TW202109033A - 多極像差校正器的導通檢測方法及多極像差校正器的導通檢測裝置 - Google Patents

多極像差校正器的導通檢測方法及多極像差校正器的導通檢測裝置 Download PDF

Info

Publication number
TW202109033A
TW202109033A TW109122020A TW109122020A TW202109033A TW 202109033 A TW202109033 A TW 202109033A TW 109122020 A TW109122020 A TW 109122020A TW 109122020 A TW109122020 A TW 109122020A TW 202109033 A TW202109033 A TW 202109033A
Authority
TW
Taiwan
Prior art keywords
opening
openings
aberration corrector
control
substrate
Prior art date
Application number
TW109122020A
Other languages
English (en)
Other versions
TWI736343B (zh
Inventor
安藤厚司
井上和彦
Original Assignee
日商紐富來科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商紐富來科技股份有限公司 filed Critical 日商紐富來科技股份有限公司
Publication of TW202109033A publication Critical patent/TW202109033A/zh
Application granted granted Critical
Publication of TWI736343B publication Critical patent/TWI736343B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/153Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/305Contactless testing using electron beams
    • G01R31/307Contactless testing using electron beams of integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/21Means for adjusting the focus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • H01J2237/1534Aberrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24592Inspection and quality control of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Electron Beam Exposure (AREA)

Abstract

實施形態提供即使多極間之開口部小的情況下,亦能夠進行檢測的多極像差校正器之導通檢測方法及多極像差校正器之導通檢測裝置。 本發明的一態樣之多極像差校正器之導通檢測方法,係具備:使用多極像差校正器(220),在對各屏蔽電極施加有規定電位的狀態下以通過第1~第3開口部的方式照射檢測用帶電粒子束(504)的工程,多極像差校正器(220),係具有:上段基板(10),係在第1開口部之周圍配置有屏蔽電極;中段基板(15),係配置有夾持第2開口部的多個控制電極(16)及連接於多個控制電極之中互相不同的1個控制電極之多條配線(18);及下段基板(20),係在第3開口部之周圍配置有屏蔽電極;藉由對多個控制電極分別施加可變電位而對通過第1~第3開口部的待校正用之帶電粒子束之像差進行校正者;經由多條配線之中分別連接於每一控制電極的配線,針對檢測用帶電粒子束通過第1~第3開口部並且照射至配置在下段基板之下游側的物體而引起的2次性發射的電子之流入多個控制電極之每一控制電極的流入電子劑量進行測定的工程;使用流入每一控制電極的流入電子劑量之測定結果,針對每一控制電極,個別判斷該控制電極與連接於該控制電極的配線之間之導通之有無。

Description

多極像差校正器的導通檢測方法及多極像差校正器的導通檢測裝置
本發明關於多極像差校正器之導通檢測方法及多極像差校正器之導通檢測裝置。例如關於對照射基於電子束的多光束的裝置上所搭載的多光束之像差進行校正的多極像差校正器之導通檢測之方法。
近年來,伴隨著大型積體電路(LSI)之高集積化及大容量化,半導體元件要求的電路線寬變為越窄。因此,就需要花費巨大的製造成本之該LSI之製造而言,良率之提升是必要的。但是,如1千兆位元級之DRAM(隨機存取記憶體)為代表這樣地,構成LSI的圖案從次微米變為奈米之等級。近年來,伴隨著形成於半導體晶圓上的LSI圖案尺寸之微細化,作為圖案缺陷必須檢測出的尺寸亦變為極小。因此,對轉印至半導體晶圓上的超微細圖案之缺陷進行檢測的圖案檢測裝置的高精度化成為必要。 作為檢測方法已知有,藉由比較對形成於半導體晶圓或微影光罩等基板上的圖案攝影取得的測定影像與設計資料或對基板上之同一圖案攝影取得的測定影像來進行檢測的方法。例如,作為圖案檢測方法有以下檢測方法:將針對同一基板上之不同部位之同一圖案攝影取得的測定影像資料彼此進行比較的「die to die(晶粒-晶粒)檢測」,或者以已進行了圖案設計的設計資料作為基準來生成設計影像資料(參照影像),將該設計影像資料與攝影圖案取得的成為測定資料的測定影像進行比較的「die to database(晶粒-資料庫)檢測」。攝影的影像係作為測定資料傳送至比較電路。在比較電路中進行影像彼此之位置對齊之後,依據適當的運算法對測定資料與參照資料進行比較,不一致的之情況下判斷為有圖案缺陷。 在前述圖案檢測裝置中,除了將雷射光照射至檢測對象基板,對其透過影像或反射影像進行攝影的裝置以外,亦進行如下裝置之開發:以電子束掃描(scan)檢測對象基板上,檢測伴隨著電子束之照射而從檢測對象基板發射的2次電子,並取得圖案影像的檢測裝置。在使用電子束的檢測裝置中,進一步進行使用多光束的裝置的開發。多光束的電子光學系統中,可能產生所謂的離軸像散或畸變(畸變像差)等之像差。在使用電子束的檢測裝置中,為了進行檢測有必要取得高精度的影像。該像差之校正,需要對多光束之每一光束獨立地校正軌道。例如可以舉出將每一光束個別的多極透鏡配置成為陣列狀。在該像差校正器中,每一光束通過的多極透鏡之開口部之面積小,而且,在配置多極透鏡的基板之上下配置有屏蔽基板。因此,在對連接多極透鏡之各電極的配線之導通進行檢測時,探針不會進入開口部內,探針無法接觸個別之電極。結果,存在無法進行各電極之導通檢測之問題。因此,在將像差校正器搭載於檢測裝置前之階段無法進行導通檢測,必須在將像差校正器搭載於檢測裝置之後,實際確認多光束之像差,藉此而對多極透鏡之各電極之動作進行確認。結果,當在多光束之任一光束用的多極透鏡之任一電極混合有不良品之情況下,需要在搭載於檢測裝置之後進行像差校正器之交換。 在此,揭示不將個別修正每一光束之軌道的多極透鏡配置成為陣列狀之構成,而是藉由使多光束整體通過由多極所包圍的空間,藉此來校正離軸像散的像差校正器(參照例如日本專利公開公報2013-138037號)。
在此,本發明的一態樣提供,即使多極間之開口部小的情況下,亦可以進行多極像差校正器之導通檢測的檢測方法及檢測裝置。 本發明的一態樣之多極像差校正器之導通檢測方法,係具備: 使用多極像差校正器,在對各屏蔽電極施加有規定電位的狀態下以通過第1~第3開口部的方式照射檢測用帶電粒子束的工程,前述多極像差校正器係具有:上段基板,形成有第1開口部,且在第1開口部之周圍配置有屏蔽電極;中段基板,形成有第2開口部,且配置有夾持第2開口部的多個控制電極及連接於多個控制電極之中互相不同的1個控制電極之多條配線;及下段基板,形成有第3開口部,且在第3開口部之周圍配置有屏蔽電極;藉由對多個控制電極分別施加可變電位而對通過第1~第3開口部的待校正用之帶電粒子束之像差進行校正者; 經由多條配線之中分別連接於每一控制電極的配線,針對檢測用帶電粒子束通過第1~第3開口部並且照射至配置在下段基板之下游側的物體而引起的2次發射的電子之流入多個控制電極之每一控制電極的流入電子劑量進行測定的工程; 使用流入每一控制電極的流入電子劑量之測定結果,針對每一控制電極,個別判斷該控制電極與連接於該控制電極的配線之間之導通之有無。 此外,在上段基板形成有包含前述第1開口部的多個第1開口部,在多個第1開口部之周圍配置有屏蔽電極, 在中段基板形成有包含第2開口部的多個第2開口部,針對多個第2開口部之每一第2開口部,配置有夾持該第2開口部的多個控制電極及連接於多個控制電極之中互相不同的1個控制電極之多條配線, 在下段基板形成有包含第3開口部的多個第3開口部,在多個第3開口部之周圍配置有屏蔽電極, 多極像差校正器之導通檢測方法中,使用藉由對每一第2開口部之前述多個控制電極分別施加可變電位而對通過多個第1~第3開口部的待校正用之多束帶電粒子束之像差個別地進行校正的多極像差校正器,針對每一第2開口部之多個控制電極之每一控制電極,個別地判斷該控制電極與連接於該控制電極的配線之間之導通之有無為較佳。 此外,導通檢測方法中所使用的檢測用帶電粒子束,係以使用電子束為較佳。 此外,多個控制電極具有2個以上電極為較佳。 本發明的一態樣之多極像差校正器之導通檢測裝置,係具備: 發射源,用於發射檢測用帶電粒子束; 聚焦機構,控制檢測用帶電粒子束之焦點位置; 偏轉器,使檢測用帶電粒子束偏轉,並對檢測用帶電粒子束之照射位置進行控制; 載台,其上配置有多極像差校正器及物體, 該多極像差校正器係具有:上段基板,形成有第1開口部,且在第1開口部之周圍配置有屏蔽電極;中段基板,形成有第2開口部,且配置有夾持第2開口部的多個控制電極及連接於多個控制電極之中互相不同的1個控制電極之多條配線;及下段基板,形成有第3開口部,且在第3開口部之周圍配置有屏蔽電極;藉由對多個控制電極分別施加可變電位而對通過第1~第3開口部的待校正用之帶電粒子束之像差進行校正者; 該物體,係配置於下段基板之下游側,並接受通過第1~第3開口部的檢測用帶電粒子束之照射者;及 至少1個流入電子劑量測定器,其連接於多條配線; 藉由至少1個流入電子劑量測定器,經由多條配線之中分別連接於每一控制電極的配線,針對檢測用帶電粒子束通過第1~第3開口部並且照射至配置在下段基板之下游側的物體而引起的2次發射的電子之流入多個控制電極之每一控制電極的流入電子劑量進行測定,並使用該測定的結果,針對每一控制電極,個別地判斷該控制電極與連接於該控制電極的配線之間之導通之有無。 依據本發明的一態樣,即使多極間之開口部小的情況下,亦可以進行多極像差校正器之導通檢測。因此,在將多極像差校正器搭載於像差校正成為必要的檢測裝置等多光束照射裝置之前,可以進行多極像差校正器之導通檢測。
以下,實施形態中說明使用電子束作為帶電粒子束之情況。但是,不限定在此。作為帶電粒子束例如使用離子束之情況亦可。 實施形態1. 圖1係表示實施形態1中的多極像差校正器之導通檢測裝置之構成之一例的圖。圖1中,導通檢測裝置500進行多極像差校正器220之導通檢測。導通檢測裝置500具備檢測機構550、控制系統電路560、和至少1個流入電子劑量測定器520。檢測機構550具備電子束柱502(電子鏡筒)及檢測室503。在電子束柱502內配置有電子槍501、電磁透鏡512、及偏轉器514。 在檢測室503內配置有至少可以沿著XY方向移動的載台505。於載台505上透過多個支撐台518配置多極像差校正器220。此外,於載台505上透過多個支撐銷523配置反射體221。反射體221係在多極像差校正器220之下側隔著間隙被配置。因此,多個支撐台518之支撐面配置於比多個支撐銷523之支撐面更上方。例如多個支撐台518,係在比反射體221之外周更外側以包圍反射體221的方式配置為較佳。 或者可以是,將反射體221配置於電子束504之軌道中心軸(光軸)位置,不移動反射體221而使多極像差校正器220相對反射體221朝XY方向移動而構成載台505。 此外,如後述這樣地,在多極像差校正器220形成使多光束通過的多個開口部,於各開口部之周圍配置例如8極之多極之電極。又,至少1個流入電子劑量測定器520針對該8極之電極測定流入電子劑量。例如藉由1個流入電子劑量測定器520對全部電極依序測定流入電子劑量亦可。或者,流入電子劑量測定器520之配置數目成為構成多極的電極之數目亦可。或者,流入電子劑量測定器520之配置數目成為構成多個多極之全部多極的電極之數目亦可。作為流入電子劑量測定器520例如可以使用電流計。流入電子劑量測定器520中測定的測定值資料被輸出至控制電腦510。 控制系統電路560具有控制電腦510、記憶體511、磁碟等記憶裝置540、及控制電路542。控制電腦510、記憶體511、記憶裝置540及控制電路542藉由未圖示的匯流排互相連接。 在控制電腦510內配置有選擇部532、檢測控制部534、判斷部536、及判斷部538。選擇部532、檢測控制部534、判斷部536、及判斷部538之各個「~部」係具有處理電路。該處理電路例如包含電氣電路、電腦、處理器、電路基板、量子電路、或半導體裝置。各個「~部」可以使用共通的處理電路(同一處理電路)或不同的處理電路(獨立之處理電路)。輸出入至選擇部532、檢測控制部534、判斷部536、及判斷部538的資訊及運算中之資訊每次被儲存於記憶體511。 圖2係表示實施形態1中的多極像差校正器220之構成之一例的斷面圖。 圖3係表示實施形態1中的多極像差校正器220之各段之構成之一例的俯視圖。圖2及圖3中,多極像差校正器220例如由3段之基板之組合構成。在3段基板之上段基板10形成有至少1個開口部11(第1開口部)。且在至少1個開口部11之周圍配置有屏蔽電極。在圖2及圖3之例中,例如藉由導電性材料將包含矽(Si)製之上段基板10之開口部11內壁的整體外表面進行塗敷。因此,塗敷的薄膜成為屏蔽電極。或者,藉由金屬材構成上段基板10本身亦可以適用。上段基板10本身由金屬材構成之情況下,上段基板10本身成為屏蔽電極。圖2及圖3之例中,例如示出形成有2個開口部11的情況。 在3段基板之中段基板15形成有至少1個開口部17(第2開口部)。在中段基板15上,針對至少1個開口部17之每一開口部17配置有夾持該開口部17的多個控制電極16。多個控制電極16只要是2個以上電極(2極)即可。圖2及圖3之例中,作為多個控制電極16配置有包圍開口部17的8個電極(多極)。例如由沿著x方向對向的2個電極、沿著y方向對向的2個電極、以開口部17中心為軸沿著從x軸向y軸傾斜45度的45度方向對向的2個電極、及沿著從x軸向y軸傾斜135度的135度方向對向的2個電極之合計8個電極構成。多條配線18連接於多個控制電極16之中互相不同的1個控制電極。各配線18例如在表面形成有絕緣膜的矽(Si)製之中段基板15上布線。各配線18之一端與對應的控制電極16連接,另一端與在中段基板15之外周端按照每一電極配置的端子(焊墊(pad))(未圖示)連接。圖2及圖3之例中示出例如形成有2個開口部17的情況。 在3段基板之下段基板20形成有至少1個開口部21(第3開口部)。在至少1個開口部21之周圍配置有屏蔽電極。圖2及圖3之例中,例如藉由導電性材料塗敷包含矽(Si)製之下段基板20之開口部21內壁的整體外表面。因此,塗敷的薄膜成為屏蔽電極。或者,由金屬材構成下段基板20本身亦可以適用。下段基板20本身由金屬材構成之情況下,下段基板20本身成為屏蔽電極。圖2及圖3之例中示出例如2個開口部21的情況。 開口部11與開口部17與開口部21都是形成為同一數目,而且1個個地形成於同一位置。換言之,和多極像差校正器220欲進行像差校正的待校正用之帶電粒子束之數目同一數目之開口部11、17、21,係與各自的待校正用之光束通過的位置對齊而被形成。使用多極像差校正器220之情況下,對上段基板10之屏蔽電極施加例如接地(GND)電位(規定電位)。同樣地,對下段基板20之屏蔽電極施加例如GND電位(規定電位)。另一方面,對中段基板15之每一控制電極16則個別施加與各自的待校正用之帶電粒子束之像差之大小相應而可變的電位。此外,施加於屏蔽電極的電位不限定於GND電位。對上段基板10之屏蔽電極例如施加使電子返回的包含GND電位的負的電壓Vu(0V≧Vu>  -50V)。對下段基板20之屏蔽電極例如施加包含GND電位的正的電壓Vl(0V≦Vl<2V)。 圖4係說明實施形態1中的2次電子與反射電子之能量分布之圖。藉由入射至固體的電子來產生2次電子。圖4中通常大致分類為50eV以下之2次電子和接近入射電子之能量的反射電子。已知從各種物質發射的2次電子都是在2eV附近具有峰值。實施形態1中,使相對於入射電子而從反射體221產生的2次電子朝向中段基板15側加速,因此於下段基板20之屏蔽電極被施加正的電位Vl。另一方面,尤其是為了抑制通過中段基板15的2次電子,因此對上段基板10之屏蔽電極施加例如使電子返回的包含GND電位的負的電壓Vu(0V≧Vu>-50V)為較佳。 圖5係表示實施形態1中的多極像差校正器之中段基板之構成之另一例的俯視圖。圖5之例中示出在多極像差校正器220之中段基板15形成4個開口部17的情況。在各開口部17之周圍例如8個控制電極16以包圍開口部17的方式被配置。配線18之一端連接於各開口部17之每一控制電極16,配線18之另一端連接於在中段基板15之外周部對應於每一電極設置的端子19(焊墊)。在此,不用說,在多極像差校正器220之製品之品質檢測時,必須確保每一控制電極16與各端子19之導通。換言之,必須不產生各配線18之斷線或與其他配線等之間的短路(short)。因此,針對控制電極16與配線18與端子19(焊墊)(配線另一端)之組合的每一組,必須進行控制電極16與端子19(配線另一端)之間之導通檢測。 在此,在對多極像差校正器220之中段基板15之每一控制電極16與各端子19之導通進行檢測時,必須使導通測試器之探針(探針)分別接觸中段基板15之每一控制電極16及各端子19(焊墊)。針對配置於中段基板15之外周部的各端子19(焊墊)可以從多極像差校正器220之外側使其接觸探針。但是,各開口部11、17、21之口徑尺寸例如小至φ100μm左右,存在探針無法經由上段基板10之開口部11進入到中段基板15之每一控制電極16之問題。因此,導通檢測變為困難。在此,實施形態1中,係在探針等不與中段基板15之每一控制電極16連接之情況下實施導通檢測。以下,具體說明。 圖6係表示實施形態1中的多極像差校正器200之導通檢測方法之一例之重要部分工程的流程圖。圖6中,實施形態1中的多極像差校正器220之導通檢測方法,係實施多極選擇工程(S102)、光束照射工程(S104)、流入電子劑量測定工程(S106)、判斷工程(S108)、及判斷工程(S110)的一連串之工程。 首先,於導通檢測裝置500之載台505上透過多個支撐銷523配置反射體221。於載台505上透過多個支撐台518將多極像差校正器220以上段基板10側朝向上側進行配置。此外,於中段基板15之各端子19(焊墊)連接配線或探針,將配線(包含探針之配線)引出至檢測室503外。此外,上段基板10之屏蔽電極與下段基板20之屏蔽電極分別與接地連接。 作為多極選擇工程(S102),選擇部532從至少1個多極之中選擇1個多極。換言之,從至少1個開口部17之中選擇1個開口部17。圖5之例中係從4個開口部17之中選擇1個開口部17。 圖7係說明實施形態1中的導通檢測方法之圖。圖7中,為了方便起見,示出所選擇的多極之中之夾持開口部17而呈對向的2個控制電極16、所選擇的多極被配置在周圍的開口部17之上方之上段基板10之開口部11、以及下方之下段基板20之開口部21。此外,在多極像差校正器220之下方配置有反射體221。所選擇的多極(例如8個電極之控制電極16)之1個控制電極16係經由配線18及端子19連接於流入電子劑量測定器520之一方端子。流入電子劑量測定器520之另一方端子與接地連接。此外,上段基板10之屏蔽電極和下段基板20之屏蔽電極分別與接地連接。實效上,所選擇的多極(例如8個電極之控制電極16),或者包圍所選擇的開口部17的多極(例如8個電極之控制電極16))成組的的8個端子19(焊墊)所連接的8條配線,個別連接於8個流入電子劑量測定器520之互相不同的1個流入電子劑量測定器520之一方端子為較佳。此時,8個流入電子劑量測定器520之另一方端子係連接於接地。 又,後述之例中雖說明,在每次選擇多極時,與所選擇的多極(例如8個電極(8極)之控制電極16)成組的8個端子19(焊墊)所連接的8條配線,係個別連接於8個流入電子劑量測定器520之互相不同的1個流入電子劑量測定器520之一方端子之情況,但不限定在此。事先配置開口部17之數目與多極之極數(電極數)相乘而得的數目之流入電子劑量測定器520亦可。與多極之選擇無關地,將全部控制電極16用之端子19(焊墊)分別個別地連接於流入電子劑量測定器520之一方端子亦可以適用。藉此,可以避免每次選擇多極時都要重新配線。 作為光束照射工程(S104),係如圖7所示,檢測控制部534所控制的控制電路542對檢測機構550進行控制,在對上段基板10與下段基板20之各屏蔽電極施加有接地電位的狀態下以通過多極像差校正器220之所選擇的多極之位置之各開口部11、17、21的方式照射檢測用電子束504。具體而言,從電子槍501(發射源)發射的檢測用電子束504,經由電磁透鏡512(聚焦機構)聚焦在反射體221上,並且經由偏轉器514通過所選擇的多極之位置之各開口部11、17、21而照射至反射體221,以這樣的方式對檢測用電子束504之照射位置進行控制。電子束之尺寸和各開口部11、17、21之開口尺寸比較極小,因此檢測用電子束504可以通過各開口部11、17、21。藉由檢測用電子束504照射至反射體221表面,而由反射體221發射2次電子506。例如發射出反射電子或/及2次電子。發射出的反射電子或/及2次電子之2次性的電子506,其之一部分通過開口部21,並與配置於開口部17之周圍的控制電極16碰撞。換言之,電子束流入控制電極16。 作為流入電子劑量測定工程(S106),至少1個流入電子劑量測定器520,係經由多條配線18之中分別連接於每一控制電極16的配線18,針對檢測用電子束504通過各開口部11、17、21並且照射至反射體221(物體)所引起而發射的2次性電子506之流入多個控制電極16之每一控制電極16的電子劑量進行測定。作為流入電子劑量,例如以使用電流值為較佳。或者,在流入電子劑量測定器520之一方端子與另一方端子之間配置串聯電阻,測定電阻之兩端之電位差(電壓),使用該電位差(電壓)作為流入電子劑量亦可以。 作為判斷工程(S108),判斷部536係使用流入每一控制電極16的電子劑量之測定結果,針對每一控制電極16個別判斷該控制電極16與該控制電極16所連接的配線18之間之導通之有無。具體而言,個別判斷該控制電極16與一端側連接於該控制電極16的配線18之另一端側之端子19(焊墊)之間之導通之有無。 圖8係表示實施形態1中的導通檢測之結果之一例的表格。圖8之例中示出8個電極之多極之情況,每一控制電極16之標號表示為1~8。圖8之例中,按照每一控制電極16示出照射檢測用電子束504前之狀態(beam off)的電流值。圖8之例中示出-0.5~0.6pA之值。此外,圖8之例中按照每一控制電極16示出照射了檢測用電子束504的狀態(beam on)的電流值。圖8之例中示出-0.6~10.0pA之值。判斷部536針對每一控制電極16計算從檢測用電子束504之照射中之電流值減掉照射前之電流值獲得的差值,差值不在臨界值以上之情況下判斷為斷線。圖8之例中例如使用8pA作為臨界值。圖8之例中,第3編號之控制電極之差值為-0.6pA,第7編號之控制電極之差值為0.2pA不在臨界值之8pA以上,因此判斷為無導通(斷線或導通不良)。其餘之控制電極之差值都在臨界值之8pA以上,因此,判斷為有導通。 作為判斷工程(S110),判斷部538判斷是否有未檢測之多極。若有殘餘之未檢測之多極,則返回多極選擇工程(S102),直至不存在未檢測之多極為止重複多極選擇工程(S102)至判斷工程(S108)為止的各工程。 在此,在光束照射工程(S104)中,2次發射的電子506不限定於朝向設為對象的控制電極16。因此,根據照射位置,測定結果可能在構成多極的每一控制電極16間產生偏差。因此,照射檢測用電子束504之情況下,藉由偏轉器514使檢測用電子束504偏轉時,以檢測用電子束504對反射體221上進行掃描為較佳。掃描方向沿著每一控制電極16之配置方向為較佳。藉此,可以減少或解消每一控制電極16間之測定結果之偏差。 圖9係表示實施形態1中的反射體表面之形狀之一例的圖。圖9之例中示出反射體221之表面實質上為平面之情況。 圖10係表示實施形態1中的反射體表面之形狀之另一例的圖。圖10之例中示出以開口部中心為軸在反射體221之表面形成圓錐形之凸部的情況。以檢測用電子束504掃描圖9之例所示平面之情況下,2次發射的電子506容易朝向與平面正交的方向發射。因此,朝向控制電極16的電子量容易變少。相對在此,圖10之例所示圓錐形狀中,以檢測用電子束504掃描反射體221上之情況下,檢測用電子束504與圓錐形凸部之斜面碰撞,因此2次發射的電子506容易斜向發射。因此,可以增加朝向控制電極16的電子量,為較佳。 接著,說明成為導通檢測之對象的多極像差校正器220之使用例。以下,實施形態1中說明將多極像差校正器220搭載於使用基於多個電子束的多光束的圖案檢測裝置之情況。但是,不限定在此。多極像差校正器220只要搭載於照射電子束的需要進行像差校正的照射裝置即可。 圖11係表示實施形態1中的圖案檢測裝置之構成的構成圖。圖11中,對形成於基板的圖案進行檢測的檢測裝置100為多電子束檢測裝置的一例。檢測裝置100具備影像取得機構150及控制系統電路160。影像取得機構150具備電子束柱102(電子鏡筒)及檢測室103。於電子束柱102內配置有電子槍201、電磁透鏡202、成形孔徑陣列基板203、電磁透鏡205、多極像差校正器220、集體遮斷偏轉器212、限制孔徑基板213、電磁透鏡206、電磁透鏡207(物鏡)、主偏轉器208、副偏轉器209、分束器214、偏轉器218、電磁透鏡224、及多光束檢測器222。由電子槍201、電磁透鏡202、成形孔徑陣列基板203、電磁透鏡205、多極像差校正器220、集體遮斷偏轉器212、限制孔徑基板213、電磁透鏡206、電磁透鏡207(物鏡)、主偏轉器208、及副偏轉器209構成1次電子光學系統。此外,由電磁透鏡207、分束器214、偏轉器218、及電磁透鏡224構成2次電子光學系統。 於檢測室103內配置有至少可以沿著XY方向移動的載台105。於載台105上配置有成為圖案檢測之對象的基板101(樣品)。基板101包含曝光用光罩基板及矽晶圓等半導體基板。基板101為半導體基板之情況下,在半導體基板形成有多個晶片圖案(wafer die)。基板101為曝光用光罩基板之情況下,在曝光用光罩基板形成有晶片圖案。晶片圖案由多個圖形圖案構成。藉由將形成於該曝光用光罩基板的晶片圖案多次曝光轉印至半導體基板上,而在半導體基板形成多個晶片圖案(wafer die)。以下主要說明基板101為半導體基板之情況。基板101例如以圖案形成面朝向上側配置於載台105上。此外,在載台105上配置有鏡216,該鏡216用於反射從配置於檢測室103之外部的雷射長度測量系統122照射的雷射長度測量用之雷射光。多光束檢測器222係在電子束柱102之外部與檢測電路106連接。檢測電路106與晶片圖案記憶體123連接。 控制系統電路160中,對檢測裝置100整體進行控制的控制電腦110,係經由匯流排120連接於位置電路107、比較電路108、參照影像作成電路112、載台控制電路114、像差校正電路121、透鏡控制電路124、遮斷控制電路126、偏轉控制電路128、磁碟裝置等記憶裝置109、監控器117、記憶體118、及印表機119。此外,偏轉控制電路128係與DAC(數位類比轉換)放大器144、146、148連接。DAC放大器146與主偏轉器208連接,DAC放大器144與副偏轉器209連接。DAC放大器148與偏轉器218連接。 此外,晶片圖案記憶體123與比較電路108連接。又,載台105係在載台控制電路114之控制之下經由驅動機構142進行驅動。驅動機構142中,例如構成為沿著載台座標系統中的X方向、Y方向、θ方向驅動的3軸(X-Y-θ)馬達這樣的驅動系統,載台105可以沿著XYθ方向移動。這些未圖示的X馬達、Y馬達、θ馬達可以使用例如步進馬達。載台105藉由XYθ各軸之馬達可以沿著水平方向及旋轉方向移動。載台105之移動位置係由雷射長度測量系統122進行測定,供給至位置電路107。雷射長度測量系統122接受來自鏡216之反射光,並依據雷射干涉法之原理對載台105之位置進行長度測量。載台座標系統例如相對於與多束1次電子束301之光軸正交的面設定X方向、Y方向、θ方向。 電磁透鏡202、電磁透鏡205、電磁透鏡206、電磁透鏡207(物鏡)、電磁透鏡224、及分束器214係由透鏡控制電路124控制。此外,集體遮斷偏轉器212係由2個以上之電極構成,藉由遮斷控制電路126並經由未圖示的DAC放大器對每一電極進行控制。多極像差校正器220係由像差校正電路121進行控制。副偏轉器209係由4極以上之電極構成,藉由偏轉控制電路128經由DAC放大器144對每一電極進行控制。主偏轉器208係由4極以上之電極構成,藉由偏轉控制電路128經由DAC放大器146對每一電極進行控制。偏轉器218係由4極以上之電極構成,藉由偏轉控制電路128經由DAC放大器148對每一電極進行控制。 電子槍201係與未圖示的高壓電源電路連接,藉由從高壓電源電路對電子槍201內之未圖示的燈絲(陰極)與引出電極(陽極)間施加加速電壓,並且對另一引出電極(韋乃耳特電極(Wehnelt electrode))之電壓之施加以及將陰極加熱至規定之溫度,由此而將從陰極發射出的電子群加速,發射出成為電子束200。 在此,圖11中記載著說明實施形態1所必要的構成。檢測裝置100通常亦可以具備必要的其他之構成。 接著,對檢測裝置100中的影像取得機構150之動作進行說明。 從電子槍201(發射源)發射的電子束200被電磁透鏡202折射,並照射整個成形孔徑陣列基板203。在成形孔徑陣列基板203形成有二維狀配列的矩形或圓形之多個孔(開口部),電子束200照射包含全部多個孔的區域。照射至多個孔之位置的電子束200之各一部分分別通過該成形孔徑陣列基板203之多個孔,由此而形成多束1次電子束301(待校正用之帶電粒子束)。 形成的多束1次電子束301分別被電磁透鏡205及電磁透鏡206折射,並且在重複中間影像及交叉之同時,通過配置於多束1次電子束301之每一光束之交叉位置的分束器214而前進至電磁透鏡207(物鏡)。在該期間,多束1次電子束301(待校正用之帶電粒子束)經由多極像差校正器220對像散及/或畸變像差(畸變)之像差進行校正。圖11之例中示出多極像差校正器220配置於電磁透鏡205之磁場中之情況。藉由配置於電磁透鏡205之磁場中,則和配置於磁場外之情況比較可以減少施加於多極像差校正器220之控制電極的電位。例如可以小至1/100左右。但是不限定在此。多極像差校正器220只要配置於成形孔徑陣列基板203與分束器214之間即可。 多束1次電子束301入射至電磁透鏡207(物鏡)後,電磁透鏡207將多束1次電子束301聚焦在基板101上。換言之,電磁透鏡207(電子光學系統之一例)係將已被多極像差校正器220進行校正像散及畸變像差之至少一者的多束1次電子束301導向基板101。經由電磁透鏡(物鏡)207焦點已被對準於(對焦)基板101(樣品)表面上的多束1次電子束301,係藉由主偏轉器208及副偏轉器209進行集體偏轉,每一光束被照射於基板101上之各別之照射位置。又,當整體多束1次電子束301被集體遮斷偏轉器212集體地偏轉之情況下,其位置偏離限制孔徑基板213之中心之孔,整體多束1次電子束301被限制孔徑基板213遮蔽。另一方面,未被集體遮斷偏轉器212偏轉的多束1次電子束301則如圖11所示地通過限制孔徑基板213之中心之孔。藉由該集體遮斷偏轉器212之ON/OFF(開啟/關閉)進行遮斷控制,藉此,而對光束之ON/OFF(照射前/照射後)之狀態集體地進行控制。這樣地,限制孔徑基板213將被集體遮斷偏轉器212偏轉而成為光束照射前(beam off)之狀態的多束1次電子束301予以遮蔽。藉由成為光束照射後(beam on)至成為光束照射前為止所形成的通過限制孔徑基板213的光束群,來形成檢測用(影像取得用)之多束1次電子束301。 當多束1次電子束301被照射至基板101之期待的位置時,基於該多束1次電子束301的照射而引起從基板101發射與多束1次電子束301之每一光束對應的包含反射電子的2次電子之束(多束2次電子束300)。 從基板101發射的多束2次電子束300,係通過電磁透鏡207而前進至分束器214。 在此,分束器214在與多束1次電子束301之中心光束行進的方向(軌道中心軸)正交的平面上,在相互正交的方向上產生電場和磁場。電場與電子的行進方向無關地在相同方向上施加力。 另一方面,磁場根據弗萊明的左手定律施加力。因此,可以根據電子的侵入方向來改變作用在電子的力的方向。從上側侵入分束器214的多束1次電子束301抵消了電場引起的力與磁場引起的力,因此,多束1次電子束301向下方筆直前進。相對在此,針對從下側侵入分束器214的多束2次電子束300,電場力與磁場力都作用於同一方向,多束2次電子束300傾斜向上彎曲,而從多束1次電子束301分離。 傾斜向上彎曲而從多束1次電子束301分離的多束2次電子束300被偏轉器218進一步彎曲,被電磁透鏡224折射之同時,投射至多光束檢測器222。多光束檢測器222檢測投射的多束2次電子束300。多光束檢測器222例如具有未圖示的二極體型之二維感測器。在與多束1次電子束301之每一光束對應的二極體型之二維感測器位置中,多束2次電子束300之各2次電子與二極體型之二維感測器碰撞而產生電子,針對每一像素生成2次電子影像資料。多光束檢測器222中檢測出的強度信號被輸出至檢測電路106。 圖12係表示實施形態1中的多極像差校正器220之各電極基板之構成之一例的俯視圖。圖12之例中示出使用5×5個多束1次電子束301之情況示出。圖12之例中省略與每一控制電極16a~h連接的配線18及端子19之圖示。 圖13係表示實施形態1中的畸變像差(畸變)之一例的圖。圖13之例中示出使用5×5個多束1次電子束301的情況。若成形孔徑陣列基板203之多個孔沿著x、y方向按規定之間距形成為矩陣狀的話,理想上係如圖13(b)所示,照射至基板101上的多束1次電子束301之照射位置19亦應該按規定之縮小率被配置為矩陣狀。但是,因為使用電磁透鏡等之電子光學系統,而如圖13(a)所示產生畸變(畸變像差)。根據條件,畸變之形狀具有稱為桶式或枕形的分布。通常,磁氣透鏡之畸變除了半徑方向之偏移以外亦產生旋轉方向之偏移。圖13(a)中示出不產生旋轉成分的條件下的例。儘管多束1次電子束301產生的畸變之方向及位置偏移量存在某種程度之傾向,但在每一光束之間是有差異的。因此,在對該畸變進行校正時需要個別地對每一光束進行校正。藉由使用實施形態1中的多極像差校正器220,對每一光束校正光束軌道,而如圖13(b)所示,可以校正照射至基板101上的多束1次電子束301之照射位置19。 圖14係表示實施形態1中的像散之一例的圖。圖14之例中示出使用光束之截面為圓形形狀的5×5個多束1次電子束301的情況。如圖14(b)所示,理想上,每一光束以圓形照射。但是,由於使用電磁透鏡等電子光學系統而如圖14(a)所示存在產生像散像差之情況。因此,如圖14(a)所示,在基板101(樣品)表面上焦點位置在x、y方向之次要方向產生偏移,在焦點位置處光束成為所謂橢圓狀,照射的光束產生模糊。在多束1次電子束301產生的像散之方向及位置偏移量,雖然存在以從多束1次電子束301之中心呈放射狀延伸的方式成為橢圓狀的傾向,但在每一光束之間是不同。因此,對該像散進行校正時需要個別地校正每一光束。在此,藉由使用實施形態1中的多極像差校正器220,對每一光束之光束軌道進行校正,而如圖14(b)所示,可以校正像散。 圖15係表示實施形態1中的像散之另一例的圖。在多束1次電子束301產生的像散之方向,並不限定於圖14(a)所示的從多束1次電子束301之中心呈放射狀延伸之情況。如圖15(a)所示,亦存在沿著圓周方向延伸之情況。該情況下亦同樣地,藉由使用實施形態1中的多極像差校正器220,對每一光束之光束軌道進行校正,而如圖15(b)所示可以校正像散。 此外,實施形態1的多極像差校正器220中,成為多極的每一控制電極16上被施加的電位係可以個別地設定,因此可以同時校正畸變與像散。 影像取得機構150係使用經由該多極像差校正器220已校正了像散與畸變像差之至少一者的多束1次電子束301取得形成於形成於基板101上的圖案之2次電子影像。具體而言,係如以下進行動作。 圖16係表示實施形態1中的形成於半導體基板上的多個晶片區域之一例的圖。圖16中,基板101為半導體基板(晶圓)之情況下,在半導體基板(晶圓)之檢測區域330以二維之陣列狀形成多個晶片(wafer die)332。在各個晶片332內,將形成於曝光用光罩基板的1晶片分之光罩圖案藉由未圖示的曝光裝置(stepper)例如縮小為1/4而進行轉印。各個晶片332內例如被分割為二維狀之橫向(x方向)m2 行×縱向(y方向)n2 列(m2 、n2 為2以上整數)之多個光罩晶粒(Mask die)33。實施形態1中,該光罩晶粒33成為單位檢測區域。光束在成為對象的光罩晶粒33上之移動,係藉由主偏轉器208使整體的多束1次電子束301集體偏轉而進行。 圖17係說明實施形態1中的多光束之掃描動作之圖。圖17之例中示出5×5列之多束1次電子束301之情況。1次之多束1次電子束301之照射能夠照射的照射區域34,係由(基板101表面上的多束1次電子束301之x方向之光束間間距與x方向之光束數相乘而得的x方向尺寸)×(基板101表面上的多束1次電子束301之y方向之光束間間距與y方向之光束數相乘獲得的y方向尺寸)加以定義。圖15之例中示出照射區域34和光罩晶粒33為同一尺寸之情況。但是,不限定在此。照射區域34可以小於或大於光罩晶粒33。多束1次電子束301之每一光束,係對本身之光束位處的x方向之光束間間距與y方向之光束間間距所包圍的副照射區域29內進行掃描(掃描動作)。構成多束1次電子束301的每一光束負責互相不同的任一副照射區域29。每次發射時,每一光束照射至負責的副照射區域29內之同一位置。副照射區域29內之光束之移動係藉由副偏轉器209對整體多束1次電子束301的集體偏轉來進行。重複該動作,以1個光束依序地照射1個副照射區域29內之全部。 對基板101之期待的位置照射已經由多極像差校正器220校正了像差的多束1次電子束301,基於該照射而從基板101發射與多束1次電子束301對應的包含反射電子的多束2次電子束300。從基板101發射的多束2次電子束300,前進至分束器214而朝向斜上方彎曲。朝向斜上方彎曲的多束2次電子束300,其軌道被偏轉器218彎曲,並投射至多光束檢測器222。這樣地,多光束檢測器222檢測出多束1次電子束301照射至基板101表面而引起發射的多束2次電子束300。反射電子有可能在光路之中途發散。 如上所述,在整體多束1次電子束301中,係以光罩晶粒33作為照射區域34進行掃描,但每一光束分別掃描對應的1個副照射區域29。當1個光罩晶粒33之掃描結束時,移動以使鄰接的次一光罩晶粒33成為照射區域34,進行該鄰接的次一光罩晶粒33之掃描。重複該動作依序進行各個晶片332之掃描。藉由多束1次電子束301之發射的每一次而從照射的位置發射2次電子,並由多光束檢測器222檢測出。 如上所述,影像取得機構150使用多束1次電子束301在形成有圖形圖案的被檢測基板101上進行掃描,對基於多束1次電子束301的照射而從被檢測基板101發射的多束2次電子束300進行檢測。多光束檢測器222所檢測出的來自各測定用像素36之2次電子之檢測資料(測定影像:2次電子影像:被檢測影像),係案測定順序被輸出至檢測電路106。在檢測電路106內,藉由未圖示的A/D轉換器將類比之檢測資料轉換為數位資料,記憶於晶片圖案記憶體123。這樣地,影像取得機構150取得形成於基板101上的圖案之測定影像。接著,例如在累積了1個晶片332部分的檢測資料之階段將其作為晶片圖案資料,並與來自位置電路107之表示各位置的資訊一起傳送至比較電路108。 作為參照影像作成工程,參照影像作成電路112(參照影像作成部)係作成與被檢測影像對應的參照影像。參照影像作成電路112,係依據成為在基板101形成圖案之基礎的設計資料、或形成於基板101的圖案之曝光圖像資料中定義的設計圖案資料,對每一圖框區域作成參照影像。作為圖框區域例如以使用光罩晶粒33為較佳。具體而言,如以下這樣地動作。首先,藉由控制電腦110從記憶裝置109讀出設計圖案資料,將該讀出的設計圖案資料中定義的各圖形圖案轉換為2值或多值之圖像資料。 在此,設計圖案資料中定義的圖形例如以長方形或三角形為基本圖形,例如儲存有利用成為標識符的圖形代碼等資訊定義了各圖案圖形之形狀、大小、位置等的圖形資料,該標識符則是用於區分圖形之基準位置中的座標(x、y)、邊長、長方形或三角形等圖形種類者。 在成為該圖形資料的設計圖案資料被輸入參照影像作成電路112後被展開為每一圖形的資料,解釋用於表示該圖形資料之圖形形狀的圖形代碼、圖形尺寸等。接著,展開為2值或多值之設計圖案影像資料並輸出作為以規定之量化尺寸之網格為單位的方格內所配置的圖案。換言之,讀取設計資料,針對將檢測區域虛擬分割為以規定尺寸為單位的方格而成的每一方格計算出設計圖案中的圖形佔有的佔有率,並輸出n位元之佔有率資料。例如將1個方格設定為1像素較佳。假設1像素具有1/28 (=1/256)之分辨力,藉由將配置於像素內的圖形之區域分配為1/256之小區域來計算像素內之佔有率。接著,作為8位元之佔有率資料輸出至參照影像作成電路112。該方格(檢測像素)與測定資料之像素匹配即可。 接著,參照影像作成電路112針對圖形之圖像資料亦即設計圖案之設計影像資料實施適當的濾波處理。作為測定影像之光學影像資料,係處於藉由光學系統實施了濾波的狀態,換言之處於連續變化的類比狀態,因此藉由針對影像強度(濃淡值)為數位值的設計側之圖像資料即設計影像資料亦實施濾波處理,即可與測定資料匹配。作成的參照影像之影像資料被輸出至比較電路108。 圖18係表示實施形態1中的比較電路內之構成之一例的構成圖。圖18中,在比較電路108內配置有磁碟裝置等記憶裝置52、56、位置對齊部57、及比較部58。位置對齊部57、及比較部58之各「~部」係包含處理電路,於該處理電路包含有電路、電腦、處理器、電路基板、量子電路、或半導體裝置等。此外,各「~部」可以使用共通的處理電路(同一處理電路)、或者使用不同的處理電路(個別之處理電路)。位置對齊部57及比較部58內必要的輸入資料或計算的結果每次被記憶於未圖示的記憶體或記憶體118。 在比較電路108內,將傳送的圖案影像資料(2次電子影像資料)暫時儲存於記憶裝置56。此外,將傳送的參照影像資料暫時儲存於記憶裝置52。 作為位置對齊工程,位置對齊部57讀出成為被檢測影像的光罩晶粒影像以及與該光罩晶粒影像對應的參照影像,按照小於像素的副像素單位進行兩影像之位置對齊。例如可以利用最小平方法進行位置對齊。 作為比較工程,比較部58進行光罩晶粒影像(被檢測影像)與參照影像之比較。比較部58係按照規定之判斷條件對每一像素比較兩者,例如判斷形狀缺陷等之缺陷之有無。例如每一像素之灰階值差大於判斷臨界值Th時判斷為缺陷。比較結果被輸出。比較結果被輸出至記憶裝置109、監控器117或記憶體118,或由印表機119輸出亦可。 又,不限定於前述晶粒-資料庫檢測,亦可以進行晶粒-晶粒檢測。進行晶粒-晶粒檢測的情況下,針對形成有同一圖案的光罩晶粒33之影像彼此進行比較即可。因此,使用成為晶粒(1)的晶片332之一部分之區域之光罩晶粒影像,及成為晶粒(2)的另一晶片332之對應的區域之光罩晶粒影像。或者,將同一晶片332之一部分之區域之光罩晶粒影像設為晶粒(1)之光罩晶粒影像,將形成有同一圖案的同一晶片332之另一部分之光罩晶粒影像設為晶粒(2)之光罩晶粒影像而進行比較亦可。該情況下,以形成有同一圖案的光罩晶粒33之影像彼此之一者作為參照影像使用,利用和前述晶粒-資料庫檢測同樣之方法可以進行檢測。 亦即,作為位置對齊工程,位置對齊部57讀出晶粒(1)之光罩晶粒影像和晶粒(2)之光罩晶粒影像,按照小於像素的副像素單位進行兩影像之位置對齊。例如利用最小平方法進行位置對齊即可。 作為比較工程,比較部58對晶粒(1)之光罩晶粒影像與晶粒(2)之光罩晶粒影像進行比較。比較部58依據規定之判斷條件針對每一像素比較兩者,例如判斷形狀缺陷等之缺陷之有無。例如若每一像素之灰階值差大於判斷臨界值Th時判斷為缺陷。比較結果被輸出。比較結果被輸出至未圖示的記憶裝置、監控器、或記憶體,或從印表機輸出亦可。 如上所述,依據實施形態1,即使多極間之開口部小的情況下,亦可以進行多極像差校正器220之導通檢測。因此,在將多極像差校正器220搭載於需要像差校正的檢測裝置等之多光束照射裝置前,可以進行多極像差校正器220之導通檢測。因此,可以將已校正了像差的多束1次電子束301照射至基板101,因此可以獲得高精度的影像,並且可以進行高精度的圖案檢測。 以上說明中述及的「~電路」係包含處理電路,在該處理電路包含電路、電腦、處理器、電路基板、量子電路、或半導體裝置等。此外,各「~電路」可以使用共通的處理電路(同一處理電路)或使用不同的處理電路(個別的處理電路)。使處理器等執行的程式可以記錄於磁碟裝置、磁帶裝置、FD、或ROM(唯獨記憶體)等記錄媒體。例如位置電路107、比較電路108、參照影像作成電路112、載台控制電路114、像差校正電路121、透鏡控制電路124、遮斷控制電路126、及偏轉控制電路128可以由前述至少1個處理電路構成。 以上,參照具體例說明實施形態。但是本發明並不限定於這些具體例。圖1的例中示出,藉由成形孔徑陣列基板203針對從成為1個照射源的電子槍201所照射的1個光束形成多束1次電子束301之情況,但不限定於此。亦可以構成為從多個照射源分別照射1次電子束,藉此來形成多束1次電子束301的態樣。 此外,針對裝置構成或控制方法等之本發明的說明中並非直接必要的部分等省略了記載,但亦可以適當地選擇使用必要的裝置構成或控制方法。 此外,具備本發明的要素,由業者可以適當地設計變更的全部的多極像差校正器之導通檢測方法、多極像差校正器之導通檢測裝置、及搭載有多極像差校正器之多電子束照射裝置,亦包含於本發明的範圍。
9:照射位置 10:上段基板 11,17,21:開口部 15:中段基板 16:控制電極 18:配線 19:端子 20:下段基板 29:副照射區域 33:光罩晶粒 34:照射區域 52,56,109,540:記憶裝置 57:位置對齊部 58:比較部 100:檢測裝置 101:基板 102,502:電子束柱 103,503:檢測室 105,505:載台 106:檢測電路 107:位置電路 108:比較電路 110,510:控制電腦 112:參照影像作成電路 114:載台控制電路 117:監控器 118,511:記憶體 119:印表機 120:匯流排 121:像差校正電路 122:雷射長度測量系統 123:晶片圖案記憶體 124:透鏡控制電路 126:遮斷控制電路 128:偏轉控制電路 142:驅動機構 144,146,148:DAC放大器 150:影像取得機構 160,560:控制系統電路 200,504:電子束 201,501:電子槍 202,205,206,207,224,512:電磁透鏡 203:成形孔徑陣列基板 208:主偏轉器 209:副偏轉器 212:集體遮斷偏轉器 213:限制孔徑基板 214:分束器 216:鏡 218,514:偏轉器 220:多極像差校正器 221:反射體 222:多光束檢測器 300:多束2次電子束 301:多束1次電子束 330:檢測區域 332:晶片 500:導通檢測裝置 506:電子 518:支撐台 520:流入電子劑量測定器 523:支撐銷 532:選擇部 534:檢測控制部 536,538:判斷部 542:控制電路 550:檢測機構
[圖1]表示實施形態1中的多極像差校正器之導通檢測裝置之構成之一例的圖。 [圖2]表示實施形態1中的多極像差校正器之構成之一例的斷面圖。 [圖3(a)~(c)]表示實施形態1中的多極像差校正器之各段之構成之一例的俯視圖。 [圖4]說明實施形態1中的2次電子與反射電子之能量分布之圖。 [圖5]表示實施形態1中的多極像差校正器之中段基板之構成之另一例的俯視圖。 [圖6]表示實施形態1中的多極像差校正器之導通檢測方法之一例之重要部分工程的流程圖。 [圖7]說明實施形態1中的導通檢測方法之圖。 [圖8]表示實施形態1中的導通檢測之結果之一例的表格。 [圖9]表示實施形態1中的反射體表面之形狀之一例的圖。 [圖10]表示實施形態1中的反射體表面之形狀之另一例的圖。 [圖11]表示實施形態1中的圖案檢測裝置之構成的構成圖。 [圖12]表示實施形態1中的多極像差校正器之各電極基板之構成之一例的俯視圖。 [圖13]表示實施形態1中的畸變像差(畸變)之一例的圖。 [圖14]表示實施形態1中的像散之一例的圖。 [圖15]表示實施形態1中的像散之另一例的圖。 [圖16]表示實施形態1中的半導體基板上形成的多個晶片區域之一例的圖。 [圖17]表示實施形態1中的多光束之掃描動作之圖。 [圖18]表示實施形態1中的比較電路內之構成之一例的構成圖。
10:上段基板
11,17,21:開口部
15:中段基板
16:控制電極
18:配線
19:端子
20:下段基板
221:反射體
504:電子束
506:電子
520:流入電子劑量測定器
Vu:負的電壓
Vl:正的電壓

Claims (5)

  1. 一種多極像差校正器之導通檢測方法,係具備: 使用多極像差校正器,在對各屏蔽電極施加有規定電位的狀態下以通過第1~第3開口部的方式照射檢測用帶電粒子束的工程,前述多極像差校正器係具有:上段基板,形成有第1開口部,且在前述第1開口部之周圍配置有屏蔽電極;中段基板,形成有第2開口部,且配置有夾持前述第2開口部的多個控制電極及連接於前述多個控制電極之中互相不同的1個控制電極之多條配線;及下段基板,形成有第3開口部,且在前述第3開口部之周圍配置有屏蔽電極;藉由對前述多個控制電極分別施加可變電位而對通過前述第1~第3開口部的待校正用之帶電粒子束之像差進行校正者;及 經由前述多條配線之中分別連接於每一控制電極的配線,針對前述檢測用帶電粒子束通過前述第1~第3開口部並且照射至配置於前述下段基板之下游側的物體而引起的2次發射的電子之流入前述多個控制電極之每一控制電極的流入電子劑量進行測定的工程; 使用流入前述每一控制電極的流入電子劑量之測定結果,針對每一控制電極,個別判斷該控制電極與連接於該控制電極的配線之間之導通之有無。
  2. 如請求項1之多極像差校正器之導通檢測方法,其中 在前述上段基板形成有包含前述第1開口部的多個第1開口部,在前述多個第1開口部之周圍配置有屏蔽電極, 在前述中段基板形成有包含第2開口部的多個第2開口部,針對前述多個第2開口部之每一第2開口部,配置有夾持該第2開口部的多個控制電極及連接於前述多個控制電極之中互相不同的1個控制電極之多條配線, 在前述下段基板形成有包含前述第3開口部的多個第3開口部,在前述多個第3開口部之周圍配置有屏蔽電極, 前述多極像差校正器之導通檢測方法,係使用藉由對每一第2開口部之前述多個控制電極分別施加可變電位而對通過前述多個第1~第3開口部的待校正用之多束帶電粒子束之像差個別地進行校正的多極像差校正器,針對每一第2開口部之前述多個控制電極之每一控制電極,個別地判斷該控制電極與連接於該控制電極的配線之間之導通之有無。
  3. 如請求項1或2之多極像差校正器之導通檢測方法,其中 作為前述導通檢測方法所使用的前述檢測用帶電粒子束,係使用電子束。
  4. 如請求項1或2之多極像差校正器之導通檢測方法,其中 前述多個控制電極為2個以上之電極。
  5. 一種多極像差校正器之導通檢測裝置,係具備: 發射源,用於發射檢測用帶電粒子束; 聚焦機構,控制前述檢測用帶電粒子束之焦點位置; 偏轉器,使前述檢測用帶電粒子束偏轉,並對前述檢測用帶電粒子束之照射位置進行控制; 載台,其上配置有多極像差校正器及物體, 該多極像差校正器係具有:上段基板,形成有第1開口部,且在前述第1開口部之周圍配置有屏蔽電極;中段基板,形成有第2開口部,且配置有夾持前述第2開口部的多個控制電極及連接於前述多個控制電極之中互相不同的1個控制電極之多條配線;及下段基板,形成有第3開口部,且在前述第3開口部之周圍配置有屏蔽電極;藉由對前述多個控制電極分別施加可變電位而對通過前述第1~第3開口部的待校正用之帶電粒子束之像差進行校正者; 該物體,係配置於前述下段基板之下游側,並接受通過前述第1~第3開口部的前述檢測用帶電粒子束之照射者;及 至少1個流入電子劑量測定器,其連接於前述多條配線; 藉由前述至少1個流入電子劑量測定器,經由前述多條配線之中分別連接於每一控制電極的配線,針對前述檢測用帶電粒子束通過前述第1~第3開口部並且照射至配置在前述下段基板之下游側的物體而引起的2次發射的電子之流入前述多個控制電極之每一控制電極的流入電子劑量進行測定,並使用該測定的結果,針對每一控制電極,個別地判斷該控制電極與連接於該控制電極的配線之間之導通之有無。
TW109122020A 2019-07-16 2020-06-30 多極像差校正器的導通檢測方法及多極像差校正器的導通檢測裝置 TWI736343B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-131437 2019-07-16
JP2019131437A JP7303052B2 (ja) 2019-07-16 2019-07-16 多極子収差補正器の導通検査方法及び多極子収差補正器の導通検査装置

Publications (2)

Publication Number Publication Date
TW202109033A true TW202109033A (zh) 2021-03-01
TWI736343B TWI736343B (zh) 2021-08-11

Family

ID=74209857

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109122020A TWI736343B (zh) 2019-07-16 2020-06-30 多極像差校正器的導通檢測方法及多極像差校正器的導通檢測裝置

Country Status (5)

Country Link
US (1) US11915902B2 (zh)
JP (1) JP7303052B2 (zh)
KR (1) KR102659870B1 (zh)
TW (1) TWI736343B (zh)
WO (1) WO2021010152A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI835149B (zh) * 2021-06-08 2024-03-11 荷蘭商Asml荷蘭公司 帶電粒子設備及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240035873A (ko) 2021-10-26 2024-03-18 가부시키가이샤 뉴플레어 테크놀로지 멀티 전자 빔 화상 취득 장치 및 멀티 전자 빔 화상 취득 방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093946A (ja) 1999-07-16 2001-04-06 Advantest Corp 電子ビームテスタ、試験方法、電子ビーム装置、及び観察方法
JP3955445B2 (ja) 2001-06-11 2007-08-08 株式会社ルネサステクノロジ 半導体装置の検査方法及び試料検査装置
JP2004363085A (ja) * 2003-05-09 2004-12-24 Ebara Corp 荷電粒子線による検査装置及びその検査装置を用いたデバイス製造方法
JP2006059701A (ja) 2004-08-20 2006-03-02 Sii Nanotechnology Inc 荷電粒子ビーム装置およびそれを用いた狭ギャップ電極形成方法
JP5886663B2 (ja) * 2012-03-21 2016-03-16 株式会社日立ハイテクノロジーズ 電子線応用装置およびレンズアレイ
JP5493029B2 (ja) 2013-04-12 2014-05-14 株式会社日立ハイテクノロジーズ 荷電粒子線応用装置
DE102014008083B9 (de) * 2014-05-30 2018-03-22 Carl Zeiss Microscopy Gmbh Teilchenstrahlsystem
WO2016145458A1 (en) 2015-03-10 2016-09-15 Hermes Microvision Inc. Apparatus of plural charged-particle beams
US10141160B2 (en) * 2015-11-30 2018-11-27 Hermes Microvision, Inc. Apparatus of plural charged-particle beams
US10249472B2 (en) * 2017-07-13 2019-04-02 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam device, charged particle beam influencing device, and method of operating a charged particle beam device
JP6966255B2 (ja) * 2017-08-10 2021-11-10 株式会社ニューフレアテクノロジー 画像取得装置の光学系調整方法
US20190066972A1 (en) * 2017-08-29 2019-02-28 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam device, aperture arrangement for a charged particle beam device, and method for operating a charged particle beam device
JP7198092B2 (ja) * 2018-05-18 2022-12-28 株式会社ニューフレアテクノロジー マルチ電子ビーム照射装置、マルチ電子ビーム検査装置及びマルチ電子ビーム照射方法
JP7316106B2 (ja) * 2019-06-14 2023-07-27 株式会社ニューフレアテクノロジー 収差補正器及びマルチ電子ビーム照射装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI835149B (zh) * 2021-06-08 2024-03-11 荷蘭商Asml荷蘭公司 帶電粒子設備及方法

Also Published As

Publication number Publication date
KR102659870B1 (ko) 2024-04-24
JP7303052B2 (ja) 2023-07-04
TWI736343B (zh) 2021-08-11
JP2021015781A (ja) 2021-02-12
US11915902B2 (en) 2024-02-27
KR20220019809A (ko) 2022-02-17
US20220277922A1 (en) 2022-09-01
WO2021010152A1 (ja) 2021-01-21

Similar Documents

Publication Publication Date Title
US10896801B2 (en) Multiple electron beam image acquisition apparatus, and alignment method of multiple electron beam optical system
US10734190B2 (en) Multiple electron beam irradiation apparatus, multiple electron beam inspection apparatus and multiple electron beam irradiation method
US20200203121A1 (en) Optical system adjustment method of image acquisition apparatus
TWI737117B (zh) 多電子束照射裝置
JP7316106B2 (ja) 収差補正器及びマルチ電子ビーム照射装置
TW202013417A (zh) 多電子束畫像取得裝置以及多電子束畫像取得方法
KR102553520B1 (ko) 멀티 하전 입자 빔 조사 장치 및 멀티 하전 입자 빔 검사 장치
TWI736343B (zh) 多極像差校正器的導通檢測方法及多極像差校正器的導通檢測裝置
US20230077403A1 (en) Multi-electron beam image acquisition apparatus, and multi-electron beam image acquisition method
JP6966319B2 (ja) マルチビーム画像取得装置及びマルチビーム画像取得方法
WO2022130838A1 (ja) マルチビーム画像取得装置及びマルチビーム画像取得方法
JP7352446B2 (ja) ステージ機構
TWI818407B (zh) 多射束圖像取得裝置及多射束圖像取得方法
JP2021169972A (ja) パターン検査装置及びパターン検査方法