者之間; 擴散層,其經安置於該濾光器堆疊與該影像堆疊之間;及 光管延伸部,其經安置於所述光管腔中之一或多者之該底部處,該光管延伸部延伸穿過該擴散層。
  19. 一種影像感測器結構,其包含: 影像堆疊,其經安置於裝置堆疊上方,該影像堆疊包含複數個光偵測器; 第一濾光器堆疊,其經安置於該影像堆疊上方,該第一濾光器堆疊包含: 光導層, 光管腔,其經安置於該光導層中,每個光管腔與在該複數個光偵測器中之光偵測器相關聯,及濾光器材料,其經安置於所述光管腔中,該濾光器材料在所述光管腔之所述側壁處與該光導層直接接觸; 奈米井層,其經安置於該第一濾光器堆疊上方;及 複數個奈米井,其經安置於該奈米井層中,每個奈米井與在該複數個光偵測器中之光偵測器相關聯。
  20. 如請求項19之影像感測器結構,其中所述光管腔具有大於約2.5:1之縱橫比。
  21. 如請求項20之影像感測器結構,其中所述光管腔具有在約11至約1.2度之範圍內的側壁角度。
  22. 如請求項19之影像感測器結構,其中該光導層包含聚合物材料、半導體材料及介電材料中之一者。
  23. 如請求項19之影像感測器結構,其中該第一濾光器堆疊包含: 中間層,其經安置於該影像堆疊上方;及 該光導層,其經安置於該中間層上方; 其中該光導層為金屬層,其經安置於所述光管腔之所述側壁上,且未安置於所述光管腔之底部表面上;且 其中該光導層具有約100奈米或更少之厚度。
  24. 如請求項23之影像感測器結構,其中該影像堆疊包含: 基板層,其經安置於該複數個光偵測器上方,該基板層操作以使發射光及激發光通過; 複數個隔離溝槽,其經安置於該基板層中,每個隔離溝槽經安置相鄰於該複數個光偵測器中之光偵測器;及 介電材料,其經安置於每個隔離溝槽中,該介電材料操作以電氣隔離該複數個光偵測器中之每個光偵測器。
  25. 如請求項24之影像感測器結構,其中經安置於該第一濾光器堆疊中之該中間層及經安置於該影像堆疊中之該基板層由相同材料構成。
  26. 如請求項19之影像感測器結構,其包含: 第二濾光器堆疊,其經安置於該第一濾光器堆疊上方; 其中該第一濾光器堆疊及該第二濾光器堆疊具有大於該第一濾光器堆疊及該第二濾光器堆疊中之任何一者的總縱橫比。
  27. 如請求項19之影像感測器結構,其包含: 串擾層,其經安置於該濾光器堆疊之頂部表面上方,介於所述光管腔中之一或多者之間; 串擾屏障,其自該濾光器堆疊之該頂部表面向下延伸,介於所述光管腔中之一或多者之間; 擴散層,其經安置於該濾光器堆疊與該影像堆疊之間;及 光管延伸部,其經安置於所述光管腔中之一或多者之底部處,該光管延伸部延伸穿過該擴散層。
  28. 如請求項21至27中任一項之影像感測器結構,其中所述光管腔具有大於約2.5:1之縱橫比。
  29. 如請求項22至27中任一項之影像感測器結構,其中所述光管腔具有在約11至約1.2度範圍內之側壁角度。
  30. 如請求項26或27中任一項之影像感測器結構,其中該光導層包含聚合物材料、半導體材料及介電材料中之一者。
  31. 如請求項26或27中任一項之影像感測器結構,其中該第一濾光器堆疊包含: 中間層,其經安置於該影像堆疊上方;及 該光導層,其經安置於該中間層上方; 其中該光導層為金屬層,其經安置於所述光管腔之所述側壁上,且未安置於所述光管腔之該底部表面上;且 其中該光導層具有約100奈米或更少之厚度。
  32. 如請求項22至23、26或27中任一項之影像感測器結構,其中該影像堆疊包含: 基板層,其經安置於該複數個光偵測器上方,該基板層操作以使發射光及激發光通過; 複數個隔離溝槽,其經安置於該基板層中,每個隔離溝槽經安置相鄰於該複數個光偵測器中之一光偵測器;及 介電材料,其經安置於每個隔離溝槽中,該介電材料操作以電氣隔離該複數個光偵測器中之每個光偵測器。
  33. 如請求項25或27中任一項之影像感測器結構,其包含: 第二濾光器堆疊,其經安置於該第一濾光器堆疊上方; 其中該第一濾光器堆疊及該第二濾光器堆疊具有大於該第一濾光器堆疊及該第二濾光器堆疊中之任何一者的總縱橫比。
  34. 如請求項25之影像感測器結構,其包含: 串擾層,其經安置於該濾光器堆疊之頂部表面上方,介於所述光管腔中之一或多者之間; 串擾屏障,其自該濾光器堆疊之該頂部表面向下延伸,介於所述光管腔中之一或多者之間; 擴散層,其經安置於該濾光器堆疊與該影像堆疊之間;及 光管延伸部,其經安置於所述光管腔中之一或多者之底部處,該光管延伸部延伸穿過該擴散層。
  35. 一種影像感測器結構,其包含: 影像堆疊,其經安置於裝置堆疊上方,該影像堆疊包含複數個光偵測器; 第一濾光器堆疊,其經安置於該影像堆疊上方,該第一濾光器堆疊包含: 光導層,其由吸光材料構成, 光管腔,其經安置於該光導層中,每個光管腔與在該複數個光偵測器中之光偵測器相關聯,及 透光材料,其經安置於所述光管腔中,該透光材料具有之折射率大於該吸光材料之折射率; 奈米井層,其經安置於該第一濾光器堆疊上方;及 複數個奈米井,其經安置於該奈米井層中,每個奈米井與在該複數個光偵測器中之光偵測器相關聯。
  36. 如請求項35之影像感測器結構,其中所述光管腔具有在約11至約1.2度之範圍內之側壁角度以及大於約2.5:1之縱橫比。
  37. 如請求項35之影像感測器結構,其中該吸光材料在所述光管腔之側壁處與該透光材料直接接觸。
  38. 如請求項35之影像感測器結構,其包含: 串擾層,其經安置於該濾光器堆疊之一頂部表面上方,介於所述光管腔中之一或多者之間; 串擾屏障,其自該濾光器堆疊之該頂部表面向下延伸,介於所述光管腔中之一或多者之間; 擴散層,其經安置於該濾光器堆疊與該影像堆疊之間;及 光管延伸部,其經安置於所述光管腔中之一或多者之底部處,該光管延伸部延伸穿過該擴散層。
  39. 如請求項37或38中任一項之影像感測器結構,其中所述光管腔具有在約11至約1.2度之範圍內之側壁角度以及大於約2.5:1之縱橫比。
  40. 如請求項36或38中任一項之影像感測器結構,其中該吸光材料在所述光管腔之側壁處與該透光材料直接接觸。
  41. 如請求項36或37中任一項之影像感測器結構,其包含: 串擾層,其經安置於該濾光器堆疊之頂部表面上方,介於所述光管腔中之一或多者之間; 串擾屏障,其自該濾光器堆疊之該頂部表面向下延伸,介於所述光管腔中之一或多者之間; 擴散層,其經安置於該濾光器堆疊與該影像堆疊之間;及 光管延伸部,其經安置於所述光管腔中之一或多者之該底部處,該光管延伸部延伸穿過該擴散層。
  42. 一種形成影像感測器結構的方法,該方法包含: 將影像堆疊安置於裝置堆疊上方,該影像堆疊包含複數個光偵測器; 將光導層安置於該影像堆疊上方; 在該光導層中蝕刻複數個光管腔,每個光管腔與在該複數個光偵測器中之光偵測器相關聯,所述光管腔具有大於約2.5:1之縱橫比及在約11至約1.2度之範圍內之側壁角度; 將奈米井層安置於該光導層上方;及 將複數個奈米井安置於該奈米井層中,每個奈米井與在該複數個光偵測器中之光偵測器相關聯; 其中該光導層及該複數個光管腔構成第一濾光器堆疊,該第一濾光器堆疊經安置於該影像堆疊上方。
  43. 如請求項42之方法,其包含: 將一中間層安置於該影像堆疊上方;及 將該光導層安置於該中間層上方; 其中該光導層為一金屬層,其經安置於所述光管腔之側壁上,且未經安置於所述光管腔之底部表面上;且 其中該光導層具有約100奈米或更少之一厚度。
  44. 如請求項42之方法,其包含: 將一濾光器材料安置於所述光管腔中,該濾光器材料在所述光管腔之側壁處與該光導層直接接觸。
  45. 如請求項42之方法,其包含: 將第二濾光器堆疊安置於該第一濾光器堆疊上方; 其中該第一濾光器堆疊及該第二濾光器堆疊具有大於該第一濾光器堆疊及該第二濾光器堆疊中之任何一者的總縱橫比。
  46. 如請求項42之方法,其包含: 其中該光導層由吸光材料構成;且 將透光材料安置於所述光管腔中,該透光材料具有之折射率大於該吸光材料之折射率。
  47. 如請求項44至46中任一項之方法,其包含: 將中間層安置於該影像堆疊上方;及 將該光導層安置於該中間層上方; 其中該光導層為金屬層,其經安置於所述光管腔之所述側壁上,且未安置於所述光管腔之該底部表面上;且 其中該光導層具有約100奈米或更少之厚度。
  48. 如請求項43、45或46中任一項之方法,其包含: 將濾光器材料安置於所述光管腔中,該濾光器材料在所述光管腔之側壁處與該光導層直接接觸。
  49. 如請求項43、44或46中任一項之方法,其包含: 將第二濾光器堆疊安置於該第一濾光器堆疊上方; 其中該第一濾光器堆疊及該第二濾光器堆疊具有大於該第一濾光器堆疊及該第二濾光器堆疊中之任何一者的總縱橫比。
  50. 如請求項43至45中任一項之方法,其包含: 其中該光導層由吸光材料構成;且 將透光材料安置於所述光管腔中,該透光材料具有之折射率大於該吸光材料之折射率。
TW109134209A 2019-10-09 2020-09-30 影像感測器結構 TW202115894A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962912908P 2019-10-09 2019-10-09
US62/912,908 2019-10-09

Publications (1)

Publication Number Publication Date
TW202115894A true TW202115894A (zh) 2021-04-16

Family

ID=75437663

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109134209A TW202115894A (zh) 2019-10-09 2020-09-30 影像感測器結構

Country Status (9)

Country Link
US (1) US20220352228A1 (zh)
EP (1) EP4042481A4 (zh)
JP (1) JP2022553465A (zh)
KR (1) KR20220078524A (zh)
CN (1) CN113383420A (zh)
AU (1) AU2020364314A1 (zh)
CA (1) CA3123645A1 (zh)
TW (1) TW202115894A (zh)
WO (1) WO2021071699A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI793845B (zh) * 2021-08-02 2023-02-21 采鈺科技股份有限公司 影像感測器及其形成方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202312508A (zh) * 2021-09-01 2023-03-16 美商伊路米納有限公司 半導體光接收

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120156100A1 (en) * 2010-12-20 2012-06-21 Industrial Technology Research Institute Apparatus for single molecule detection and method thereof
US9373732B2 (en) * 2012-02-07 2016-06-21 Semiconductor Components Industries, Llc Image sensors with reflective optical cavity pixels
US8906320B1 (en) * 2012-04-16 2014-12-09 Illumina, Inc. Biosensors for biological or chemical analysis and systems and methods for same
CN102779826A (zh) * 2012-08-15 2012-11-14 豪威科技(上海)有限公司 背照式cmos影像传感器
US9123839B2 (en) * 2013-03-13 2015-09-01 Taiwan Semiconductor Manufacturing Company Limited Image sensor with stacked grid structure
US9683937B2 (en) * 2013-08-23 2017-06-20 Semiconductor Components Industries, Llc Imaging devices for molecule detection
CN110411998B (zh) * 2013-12-10 2022-06-07 伊鲁米那股份有限公司 用于生物或化学分析的生物传感器及其制造方法
TWI571626B (zh) * 2015-07-15 2017-02-21 力晶科技股份有限公司 具有奈米腔的集成生物感測器及其製作方法
TWI826089B (zh) * 2016-11-03 2023-12-11 大陸商深圳華大智造科技有限公司 用於生物或化學分析的生物感測器以及製造其的方法
NL2020615B1 (en) * 2017-12-26 2019-07-02 Illumina Inc Image sensor structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI793845B (zh) * 2021-08-02 2023-02-21 采鈺科技股份有限公司 影像感測器及其形成方法

Also Published As

Publication number Publication date
EP4042481A4 (en) 2023-10-18
AU2020364314A1 (en) 2021-06-17
KR20220078524A (ko) 2022-06-10
EP4042481A1 (en) 2022-08-17
US20220352228A1 (en) 2022-11-03
CN113383420A (zh) 2021-09-10
WO2021071699A1 (en) 2021-04-15
CA3123645A1 (en) 2021-04-15
JP2022553465A (ja) 2022-12-23

Similar Documents

Publication Publication Date Title
US11315972B2 (en) BSI image sensor and method of forming same
TWI721567B (zh) 三維積體晶片、堆疊影像感測器裝置以及形成三維積體晶片的方法
US8435824B2 (en) Backside illumination sensor having a bonding pad structure and method of making the same
US9989467B2 (en) Cointegration of optical waveguides, microfluidics, and electronics on sapphire substrates
JP5340950B2 (ja) 陥凹した誘電体を有するcmosイメージャ・アレイ、およびその製造するための方法
US8290325B2 (en) Waveguide photodetector device and manufacturing method thereof
TWI501388B (zh) 影像感測器及其製造方法與包含影像感測器之複合像素
JP2020533782A (ja) 画像センサ構体
TW202115894A (zh) 影像感測器結構
TW201735261A (zh) 多維積體晶片結構與其形成方法
CN105789228B (zh) 半导体结构及其制造方法
CN114787973A (zh) 具有穿过硅之上的电介质蚀刻的沟槽的光学传感器
JP2011023481A (ja) 固体撮像装置及びその製造方法
US20220367549A1 (en) Image sensor device
CN109427835B (zh) 图像传感器及其形成方法
JP2014154834A (ja) 固体撮像素子
Paternoster et al. Silicon photomultipliers technology at fondazione bruno kessler and 3d integration perspectives
TWI749927B (zh) 低折射率柵格結構及其形成方法
TW202318049A (zh) 封裝及其製造方法
CN109360834A (zh) 一种堆叠式图像传感器像素结构与制备方法
US20240055462A1 (en) Image sensor device and manufacturing method thereof
TW202418564A (zh) 光感測器