TW202111979A - 包含導電粒子及有機聚合物之乾燥水性分散液的經塗佈基材 - Google Patents

包含導電粒子及有機聚合物之乾燥水性分散液的經塗佈基材 Download PDF

Info

Publication number
TW202111979A
TW202111979A TW109119684A TW109119684A TW202111979A TW 202111979 A TW202111979 A TW 202111979A TW 109119684 A TW109119684 A TW 109119684A TW 109119684 A TW109119684 A TW 109119684A TW 202111979 A TW202111979 A TW 202111979A
Authority
TW
Taiwan
Prior art keywords
light
film
control film
coating
light control
Prior art date
Application number
TW109119684A
Other languages
English (en)
Inventor
丹尼爾 傑可伯 西米得
凱文 威力 勾翠克
詹姆士 艾德華 洛克瑞吉
凱李伯 提摩西 尼爾森
布萊迪 林恩 吉弗
摩根 亞歷山大 普來歐洛
路克 亞倫 雪洛德
Original Assignee
美商3M新設資產公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商3M新設資產公司 filed Critical 美商3M新設資產公司
Publication of TW202111979A publication Critical patent/TW202111979A/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/101Nanooptics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/123Optical louvre elements, e.g. for directional light blocking
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133524Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Laminated Bodies (AREA)

Abstract

描述一種光控制膜,其包含光輸入表面及與該光輸入表面相對之光輸出表面;設置在該光輸入表面與該光輸出表面之間的交替之透射區域及吸收區域,其中該等吸收區域包含光吸收或光反射粒子及有機聚合物之乾燥水性分散液。光控制膜可具有經改善的正軸透射率(on-axis transmission)結合足夠高的片電阻,使得膜不減損電子裝置之觸控螢幕的回應性。亦描述一種經塗佈物品及製造方法。

Description

包含導電粒子及有機聚合物之乾燥水性分散液的經塗佈基材
為了製造包含的薄塗層,粒子一般具有小於塗層厚度之粒徑。已發現小導電粒子(諸如碳黑)可交互作用,從而減少片電阻。
在一實施例中,描述一種光控制膜,其包含光輸入表面及與該光輸入表面相對之光輸出表面;設置在該光輸入表面與該光輸出表面之間的交替之透射區域及吸收區域,其中該等吸收區域包含光吸收或光反射粒子及有機聚合物之乾燥水性分散液。光控制膜可具有經改善的正軸透射率(on-axis transmission)結合足夠高的片電阻,使得膜不減損電子裝置之觸控螢幕的回應性。
在另一實施例中,描述一種經塗佈物品,其包含非金屬基材;及具有小於2、1.5、或1微米之厚度的塗層,其中該塗層包含導電粒子及有機聚合物之乾燥水性分散液, 其中當以500nm之厚度施加至玻璃時,該塗層具有大於1×107、5×107、1×108、5×108、1×109之片電阻。在一些實施例中,基材包含(例如,非導電)玻璃或有機聚合材料。在一些實施例中,導電粒子包含碳。
在另一實施例中,描述一種製造經塗佈物品(諸如光控制膜)之方法,其包含提供非金屬基材;用有機聚合物及導電粒子之水性分散液,以小於2、1.5、或1微米之乾燥厚度塗佈該基材。在一些實施例中,基材係微結構化膜,該微結構化膜包含複數個與通道交替的透光區域,其中該微結構化膜具有由透光區域之頂部表面及側壁以及通道之底部表面所界定之表面。在一些實施例中,該方法包含經由逐層自組裝塗佈將塗層施加至表面。在一些實施例中,該方法進一步包含從透光區域之頂部表面及通道之底部表面移除(例如,諸如藉由離子蝕刻)塗層之至少一部分。
100:LCF
110:光輸入表面
120:光輸出表面
130:透射區域
131:基底部分
140:吸收區域
145:頂部表面
150:界面/比較性LCF
155:底部表面
160:線
200:微結構化膜物品
201,201a,201b,201c,201d:通道
205:通道/底部表面
210:微結構化表面/頂部表面
220:頂部表面
230:透射區域/突起
231:底部表面
232,233:側壁
260:基底層
300:微結構化膜
301,301a,301b:通道
305:底部表面
320:頂部表面
330:突起
332,333:側壁
341:光吸收塗層
345:有機聚合材料
360:基底層
400:LCF
410:黏著劑
470:覆蓋膜
500:背光顯示器
510:光源
520:影像平面
530:LCF
540:透射區域
550:吸收區域
560:增亮膜
570:反射偏振器膜
590:輸出表面
595;觀看者
600:LCF
601:光學構造
610:微球珠
620:角隅稜鏡
630:第一區域
632:第一材料
640:第二區域
642:第二材料
650:光學膜
670:封閉空間/建築物或住家
675:窗基材
677:觀看者或住戶
690:太陽光
700:LCF
712:第一波長
714:第二波長
720:光輸出表面
777:手腕
800,800’:LCF
801:線
810,810’:光
812,812’:經復歸反射光
820,820’:光
822:經復歸反射光
830:第一區域
832:第一材料
840:第二區域
842:第二材料
850:光學膜
870:飛機或航空器
877:飛行員
878:雷射射擊器
890:綠色雷射
891:雷射光
1100:LCF
1101:復歸反射系統
1130:第一區域
1190:復歸反射片
1200:LCF
1209:LED
1230:第一區域
1232:第一材料
1240:第二區域
1242:第二材料
1250:光學膜
1280:穿戴式腕錶
1285:脈搏感測器
1290:LED
1295:太陽光
α:第二入射角
α’:第一入射角
θ:壁角
θ1:截止觀看半極角
θ2:截止觀看半極角
θI:界面角
θP:截止觀看極角
θv:觀看角
λ1:第一波長
λ2:第二波長
A:第一波長範圍
B:第二波長範圍
C:第三波長範圍
HA:高度
HT:高度
L:地面區域/地面層
LA:長度
PA:節距
PT:節距
WA:寬度
WT:寬度
〔圖1a〕係經具體化光控制膜之剖面圖。
〔圖1b〕描繪圖1a的光控制膜之截止觀看極角。
〔圖1c〕係比較性微結構化膜之透視圖。
〔圖2〕係微結構化膜之透視圖。
〔圖3〕係製造光控制膜的經具體化方法之剖面示意圖。
〔圖4〕係進一步包含與黏著劑層接合的覆蓋膜之光控制膜的透視圖。
〔圖5〕係包含經具體化光控制膜之背光顯示器的透視示意圖。
〔圖6〕係各種光控制膜之輝度對觀看角的圖。
〔圖7〕係施加至封閉空間(諸如建築物、住家、或車輛)之窗的例示性光控制膜之示意剖面圖。
〔圖8〕係光控制膜之透射率對波長的示意圖。
〔圖9〕係其中光控制膜係施加至飛機或航空器之例示性應用的示意圖。
〔圖10〕係包括與復歸反射器組合之光控制膜的例示性光學通訊系統之示意剖面圖。
〔圖11〕係例示性穿戴式光學通訊系統之示意剖面圖,該穿戴式光學通訊系統包括光控制膜及具脈搏感測器之腕錶。
在一實施例中,描述一種光控制膜(light control film,「LCF」)。參照圖1a之經具體化LCF 100之剖面圖,LCF包含光輸出表面120及相對的光輸入表面110。光輸出表面120一般係平行於光輸入表面110。LCF 100包括設置在光輸出表面120與光輸入表面110之間的交替之透射區域130及吸收區域140。
在一實施例中,如圖1a中所繪示,透射區域130與地面區域「L」一般係一體的,意指在地面區域與透射區域130的基底部分131之間沒有界面。替代地,LCF可缺乏此類地面區域L,或者界面可存在於地面區域L與透射區域130之間。當存在時,地面區域 係設置在交替之透射區域130及吸收區域140與光輸入表面110之間。
替代地,在另一實施例中,表面120可係光輸入表面,且表面110可係光輸出表面。在此實施例中,地面區域係設置在交替之透射區域130及吸收區域140與光輸出表面之間。
透射區域130可由寬度「WT」定義。不包括地面區域「L」,透射區域130一般具有與吸收區域140標稱相同之高度。在典型實施例中,吸收區域的高度HA係至少30、40、50、60、70、80、90、或100微米。在一些實施例中,高度不大於200、190、180、170、160、或150微米。在一些實施例中,高度不大於140、130、120、110、或100微米。LCF一般包含複數個透射區域,該等複數個透射區域具有標稱相同的高度及寬度。在一些實施例中,透射區域具有高度「HT」、在其最寬部分之最大寬度「WT」、及至少1.75之縱橫比HT/WT。在一些實施例中,HT/WT係至少2.0、2.5、3.0、3.5、4.0、4.5、或5.0。在其他實施例中,透射區域之縱橫比係至少6、7、8、9、10。在其他實施例中,透射區域之縱橫比係至少15、20、25、30、35、40、45、或50。
吸收區域140具有由底部表面155與頂部表面145之間的距離所定義之高度「HA」,此等頂部表面及底部表面一般係平行於光輸出表面120及光輸入表面110。吸收區域140具有最大寬度「WA」,且沿著表面光輸出表面120隔開節距「PA」。吸收區域亦具有長度「LA」,如圖5之透視圖中所繪示。寬度一般係最小尺寸。高度一 般係大於寬度。長度一般係最大尺寸。在一些實施例中,長度可跨越一片膜的整個長度或跨越整卷膜的長度。
吸收區域在基底(即,相鄰於底部表面155)的寬度WA一般與吸收區域相鄰於頂部表面145的寬度標稱相同。然而,當吸收區域在基底的寬度與相鄰於頂部表面的寬度不同時,寬度係由最大寬度定義。複數個吸收區域的最大寬度可針對所關注區域加以平均,諸如測量透射率(例如,亮度)的區域。LCF一般包含複數個具有標稱相同高度及寬度的吸收區域。在典型實施例中,吸收區域通常具有不大於10、9、8、7、6、5、4、3、2、或1微米之寬度。在一些實施例中,吸收區域通常具有不大於900、800、700、600、或500奈米之寬度。在一些實施例中,吸收區域具有至少50、60、70、80、90、或100奈米之寬度。吸收區域的寬度一般係平行於光輸入表面且高度係正交於光輸入表面。
吸收區域可由縱橫比(吸收區域的高度除以吸收區域的最大寬度(HA/WA))定義。在一些實施例中,吸收區域之縱橫比係至少1、2、3、4、5、6、7、8、9、或10。在有利的實施例中,(多個)吸收區域的高度及寬度經選擇,使得該(等)吸收區域具有甚至更高的縱橫比。在一些實施例中,吸收區域之縱橫比係至少15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、或100。在其他實施例中,吸收區域之縱橫比係至少200、300、400、或500。縱橫比的範圍至多可係10,000或更大。在一些實施例 中,縱橫比不大於9,000;8,000;7,000;6,000、5,000;4,000、3000;2,000、或1,000。
如圖1b所示,LCF 100包括交替之透射區域130及吸收區域140、及透射區域130與吸收區域140之間的界面150。界面150與垂直於光輸出表面120的線160形成壁角θ。
較大的壁角θ降低在法線入射(或換言之,觀看角為0度)之透射率。較小的壁角係較佳的,使得在法線入射的光之透射率可盡可能地大。在一些實施例中,壁角θ小於10、9、8、7、6、或5度。在一些實施例中,壁角不大於2.5、2.0、1.5、1.0、0.5、或0.1度。在一些實施例中,壁角係零或接近零。當壁角係零時,吸收區域與光輸出表面120之間的角度係90度。取決於壁角,透射區域可具有矩形或梯形剖面。
當入射光從吸收區域與透射區域之間的界面經歷全內反射(total internal reflection,TIR)時,透射率(例如,可見光之亮度)可增加。光線是否會經歷TIR可取決於其與界面的入射角、及透射區域及吸收區域之材料的折射率差異。
如圖1b所示,吸收區域140之間的透射區域130具有由交替之透射區域130及吸收區域的幾何所定義的界面角θI。如圖1a及1b中所繪示,界面角θI可由兩線相交來定義。第一線自由底部表面及第一吸收區域之側壁表面所界定之第一點、及由頂部表面及最近的第二吸收區域之側壁表面所界定之第二點延伸。第二線自由頂部表 面及第一吸收區域之側壁表面所界定之第一點、及由底部表面及第二吸收區域之側壁表面所界定之第二點延伸。
截止觀看極角θP等於截止觀看半極角θ1及截止觀看半極角θ2的總和,其等之各者係自光輸入表面110的法線測量。在典型實施例中,截止觀看極角θP係對稱的,且截止觀看半極角θ1等於觀看半極角θ2。替代地,截止觀看極角θP可係不對稱的,且截止觀看半極角θ1不等於截止觀看半極角θ2。
可根據實例中所述之測試方法來測量輝度。可在交替之透射及吸收區域(諸如圖1a中所繪示)上測量輝度,或可在可進一步包含覆蓋膜之總光控制膜(諸如圖4中所繪示)上測量輝度。相對透射率(relative transmission)(例如,可見光之亮度)係定義為在特定觀看角或觀看角範圍之輝度百分比,其介於包括交替之透射及吸收區域及可選地其他層之光控制膜的讀數與不具有光控制膜的讀數(即,基線)之間。參考圖6,觀看角可在-90度至+90度之範圍內。0度之觀看角係正交於光輸入表面110;而-90度及+90度之觀看角係平行於光輸入表面110。
例如,參照圖6,正軸基線輝度係2100Cd/m2。EX. 6具有1910Cd/m2之正軸輝度。因此,相對透射率(例如,亮度)係1910Cd/m2/2100Cd/m2乘以100,其等於91.0%。除非另有指明,否則相對透射率係指具有400至700nm波長範圍之可見光的相對透射率,如藉由實例中進一步詳述之錐光鏡測試方法所測量。
交替之透射及吸收區域或總LCF在0度之觀看角可展現增加的相對透射率(例如,亮度)。在一些實施例中,相對透射率(例如,亮度)係至少75、80、85、或90%。相對透射率(例如,亮度)一般小於100%。
交替之透射及吸收區域或總LCF在0度之觀看角可展現其他波長的光之高透射率。具有700至1400nm的波長範圍之近紅外(NIR)光及具有320至400nm的波長範圍之紫外(UV)光的透射率係指藉由實例中進一步詳述之分光光度法測量的透射率。在一些實施例中,交替之透射及吸收區域或總LCF對於700至1400nm之範圍內的波長(NIR),在0度之觀看角具有至少50、55、60、65、70、75、或80%之透射率。在一些實施例中,交替之透射及吸收區域或總LCF對於320至400nm之範圍內的波長(UV),在0度之觀看角具有至少50%或60%之透射率。透射率可係針對波長範圍之單一波長,或者透射率可係針對整個波長範圍之平均透射率。
替代地,交替之透射及吸收區域或總LCF在0度之觀看角可展現其他波長的光之低透射率。透光區域及地面層之(例如,PET)基底膜及材料可具有可見光及NIR光之高透射率,但UV光之透射率較低。再者,包括(例如,色偏)膜可實質上減少UV光及NIR光兩者之透射率,同時展現可見光之高透射率。在一些實施例中,交替之透射及吸收區域或總LCF對於700至1400nm的波長(NIR),在0度之觀看角具有小於50、45、40、或30%之透射率。在一些實施例中,交替之透射及吸收區域或總LCF對於320至400nm 之範圍內的波長(UV),在0度之觀看角具有小於50、45、40、35、30、25、20、15、10、或5%之透射率。透射率可係針對波長範圍之單一波長,或者透射率可係針對整個波長範圍之平均透射率。
在典型實施例中,LCF在其他觀看角具有顯著較低之透射率。例如,在一些實施例中,在-30度、+30度、或平均為-30度及+30度之觀看角的相對透射率(例如,可見光之亮度)小於50、45、40、35、30、或25%。在其他實施例中,在30度、+30度、或平均為-30度及+30度之觀看角的相對透射率(例如,亮度)小於25、20、15、10、或5%。在一些實施例中,在+/-35、+/-40、+/-45、+/-50、+/-55、+/-60、+/-65、+/-70、+/-75、或+/-80度之觀看角的相對透射率(例如,亮度)小於25、20、15、10、或5%、或小於5%。在一些實施例中,範圍在+35至+80度、-35至-80度、或平均為此等範圍之觀看角的平均相對透射率(例如,亮度)小於10、9、8、7、6、5、4、3、或2%。
交替之透射及吸收區域或總LCF在其他觀看角可展現顯著較低的NIR或UV波長光之透射率。例如,在一些實施例中,交替之透射及吸收區域或總光控制膜對於範圍在700至1400nm之波長範圍(NIR),在30度之觀看角具有小於50、45、40、35、30、25、20、15、10、或5%之透射率。在一些實施例中,交替之透射及吸收區域或總光控制膜對於範圍在320至400nm之波長範圍(UV),在30度之觀看角具有小於50、45、40、35、30、25、20、15、10、5、4、3、2、或1%之透射率。在一些實施例中,NIR或UV波長光之透 射率在60度之觀看角亦落在先前所述之範圍內,且一般係低於在30度之透射率。在一些實施例中,交替之透射及吸收區域或總光控制膜對於範圍在700至1400nm之波長範圍(NIR),在60度之觀看角具有小於5、4、3、2、或1%之平均透射率。
因此,本文所述之光控制膜對於各種波長的光(可見光、UV、及NIR),在各種觀看角可展現高及低透射性質之各種組合。
在一實施例中,光控制膜在各種觀看角(例如,0、30、及60度)展現高NIR透射率,但可見光及UV之透射率較低,如先前所述。光控制膜對於範圍在700至1400nm之波長(NIR)可展現至少60、65、70、75、或80%之透射率,且對於範圍在700至1400nm之波長(NIR),在30及/或60度之觀看角可展現至少10、15、20、25、30、35、40、45、或50%之透射率。
在「離軸(off-axis)」觀看角具有顯著較低透射率之LCF適合用作為防窺膜。此類膜允許直接在顯示器前方的觀看者(0度之觀看角)看見影像,但阻擋在「離軸」角度之觀看者看見此影像。
吸收區域可以相對於阻擋(例如,吸收)在光輸入表面或光輸出表面之光的吸收區域之最大表面積來表徵。光控制膜之光輸入或輸出表面可用光學顯微鏡(例如,在200X放大率下)觀看。對於較小的吸收區域(例如,WA小於1微米),可使用較高解析度的顯微鏡(例如,掃瞄式電子顯微鏡)來測量表面積。多個吸收區域的最 大寬度(即,圖1a中之WA)及節距(即,圖1a中之PA)可藉由用ImageJ軟體(諸如可自National Institute of Health在http://imagej.nih.gov/ij取得)分析光學顯微鏡影像來測量。
圖1c係包含光輸出表面120及相對的光輸入表面110之比較性LCF 150之透視圖。光輸出表面120一般係平行於光輸入表面110。LCF 700包括設置在光輸出表面120與光輸入表面110之間的交替之透射區域130及吸收區域140。針對比較性光控制膜(CE2),如圖1c中所繪示,(例如,五個)吸收區域之平均最大寬度WA係15微米。平均節距PA(吸收區域之間的距離)係65微米。WA/PA比率等於0.23、或23%。換言之,吸收區域所佔之最大表面積係光輸出表面720之總交替之透射及吸收區域的23%。
目前所描述之吸收區域較比較性光控制膜阻擋(例如,吸收)更少的光。在典型實施例中,吸收區域所佔之最大表面積小於總交替之透射及吸收區域的20、19、18、17、16、15、14、13、12、11、10、9、8、7、6、5、4、或3%。當吸收區域具有零之壁角或換言之高度係正交於光輸入及輸出表面時(如圖1a所繪示),則吸收區域所佔之最大表面積可以剛才所述與比較性光控制膜相同的方式計算(即,WA/PA比率)。當吸收區域具有大於零之壁角時,WA/PA之比率不能解釋當光以正交於光輸入及光輸出表面的方向穿過膜時所有被阻擋的光。在此實施例中,「d」可從壁角及垂直於光輸出表面120的線160計算得到。此被阻擋的光之總表面積等於(d+WA)/(WT+WA)。例如,當WT係30微米,WA係0.5微米,且壁角係3度時,則 (d+WA)/(WT+WA)=(tan(3°)HA+0.5)/(30+0.5),且被阻擋的光之總表面積係17.1%。
吸收區域可藉由塗佈微結構化膜之表面來形成。圖2顯示可經塗佈以製造LCF之經具體化微結構化膜物品200。所繪示之微結構化膜包括微結構化表面210,該微結構化表面包含複數個在基底層260上之通道201a至201d。如圖2所示,連續地面層「L」可存在於通道205之底部與基底層260之頂部表面210之間。替代地,通道201可一路延伸穿過微結構化膜物品200。在此實施例中(未圖示),凹槽之底部表面205可與基底層260之頂部表面210重合。在典型實施例中,基底層260係一種預成形膜,其包含與透射區域230不同的有機聚合材料,如隨後將描述的。
突起(例如,透射區域)230的高度及寬度係由相鄰通道(例如,201a及201b)界定。突起(例如,透射區域)230可由頂部表面220、底部表面231、及將頂部表面連接至底部表面的側壁232及233界定。側壁可彼此平行。更一般而言,側壁具有如先前所述之壁角。
在一些實施例中,突起(例如,透射區域)230具有至少10微米之節距「PT」。節距係第一突起(例如,透射區域)的開始與第二突起(例如,透射區域)的開始之間的距離,如圖2中所繪示。節距可係至少15、20、25、30、35、40、45、或50微米。節距通常不大於1mm。節距一般不大於900、800、700、600、或500微米。在一些實施例中,節距一般不大於550、500、450、400、350、 300、250、或200微米。在一些實施例中,節距不大於175、150、100微米。在典型實施例中,突起係均勻間隔的,具有單一節距。替代地,突起可經間隔使得相鄰突起之間的節距不相同。在此後者實施例中,至少一些及一般大多數(至少50、60、70、80、90%、或更多的總突起)具有剛才所述之節距。
吸收區域的節距PA係在與剛才針對透光區域所述之相同的範圍內。
突起(例如,透射區域)之節距及高度可係重要的,以有助於用吸光塗層塗佈突起(例如,透射區域)。當突起在一起間隔太近時,可能難以均勻地塗佈側壁。當突起間隔太遠時,吸光塗層可能無法有效提供其意欲功能,諸如在離軸觀看角之隱私性。
藉由在微結構化膜之突起(例如,透射區域)的側壁上提供光吸收塗層而形成吸收區域。光吸收塗層之厚度等於吸收區域之寬度WA,如先前所述。可藉由任何在側壁(例如,232、233)上提供足夠薄、適形、光吸收塗層之方法來形成吸收區域。
在一實施例中,藉由加成法及減成法之組合形成吸收區域。
參照圖3,光控制膜可藉由提供微結構化膜300(諸如圖2之微結構化膜)來製備,該微結構化膜包含複數個由頂部表面(例如,320)及側壁(332,333)所界定之突起(例如,透射區域)。複數個突起(例如,透射區域)330係藉由通道301a及301b彼此分開。突起(例如,透射區域)之側壁與通道之側壁重合。通道進一步 包含底部表面305,其平行於或重合於基底層360之頂部表面。方法進一步包含將光吸收塗層341施加至微結構化膜之(例如,整個)表面,即突起(例如,透射區域)之頂部表面320及側壁332、333、及分開突起(例如,透射區域)的通道之底部表面305。方法進一步包含從突起(例如,透射區域)之頂部表面320及通道之底部表面305移除塗層。在一些實施例中,方法進一步包含用有機聚合材料345(諸如(例如,與突起(例如,透射區域)相同的)可聚合樹脂)填充通道、及固化該可聚合樹脂。當通道未填充有經固化可聚合樹脂時,則通道一般係以空氣填充。
帶有微結構的物品(例如,圖2中所示之微結構化膜物品200)可藉由任何合適的方法製備。在一實施例中,帶有微結構的物品(例如,圖2中所示之微結構化膜物品200)可藉由澆鑄及固化方法製備,如於US 8,096,667中所述,其包括下列步驟:(a)製備可聚合組成物;(b)將僅足以填充母版腔穴之量的該可聚合組成物沉積至母版負型微結構模製表面(例如,工具)上;(c)藉由使該可聚合組成物之珠粒在(例如,預成形膜)基底層與該母版(其中至少一者係可撓的)之間移動來填充該等腔穴;以及(d)使該組成物固化。沉積溫度可在環境溫度至約180℉(82℃)之範圍內。母版可為金屬(諸如鎳、鍍鉻銅或鍍鎳銅、或黃銅),或者可為在聚合條件下穩定且具有使經聚合材料能夠自母版乾淨移除之表面能的熱塑性材料。當基底層係預成形膜時,可以可選地將膜之一或多個表面塗底漆或以其他方式處理,以促進與透光區域之有機材料的黏著性。在一實施例中,基底層包含熱固 性丙烯酸聚合物作為底漆,諸如可以商標名稱「Rhoplex 3208」購自Dow Chemical,Midland,MI。
可聚合樹脂可包含第一及第二可聚合組分之組合,該等組分係選自(甲基)丙烯酸酯單體、(甲基)丙烯酸酯寡聚物、及其混合物。如本文中所使用,「單體(monomer)」或「寡聚物(oligomer)」係任何可轉化成聚合物之物質。用語「(甲基)丙烯酸酯((meth)acrylate)」係指丙烯酸酯及甲基丙烯酸酯兩者。在一些情況中,可聚合組成物可包含(甲基)丙烯酸酯化胺甲酸酯寡聚物、(甲基)丙烯酸酯化環氧寡聚物、(甲基)丙烯酸酯化聚酯寡聚物、(甲基)丙烯酸酯化酚寡聚物、(甲基)丙烯酸酯化丙烯酸寡聚物、及其混合物。
可聚合樹脂可以是輻射可固化聚合樹脂,諸如紫外光可固化樹脂。在一些情況中,可用於本發明之LCF的可聚合樹脂組成物可包括可聚合樹脂組成物,諸如描述於美國專利第8,012,567號(Gaides等人)中者,倘若該等組成物滿足本文所述之指數及吸收特性。
基底層之化學組成及厚度可取決於LCF之最終用途。在典型實施例中,基底層之厚度可係至少約0.025毫米(mm),且可係約0.05mm至約0.25mm。
有用的基底層材料包括例如苯乙烯-丙烯腈、乙酸丁酸纖維素、乙酸丙酸纖維素、三乙酸纖維素、聚醚碸、聚甲基丙烯酸甲酯、聚胺甲酸酯、聚酯、聚碳酸酯、聚氯乙烯、聚苯乙烯、聚萘二甲酸乙二酯、基於萘二羧酸之共聚物或摻合物、聚烯烴系材料(諸如聚 乙烯、聚丙烯、及聚環烯烴之澆鑄或定向膜)、聚醯亞胺、及玻璃。可選地,基底層可含有此等材料之混合物或組合。在一些實施例中,基底層可係多層的,或可含有懸浮或分散在連續相中的分散組分。
基底層材料之實例包括聚對苯二甲酸乙二酯(PET)及聚碳酸酯(PC)。可用的PET膜之實例包括相片級(photograde)聚對苯二甲酸乙二酯,其可以商標名稱「Melinex 618」購自DuPont Films(Wilmington,Del.)。光學級聚碳酸酯膜之實例包括LEXANTM聚碳酸酯膜8010(可購自GE Polymershapes,Seattle Wash.)、及Panlite 1151(可購自Teijin Kasei,Alpharetta Ga)。在一些實施例中,基底層係具有75微米之厚度的PET膜。基底層可具有消光或有亮面表面處理。
一些基底層可係光學活性的,並可作用為偏振材料。藉由例如在選擇性吸收通過光之膜材料中包括二色性偏振器(dichroic polarizer)可實現對穿過膜之光的偏振。光偏振亦可藉由包括無機材料(例如經對準之雲母晶片(aligned mica chip))或藉由分散於連續膜內之不連續相(例如分散於連續膜內之光調變液晶液滴)來達成。作為替代方案,可由不同材料之微細層製備膜。可藉由例如採用諸如拉伸膜、施加電場或磁場、以及塗佈技術等方法來將膜內之偏振材料對準至偏振定向。
偏振膜之實例包括描述於美國專利第5,825,543號(Ouderkirk等人);美國專利第5,783,120號(Ouderkirk等人);美國專利第5,882,774號(Jonza等人);美國專利第5,612,820號 (Shrenk等人)及第5,486,949號(Shrenk等人)中者。此等偏振器膜與稜鏡狀增亮膜組合之用途已描述於例如美國專利第6,111,696號(Allen等人)及美國專利第5,828,488號(Ouderkirk等人)中。可商購獲得之膜係多層反射偏振器膜,諸如可購自3M Company之3MTM雙增亮膜(Dual Brightness Enhancement Film)「DBEF」。
在一些實施例中,基底層或覆蓋膜係賦予色偏效果之多層膜,諸如於US 8,503,122中所述。合適的色偏膜係描述於Weber等人之美國專利第6,531,230號中;該案以引用方式併入本文中。其他合適的色偏膜包括藉由旋轉塗佈、刮塗、浸塗、蒸發、濺鍍、化學氣相沉積(CVD)、及類似者產生的多層膜。例示性膜包括有機及無機材料兩者。此類膜係描述於例如美國專利第7,140,741號;第7,486,019號;及第7,018,713號中。
多層光學膜可係紫外光反射器、藍光反射器、可見光反射器、或紅外光反射器,如進一步描述於2017年11月28之美國專利第9,829,604號(Schmidt)中者,其以引用方式併入本文中。
在一些實施例中,多層光學膜可表徵為UV反射多層光學膜(即,UV反射器或UV鏡)。UV反射多層光學膜係指在290nm至400nm之範圍內的頻寬具有至少50、60、70、80、或90%之在法線入射的反射率的膜。在一些實施例中,在290nm至400nm之範圍內的頻寬之在法線入射的反射率係至少91、92、93、94、95、96、97、或98%。UV反射多層光學膜對於可見光可具有低反射率及高透射率。例如,可見光的透射率可係至少85%或90%。
在一些實施例中,多層光學膜可表徵為UV-藍光反射多層光學膜(即,UV-藍光反射器或UV-藍光鏡)。UV-藍光反射多層光學膜係指在350nm至490nm之範圍內的頻寬具有至少50、60、70、80、或90%之在法線入射的反射率的膜。在一些實施例中,在350nm至490nm之範圍內的頻寬之在法線入射的反射率係至少91、92、93、94、95、96、或97%。UV-藍光反射多層光學膜對於具有大於500nm之波長的可見光可具有低反射率及高透射率。例如,具有大於500nm之波長的可見光之透射率可係至少85%或90%。
在一些實施例中,多層光學膜可表徵為近紅外光反射多層光學膜(即,近紅外光反射器或近紅外光鏡)。近紅外光反射多層光學膜係指在870nm至1100nm之範圍內的頻寬具有至少50、60、70、80、或90%之在法線入射的反射率的膜。在一些實施例中,在870nm至1100nm之範圍內的頻寬之在法線入射的反射率係至少91、92、93、或94%。在一些實施例中,膜在45度角展現此相同的近紅外反射率。近紅外光反射多層光學膜對於可見光可具有低反射率及高透射率。例如,可見光的透射率可係至少85%、86%、87%、或88%。
可見光反射多層光學膜(例如,可見光反射器或可見光鏡)係指在400nm至700nm之範圍內的頻寬具有至少50、60、70、80、或90%之在法線入射的反射率的膜。在一些實施例中,在400nm至700nm之範圍內的頻寬之在法線入射的反射率係至少91、 92、93、94、95、96、97、或98%。此類寬帶反射器之近紅外反射率性質係如先前所述。
在其他實施例中,單一多層光學膜可反射多於一個頻寬且可被視為寬帶反射器。例如,多層光學膜可係可見光及近紅外光反射多層光學膜。因此,此多層光學膜具有可見光及近紅外光頻寬兩者之高反射率。
此外,將二或更多個多層光學膜鏡(例如,具有不同反射頻帶)層壓在一起以擴大反射頻帶。例如,多層光學膜可見光反射器(諸如先前所述)可與UV、UV-藍光、及/或近紅外光反射器組合。如所屬技術領域中具有通常知識者所理解的,可作出各種其他組合。
替代地,可藉由熔融擠壓來製備帶有微結構的物品(例如,圖2中所示之微結構化膜物品200),即將流體樹脂組成物澆鑄至母版負型微結構化模製表面(例如,工具)上並使組成物硬化。在此實施例中,突起(例如,透光區域)在連續層中互連至基底層260。個別突起(例如,透射區域)及其間之連接通常包含相同熱塑性材料。地面層之厚度(即,排除由複製微結構所產生之部分的厚度)一般係在0.001與0.100吋之間,且較佳地係在0.003與0.010吋之間。
當帶有微結構的物品(例如,圖2中所示之微結構化膜物品200)係由先前所述之澆鑄及固化程序製備時,地面層之厚度可以更低。例如,地面層之厚度一般係至少0.5、1、2、3、4、或5微米且範圍至多50微米。在一些實施例中,地面層厚度不大於45、 40、35、30、25、20、15、或10微米。在一實施例中,地面層係8微米。
用於熔融擠壓之合適的樹脂組成物係尺寸穩定、耐用、耐候(weatherable)、且容易成形為所欲構形的透明材料。合適的材料之實例包括具有約1.5之折射率的丙烯酸,諸如由Rohm and Haas Company製造之Plexiglas品牌樹脂;具有約1.59之折射率的聚碳酸酯;反應性材料,諸如熱固性丙烯酸酯及環氧丙烯酸酯;聚乙烯系離子聚合物及共聚物,諸如E.I.Dupont de Nemours and Co.,Inc.之以品牌名稱SURLYN銷售者;(聚)乙烯-共-丙烯酸;聚酯;聚胺甲酸酯;氟聚合物;矽聚合物;乙烯乙酸乙烯酯(EVA)共聚物、及乙酸丁酸纖維素。聚碳酸酯因為其韌性及相對較高的折射率而係特別合適的。
在又另一實施例中,可採用母版負型微結構化模製表面(例如,工具)作為壓紋工具,諸如描述於美國專利第4,601,861號(Pricone)中者。
吸收區域通常係由塗佈微結構化膜之表面來形成。可使用各種塗佈方法,包括例如逐層塗佈(layer-by-layer coating,LbL)以及諸如下列之塗佈技術:繞線棒、(例如直接、吻(kiss)、反向)凹版、3輥及5輥塗佈、氣刀、噴塗、缺口棒塗佈、刮刀塗佈、狹縫式模頭塗佈、浸漬浸塗、簾式塗佈、及拖刀塗佈(trailing blade coating)。
可用於形成吸光區域的吸光材料可係任何合適的材料,其作用為吸收或阻擋至少在一部分的可見光譜中的光。在典型實施例中,吸光材料亦吸收或阻擋至少一部分的UV及/或IR光譜。較佳地,吸光材料可經塗佈或以其他方式提供在透光區域之側壁上,以形成LCF中之吸光區域。例示性吸光材料包括黑色或其他吸光著色劑(諸如碳黑、或另一顏料或染料、或其組合)。其他吸光材料可包括粒子或其他散射元件,其可作用為阻擋光透射通過吸光區域。
當吸光材料(例如,塗層)包括粒子時,則粒子具有等於或小於吸光材料(例如,塗層)之厚度或換言之實質上小於吸收區域之寬度WA的中值粒徑D50。
中值粒徑通常小於1微米。在一些實施例中,中值粒徑不大於900、800、700、600、或500nm。在一些實施例中,中值粒徑不大於450、400、350、300、250、200、或100nm。在一些實施例中,中值粒徑不大於90、85、80、75、70、65、60、55、或50nm。在一些實施例中,中值粒徑不大於30、25、20、或15微米。中值粒徑一般係至少1、2、3、4、或5奈米。吸收區域之奈米粒子的粒徑例如可使用穿透式電子顯微鏡或掃瞄式電子顯微鏡測量。
「一次粒徑(primary particle size)」係指單一(非聚集、非黏聚)粒子之中值直徑。當光吸收或光反射粒子係以未黏聚及未聚集粒子存在時,中值粒徑係指中值一次粒徑。「黏聚物(agglomerate)」係指一次粒子之間的弱締合,其可藉由電荷或極性來保持在一起且可被分解成更小的實體(entity)。本文中所用之關於粒子 的「聚集體(aggregate)」係指強鍵結或熔合之粒子,其中所得外表面積可能明顯小於個別組分之計算表面積的總和。將聚集體保持在一起的力量為強力(例如共價鍵),或者因燒結或複雜物理纏結所致者。雖然黏聚之奈米粒子諸如可藉由施加表面處理而分解成較小的個體(諸如離散的一次粒子);但對聚集體施加表面處理僅會導致經表面處理之聚集體。當光吸收或光反射粒子係以聚集物存在時,中值粒徑係指聚集物之中值粒徑。在一些實施例中,大多數奈米粒子(即,至少50%)係以離散的未黏聚奈米粒子存在。舉例而言,至少70%、80%、或90%(例如,塗佈溶液)的奈米粒子係以離散的未黏聚奈米粒子存在。
光吸收奈米粒子的濃度一般係總光吸收區域的至少10、15、20、25、30、35、40、45、或50wt.-%。在一些實施例中,光吸收奈米粒子的濃度係總光吸收區域的至少55、60、65、70、或75wt.-%。光吸收奈米粒子的濃度可藉由所屬技術領域中已知之方法判定,諸如熱重分析。
在一實施例中,該方法包含將逐層光吸收塗層施加至微結構化膜之表面,即突起之頂部表面及側壁、及通道之底部表面。
在一些實施例中,設置在微結構化膜之表面上的複數個層包含至少兩層,其係藉由通稱為「逐層自組裝程序(layer-by-layer self-assembly process)」者沉積。此程序通常用於以靜電方式組裝具有相反電荷之聚電解質的膜或塗層,但其他官能基(諸如氫鍵供體/受體、金屬離子/配體、及共價鍵結部份)可係用於膜組裝的驅動力。 「聚電解質(polyelectrolyte)」意指具有多個能夠進行靜電交互作用之離子基團的聚合物或化合物。「強聚電解質」在廣泛pH範圍內皆具有永久電荷(例如含四級銨基團或磺酸基團之聚合物)。「弱聚電解質」具有取決於pH之電荷含量(例如,含一級、二級、或三級胺、或羧酸之聚合物)。一般而言,此沉積程序涉及將具有表面電荷之基材暴露至一系列液體溶液或浴中。此可藉由將基材浸沒於液體浴中(亦稱為浸塗)、噴霧、旋塗、輥塗、噴墨印刷、及類似者完成。暴露於第一多價離子(例如,聚電解質浴)液體溶液(其具有相反於基材之電荷)中會導致基材表面附近的帶電荷物種迅速吸附,從而建立濃度梯度,並將更多聚電解質從主體溶液拉到表面。進一步吸附會發生直到足夠之層已成長到遮蓋底下之電荷並反轉基材表面之淨電荷。為了使質量傳遞及吸附發生,此暴露時間一般大約為數分鐘。接著可將基材從第一多價離子(例如浴)液體溶液取出,然後暴露於一系列水潤洗浴中以移除任何物理纏結或鬆散結合之聚電解質。在這些潤洗(例如浴)液體溶液之後,接著使基材暴露於第二多價離子(例如聚電解質或無機氧化物奈米粒子浴)液體溶液,其具有相反於第一多價離子(例如浴)液體溶液之電荷。再一次,吸附會發生,因為基材之表面電荷相反於第二(例如浴)液體溶液者。持續暴露於第二多價離子(例如浴)液體溶液接著會導致基材表面電荷反轉。可執行後續潤洗以完成循環。此步驟序列據稱可建構沉積之一個層對(在本文中亦稱為「雙層」),且可依需要重覆以將額外層對添加至基材。
合適程序之一些實例包括描述於Krogman等人之US 8,234,998;Hammond-Cunningham等人之US2011/0064936;及Nogueira等人之US 8,313,798中者。逐層浸塗可使用StratoSequence VI(nanoStrata Inc.,Tallahassee,FL)浸塗機器手來進行。
在一實施例中,藉由逐層自組裝沉積之複數個雙層係包含有機聚合多價離子(例如,陽離子)及相對離子(例如,陰離子)之聚電解質堆疊,該聚電解質堆疊包含吸光材料(例如,顏料)。至少一部分的陽離子層、陰離子層、或其組合包含與聚電解質離子鍵結之吸光材料(例如,顏料)。
雙層之厚度及雙層之數目經選擇以達到所欲之光吸收。在一些實施例中,雙層之厚度、雙層之數目經選擇,以使用最小之自組裝層總厚度及/或最小之逐層沉積步驟數目來達到所欲之(例如,吸收)光學性質。各雙層之厚度一般係在約5nm至350nm之範圍內。雙層之數目一般係至少5、6、7、8、9、或10。在一些實施例中,每堆疊之雙層數目不大於150或100。堆疊之厚度等於吸收區域之寬度WA,如先前所述。
吸光化合物係分散在至少一部分的聚電解質層內。可利用各種聚電解質,包括無機化合物(諸如矽石或矽酸鹽)以及各種膦醯基羧酸(phosphonocarboxylic acid)及其鹽(其中一些係描述於WO2015/095317中:其以引用方式併入本文中。)
聚電解質有機聚合物可係較佳的,因為此類材料比無機材料可更容易地藉由反應性離子蝕刻來移除。在一些實施例中,吸收區域之聚電解質的至少一者係有機聚合物。
合適的多價陽離子有機聚合物包括但不限於直鏈及支鏈聚(伸乙亞胺)(PEI)、聚(烯丙基胺鹽酸鹽)、聚乙烯胺、幾丁聚醣、聚苯胺、聚醯胺基胺(polyamidoamine)、聚(乙烯基苄基三甲胺)、聚二烯丙基二甲基氯化銨(PDAC)、聚(甲基丙烯酸二甲基胺基乙酯)、聚(甲基丙烯醯基胺基)丙基-三甲基氯化銨、及其組合,包括其共聚物。
合適的多價陰離子有機聚合物包括但不限於聚(硫酸乙烯酯)、聚(磺酸乙烯酯)、聚(丙烯酸)(PAA)、聚(甲基丙烯酸)、聚(磺酸苯乙烯)、聚葡萄糖硫酸鹽、肝素、玻尿酸、角叉菜膠、羧甲基纖維素、藻酸鹽、磺酸化四氟乙烯系氟聚合物(諸如Nafion®)、聚(乙烯基磷酸)、聚(乙烯基膦酸)、及其組合,包括其共聚物。
剛才所述之聚電解質有機聚合物可表徵為具有帶有離子基團或可離子化基團之(例如,重複)經聚合單元的聚合物。此等基團在水溶液(水)中解離,使聚合物帶電。
具有多個能夠進行靜電交互作用之離子基團的其他類型之聚合物係有機聚合物的水性分散液。在一些實施例中,此等聚合物亦含有經聚合單元,該等經聚合單元帶有離子基團或可離子化基團。然而,此類基團的濃度顯著較低,使得有機聚合物可分散於水溶液中,但不會溶解而形成溶液。因此,此類有機聚合物可表徵為不溶於 水。在其他實施例中,可藉由使用離子界面活性劑而使有機聚合物為水可分散的。
水溶性聚電解質一般不溶於有機溶劑(諸如四氫呋喃(THF))中。相反地,水性分散液之有機聚合物(例如,聚胺甲酸酯及丙烯酸聚合物)通常可溶於有機溶劑(諸如THF)中。可溶意指塗層之至少50%(或當塗層具有大於50wt.%的光吸收或光反射粒子時,塗層之有機聚合物部分的至少50%)在超音波振盪器(Branson型號3510)浴中浸泡於含有有機溶劑(例如,THF)的廣口瓶中30分鐘後自經塗佈基材(例如,玻璃)移除。
有利的有機聚合物分散液包括聚胺甲酸酯聚合物分散液、丙烯酸聚合物分散液、聚酯分散液、聚烯烴分散液、聚乙烯及聚丙烯分散液及其共聚物分散液(包括乙烯-乙酸乙烯酯共聚物分散液)、環氧樹脂分散液、酚醛樹脂分散液、聚醯亞胺及聚醯胺分散液、氯乙烯分散液、及其混合物。此類聚合物一般係熱塑性的。
在一些實施例中,聚胺甲酸酯分散液包含聚酯主鏈、聚碳酸酯主鏈、聚酯碳酸酯、或其組合。在其他實施例中,丙烯酸分散液包含丙烯酸主鏈、含羥基丙烯酸主鏈、或其組合。在又其他實施例中,聚合分散液係胺甲酸酯-丙烯酸混合物。可採用有機聚合物分散液之混合物,諸如聚胺甲酸酯與丙烯酸聚合物之混合物。
已經開發用於製備水載(waterborne)或水性聚合分散液之各種程序。在水性聚胺甲酸酯聚合物之製備中,一般而言介質分子量聚合物(例如,預聚物)係藉由合適的二醇或多元醇與莫耳過剩之 二異氰酸酯或聚異氰酸酯在內部乳化劑存在下反應而形成。內部乳化劑一般係具有離子基團(羧酸鹽、磺酸鹽、或四級銨鹽)或非離子基團(諸如聚(環氧乙烷))的二醇。水性聚胺甲酸酯分散液一般係三種類型中之一者,即非離子型、陽離子型、或陰離子型,其取決於聚胺甲酸酯主鏈中存在的親水性基團或鏈段之類型。當塗層係經由靜電交互作用來逐層施加時,分散液之有機聚合物包含離子部份且因此係陽離子型或陰離子型。然而,當使用其他塗佈方法時,可利用非離子型聚合分散液。
在陰離子型聚胺甲酸酯的情況下,通常將二羥甲基丙酸(DMPA)併入至聚胺甲酸酯主鏈中,此乃由於其在用三乙胺的後續中和反應中對於水分散液之有效性。聚合物中DMPA之羧酸鹽離子係親水性,並充當陰離子中心以及內部乳化劑。羧酸離子不僅穩定水性聚胺甲酸酯分散液,亦提供固化部位。
水性丙烯酸聚合物一般亦係用內部乳化劑(例如,丙烯酸單元)來製備,且因此一般亦包含羧酸鹽離子以穩定該分散液並提供固化部位。
替代地,陽離子性聚合分散液可具有四級銨基團或三級胺基團。
市售之脂族丙烯酸分散液之實例包括可得自商標名稱為Raycat® 65124及Picassian® AC-181之陽離子丙烯酸乳膠。
在一些實施例中,塗層之有機聚合物係熱塑性脂族聚胺甲酸酯。熱塑性聚胺甲酸酯組成物通常係二異氰酸酯與短鏈二醇(亦 稱為鏈伸長劑)及二異氰酸酯與長鏈二官能二醇(稱為多元醇)之反應產物。聚胺甲酸酯的特徵在於具有胺甲酸酯基團,即-NH-(C=O)-O-,其連接衍生自二異氰酸酯及二醇之鏈段。此種胺甲酸酯基團包含羰基-C=O。
長鏈多元醇之非限制性實例係聚醚多元醇、聚酯多元醇、丙烯酸多元醇、及此等多元醇之混合物。一般而言,已知聚酯系之熱塑性胺甲酸酯用於提供良好的耐磨性及化學抗性。最終樹脂由在嵌段結構中之線性聚合鏈組成。此等鏈含有低極性鏈段,稱為「軟鏈段(soft segment)」,與較短的高極性鏈段交替,稱為「硬鏈段」。兩種類型的鏈段皆藉由共價鏈結鏈接在一起,形成隨機共聚物或嵌段共聚物。
用語「脂族聚胺甲酸酯(aliphatic polyurethane)」意指衍生自至少一種脂族多異氰酸酯及至少一種脂族異氰酸酯反應性組分之聚胺甲酸酯,諸如脂族二醇。所屬技術領域中已知的脂族聚異氰酸酯係:1,4環己烷雙(亞甲基異氰酸酯);甲基亞環己基二異氰酸酯;1,4-環己基二異氰酸酯;雙(1,4-異氰酸基環己基)甲烷;1,6-二異氰酸基-2,2,4,4-四甲基己烷;1,6-二異氰酸基-2,4,4-三甲基己烷;異佛爾酮二異氰酸酯;及類似者。用於脂族聚胺甲酸酯之多元醇可係短鏈二醇,諸如新戊二醇、1,6-己二醇、及類似者;以及聚酯或聚醚多元醇。
市售之水性聚胺甲酸酯分散液之實例包括可得自商標名稱為Sancure® 20051(亦已知為PrintRite® DP675)之脂族聚醚陽離 子胺酯聚合物分散液;Sancure® 20072(亦已知為PrintRite® DP676);及Witcobond® UCX-214。
分散液之有機聚合物一般係熱塑性的,且其特徵在於成膜聚合物。在聚結之前,有機聚合物一般係以離散粒子存在。分散液之有機聚合物粒子可在室溫(25℃)或更高溫度下聚結,根據有機聚合物之Tg或最小膜形成溫度(minimum film forming temperature,MFFT)而定。當分散液之有機粒子聚集時,導電(例如,光吸收或光反射)粒子對應於有機聚合物之粒徑隔開一距離。
藉由將導電(例如,光吸收或光反射)粒子與分散液或經聚結粒子之有機聚合物粒子隔開,可增加塗層(例如,吸收區域)或經塗佈基材(例如,光控制膜)之片電阻。在一些實施例中,塗層或經塗佈基材(例如,玻璃或光控制膜)具有大於1×107、2×107、3×107、4×107、5×107、6×107、7×107、8×107、9×107、1×108、2×108、3×108、4×108、5×108、6×108、7×108、8×108、9×108、或1×109歐姆/平方之片電阻。在一些實施例中,塗層在約500nm之乾燥塗層厚度下展現此類片電阻。當片電阻夠高且將光控制膜施加至電子裝置之觸控螢幕時,該觸控螢幕之觸控回應性與無光控制膜者相同。然而,當片電阻太低時,觸控螢幕上光控制膜的存在可減少觸控螢幕之回應性。
粒子形式以及導電(例如,光吸收或光反射)粒子之間的間隔可藉由穿透或掃瞄式電子顯微鏡來判定。
分散液的典型有機聚合物粒徑係在約0.01微米(10nm)至5微米之範圍內。聚合物粒徑一般小於塗層厚度。因此,d90粒徑一般小於4.5、4、3.5、3、2.5、2、1.5、1、或0.5微米。在一些實施例中,中值d10粒徑係至少20、30、40、50、60、70、80、或90nm。在一些實施例中,有機聚合物之d50或d90粒徑不大於400、350、或300奈米。在一些實施例中,有機聚合物具有小於200、175、150、125、100、75、或50nm之d50中值粒徑。在一些實施例中,有機聚合物具有小於150、125、100、75、或50nm之d10中值粒徑。在水性分散液中之有機聚合物的中值粒徑可根據實例中所述之測試方法藉由動態光散射判定。
較小粒子通常以比較大粒子更快的速率離子鍵結。因此,在一些實施例中,較大粒子可餘留在水中,而非變成併入吸收區域之(例如,逐層)塗層。
有機聚合物陽離子分散液一般具有至少+5mV或+20mV之ζ電位。有機聚合物陰離子分散液一般具有小於-5mV或-20mV之ζ電位。當ζ電位的絕對量值太低時,分散液可能不穩定而導致有機聚合物粒子與水相分離。有機聚合物陽離子分散液一般具有小於+100、+90、+80、+70、+60、或+50mV之ζ電位。有機聚合物陰離子分散液一般具有至少-50、-60、-70、-80、-90、或-100mV之ζ電位。當ζ電位的絕對量值太高時,粒子可能不會緊密地堆積在一起。
(水溶性及水分散性兩者)聚電解質聚合物之分子量可有所變化,範圍在約1,000g/莫耳至約1,000,000g/莫耳。在一些實施 例中,有機聚合物(例如,帶負電荷陰離子層之聚(丙烯酸))的重量平均分子量(Mw)在50,000g/莫耳至150,000g/莫耳的範圍。在一些實施例中,有機聚合物(例如,帶正電荷陽離子層之氯化聚二烯丙基二甲基銨)的分子量(Mw)在50,000g/莫耳至300,000g/莫耳的範圍。在一些實施例中,有機聚合物(例如,帶正電荷陽離子層之聚(伸乙基亞胺))的分子量(Mw)在10,000g/莫耳至50,000g/莫耳的範圍。多分散性範圍係從2至10。在一些實施例中,有機聚合物之多分散性小於9、8、7、6、5、4、或3。
多價離子之至少一者(例如,多價陰離子或多價陽離子)包含(例如,導電)吸光材料。
為了在水中穩定為膠態分散液且賦予離子基團,光吸收(例如,顏料)粒子一般進一步包含離子表面處理。在一些實施例中,表面處理化合物係陰離子性,諸如在磺酸鹽或羧酸鹽的情況。光吸收(例如,顏料)粒子亦作用為具有用於交替聚電解質層之離子結合基團的多價離子。
合適的顏料可以膠態穩定水分散液形式商購自諸如下列之製造商:Cabot、Clariant、DuPont、Dainippon、及DeGussa。特別合適的顏料包括可以CAB-O-JET®名稱例如250C(青色)、260M(品紅色)、270Y(黃色)、或352K(黑色)購自Cabot Corporation者。光吸收(例如,顏料)粒子一般係經表面處理以賦予可離子化官能性。適用於光吸收(例如,顏料)粒子之可離子化官能性之實例包括磺酸鹽官能性、羧酸鹽官能性、以及磷酸鹽或雙膦酸鹽官能性。在 一些實施例中,具有可離子化官能性之經表面處理的光吸收(例如,顏料)粒子可商購獲得。例如,可購自Cabot Corporation而以商標名稱250C(青色)、260M(品紅色)、270Y(黃色)、及200(黑色)銷售之CAB-O-JBlue®顏料包含磺酸鹽官能性。舉又另一實例,可以商標名稱352K(黑色)及300(黑色)購自Cabot Corporation之CAB-O-JET®顏料包含羧酸鹽官能性。
當光吸收(例如,顏料)粒子未經預處理時,光吸收(例如,顏料)粒子可經表面處理以賦予所屬技術領域中已知的可離子化官能性。
可利用多種吸光材料(例如,顏料)以在最終產品中達成特定的色調、或陰影、或顏色。當使用多種吸光材料(例如,顏料)時,選擇材料以確保其等彼此及與光學產品組件兩者之相容性及性能。
在一些實施例中,諸如當吸收區域包含導電碳質粒子(諸如碳黑)時,光控制膜對於範圍在300nm至2400nm之波長,在30度之觀看角通常提供低透射率(例如,小於10%)。當吸收區域經著色時,光控制膜可展現較高的平均透射率。舉例而言,對於範圍在300nm至2400nm之波長,在30度之觀看角的透射率可係10至30%。然而,特定波長範圍在吸收區域之顏色之波長範圍可展現較低透射率。在一些實施例中,對於範圍在300nm至550nm之波長,在30度之觀看角的透射率小於15%。在一些實施例中,對於範圍在600 nm至750nm之波長,在30度之觀看角的透射率小於5、4、3、2、或1%。
製備至少一部分及一般為50wt.%或更大(包括所有)的聚電解質並將其作為水性分散液施加至微結構化表面。可製備一部分的聚電解質並將其作為水溶液施加至微結構化表面。用語「水性(aqueous)」意指塗層之液體含有至少85重量百分比的水。其可含有較高量的水,諸如例如至少90、95、或甚至至少99重量百分比的水或更多。水性液體介質可包含水與一或多種水溶性有機共溶劑之混合物,其量為使水性液體介質形成單相。水溶性有機共溶劑之實例包括甲醇、乙醇、異丙醇、2-甲氧基乙醇、3-甲氧基丙醇、1-甲氧基-2-丙醇、四氫呋喃、及酮或酯溶劑。有機共溶劑的量一般不超過塗層組成物之總液體的15wt-%。用於逐層自組裝中之水性聚電解質組成物一般包含至少0.01wt-%、0.05wt-%、或0.1wt-%的聚電解質且一般不大於5wt-%、4wt-%、3wt-%、2wt-%、或1wt-%。
在一些實施例中,水性溶液或分散液進一步包含「遮蔽劑(screening agent)」,係一種藉由增加離子強度並減少粒子間靜電排斥力而促進均勻且可再現沉積之添加劑。合適的遮蔽劑包括任何低分子量鹽,諸如鹵化物鹽、硫酸鹽、硝酸鹽、磷酸鹽、氟磷酸鹽、及類似者。鹵化物鹽之實例包括氯化物鹽(諸如LiCl、NaCl、KCl、CaCl2、MgCl2、NH4Cl、及類似者)、溴化物鹽(諸如LiBr、NaBr、KBr、CaBr2、MgBr2、及類似者)、碘化物鹽(諸如LiI、NaI、KI、CaI2、MgI2、及類似者)、及氟化物鹽(諸如NaF、KF、及類似者)。 硫酸鹽之實例包括Li2SO4、Na2SO4、K2SO4、(NH4)2SO4、MgSO4、CoSO4、CuSO4、ZnSO4、SrSO4、Al2(SO4)3、及Fe2(SO4)3。有機鹽(諸如(CH3)3CCl、(C2H5)3CCl、及類似者)亦係合適的遮蔽劑。
合適的遮蔽劑濃度可隨鹽之離子強度而變化。在一些實施例中,水性溶液或分散液包含濃度範圍在0.01M至0.1M之(例如,NaCl)遮蔽劑。吸收區域可含有微量的遮蔽劑。
在將吸光塗層施加及乾燥至微結構化膜之(例如,整個)表面後,然後將吸光塗層從透射(例如,突起)區域之頂部部分移除,並且亦從透射(例如,突起)區域之間的地面區域移除。應理解的是,即使當一些吸光塗層被保留時,LCF仍可具有經改良的正軸透射率(例如,亮度)。
可使用任何適合的方法,以從突起(例如,吸光區域)之頂部表面及通道之底部表面選擇性地移除吸光材料。
在一實施例中,吸光材料係藉由反應性離子蝕刻移除。反應性離子蝕刻(reactive ion etching,RIE)係利用離子撞擊來移除材料之方向性蝕刻程序。使用RIE系統以藉由正交於離子撞擊方向的蝕刻表面來移除有機或無機材料。反應性離子蝕刻與等向性電漿蝕刻之間最值得注意的差異係蝕刻方向。反應性離子蝕刻之特徵在於垂直蝕刻速率對橫向蝕刻速率之比大於1。用於反應性離子蝕刻之系統圍繞耐用的真空腔室構建。在蝕刻程序開始之前,將腔室抽真空至低於1托、100毫托、20毫托、10毫托、或1毫托之基礎壓力。電極固持待處理之材料且與真空腔室電性隔離。電極可係圓柱形狀之可旋轉電 極。亦在腔室內提供相對電極且可包含真空反應器壁。包含蝕刻劑之氣體通過控制閥進入腔室。藉由使腔室氣體連續抽氣通過真空泵來維持程序壓力。所使用之氣體類型取決於蝕刻程序。四氟化碳(CF4)、六氟化硫(SF6)、八氟丙烷(C3F8)、氟仿(CHF3)、三氯化硼(BCl3)、溴化氫(HBr)、氯、氬、及氧通常係用於蝕刻。將RF功率施加至電極以產生電漿。可在電極上透過電漿輸送樣本達受控時間期間來達成指定蝕刻深度。反應性離子蝕刻在所屬技術領域中係已知的且進一步描述於US 8,460,568;該案以引用方式併入本文中。
在一些實施例中,反應性離子蝕刻的步驟導致在接近通道之底部表面311附近吸收區域係較窄的(小於平均寬度)。移除吸光材料可導致通道的深度(例如,輕微)增加。一些吸光材料可在蝕刻之後仍存在。
在從通道的底部表面移除吸光塗層之後,可用有機聚合材料填充通道。在一些實施例中,有機聚合材料係可聚合樹脂組成物,且該方法進一步包含(例如,輻射)固化該可聚合樹脂。一般而言,用於微結構化膜之製造中使用的相同可聚合樹脂係用於填充通道。替代地,使用不同的有機聚合材料(例如,可聚合樹脂組成物)。當使用不同的有機聚合物材料(例如,可聚合樹脂組成物)時,組成物一般係經選擇以與透光區域折射率匹配。「折射率匹配(index matched)」意指填充材料與透射區域之間的折射率差異一般小於0.1或0.005。替代地,可用不同的有機聚合材料(例如,可聚合樹脂組成物)填充通道,該有機聚合材料具有大於0.1之折射率差異。在又 另一實施例中,通道沒有用有機聚合材料(例如,經聚合樹脂)填充。在此實施例中,通道一般包含空氣,其具有1.0之折射率。
當用經固化可聚合樹脂填充通道時,光控制膜可任選地包括用黏著劑410接合至微結構化膜的覆蓋膜470。當用空氣填充通道時,一般包括黏著劑膜及覆蓋膜。
在又另一實施例中,層410可係頂部塗層而非黏著劑。在此實施例中,覆蓋膜470可不存在。
圖4顯示LCF 400,其進一步包括可相同於或不同於基底層260之可選的覆蓋膜470。可選的覆蓋膜470可用黏著劑410接合至微結構化表面。黏著劑410可係任何光學清透黏著劑,諸如UV可固化丙烯酸酯黏著劑、轉移黏著劑、及類似者。
替代地,可使覆蓋膜與用於填充通道的可聚合樹脂接觸(例如,回填樹脂)。回填樹脂在與覆蓋膜接觸時經固化,藉此黏合覆蓋膜。
覆蓋膜之一或多個表面可任選地經底塗或以其他方式進行處理以促進與黏著劑或回填樹脂之黏著。
在典型實施例中,覆蓋膜的厚度可係至少約0.025毫米(25微米)且可係約0.05mm(50微米)至約0.25mm(250微米)。在一些實施例中,覆蓋膜係多層波長(例如,色)偏移膜,如先前所述。
在一些實施例中,LCF包含在交替之透射區域與吸收區域之間的光吸收層或光反射層,以及除了先前描述之波長偏移膜以外的光輸入或輸出表面。
在一些實施例中,吸光層包含顏料及/或染料。例如,基底層及/或覆蓋膜可包含顏料及/或染料。在又另一實施例中,黏著劑層可存在以將覆蓋膜接合至LCF。在此實施例中,黏著劑可包含顏料及/或染料。在又另一實施例中,吸收層可係塗層,其係施加(例如,經塗佈或印刷)至交替之透射區域及吸收區域之頂部或底部表面、基底層之一主要表面、或覆蓋膜之主要表面的塗層。在一有利的實施例中,黏著劑或塗層係在覆蓋膜與交替之透射區域及吸收區域之間。塗層一般不是防眩光塗層或抗反射塗層。反之,塗層一般包含顏料或染料,使得塗層係波長選擇性。
在另一實施例中,交替之透射區域包含吸收材料,諸如顏料或染料。
可使用各種光吸收或光反射材料。例如,可利用可見光透明紅外光吸收透明導電氧化物(TCO)兩者作為薄膜及奈米粒子粉末及分散液。例示性TCO包括銦錫氧化物(ITO)、銻錫氧化物(ATO)、鎵錫氧化物(GTO)、銻鋅氧化物(AZO)、摻雜鋁/銦的鋅氧化物、摻雜的鎢氧化物(如銫鎢氧化物)、及鎢藍氧化物。其他可見光透明紅外光吸收器包括金屬硼化物(如六硼化鑭)及導電聚合物奈米粒子(如PEDOT-PSS)。亦吸收紅外光的金屬硫屬化物(如金屬硫化物及硒化物)包括例如硫化銅及硒化銅奈米粒子、二硫化鎢及二硫化鉬。另一 類別之可見光透明可調式紅外光吸收器係金屬電漿奈米粒子,諸如由金、銀銅等所製成者。近紅外光染料及顏料可施加至所揭示之LCF。這些染料具有低可見光吸收但強窄頻帶紅外光吸收。許多這些染料及顏料本質上係有機/有機金屬或金屬有機物。一些主類別之染料/顏料包括酞青素(phthalocyanine)、花青素(cyanine)、過渡金屬二硫烯(transitional metal dithioline)、方酸(squarylium)、克酮酸(croconium)、醌、蒽醌、亞銨(iminium)、氧雜苯鎓(pyrylium)、硫雜苯鎓(thiapyrilium)、薁鎓(azulenium)、偶氮、苝、及靛苯胺(indoaniline)。許多這些染料及顏料亦可展現可見光吸收及/或紅外光吸收兩者。再者,可使用許多不同類型的可見光染料及著色劑,諸如酸染料、偶氮著色物質、耦合組分、重氮組分。基本染料包括顯影劑、直接染料、分散染料、螢光增亮劑、食用染料、染紗染料、皮革染料、媒染染料、天然染料及顏料、氧化鹼、顏料、反應性染料、還原劑、溶劑染料、硫化染料、縮合硫化染料、甕染料。一些有機顏料可屬於下列一或多者:單偶氮、酸染料與雙偶氮之偶氮縮合不可溶金屬鹽、萘酚(naphthol)、芳基化物(arylide)、二芳基化物(diarylide)、吡唑啉酮(pyrazolone)、乙醯芳基化物(acetoarylide)、萘甲醯苯胺(naphthanilide)、酞青素、蒽醌、苝、黃士酮(flavanthrone)、三苯二
Figure 109119684-A0202-12-0038-40
(triphendioxazine)、金屬錯合物、喹吖酮(quinacridone)、聚吡咯并吡咯(polypryrrolopyrrole)等。可使用金屬氧化物顏料,諸如金屬鉻酸鹽、鉬酸鹽、鈦酸鹽、鎢酸鹽、鋁酸鹽、及鐵氧體。許多者含有過渡金屬,如鐵、錳、鎳、鈦、釩、銻、鈷、鉛、鎘、鉻等。釩酸鉍係 非鎘黃。這些顏料可經研磨以產生可實用於所欲透明度及低散射的奈米粒子。一些光吸收或光反射粒子係導電的。導電粒子可與導電性較小或不導電的粒子組合使用。
著色劑之組合可產生廣譜的顏色。在一些實施例中,光反射或吸收層包含少量或不含碳黑(例如,小於0.5%)。
在一些實例中,使用具有小於10微米、或1微米、或更小之平均粒徑顆粒光吸收及/或反射材料。在一些實施例中,顆粒光吸收及/或反射材料具有小於1微米之平均或中值粒徑。在一些實施例中,顆粒光吸收及/或反射材料可分散在合適的黏合劑中。
在一些實施例中,光吸收材料係蔥醌染料(例如,顏料黃147、溶劑黃163、顏料藍60、顏料紅177)、苝染料(例如,顏料黑31、顏料黑32、顏料紅149)、及喹吖酮染料(例如,顏料紅122);諸如US 9,630,384中所述;該案以引用方式併入本文中。
在一些實施例中,光吸收材料係紫外線吸收劑。紫外線吸收劑藉由優先吸收紫外線輻射並且將其以熱能形式消散來發揮作用。合適的UVA可包括:二苯甲酮(羥基二苯甲酮,例如,Cyasorb 531(Cytec))、苯并三唑(羥基苯基苯并三唑,例如,Cyasorb 5411、Tinuvin 329(Ciba Geigy))、三
Figure 109119684-A0202-12-0039-42
(triazine)(羥基苯基三
Figure 109119684-A0202-12-0039-43
,例如,Cyasorb 1164)、草醯胺苯(oxanilide,例如,Sanuvor VSU(Clariant))、氰基丙烯酸酯(例如,Uvinol 3039(BASF))、或苯并
Figure 109119684-A0202-12-0039-41
酮(benzoxazinone)。合適的二苯甲酮包括CYASORB UV-9(2-羥基-4-甲氧基二苯甲酮)、CHIMASSORB 81(或CYASORB UV 531)(2羥基-4辛氧基二苯甲酮)。合適的苯并三唑UVA包括可以TINUVIN P、213、234、326、327、328、405和571、以及CYASORB UV 5411和CYASORB UV 237購自Ciba,Tarrytown,N.Y.的化合物。其他合適的UVA包括CYASORB UV 1164(2-[4,6-雙(2,4-二甲基苯基)-1,3,5-三
Figure 109119684-A0202-12-0040-46
-2基]-5(辛氧基)苯酚(例示性三
Figure 109119684-A0202-12-0040-44
)及CYASORB 3638(例示性苯并二
Figure 109119684-A0202-12-0040-47
)。
當光吸收材料係紫外線吸收劑時,其一般存在於覆蓋膜中,而非於UV可固化可聚合樹脂中。
吸光材料(例如,顏料、染料、紫外線吸收劑)之濃度可變化。在一些實施例中,吸光材料(例如,染料)之濃度不大於基底(例如,預成形膜)層、黏著劑、塗層、覆蓋膜、或透光(例如,回填)材料之10、9、8、7、6、或5wt%。
此等各種光吸收層之厚度可有所變化。在一些實施例中,厚度一般係至少約0.025毫米(25微米),且可係約0.05mm(50微米)至約0.25mm(250微米)。當光吸收層係黏著劑或塗層時,厚度可小於25微米。例如,厚度可係至少5、10、15、或20微米且範圍至多50微米。黏著劑或塗層可以連續或不連續層存在。
在一些實施例中,光反射或光吸收層係(例如,覆蓋層或基底層)預成形膜。例如,在一實施例中,該LCF包含一覆蓋膜或基底層膜,該覆蓋膜或基底層膜係光學擴散器。光學漫射器可協助將入射在LCF上的光(尤其是在高入射角)散射進入透光區域並朝向偵測器。
LCF可進一步包含其他塗層,該等塗層一般係提供在經暴露表面上。各種硬塗層、防眩光塗層、抗反射塗層、抗靜電塗層、及抗污塗層係在所屬技術領域中已知的。參見例如美國專利第7,267,850號;美國專利第7,173,778號、PCT公開案第WO2006/102383號、第WO2006/025992號、第WO2006/025956號、及美國專利第7,575,847號。
圖5顯示根據一實施例之背光顯示器500之透視圖。背光顯示器500包括LCF 530,其包含透射區域540及吸收區域550,如先前所述。此類LCF具有離開LCF 530之輸出表面590的截止觀看極角θP之光,如前所述。背光顯示器500包括光源510,該光源經組態以透過影像平面520(諸如LCD面板)將光透射通過LCF 530,並透射至觀看者595。如前所述,亮度最大之觀看角可取決於截止觀看極角。
背光顯示器500亦可包括可選的增亮膜560及反射偏振器膜570,以進一步改善顯示器的亮度及均勻性。增亮膜可係稜鏡膜,諸如可購自3M公司之3MTM增亮膜(Brightness Enhancement Film)「BEF」或薄增亮膜(Thin Brightness Enhancement Film)「TBEF」。反射偏振器膜570可係多層光學膜,諸如可購自3M Company,St.Paul,MN之3MTM雙增亮膜「DBEF」。增亮膜560及反射偏振器膜570(若包括)可經定位,如圖5中所示。
在其他實施例中,包含透射區域及吸收區域之光控制膜(如先前所述)可接合至一發射式(例如,有機發光二極體或OLED)顯示器。
在一些實施例中,本文所述之LCF(即,第一LCF)可與第二LCF組合。在一些實施例中,第二LCF可係諸如描述於下列中之LCF(例如,防窺膜):US 6,398,370;US 8,013,567;US 8,213,082;及US 9,335,449。在其他實施例中,第二LCF係如本文所述之LCF(例如,其中吸光區域具有至少30之縱橫比)。第一及第二LCF可以各種定向堆疊。
在一實施例中,第一光控制膜及第二光控制膜經定位使得該第一LCF之吸收區域平行於且一般重合於該第二LCF之吸收區域。在另一實施例中,第一光控制膜及第二光控制膜經定位使得該第一LCF之吸收區域正交於該第二LCF之吸收區域。第一及第二光控制膜亦可經定位,使得在0度之觀看角,吸收區域的範圍從彼此平行至正交。
在一些實施例中,第一及第二LCF之組合在0度之觀看角具有至少60、65、70、75、80、85、或90%之相對透射率(例如,亮度)。在一些實施例中,在+30度、-30度、或平均為+30度及-30度之觀看角的相對透射率(例如,亮度)小於25、20、15、10、或5%。在一些實施例中,範圍在+35至+80度、-35度至-85度、或平均為此等範圍之觀看角的平均相對透射率(例如,亮度)小於10、9、8、7、6、5、4、3、2、或1%。
在一些實施例中,LCF之此組合在0度之觀看角具有至少60、65、70、75、80、85、或90%之相對透射率(例如,亮度)。在一些實施例中,在+30度、-30度、或平均為+30度及-30度之觀看角的相對透射率(例如,亮度)小於25、20、15、10、或5%。
當用空氣填充通道時,在較高觀看角之相對透射率(例如,亮度)可係較低的,且因此膜可展現出經改善的隱私性。
在一些實施例中,本文所述之光控制膜特別可用作為顯示裝置之組件,作為所謂的混合式防窺濾光器(hybrid privacy filter)。混合式防窺濾光器可與顯示器表面結合使用,其中光進入光控制膜之輸入側上的混合式防窺濾光器,並且在色偏膜處離開混合式防窺濾光器或膜堆疊。可將具有顯示器之大量數目的電子裝置與本發結合明使用,其包括膝上型電腦監視器、外部電腦監視器、手機顯示器、電視、智慧型手機、汽車中心資訊顯示器、汽車駕駛資訊顯示器、汽車側鏡顯示器(亦稱為電子鏡)、控制台、或任何其他類似的LCD、OLED、微型LED、或迷你LED系顯示器。施加混合式防窺濾光器至顯示器的額外效益係用於對比增強。
亦可考慮其他類型之背光式顯示器成像裝置,其包括非電子顯示器(諸如太陽眼鏡)、文件封面、汽車及航空應用中的控制台開關、飛機駕駛艙控制裝置、直升機駕駛艙控制裝置、窗戶、及任何數目之其他裝置。
在進一步實施例中,本文所述之光控制膜可用作為玻璃及太陽能板之覆蓋物。例如,可將光控制膜層壓至開窗上或開窗內。 開窗可選自玻璃板、窗戶、門、牆壁、及天窗單元。這些開窗可位於建築物外側或內部。其等亦可係汽車窗、火車窗、飛機乘客窗、ATM、或類似者。將這些薄膜堆疊併入開窗的優點包括減少IR透射率(其可導致節能增加)、環境光阻擋、隱私性、及裝飾效果。
在一些實施例中,本文所述之光控制膜(LCF)可係光學通訊系統之部分。本文中「光學通訊系統」指稱其係用於光自光源通過所揭示LCF至目標之距離的通訊的一系統,其中該目標可包括偵測器或人眼,且該光源可包括環境光。例示性光源包括發射UV光、可見光、或NIR光之發光二極體(LED)、包括VCSEL(垂直空腔表面發光雷射)之雷射光源、鹵素光源、白熾光源、金屬鹵素光源、鎢光源、汞蒸氣光源、短電弧氙氣光源、或太陽(太陽能)。在一些情況中,本文所揭示之LCF可係具有偵測器系統之光學通訊系統之部分。在一些情況中,當接收通過該光學通訊系統之該LCF之光時,該偵測器系統可提供各種類型輸出,諸如電子信號。一種偵測器系統包括一偵測器,該偵測器對在偵測波長範圍中之波長靈敏且LCF設置在偵測器上。
在一些實施例中,該偵測器係光伏打裝置或包括光伏打裝置。該偵測器經組態以偵測太陽能輻射,例如,以充電一電池(battery)。在此類情況中,該偵測器係或可包括太陽能電池組(solar battery)、太陽能電池(solar cell)、矽光電二極體、或太陽能偵測器。在一些情況中,該偵測器可係用於偵測及/或記錄影像之(例如,可見或紅外)相機中之偵測器。在一些情況中,該偵測器可係在相機或相 機系統中。其他偵測器包括CMOS(互補金屬氧化物半導體)及CCD(電荷耦合裝置)偵測器。光偵測器(本文亦稱為感測器)的典型應用包括手勢辨識、虹膜辨識、臉部辨識、遠端控制及自動車輛、環境光感測器、近接感測器、心率、血氧、葡萄糖、或其他生物感測、具有飛行時間或結構化光之3D深度攝影機、安全性攝影機。
在一些情況中,本文所揭示之光控制膜(LCF)可係包括例如與如圖7所示之窗組合的光學構造之光學通訊系統之部分。在此實例中,LCF 600係具有自然光源(諸如太陽光690)之光學構造601之一部分。特定而言,圖7顯示施加至封閉空間(諸如建築物、住家、或車輛)之窗之所揭示之LCF之例示性應用。LCF 600可設置在建築物、住家、車輛、或任何封閉空間670之窗基材675上。LCF 600包括相隔開之複數個第一吸收區域630及可選的第二(例如,覆蓋膜)區域640之光學膜650,該第二區域相鄰至少第一區域630之至少一部分。第一區域630包含第一吸收材料632,且第二區域640可包括第二材料642。
在有利的實施例中,LCF窗膜展現出可見光的高透射率以及UV光及NIR光兩者的低透射率。
由第一吸收區域630對紫外光及紅外光之透射率依據光之入射角而變化。特定而言,當太陽光690垂直於LCF 600入射時,紅外光及可見光兩者可透射穿過光學膜650。然而,隨著來自太陽光690之入射角增加,透射穿過LCF 600的紅外光量降低,直到該入射角到達觀看角θP,實質上所有紅外光自該點被第一材料632阻擋。也 就是,在早晨時期間,當太陽光690之紅外光部分相對小且太陽光690以法線入射角而入射在窗上時,大部分紅外光可被LCF 600透射。另一方面,接近至中午,當太陽光690之紅外光部分相對大且太陽光690之入射角增加而接近或超過LCF 600之觀看角2θv時,非常少之入射紅外光被LCF 600透射且最後被阻擋,使得建築物或住家670內之觀看者或住戶677可能不會暴露於熱紅外光。因此,LCF 600可減少暴露於紫外光及紅外光。
圖8示意性地顯示介於偵測器靈敏度與波長之間之關係,其繪示該偵測器對在偵測波長範圍中之波長靈敏。如圖8所示,所揭示之LCF之各第一區域可在預定第一波長範圍「A」中具有實質上高透射率、在預定第二波長範圍「B」中具有實質上低透射率、及在預定第三波長範圍「C」中具有實質上高透射率,其中第二波長範圍B係分別設置在第一與第三波長範圍A及C之間。在一些情況中,第二波長範圍B係自第一波長712至第二波長714之約20nm寬且以雷射可見光發射波長為中心,第一波長範圍A係自約400nm至約第一波長712,且第三波長範圍C係自約第二波長714至約1400nm。該雷射可見光發射波長可係442nm、458nm、488nm、514nm、632.8nm、980nm、1047nm、1064nm、及1152nm之至少一者。在其他實例中,該雷射可見光發射波長係在自約416nm至約1360之一範圍中。在進一步實例中,LCF進一步可包括與複數個第一區域交替之相隔開之複數個第二區域,且各第二區域可在預定第一波長範圍、預定第二波長範圍及預定第三波長範圍之各者中具有實質上高透 射率。在其他實例中,各第二區域可在預定第一波長範圍或/及預定第三波長範圍任一者/兩者中具有實質上低透射率。在一些情況中,該LCF在預定第二波長範圍中具有小於約60度、或50度、或40度、或30度、或20度之觀看角。
在另一例示性應用中,本文所揭示之LCF可係具有一分開之光源(諸如在圖8所示之雷射光源)之光學通訊系統之一部分。
特定而言,圖9顯示例示性應用,其中LCF施加至飛機或航空器雷射照射防衛系統,以阻擋在預定波長範圍中之傳入或入射光。LCF 800可附接至例如飛機、一飛航器或航空器870等,且所欲地附接至該飛機、飛航器或航空器870之一表面(諸如一窗)。LCF 800包括光學膜850,該光學膜包括相隔開之複數個第一吸收區域830及可選的第二(例如,覆蓋膜)區域840,該第二區域相鄰第一區域830之至少一者之至少一部分。第一區域830包含第一吸收材料832,且第二區域840包括第二材料842。
當雷射光891入射在LCF 800上時,第二(例如,覆蓋膜)材料842無論光891之入射角而吸收或/及反射紫外光及紅外光波長範圍之至少一部分。此外,第二(例如,覆蓋膜)區域840在包括雷射光891波長之可見波長範圍中透射,但穿過第一區域830之可見光之透射率依據光之入射角而變化。當該光垂直於LCF 800之表面入射時,可見光可透射穿過光學膜850。然而,在觀看角θP(參照圖1b)之外,可見光藉由第一區域830內之第一吸收材料832阻擋。因 此,當在飛機或航空器870上使用LCF 800時,在觀看角θP內之來自雷射光891之可見光可藉由LCF 800透射,但來自雷射光891之紫外光及紅外光可能不會藉由LCF 800透射,或僅紫外光及紅外光之限制量(所欲地小於約10%紫外光及紅外光)可分別藉由LCF 800透射。該可見光可藉由LCF 800隨入射角(其包括光之波長)變動來透射。為了阻礙飛行員877之視野,雷射射擊器878可能例如使用綠色雷射890攻擊飛機或航空器870。通常,綠色顏色之波長係約自495nm至570nm。因此,當LCF 800包括阻擋495nm至570nm之波長範圍的光之第一吸收材料832時,在飛機或航空器870上的飛行員877不受來自在地面上之雷射射擊器878的綠色雷射攻擊影響。
在一些情況中,可與復歸反射器組合地利用所揭示之光控制膜(LCF)。例如,圖10顯示包括復歸反射片1190及LCF 1100之復歸反射系統1101,該復歸反射片用於復歸反射光,該LCF設置在復歸反射片1190上。大致上,復歸反射器片1190經組態以對於入射波長及角度之一範圍來復歸反射光。例如,復歸反射器片1190可經組態以對於不同入射波長λ1與λ2及不同入射角α與α’來復歸反射光。LCF 1100之附加導致具有經修改之復歸反射性質的系統1101。例如,對於較大角度α及較小角度α’,LCF 1100之觀看角2θv可使得LCF 1100對於較小入射角α’而實質上透射在波長λ1及λ2兩者之光,但LCF對於較大入射角α可實質上透射具有波長λ1之光且實質上吸收具有波長λ2之光。例如,在一些情況中,LCF 1100之觀看角θP可大於α’且小於α。舉另一實例,復歸反射系統1101經組態使得對於第一 波長λ1,以對應之第一入射角α’及第二入射角α入射在LCF 1100上之光810及810’兩者經復歸反射為各別的經復歸反射光812及812’。此外,對於第二波長λ2,以第一入射角α’入射在該LCF上之光820經復歸反射在經復歸反射光822,但以第二入射角α入射在該LCF上之光820’不被復歸反射。在此類情況中,光820’在首先入射在LCF 1100上時藉由該LCF吸收,在一些情況中,之後該光藉由該LCF部分透射且藉由該復歸反射片而復歸反射。在一些情況中,LCF 1100包括對於該第一波長之較大第一觀看角及對於該第二波長之較小觀看角。在一些情況中,第一入射角α’相對於法向於LCF 1100之一平面的一線801係實質上等於零。在一些情況中,復歸反射片1190包括用於復歸反射光之微球珠610。在一些情況中,復歸反射片1190包括用於復歸反射光之角隅稜鏡620。在一些情況中,LCF 1100包括相隔開之複數個第一區域1130,其中在第二波長λ2,但不在第一波長λ1,各第一區域1130具有實質上低透射率。
在一些情況中,該光控制膜(LCF)可用作為具有感測器之光學通訊系統之部分,更具體而言,為了改良信號雜訊比效能且實現經改良方向性感測的IR感測器。在此實例中,該第一材料在紅外光範圍之至少一部分中係光譜選擇性,及在一些情況中,該第二材料可在紫外光及可見光範圍之至少一者之至少一部分中係光譜選擇性。更理想地,第二材料在紫外光及可見光範圍兩者中係光譜選擇性。當使用該LCF時,無論光之入射角,來自該IR感測器之如類似紫外光及可見光之雜訊係透過該第二材料吸收。無論光之入射角,來自光源且 通過第二區域的紫外光及可見光之透射率係均勻且所欲地小於約10%。然而,第二區域可透射來自光源之紅外光之一範圍,但是通過第一區域的透射率依據光之入射角而變化。當光垂直於該LCF之表面入射時,紅外光可透射穿過該光學膜。然而,在觀看角2θv外,紅外光藉由在該等第一區域中之該第一材料阻擋。因此,所揭示之系統提供具實質上降低的雜訊且實質上改良的方向性感測之IR感測器。
在另一情況中,該LCF可用在具有感測器之光學通訊系統之一部分中,更具體而言,施加至腕錶之脈搏感測器,如圖11所示。特定而言,圖11顯示施加至具有脈搏感測器之腕錶之LCF之例示性應用。LCF 1200可附接至穿戴式腕錶1280或任何穿戴式裝置,且所欲地,附接至穿戴式手錶1280之表面。LCF 1200包括光學膜1250,該光學膜包括複數個第一吸收區域1230及可選地相鄰至少第一區域1230之至少一部分的第二(例如,覆蓋膜)區域1240。第一區域1230包含第一吸收材料1232,且第二區域1240可包括第二材料1242。第一材料1232或第二(例如,覆蓋膜、黏著劑、或塗層)材料1242可係任何合適的材料,使得第一材料1232在來自光源(例如,LED 1290)之可見光範圍之至少一部分中係光譜選擇性,且第二材料1242在來自LED 1209之紫外光及紅外光範圍之至少一者之至少一部分中係光譜選擇性。更理想地,第二材料1242在紫外光範圍及紅外光範圍兩者範圍中係光譜選擇性。當使用LCF 1200時,無論來自光源(諸如太陽光1295或LED 1290)之光之入射角,從脈搏感測器1285之觀點來看的如紫外光及紅外光之雜訊係透過第二材料1242吸 收。無論光之入射角,來自光源且通過第二區域1240的紫外光及紅外光之透射率係均勻且所欲地小於約10%。然而,第二區域1240透射來自LED 1290之可見光之一範圍,但通過第一區域1230的可見光之透射率係依據光之入射角而變化。當來自LED 1290之光垂直入射在LCF 1200之表面上時,可見光可透射通過光學膜1250。然而,第一材料1232可阻擋或降低以相對高入射角入射至配戴該裝置之人之手腕777的太陽光1295或來自其他光源之環境可見光,使得LCF 1200可改良信號(主要來自LED之在一觀看角內入射之可見光)對雜訊(例如,來自例如太陽光之紫外光或紅外光或環境可見光、在觀看角外入射之其他環境光源)比率。
本說明不應被視為受限於本文所述之具體實例,而是應理解為涵蓋在所附申請專利範圍中所提出的所有說明態樣。對本說明所針對之所屬技術領域中具有通常知識者而言,在閱讀本說明書後可適用於本發明之各種修改、等效程序,以及許多結構將顯而易見。藉由考慮以下測試結果及實例所示之實施例,可更佳理解前述說明。
實例
除非另有說明,否則本說明書中之實例及其餘部分中的所有份數、百分比、比率等均以重量計。除非另有說明,否則所有化學物質均獲自或購自化學供應商,諸如:Sigma-Aldrich Co.,St.Louis,Missouri。
所有實例中使用之材料列示如下,並附上其簡要說明與來源。
用於澆鑄及固化微複製程序中之樹脂A的組分(製備例1)以及實例2及實例4至實例8中的折射率匹配回填材料列於下表1。用於逐層塗層之原料列於下表2。反應性離子蝕刻之原料列於下表3。
Figure 109119684-A0202-12-0052-1
Figure 109119684-A0202-12-0052-2
Figure 109119684-A0202-12-0053-3
記述碳黑之粒徑係聚集粒徑。
Figure 109119684-A0202-12-0053-4
用於測量有機聚合物分散液之粒徑及ζ電位之方法
對於兩種測量,將於水中所收到之有機聚合物分散液用1mM氯化鉀(KCl)稀釋至適當濃度(一般係0.1wt%至0.01wt%固體)。
經由動態光散射(dynamic light scattering,DLS)用Brookhaven Instruments Corp.(Holtsville,New York)ZetaPALS儀器測量由強度加權之粒徑分布的10th、50th、及90th百分位(分別為 d10、d50、及d90)。以強度加權之中值粒徑係50值。用相同儀器測量ζ電位。
Figure 109119684-A0202-12-0054-5
Figure 109119684-A0202-12-0054-6
製備例1(PE1):「方形波」微結構化膜之製備
使用鑽石(29.0μm尖端寬度,3°夾角,87μm深)來切割具有複數個平行線性凹槽的工具。凹槽係以62.6微米之節距隔開。
藉由混合下表4中之材料來製備樹脂A。
Figure 109119684-A0202-12-0054-7
Figure 109119684-A0202-12-0055-8
如上文所述,使樹脂A及工具進行「澆鑄及固化(cast-and-cure)」微複製程序。生產線條件係:樹脂溫度150℉,模溫150℉,塗佈機IR邊緣120℉/中心130℉,工具溫度100℉,及生產線速度70fpm,Fusion D燈(可購自Fusion UV Systems,Gaithersburg,MD),峰值波長385nm,用於固化並在100%功率下操作。所得微結構化膜包含由通道分開之複數個突起(例如,透光區域),如圖2中所繪示。基底層260係PET膜(3M,St.Paul,MN),其具有2.93密耳(74.4微米)之厚度。用熱固性丙烯酸聚合物(可購自Dow Chemical,Midland,MI之Rhoplex 3208)對接觸樹脂的PET膜之側進行底塗。經固化樹脂之地面層(L)具有8微米之厚度。微結構化膜係工具之形貌相反(topographical inverse),使得微結構化膜之突起係工具凹槽之負型複製。突起具有1.5度之壁角,導致突起稍微漸縮(在光輸入表面較寬且在光輸出表面較窄)。微結構化膜之通道係凹槽之間工具未切割部分之負型複製。
用於製造在微結構化膜上之逐層自組裝塗層之方法
逐層自組裝塗層係使用購自Svaya Nanotechnologies,Inc.(Sunnyvale,CA)之設備來製造並且依照US 8,234,998(Krogman等人)及Krogman等人之「Automated Process for Improved Uniformity and Versatility of Layer-by-Layer Deposition」,Langmuir 2007,23,3137-3141中所述之系統來模型化。
設備包含載有塗佈溶液之壓力容器。安裝具有平展噴霧圖型之噴霧噴嘴(來自Spraying Systems,Inc.,Wheaton,Illinois)以在指定時間噴霧塗佈溶液及潤洗水,此係由電磁閥所控制。含有塗佈溶液之壓力容器(Alloy Products Corp.,Waukesha,WI)係用氮加壓至30psi,而含有去離子(DI)水之壓力容器係用空氣加壓至30psi。來自塗佈溶液噴嘴的流速各自係每小時10加侖,而來自去離子水潤洗噴嘴的流速係每小時40加侖。欲塗佈的基材係以環氧樹脂(Scotch-Weld環氧樹脂黏著劑,DP100 Clear,3M Company,St.Paul,MN)黏附至玻璃板(12”×12”×1/8”厚)(Brin Northwestern Glass Co.,Minneapolis,MN),其經安裝於一垂直移動台階上並以一真空吸盤固持就位。在典型塗佈順序中,將多價陽離子(例如,PDAC)溶液噴霧至基材上同時使台階以76mm/sec向下垂直移動。接下來,在12sec之停留時間後,將去離子水噴霧在基材上同時使台階以102mm/sec垂直向上移動。然後以3mm/sec之速度的空氣刀使基材乾燥。接下來,將多價陰離子(例如,顏料奈米粒子)溶液噴霧在基材上同時使台階以76mm/sec垂直向下移動。允許經過12sec的另一停留期間。將去離子水噴霧在基材上同時使台階以102mm/sec垂直向上移動。最後,接著以3mm/sec之速度的空氣刀使基材乾燥。重複上述順序以沉積一些「雙層」,其表示為(多價陽離子/多價陰離子)n, 其中n係雙層的數目。在後續加工之前,將經塗佈基材(例如,聚合物膜)自玻璃基材剝離。
用於反應性離子蝕刻微結構化膜之方法
反應性離子蝕刻(RIE)係在平行板經電容耦合之電漿反應器中進行。該腔室具有中央圓柱狀供電電極,其具有18.3ft2之表面面積。在放置微結構化膜於供電電極上後,將反應器腔室泵抽至小於1.3Pa(2毫托)之基礎壓力。使Ar(氬)及O2(氧)氣之混合物流動至腔室中,各速率係100SCCM。使用電漿增強CVD法藉由在13.56MHz之頻率及6000瓦之施加功率下將RF功率耦合至反應器中來進行處理。藉由使微結構化膜移動通過反應區來控制處理時間。在處理之後,將RF功率及氣體供應停止,且使腔室回到大氣壓力。關於材料的額外資訊、用於施加圓柱形RIE的程序、及在所使用的反應器周圍之進一步細節可見於US8460568 B2。
用於回填微結構化膜之通道之方法
藉由在微結構化膜表面與置於頂部上之一片無底塗、2mil厚的PET膜之間吸移樹脂,用PE1中所使用之樹脂A回填通道,並使用手動輥向頂部PET膜施加壓力,然後用Heraeus(Hanau,Germany)帶輸送器UV理器(型號DRS(6))以500瓦功率之「H」燈泡進行UV固化。具體而言,將樣本以50ft/min之輸送器速度通過UV固化站三次。接下來,用手將頂部PET膜從微結構化膜剝離。
用於測量來自漫射光源之輝度曲線之方法
將膜樣本放置在朗伯光源上。當透光區域係錐形時,膜經定位使得錐形區域之最寬部分較接近光源。使用Eldim L80錐光鏡(Eldim S.A.,HEROUVILLE SAINT CLAIR,France)以在所有極角及方位角同時以半球方式偵測光輸出。在偵測之後,在正交於葉片方向的方向(表示為0°定向角)取得透射率(例如,亮度)讀數之剖面,除非另有指明。相對透射率(即,可見光之亮度)係定義為在特定觀看角、有膜的讀數與沒有膜的讀數之間之正軸輝度的百分比。
朗伯光源由來自一燈箱之漫透射組成,該燈箱具有在圖6中所描繪之基線輝度曲線。燈箱係六面中空立方體,經測量大約為12.5cm×12.5cm×11.5cm(L×W×H),由約6mm厚之漫射聚四氟乙烯(PTFE)板所製成。箱之一表面係經挑選為樣本表面。中空燈箱在樣本表面測得具有約0.83之漫反射率(例如,約83%,其係在400至700nm波長範圍內之平均值)。在測試期間,該箱係從內部經由(與樣本面相對之)該箱底部約1cm之圓孔照明(其中光係自內部導向樣本表面)。照明係使用附接至用於引導光之光纖束的穩定化寬頻白熾光源(來自Schott-Fostec LLC,Marlborough Mass.and Auburn,N.Y.之具有1cm直徑纖維束擴充之Fostec DCR-II)提供。
用於測量紫外光及近紅外光透射率之方法
用具有可變角度透光率樣本固持器(目錄號PELA9042)之Lambda 1050分光光度計(Perkin Elmer,Waltham,Massachusetts)測量紫外光(320至400nm)及近紅外光(700至1400nm)之透射率。實例中所報告之值係如指定的320至400nm(紫外光)或700至1400nm(近紅外光)在如指定的+30°或+60°入射角之透射率之算術平均值,對各樣本之單一位置所測量的。
用於剖面掃瞄式電子顯微鏡之方法(SEM)
使用液態氮經由冰凍割裂術製備剖面。用Hitachi SU-8230(Hitachi,Ltd.,Tokyo,Japan)儀器取得SEM影像。
比較例1至比較例2(CE1-CE-2)係市售之光控制膜。
比較例3(CE3)
將來自CE1之膜的兩段(各3"x3")覆疊並用光學清透黏著劑(8171,3M Company,St.Paul,MN)層壓在一起。一個片材係與另一個片材垂直定向。也就是說,通道的原始方向在頂部片材與底部片材之間偏移90°。
製備例2(PE2):塗佈溶液之製備
用去離子(DI)水將PDAC自20wt%稀釋至0.32wt%之濃度。用DI水將CAB-O-JET® 352K(COJ352K)稀釋至0.10wt%之濃度。將NaCl添加至PDAC溶液及顏料懸浮液兩者至0.05M之濃 度。將1M NaOH添加至COJ352K懸浮液至pH為9。用VWR(West Chester,PA)pH電極(目錄號89231-582)測量pH值,其係用標準緩衝溶液校正。
實例1(EX1):碳黑奈米顏料,130nm直徑,未回填
將PE1中製造之微結構化膜片材切割成9"×10"之大小,並使用BD-20AC實驗室電暈處理器(Electro-Technic Products,Chicago,IL)用手進行電暈處理,以防止水性塗佈溶液成珠狀並抗濕潤。如PE2中所述製造PDAC及CAB-O-JET® ® 200塗佈溶液。使用「用於製造在微結構化膜上之噴塗逐層自組裝塗層之方法」用(PDAC/COJ200)10塗佈經電暈處理之膜。使此經塗佈之膜在6000W之功率下經受反應性離子蝕刻(RIE)達210s之持續時間。用剃刀片將塗層劃痕後,用Dektak XT觸針式輪廓儀(Bruker Nano,Inc.,Tucson,AZ)測得沉積至玻璃板上的等效塗層具有166nm之厚度。基於玻璃上所沉積之等效塗層的厚度,該等吸收區域(例如,葉片)之縱橫比係大約525:1。
實例2(EX2):碳黑奈米顏料,130nm直徑,回填
將PE1中製造之微結構化膜片材切割成9"×10"之大小,並使用BD-20AC實驗室電暈處理器(Electro-Technic Products,Chicago,IL)用手進行電暈處理,以防止水性塗佈溶液成珠狀並抗濕潤。如PE2中所述製造PDAC及CAB-O-JET® 200塗佈溶液。使用 「用於製造在微結構化膜上之噴塗逐層自組裝塗層之方法」用(PDAC/COJ200)20塗佈經電暈處理之膜。使此經塗佈之膜在6000W之功率下經受反應性離子蝕刻(RIE)達210s的持續期間。接下來,使用上述之「用於回填微結構化膜之通道之方法」回填通道。用剃刀片將塗層劃痕後,用Dektak XT觸針式輪廓儀測得沉積在玻璃板上之等效逐層塗層具有326nm之厚度。
實例3(EX3):碳黑奈米顏料,70至80nm直徑,未回填
將PE1中製造之微結構化膜片材切割成9"×10"之大小,並使用BD-20AC實驗室電暈處理器(Electro-Technic Products,Chicago,IL)用手進行電暈處理,以防止水性塗佈溶液成珠狀並抗濕潤。如PE2中所述製造PDAC及CAB-O-JET® 352K塗佈溶液。使用「用於製造在微結構化膜上之噴塗逐層自組裝塗層之方法」用(PDAC/COJ352K)20塗佈經電暈處理之膜。然後使經塗佈之膜在6000W之功率下經受反應性離子蝕刻(RIE)達200s之持續時間。用剃刀片將塗層劃痕後,藉由Dektak XT觸針式輪廓儀測得沉積至玻璃板上的等效塗層具有273nm之厚度。
實例4至實例6(EX4-6):碳黑奈米顏料,70至80nm直徑,回填
將PE1中製造之三個微結構化膜片材各自切割成9"×10"之大小,並使用BD-20AC實驗室電暈處理器(Electro-Technic Products,Chicago,IL)用手進行電暈處理,以防止水性塗佈溶液成珠 狀並抗濕潤。如PE2中所述製造PDAC及CAB-O-JET® 352K塗佈溶液。分別使用「用於製造在微結構化膜上之噴塗逐層自組裝塗層之方法」用(PDAC/COJ352K)20(EX4)、(PDAC/COJ352K)40(EX5)、及(PDAC/COJ352K)60(EX6)塗佈的9"×10"片之經電暈處理之膜。使經塗佈之膜在6000W之功率下經受反應性離子蝕刻(RIE)達200s(EX4)及500s(EX5 & EX6)之持續時間。在RIE之前及之後、但在回填之前,取得EX4之剖面SEM影像。從SEM影像顯而易見的是,沉積在膜上的塗層厚度均勻,且厚度與沈積在玻璃上的等效塗層相對應,如下所述。接下來,使用上述之「用於回填微結構化膜之通道之方法」回填通道。使用上述「用於測量來自漫射光源之輝度曲線之方法」來測量來自漫射光源之輝度曲線(數據在圖6以及表5A及5B中)。用剃刀片將塗層劃痕後,用Dektak XT觸針式輪廓儀測得沉積在玻璃板上之等效逐層塗層具有273nm(EX4)、536nm(EX5)、及796nm(EX6)之厚度。基於玻璃上所沉積之等效塗層的厚度,吸收區域(例如,葉片)之縱橫比係在大約109:1(對於EX6)至319:1(對於EX4)的範圍。
Figure 109119684-A0202-12-0062-9
Figure 109119684-A0202-12-0063-10
Figure 109119684-A0202-12-0063-11
實例7(EX7):覆疊之交叉膜
將根據EX4所製備之光控制膜的兩段(各3"×3")以面向彼此的結構化側覆疊,其中一個片材係與另一個片材垂直定向。也就是說,通道的原始方向在頂部片材和底部片材之間偏移90°。將樹脂A分配在兩個片材之間,並用手動輥將兩個片材層壓在一起。如「用於回填微結構化膜之通道之方法」中所述來固化樣本,並使用「用於測量來自漫射光源之輝度曲線之方法」來測量。數據係在表6A及表6B中。
實例8(EX8):覆疊之對準膜
將根據EX4所製備之光控制膜的兩段(各3"×3")以面向彼此的結構化側覆疊,其中一個片材與另一個平行定向。也就是 說,通道的原始方向在頂部片材與底部片材之間對準。將樹脂A分配在兩個片材之間,並用手動輥將兩個片材層壓在一起。如「用於回填微結構化膜之通道之方法」中所述來固化樣本並使用「用於測量來自漫射光源之輝度曲線之方法」來測量。數據係在表6A至表6D中。
Figure 109119684-A0202-12-0064-12
Figure 109119684-A0202-12-0064-13
Figure 109119684-A0202-12-0064-14
Figure 109119684-A0202-12-0064-15
實例9(EX 9):
如實例中所述製備光控制膜。1.在回填微結構化膜之通道的方法期間,用色偏膜置換頂部PET膜,如WO 2010/1090924之實例1所述。在UV固化之後,此色偏膜未經剝離,而是保留做為覆蓋膜。
Figure 109119684-A0202-12-0065-16
高反射色偏膜引起在增益立方體(gain cube)中之光再循環,導致正軸相對亮度大於100%。
Figure 109119684-A0202-12-0065-17
吸收區域之表面積
以200X放大率之光學顯微鏡觀看CE2之光輸入表面。多個吸收區域的最大寬度(即,圖1a中之WA)及節距(即,圖1a中之PA)係藉由用ImageJ軟體(可自National Institute of Health在網站http://imagej.nih.gov/ij取得)分析光學顯微鏡影像來測量。測量五 個吸收區域的平均寬度為14.7微米。測量平均節距為64.9微米。因此,WA/PA比等於0.227、或表面積的22.7%。
以200X放大率之光學顯微鏡觀看EX6之光輸入表面。多個吸收區域的最大寬度(即,圖1a中之WA)及節距(即,圖1a中之PA)係藉由用ImageJ軟體(可自National Institute of Health在網站http://imagej.nih.gov/ij取得)分析光學顯微鏡影像來測量。測量五個吸收區域的平均寬度為1.0微米。測量平均節距為31.2微米。當壁角係零時,該WA/PA比等於0.032、或表面積的3.2%。對於1.5度之壁角,表面積係10.8%。
可任選地將剛才所述之實例1至實例9進行修飾以包括下列之至少一者:可將在交替之吸收及透射區域與光輸出或輸入表面之間的光吸收層(例如,覆蓋膜、基底層黏著劑、塗層)或光反射層(例如,漫射層)或光吸收材料添加至透光區域之材料中。
比較例4(CE4)
根據US 9,630,384中之實例1製備經染色聚酯膜,不同之處在於其厚度為1.5密耳(38微米),以達到7%之可見光透射率水平,如用Haze-Gard Plus(BYK-Gardner USA,Columbia,Maryland)所測得者。使用手動輥將3"×3"之經染色的聚酯頂部膜段用光學清透黏著劑(8171,3M Company,St.Paul,MN)層壓成3"x 3"之市售防窺/光控制膜片。
實例10(EX 10)-具有包含光吸收染料之PET覆蓋膜的LCF
將PE1中製造之微結構化膜片材各自切割成9"×10"之大小,並使用BD-20AC實驗室電暈處理器(Electro-Technic Products,Chicago,IL)用手進行電暈處理。如PE2中所述製造PDAC及CAB-O-JET® 352K塗佈溶液。使用「用於製造在微結構化膜上之噴塗逐層自組裝塗層之方法」將(PDAC/COJ352K)60塗層沉積在該膜上。用剃刀片將塗層劃痕後,藉由Dektak XT觸針式輪廓儀測得沉積在玻璃板上之等效逐層塗層具有796nm之厚度。使經塗佈之膜在6000W之功率下經受反應性離子蝕刻(RIE)達500s的持續時間。接下來,使用上述之「用於微結構化膜回填通道之方法」回填通道以產生光控制膜。
將3"×3"之CE4經染色的聚酯膜段用光學清透黏著劑(8171,3M Company,St.Paul,MN)層壓成3"×3"之光控制膜片。如上所述測量光透射率。結果如下:
納入LCF會增加14%在法線入射(0度觀看角)之透射率,並降低在30°及60°之觀看角的UV及NIR透射率。
Figure 109119684-A0202-12-0067-18
表8B:EX14 & CE4之相對亮度
Figure 109119684-A0202-12-0068-19
Figure 109119684-A0202-12-0068-20
PE3-黏著劑之製備
基底黏著劑配方製備如下。將40g的丙烯酸2-乙基己酯(Sigma-Aldrich,St.Louis,MO)、40g的丙烯酸正丁酯(BASF Florham Park,NJ)、15g的丙烯酸2-羥基乙酯(Kowa America New York,NY)、5g的丙烯醯胺(Zibo Xinye Chemical,Zibo City,CN)、g的熱起始劑Vazo52(Dupont(Wilmington,DE)、0.08g的Karenz MT PE1(Showa Denko America,New York,NY)、及60g的甲基乙基酮(MEK)溶劑裝入反應器容器中。以氮氣噴灑(sparge)容器5分鐘,並密封容器,而後放置在60℃的攪拌水浴中20小時。然後將所產生的溶液聚合物冷卻,用空氣噴灑10分鐘,並將0.3g的甲基丙烯酸異氰酸基乙酯(購自Showa Denko America,New York,NY之IEM)添加至容器中。再次將容器密封並加熱至50℃達12小時,以使IEM與所形成的丙烯酸聚合物上側接OH官能性進行反應。在此官能基化之後,將0.4g的Irgacure-184(BASF Florham Park,NJ)及8g的CN983(Sartomer,Exton,PA)添加至容器中並混合1小時。
實例11(EX11)
將Orasol Red 395(BASF)以10wt.%溶解於MEK中。將一份染料溶液與2份PE3黏著劑混合,以形成含有3.33wt.%之Orasol red 395染料的塗佈溶液。將此塗佈溶液用28號邁耶棒(Mayer rod)(RDS Specialties,Webster,York)塗佈至PET膜(於PE-1中所使用之相同PET膜)之底塗側上,並在烘箱中在150℉下乾燥6分鐘。以每分鐘5呎及1mm間隙使用Catena 65輥式層壓機(可購自GBC,Lake Zurich,IL),將具有經著色黏著劑層(23微米)之PET膜層壓至一片如EX2所述之光控制膜。膜呈現出正軸為紅色及離軸為黑色。
實例12(EX12)
將Orasol Blue 825(BASF)以10wt.%溶解於MEK中。將一份染料溶液與2份的PE3黏著劑溶液混合,以產生含3.33wt.%之Orasol Blue 825染料之塗佈溶液。將此塗佈溶液塗佈至PET上並層壓至一片來自如以上EX11中所述之EX2的膜。膜呈現出正軸為藍色及離軸為黑色。
如上所述測量EX 11及EX12之光透射率。結果如下:
Figure 109119684-A0202-12-0070-21
Figure 109119684-A0202-12-0070-22
藉由將有機聚合物分散液用於至少一些或全部的聚電解質層,而非使用將作為水溶液所製備並施加至微結構化表面的聚電解質,可增加實例1至實例12之片電阻。
自有機聚合物分散液製備塗層
藉由用去離子(DI)水將Sancure 20051從42.1wt%稀釋至1.0wt%,並添加NaCl至指定濃度來製造SC20051塗佈分散液。
藉由用DI水將Sancure 20072從27.1wt%稀釋至1.0wt%,並添加NaCl至指定濃度來製造SC20072塗佈分散液。
藉由用DI水將UCX-214從30.8wt%稀釋至1.0wt%,並添加NaCl至指定濃度來製造UCX214塗佈分散液。
藉由用DI水將Picassian AC-181從39.7wt%稀釋至1.0wt%,並添加NaCl至指定濃度來製造AC181塗佈分散液。
藉由用DI水將Raycat 65124從31wt%稀釋至1wt%,並添加NaCl至指定濃度來製造RC65124塗佈分散液。
藉由將Dehyquart CC6從39.0wt%稀釋至0.32wt%,並添加NaCl至50mM之濃度來製造CC6塗佈溶液。
藉由用DI水分別將CAB-O-JET 200及300從分別為20.0wt及15.0wt%稀釋至1wt%之濃度來製造COJ200及COJ300塗佈懸浮液。將NaCl添加至各者中達濃度為50mM。
實例13
將PE1中製造之微結構化膜片材切割成9"×10"之大小。如上所述製造SC20051塗佈分散液及COJ200塗佈懸浮液。NaCl在SC20051中之濃度係200mM NaCl。使用「用於製造在微結構化膜上之噴塗逐層自組裝塗層之方法」用(SC20051/COJ200)12塗佈經電暈處理之膜及相鄰玻璃未經覆蓋之玻璃板。經由「用於測量玻璃上塗層之片電阻之方法」測量存在於玻璃板上與微結構化膜相鄰之塗層的片電阻。使經塗佈之膜經受反應性離子蝕刻(RIE)直到正軸%T達到平穩。接下來,使用上述之「用於微結構化膜回填通道之方法」回填通道。EX1具有在回填後層壓在頂部的3密耳PET膜,因此物品的總厚度係約10.5密耳。當將物品放置在市售智慧型手機之螢幕上時,觸控螢幕係可作用的且不會明顯受到影響。表1中係玻璃上塗層之可見光透射率、玻璃上之塗層厚度、塗層中碳黑之重量百分比、及玻璃上塗層之片電阻。具有葉片膜之觸控螢幕回應亦在表1中。使用「用於測 量來自漫射光源之輝度曲線之方法」來測量葉片膜之輝度曲線,且數據係在表2至表3中。
實例14至實例19係使用如下所述之不同塗佈分散液/懸浮液以相同方式來製備:
實例14至實例15
如上所述製造SC20072及COJ200塗佈分散液/懸浮液。NaCl在SC20072中之濃度,對於EX2係100mM NaCl及對於EX3係200mM NaCl。使用「用於製造在微結構化膜上之噴塗逐層自組裝塗層之方法」用(SC20072/COJ200)12塗佈經電暈處理之膜及相鄰玻璃未經覆蓋之玻璃板。
實例16
如上所述製造SC20051及COJ300塗佈分散液/懸浮液。NaCl在SC20051中之濃度係200mM NaCl。使用「用於製造在微結構化膜上之噴塗逐層自組裝塗層之方法」用(SC20051/COJ300)10塗佈經電暈處理之膜及相鄰玻璃未經覆蓋之玻璃板。EX4的頂部膜經剝離,因此物品的總厚度係約7.5密耳。
實例17
如上所述製造UCX214及COJ200塗佈分散液/懸浮液。NaCl在UCS214中之濃度係100mM NaCl。使用「用於製造在 微結構化膜上之噴塗逐層自組裝塗層之方法」用(UCX214/COJ200)10塗佈經電暈處理之膜及相鄰玻璃未經覆蓋之玻璃板。
實例18
將PE1中製造之微結構化膜片材切割成9"x10"之大小。如上所述製造AC181及COJ200塗佈分散液/懸浮液。NaCl在AC181中之濃度係200mM NaCl。使用「用於製造在微結構化膜上之噴塗逐層自組裝塗層之方法」用(AC181/COJ200)12塗佈經電暈處理之膜及相鄰玻璃未經覆蓋之玻璃板。
實例19
將PE1中製造之微結構化膜片材切割成9"x10"之大小。如上所述製造RC65124及COJ200塗佈分散液/懸浮液。NaCl在RC65124中之濃度係100mM NaCl。使用「用於製造在微結構化膜上之噴塗逐層自組裝塗層之方法」用(RC65124/COJ300)10塗佈經電暈處理之膜及相鄰玻璃未經覆蓋之玻璃板。
比較例5(CE5)
將PE1中製造之微結構化膜片材切割成9"x10"之大小。如上所述製造CC6塗佈分散液及COJ300塗佈懸浮液。NaCl在CC6溶液中之濃度係50mM NaCl。使用「用於製造在微結構化膜上 之噴塗逐層自組裝塗層之方法」用(CC6/COJ300)10塗佈經電暈處理之膜及相鄰玻璃未經覆蓋之玻璃板。
用於測量玻璃上塗層之可見光透射率之方法
可見光透射率係使用BYK(Geretsried,Germany)HazeGard Plus儀器來測量。
用於測量玻璃上塗層之厚度之方法
用剃刀片將塗層劃痕後,用Dektak XT觸針式輪廓儀(Bruker Nano Inc.,Tucson,Arizona)測量厚度。
用於測量玻璃上塗層之片電阻之方法
用Trek(Lockport,New York)型號152電阻計測量在平面玻璃基材上之塗層的片電阻。
用於判定塗層中碳黑之重量百分比之方法
用剃刀片將玻璃上之塗層刮下。以HiRes模式使用TA Instruments Discovery熱重分析儀(Thermogravimetric Analyzer,TGA)分析樣本。使各樣本在氮氣氛中經歷在室溫(~35℃)至700℃之範圍內的加熱曲線,其中線性加熱速率係20.0℃/min,且解析度設定為4.0。在這些條件下,儀器將樣本加熱直到偵測到重量損失,此時溫度穩定直到重量損失降低,然後重新開始加熱。 在700℃下,接著將氣氛轉換成空氣並繼續HiRes加熱斜坡至800℃。藉由將在800℃下空氣中之重量%殘餘物從在700℃下氮中之重量%殘餘物中減去,來計算碳黑的重量百分比。
用於評估Apple iPhone 8上之觸控性能之方法
藉由將膜放置於iPhone8之螢幕上,評估實例中所製備之膜的觸控性能,定性評估觸控反應性如下:
通過-觸控螢幕回應性與螢幕上沒有膜相同。
未通過-螢幕上有膜,觸控螢幕回應性不起作用。
Figure 109119684-A0202-12-0075-23
Figure 109119684-A0202-12-0075-24
Figure 109119684-A0202-12-0076-25
100:LCF
110:光輸入表面
120:光輸出表面
130:透射區域
131:基底部分
140:吸收區域
145:頂部表面
155:底部表面
θ:壁角
HA:高度
HT:高度
L:地面區域/地面層
PA:節距
WA:寬度
WT:寬度

Claims (34)

  1. 一種光控制膜,其包含:
    光輸入表面及與該光輸入表面相對之光輸出表面;
    設置在該光輸入表面與該光輸出表面之間的交替之透射區域及吸收區域,其中該等吸收區域包含光吸收或光反射粒子及有機聚合物之乾燥水性分散液。
  2. 如請求項1之光控制膜,其中該有機聚合物不溶於水。
  3. 如請求項1之光控制膜,其中該有機聚合物可溶於四氫呋喃。
  4. 如請求項1之光控制膜,其中該等吸收區域具有大於1×107、5×107、1×108、5×108、1×109歐姆/平方之片電阻。
  5. 如請求項1至4之光控制膜,其中該有機聚合物包含丙烯酸聚合物、胺甲酸酯聚合物、或其組合。
  6. 如請求項1至5之光控制膜,其中該等光吸收粒子係導電的。
  7. 如請求項1至6之光控制膜,其中該等光吸收粒子包含碳。
  8. 如請求項1至7之光控制膜,其中該等光吸收粒子具有小於500奈米之中值粒徑。
  9. 如請求項1至8之光控制膜,其中該等吸收區域包含至少25wt.-%的 光吸收粒子。
  10. 如請求項1至9之光控制膜,其中該有機聚合物具有範圍在20至300nm之d50或d90中值粒徑。
  11. 如請求項10之光控制膜,其中該有機聚合物具有小於200、175、150、125、100、75、或50nm之d50中值粒徑。
  12. 如請求項10或11之光控制膜,其中該有機聚合物具有小於150、125、100、75、或50nm之d10中值粒徑。
  13. 如請求項10至12之光控制膜,其中該有機聚合物之粒子係經聚結的。
  14. 如請求項13之光控制膜,其中該等光吸收或反射粒子對應於該有機聚合物之粒徑隔開一距離。
  15. 如請求項1至14之光控制膜,其中該有機聚合物及該等光吸收或光反射粒子包含帶相反電荷的離子基團。
  16. 如請求項1至15之光控制膜,其中該等吸收區域具有至少30、50、100、200、300、400、500、600、700、800、或1000之縱橫比。
  17. 如請求項1至16之光控制膜,其中該等交替之透射區域及吸收區域在0度之觀看角具有至少75%之可見光、UV光、或NIR光波長之透射率。
  18. 如請求項1至17之光控制膜,其中當將該光控制膜施加至觸控螢幕時,該觸控螢幕之觸控回應性與無該光控制膜者相同。
  19. 如請求項1至18之光控制膜,其中該等交替之透射區域及吸收區域在+30度或-30度之觀看角,具有小於50、45、40、35、30、25、20、10%、或5%之相對透射率。
  20. 如請求項1至19之光控制膜,其中該等交替之透射區域及吸收區域在範圍在+35至+80度之觀看角的平均相對透射率、或在範圍在-35至-80度之觀看角的平均相對透射率小於10、9、8、7、6、5、4、3、或2%。
  21. 如請求項1至20之光控制膜,其中該等透射區域具有小於5、4、3、2、1、或0.1度之壁角。
  22. 如請求項1至21之光控制膜,其中該等透射區域及吸收區域具有範圍在40至200微米之高度。
  23. 如請求項1至22之光控制膜,其中該吸收區域具有不大於5、4、3、2、1、0.5、0.25、或0.10微米之平均寬度。
  24. 一種經塗佈物品,其包含:
    非金屬基材;及
    塗層,其具有小於2、1.5、或1微米之厚度,其中該塗層包含導電粒子及有機聚合物之乾燥水性分散液,
    其中該塗層具有大於1×107、5×107、1×108、5×108、1×109歐姆/平方之片電阻。
  25. 如請求項24之經塗佈物品,其中該基材包含玻璃或有機聚合材料。
  26. 如請求項24至25之經塗佈物品,其中該等導電粒子包含碳。
  27. 如請求項24至26之經塗佈物品,其中該等光吸收粒子及該有機聚合物進一步藉由請求項2至15表徵。
  28. 一種製造經塗佈物品之方法,其包含:
    提供非金屬基材;
    用有機聚合物及導電粒子之水性分散液,以小於2、1.5、或1微米之乾燥厚度塗佈該基材。
  29. 如請求項28之方法,其中該基材包含玻璃或有機聚合材料。
  30. 如請求項28至29之經塗佈物品,其中該等導電粒子包含碳。
  31. 如請求項28至30之方法,其中該基材係微結構化膜,該微結構化膜包含複數個與通道交替的透光區域,其中該微結構化膜具有由該等透光區域之頂部表面及側壁以及該等通道之底部表面所界定之表面。
  32. 如請求項31之方法,其中該方法包含經由逐層自組裝塗佈將該塗層施加至該表面。
  33. 如請求項32之方法,其中該方法進一步包含從該等透光區域之該頂部表面及該等通道之該底部表面移除該塗層之至少一部分。
  34. 如請求項33之方法,其中該移除該塗層之至少一部分之步驟包含反應性離子蝕刻。
TW109119684A 2019-06-12 2020-06-11 包含導電粒子及有機聚合物之乾燥水性分散液的經塗佈基材 TW202111979A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962860418P 2019-06-12 2019-06-12
US62/860,418 2019-06-12

Publications (1)

Publication Number Publication Date
TW202111979A true TW202111979A (zh) 2021-03-16

Family

ID=71094632

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109119684A TW202111979A (zh) 2019-06-12 2020-06-11 包含導電粒子及有機聚合物之乾燥水性分散液的經塗佈基材

Country Status (5)

Country Link
US (1) US20220252770A1 (zh)
EP (1) EP3983834A1 (zh)
CN (1) CN113994241A (zh)
TW (1) TW202111979A (zh)
WO (1) WO2020250090A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115160862B (zh) * 2022-06-09 2023-04-25 中国人民解放军空军工程大学 一种大型结构复杂型面部位吸收保护层制备与涂覆方法

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4601970A (en) * 1982-04-22 1986-07-22 E. I. Du Pont De Nemours And Company Dry photosensitive film containing crosslinked beads
US4601861A (en) 1982-09-30 1986-07-22 Amerace Corporation Methods and apparatus for embossing a precision optical pattern in a resinous sheet or laminate
EP0354672A3 (en) * 1988-08-08 1990-10-10 Minnesota Mining And Manufacturing Company Light-collimating film
US5486949A (en) 1989-06-20 1996-01-23 The Dow Chemical Company Birefringent interference polarizer
CA2067297C (en) * 1991-05-31 1998-07-21 Kevin Yu Protected photosensitive recording films
US5828488A (en) 1993-12-21 1998-10-27 Minnesota Mining And Manufacturing Co. Reflective polarizer display
US5882774A (en) 1993-12-21 1999-03-16 Minnesota Mining And Manufacturing Company Optical film
US5825543A (en) 1996-02-29 1998-10-20 Minnesota Mining And Manufacturing Company Diffusely reflecting polarizing element including a first birefringent phase and a second phase
US5783120A (en) 1996-02-29 1998-07-21 Minnesota Mining And Manufacturing Company Method for making an optical film
EP0889357A1 (en) * 1997-06-30 1999-01-07 Konica Corporation Light control film and a production method of the same
US5855820A (en) * 1997-11-13 1999-01-05 E. I. Du Pont De Nemours And Company Water based thick film conductive compositions
US6531230B1 (en) 1998-01-13 2003-03-11 3M Innovative Properties Company Color shifting film
US6398370B1 (en) 2000-11-15 2002-06-04 3M Innovative Properties Company Light control device
US20040124504A1 (en) * 2002-09-24 2004-07-01 Che-Hsiung Hsu Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
US7018713B2 (en) 2003-04-02 2006-03-28 3M Innovative Properties Company Flexible high-temperature ultrabarrier
JP4787173B2 (ja) 2003-12-30 2011-10-05 スリーエム イノベイティブ プロパティズ カンパニー 色シフティング再帰反射体およびその製造方法
DE102004012576A1 (de) * 2004-03-12 2005-09-29 Basf Ag Effektstoffe enthaltende wässrige Polymerdispersionen, Verfahren zu ihrer Herstellung und ihre Verwendung
EP1758959A1 (en) 2004-05-07 2007-03-07 3M Innovative Properties Company Stain repellent optical hard coating
US7101618B2 (en) 2004-05-07 2006-09-05 3M Innovative Properties Company Article comprising fluorochemical surface layer
JP2005331819A (ja) * 2004-05-21 2005-12-02 Fujimori Kogyo Co Ltd 視野制御シート及びその製造方法
US7291386B2 (en) 2004-08-26 2007-11-06 3M Innovative Properties Company Antiglare coating and articles
US7294405B2 (en) 2004-08-26 2007-11-13 3M Innovative Properties Company Antiglare coating and articles
JP2006171700A (ja) * 2004-11-18 2006-06-29 Dainippon Printing Co Ltd 視野角制御シート及びこれを用いた液晶表示装置
US20060216524A1 (en) 2005-03-23 2006-09-28 3M Innovative Properties Company Perfluoropolyether urethane additives having (meth)acryl groups and hard coats
CN101370857B (zh) 2006-01-12 2012-09-05 3M创新有限公司 光准直薄膜
JP4780766B2 (ja) * 2006-03-27 2011-09-28 日東電工株式会社 光学用粘着剤、粘着剤付き光学フィルムおよび画像表示装置
KR100673034B1 (ko) * 2006-05-12 2007-01-22 주식회사 세코닉스 디스플레이에 적용되는 외부광차단용 광학소자
US7575847B2 (en) 2006-06-13 2009-08-18 3M Innovative Properties Company Low refractive index composition comprising fluoropolyether urethane compound
US8234998B2 (en) 2006-09-08 2012-08-07 Massachusetts Institute Of Technology Automated layer by layer spray technology
EP1995627A1 (en) * 2007-05-21 2008-11-26 Rohm and Haas Denmark Finance A/S Voided optical diffuser film with beads on a surface
US8013567B2 (en) 2007-06-04 2011-09-06 Windsor Michael E Portable power and utility system
US8313798B2 (en) 2009-05-18 2012-11-20 Toyota Motor Engineering & Manufacturing North America, Inc. Structural colors having UV reflectance via spray layer-by-layer processing
BRPI0816641A2 (pt) 2007-10-16 2015-03-10 3M Innovative Properties Co "filme de controle de luz, conjunto de iluminação colimada e tela de cristal líquido"
WO2009085581A1 (en) 2007-12-21 2009-07-09 3M Innovative Properties Company Light control film
JP5748655B2 (ja) * 2008-05-16 2015-07-15 スリーエム イノベイティブ プロパティズ カンパニー 軸外の可視のしるしを有する光制御フィルム
JP4393573B1 (ja) * 2008-12-26 2010-01-06 帝人株式会社 透明導電性積層体およびそれを用いた透明タッチパネル
US8460568B2 (en) 2008-12-30 2013-06-11 3M Innovative Properties Company Method for making nanostructured surfaces
KR101728177B1 (ko) 2009-02-06 2017-04-18 쓰리엠 이노베이티브 프로퍼티즈 컴파니 광 제어 필름 및 다층 광학 필름 적층물
US20110064936A1 (en) 2009-09-17 2011-03-17 Massachusetts Institute Of Technology Method of Asymmetrically Functionalizing Porous Materials
CN102541329B (zh) * 2010-12-27 2016-01-20 上海天马微电子有限公司 触控式面板以及包括该面板的显示装置
WO2014099367A1 (en) 2012-12-20 2014-06-26 3M Innovative Properties Company Method of making multilayer optical film comprising layer-by-layer self-assembled layers and articles
EP3084483A1 (en) 2013-12-19 2016-10-26 3M Innovative Properties Company Articles comprising self-assembled layers comprising nanoparticles with a phosphorous surface treatment
US9630384B2 (en) 2014-03-07 2017-04-25 3M Innovative Properties Company Durable extruded dyed polyester films
JP2015200698A (ja) * 2014-04-04 2015-11-12 日東電工株式会社 透明樹脂層、粘着剤層付偏光フィルムおよび画像表示装置
CN104345985A (zh) * 2014-10-30 2015-02-11 合肥鑫晟光电科技有限公司 触控基板及其制备方法、触控显示面板、触控显示装置
CN106843579B (zh) * 2017-01-16 2020-11-03 京东方科技集团股份有限公司 一种显示装置及其制备方法

Also Published As

Publication number Publication date
CN113994241A (zh) 2022-01-28
US20220252770A1 (en) 2022-08-11
EP3983834A1 (en) 2022-04-20
WO2020250090A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
CN112513686B (zh) 高透射率光控膜
US20240118463A1 (en) High transmission light control film
US11947135B2 (en) High transmission light control film
CN102186668A (zh) 低折射率膜及其制造方法、防反射膜及其制造方法、低折射率膜用涂敷液套剂、带有微粒层叠薄膜的基材及其制造方法、以及光学部件
US20220221624A1 (en) High transmission light control films with asymmetric light output
JPWO2015159517A1 (ja) 反射防止フイルムおよび機能性ガラス
US20220019007A1 (en) Light control film
JP2013254116A (ja) 光学積層体、及びこれを用いた偏光板
TW202111979A (zh) 包含導電粒子及有機聚合物之乾燥水性分散液的經塗佈基材
JP2006301126A (ja) 低屈折率膜
US20230028958A1 (en) High transmission light control film
KR101148305B1 (ko) 광학 적층체 및 그 제조 방법, 및 그것을 이용한 편광판 및 표시 장치
WO2023047204A1 (en) Coated microstructured films, methods of making same, and methods of making light control films