TW202102301A - 微粒子之製造裝置及微粒子之製造方法 - Google Patents

微粒子之製造裝置及微粒子之製造方法 Download PDF

Info

Publication number
TW202102301A
TW202102301A TW109118569A TW109118569A TW202102301A TW 202102301 A TW202102301 A TW 202102301A TW 109118569 A TW109118569 A TW 109118569A TW 109118569 A TW109118569 A TW 109118569A TW 202102301 A TW202102301 A TW 202102301A
Authority
TW
Taiwan
Prior art keywords
coil
frequency current
fine particles
raw material
supplied
Prior art date
Application number
TW109118569A
Other languages
English (en)
Inventor
田中康規
兒玉人
隠田一輝
渡邉周
中村圭太郎
末安志織
Original Assignee
國立大學法人金澤大學
日商日清製粉集團本社股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立大學法人金澤大學, 日商日清製粉集團本社股份有限公司 filed Critical 國立大學法人金澤大學
Publication of TW202102301A publication Critical patent/TW202102301A/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/42Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/30Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • B01J2219/0898Hot plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/045Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by other means than ball or jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/13Use of plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Plasma Technology (AREA)

Abstract

為了提供一種微粒子之製造裝置及微粒子之製造方法,可控制微粒子的粒徑,且能效率良好地大量製造粒徑均一性良好的微粒子。 具有原料供給部、電漿炬、及電漿產生部,原料供給部是將微粒子製造用的原料往熱電漿火焰中供給;電漿炬,是在內部讓熱電漿火焰產生,利用熱電漿火焰讓藉由原料供給部供給的原料蒸發而成為氣相狀態的混合物;電漿產生部是在電漿炬的內部讓熱電漿火焰產生;電漿產生部係具有:包圍電漿炬的周圍之第1線圈、沿著電漿炬的長度方向排列地設置在第1線圈的下方且包圍電漿炬的周圍之第2線圈、對第1線圈供給振幅調變後的第1高頻電流之第1電源部、及對第2線圈供給振幅調變後的第2高頻電流之第2電源部。第1高頻電流的調變度比第2高頻電流的調變度小。

Description

微粒子之製造裝置及微粒子之製造方法
本發明是關於使用熱電漿火焰的微粒子之製造裝置及微粒子之製造方法,特別是關於一種微粒子之製造裝置及微粒子之製造方法,係使用2個線圈及對2個線圈分別供給高頻電流之2個獨立的高頻電源,利用電磁感應讓熱電漿火焰產生而製造微粒子。
現在,矽微粒子、氧化物微粒子、氮化物微粒子、碳化物微粒子等的微粒子是在很多領域被採用。作為製造這樣的微粒子的方法之一是氣相法。氣相法有化學方法及物理方法,化學方法是讓各種氣體等在高溫下進行化學反應;物理方法是照射電子束或雷射等的射束來將物質分解,讓其蒸發而生成微粒子。
作為氣相法的其他方法是熱電漿法。熱電漿法,是在熱電漿火焰中讓原材料瞬間蒸發後,讓其蒸發物急冷凝固而製造微粒子。依據熱電漿法,潔淨且生產率高,因為是高溫還能對應於高熔點材料,比起其他氣相法其複合化較容易,而具有許多優點。因此,熱電漿法是作為微粒子之製造方法而被積極地利用。
以往的使用熱電漿法的微粒子之製造方法,例如使原材料物質成為粉末狀,讓此粉末狀的原材料(粉末原材料、粉體)和載體氣體等一起分散,使用其作為原料而直接投入熱電漿中,藉此製造微粒子。 此外,例如在專利文獻1記載的微粒子之製造方法,是讓微粒子製造用材料(原材料)分散於分散介質中而成為漿體(slurry),使用該漿體作為原料,讓其液滴化並導入熱電漿火焰中,藉此製造微粒子。 [先前技術文獻] [專利文獻]
[專利文獻1] 日本特開2006-247446號公報 [非專利文獻]
[非專利文獻1] K. Kuraishi, et al., J.Phys. Conf. Ser., 441, 012016(2013)
[發明所欲解決之問題]
作為微粒子之製造方法,在熱電漿火焰中和載體氣體一起供給、及像上述專利文獻1那樣以漿體形態供給原材料,是先前已知的。然而,縱使是在熱電漿火焰中,利用電磁感應所產生之感應熱電漿,仍有因來自外部的擾動而使熱電漿火焰變得不穩定的情形。 於是,為了避免因來自外部的擾動使熱電漿火焰變得不穩定,例如像非專利文獻1所記載般,是使用2個線圈及與2個線圈分別連接之2個獨立的高頻電源來讓熱電漿火焰產生。
然而,現在,除了避免上述般因來自外部的擾動所導致之熱電漿火焰的不穩定以外,還要求所獲得的微粒子之粒徑的控制、以及所獲得的微粒子之粒徑均一性等。 再者,縱使是以往所提出之用於避免來自外部的擾動所導致之熱電漿火焰的不穩定之構造,當為了提高微粒子的生產率而將大量的原材料供應給熱電漿火焰的情況,會使熱電漿火焰熄滅等而使熱電漿火焰變得不穩定,就生產率的提高而言尚嫌不足。 本發明的目的是為了提供一種微粒子之製造裝置及微粒子之製造方法,可控制微粒子的粒徑,且能效率佳地大量製造粒徑均一性良好的微粒子。 [解決問題之技術手段]
為了達成上述目的,本發明提供的微粒子之製造裝置,係具有原料供給部、電漿炬、及電漿產生部,前述原料供給部是將微粒子製造用的原料往熱電漿火焰中供給;前述電漿炬,是在內部讓前述熱電漿火焰產生,利用前述熱電漿火焰讓藉由前述原料供給部供給的前述原料蒸發而成為氣相狀態的混合物;前述電漿產生部是在前述電漿炬的前述內部讓前述熱電漿火焰產生;前述電漿產生部係具有:包圍前述電漿炬的周圍之第1線圈、設置在前述第1線圈的下方且包圍前述電漿炬的周圍之第2線圈、對前述第1線圈供給振幅調變後的第1高頻電流之第1電源部、及對前述第2線圈供給振幅調變後的第2高頻電流之第2電源部,前述第1線圈和前述第2線圈是沿著前述電漿炬的長度方向配置,前述第1高頻電流的調變度比前述第2高頻電流的調變度小。
較佳為具有:對前述熱電漿火焰供給急冷氣體之氣體供給部。 此外較佳為,前述電漿產生部,是將基於前述第1電源部往前述第1線圈之前述第1高頻電流和基於前述第2電源部往前述第2線圈之前述第2高頻電流以相同的定時(timing)供給,前述原料供給部,在對前述第1線圈供給之前述第1高頻電流的電流振幅高及對前述第2線圈供給之前述第2高頻電流的電流振幅高的區域,將前述原料的供給量增多。 較佳為,對前述第2線圈供給之前述振幅調變後的前述第2高頻電流,在前述第2高頻電流之電流振幅低的區域,其電流值為0安培。 又較佳為,前述原料供給部,是將前述原料以分散成粒子狀的狀態往前述熱電漿火焰中供給。 又較佳為,前述原料供給部,是讓前述原料分散於液體而成為漿體,並將前述漿體液滴化而往前述熱電漿火焰中供給。
此外,本發明提供的微粒子之製造方法,係使用在電漿炬的內部所產生的熱電漿火焰之微粒子之製造方法,係設有:包圍前述電漿炬的周圍之第1線圈、設置在前述第1線圈的下方且包圍前述電漿炬的周圍之第2線圈、對前述第1線圈供給振幅調變後的第1高頻電流之第1電源部、及對前述第2線圈供給振幅調變後的第2高頻電流之第2電源部,前述第1線圈和前述第2線圈是沿著前述電漿炬的長度方向配置,藉由前述第1電源部及前述第2電源部讓前述熱電漿火焰產生, 前述微粒子之製造方法具有第1工序及第2工序,前述第1工序,是朝向在前述電漿炬的前述內部所產生之前述熱電漿火焰供給微粒子製造用的原料,前述第2工序,是利用前述熱電漿火焰讓前述原料蒸發而成為氣相狀態的混合物,並將前述混合物冷卻,在前述第1工序及前述第2工序中,前述第1電源部是對前述第1線圈供給振幅調變後的第1高頻電流,前述第2電源部是對前述第2線圈供給振幅調變後的第2高頻電流,前述第1高頻電流的調變度比前述第2高頻電流的調變度小。
較佳為,前述第2工序,是朝向前述熱電漿火焰供給急冷氣體,而將氣相狀態的前述混合物冷卻。 又較佳為,在前述第1工序,將基於前述第1電源部往前述第1線圈之前述第1高頻電流和基於前述第2電源部往前述第2線圈之前述第2高頻電流以相同的定時供給,在對前述第1線圈供給之前述第1高頻電流的電流振幅高及對前述第2線圈供給之前述第2高頻電流的電流振幅高的區域,將前述原料的供給量增多。 較佳為,對前述第2線圈供給之前述振幅調變後的前述第2高頻電流,在前述第2高頻電流之電流振幅低的區域,其電流值為0安培。 又較佳為,在前述第1工序,是將前述原料以分散成粒子狀的狀態往前述熱電漿火焰中供給。 又較佳為,在前述第1工序,是讓前述原料分散於液體而成為漿體,並將前述漿體液滴化而往前述熱電漿火焰中供給。 [發明之效果]
依據本發明的微粒子之製造裝置及微粒子之製造方法,可控制微粒子的粒徑,且能效率佳地大量製造粒徑均一性良好的微粒子。
以下,根據圖式所示之較佳實施形態,詳細地說明本發明的微粒子之製造裝置及微粒子之製造方法。 圖1係顯示本發明的實施形態的微粒子之製造裝置的一例之示意圖,圖2係顯示本發明的實施形態的微粒子之製造裝置之電漿炬的一例之示意的局部剖面圖。
圖1所示的微粒子之製造裝置10(以下簡稱為製造裝置10),是使用微粒子製造用的原料來製造奈米尺寸的微粒子。微粒子製造用的原料,例如使用粉體。 又製造裝置10,只要是製造微粒子即可,其種類沒有特別的限定,藉由改變原料的組成,除了金屬微粒子以外,也能製造氧化物微粒子、氮化物微粒子、碳化物微粒子、氮氧化物微粒子等的微粒子。 製造裝置10係具有:原料供給部12、電漿炬14、腔室16、回收部18、電漿氣體供給部20、電漿產生部21、氣體供給部22、控制部24。
原料供給部12是透過中空狀的供給管13連接於電漿炬14。 此外,在原料供給部12和電漿炬14之間的供給管13,可如後述般設置間歇供給部15。在製造裝置10,間歇供給部15不是必須構件。 在電漿炬14的下方設置腔室16,在腔室16的下游設置回收部18。電漿產生部21是連接於電漿炬14,如後述般藉由電漿產生部21,在電漿炬14的內部讓熱電漿火焰100產生。
原料供給部12是用於將微粒子製造用的原料供給到在電漿炬14的內部產生之熱電漿火焰100中。 原料供給部12,只要可將原料供給到熱電漿火焰100中即可,並沒有特別的限定,可採用以下2種方式:將原料以分散成粒子狀的狀態供給到熱電漿火焰100中,或使原料成為漿體,將漿體以液滴化的形態供給到熱電漿火焰100中。
例如,當微粒子製造用的原料採用粉體的情況,在往電漿炬14內的熱電漿火焰100中供給原料時,必須讓原料分散成粒子狀。因此,例如讓原料分散於載體氣體而呈粒子狀供給。在此情況,例如,原料供給部12是將粉體的原料維持分散狀態並定量地供給到電漿炬14內部的熱電漿火焰100中。作為具有這樣的功能之原料供給部12,例如可利用在日本特許第3217415號公報及日本特開2007-138287號公報所揭露的裝置。 例如,原料供給部12係具有:貯藏原料的粉末之貯槽(未圖示)、將原料的粉末定量搬運之螺旋送料機(未圖示)、在由螺旋送料機搬運之原料的粉末最終被散布之前讓其以粒子的狀態分散之分散部(未圖示)、以及載體氣體供給源(未圖示)。 原料的粉末是與從載體氣體供給源送出且被施加壓力的載體氣體一起,透過供給管13而往電漿炬14內之熱電漿火焰100中供給。 原料供給部12,只要是可防止原料粉末的凝聚而維持分散狀態,並將原料粉末以呈粒子狀分散的狀態散布於電漿炬14內即可,其構造沒有特別的限定。載體氣體,例如是使用氬氣(Ar氣體)、氮氣等的惰性氣體。
將原料的粉末以漿體的形態供給之原料供給部12,例如可採用日本特開2011-213524號公報所揭露者。在此情況,原料供給部12係具有:收容讓原料粉末分散於水等的液體而成的漿體(未圖示)之容器(未圖示)、用於攪拌容器中的漿體之攪拌機(未圖示)、用於透過供給管13對漿體施加高壓並將其往電漿炬14內供給之泵(未圖示)、及供給噴霧氣體之噴霧氣體供給源(未圖示),該噴霧氣體是用於讓漿體液滴化並往電漿炬14內供給。噴霧氣體供給源相當於載體氣體供給源。噴霧氣體也稱為載體氣體。 在以漿體的形態供給原料的情況,是讓原料的粉末分散於水等的液體而成為漿體。又漿體中之原料的粉末和水之混合比沒有特別的限定,例如以質量比計,混合比為5:5(50%:50%)。
當採用讓原料的粉末成為漿體並將漿體以液滴化的形態供給之原料供給部12的情況,從噴霧氣體供給源送出且被施加壓力的噴霧氣體,是與漿體一起透過供給管13而往電漿炬14內之熱電漿火焰100中供給。供給管13具有雙流體噴嘴機構,雙流體噴嘴機構是用於將漿體朝向電漿炬內之熱電漿火焰100中噴霧而進行液滴化,藉此將漿體朝向電漿炬14內之熱電漿火焰100中噴霧。亦即能讓漿體液滴化。噴霧氣體,是與上述載體氣體同樣的,例如可採用氬氣(Ar氣體)、氮氣等的惰性氣體。 如此般,雙流體噴嘴機構,可對漿體施加高壓並藉由氣體、即噴霧氣體(載體氣體)將漿體噴霧,因此是用於作為讓漿體液滴化之一方法。 又並不限定於上述雙流體噴嘴機構,也能採用單流體噴嘴機構。作為其他方法,例如可舉出:在旋轉中的圓板上讓漿體以一定速度落下而利用離心力進行液滴化(形成液滴)的方法,對漿體表面施加高電壓而進行液滴化(讓液滴產生)的方法等。
電漿炬14,是在內部讓熱電漿火焰100產生,利用熱電漿火焰100讓藉由原料供給部12供給的原料蒸發而成為氣相狀態的混合物45。 如圖2所示般,電漿炬14係包含石英管14a及高頻振盪用線圈14b,高頻振盪用線圈14b是設置在石英管14a的外面並捲繞在電漿炬14的外側。在電漿炬14的上部,在其中央部設置供供給管13插入之供給口14c,在其周邊部(同一圓周上)形成電漿氣體供給口14d。 藉由供給管13,將例如粉末狀的原料、氬氣或氫氣等的載體氣體往電漿炬14內供給。
電漿氣體供給口14d,藉由例如未圖示的配管與電漿氣體供給部20連接。電漿氣體供給部20是透過電漿氣體供給口14d而往電漿炬14內供給電漿氣體。作為電漿氣體,例如將氬氣及氫氣等單獨使用或適宜結合來使用。 又除了電漿氣體供給部20以外,可設置朝向電漿炬14內供給鞘流氣體(sheath gas)之鞘流氣體供給部(未圖示)。鞘流氣體可採用與電漿氣體相同的氣體。 此外,亦可取代電漿氣體供給部20而設置上述鞘流氣體供給部。
此外,電漿炬14之石英管14a的外側,是被形成為同心圓狀的石英管14e包圍,在石英管14a和石英管14e之間讓冷卻水14f循環而將石英管14a進行水冷,藉此防止因為在電漿炬14內產生的熱電漿火焰100讓石英管14a變得過度高溫。
電漿產生部21是如上述般在電漿炬14的內部讓熱電漿火焰100產生。電漿產生部21係具有:包圍電漿炬14的周圍之第1線圈60、包圍電漿炬14的周圍之第2線圈62、對第1線圈60供給振幅調變後的第1高頻電流之第1電源部21a、以及對第2線圈62供給振幅調變後的第2高頻電流之第2電源部21b。第1高頻電流的調變度比第2高頻電流的調變度小,亦即第1高頻電流的振幅變化比第2高頻電流的振幅變化小。此外,例如,第1高頻電流和第2高頻電流是以相同的定時供給。亦即第1高頻電流和第2高頻電流的相位相同。
第1線圈60和第2線圈62是配置成沿著電漿炬14的長度方向排列,第2線圈62設置在第1線圈60的下方設置。 第1電源部21a及第2電源部21b都是高頻電源,且互相獨立。此外,為了減少第1線圈60和第2線圈62間之磁耦合,較佳為使第1電源部21a之高頻電流的頻率和第2電源部21b之高頻電流的頻率不同。如此,可抑制彼此的電源部間的影響。 藉由第1線圈60及第2線圈62來構成高頻振盪用線圈14b。第1線圈60的匝數及第2線圈62的匝數沒有特別的限定,是按照製造裝置10的規格而適宜地決定。第1線圈60及第2線圈62的材質也沒有特別的限定,是按照製造裝置10的規格而適宜地決定。
在電漿產生部21中,藉由使用2個線圈及2個獨立的電源部來構成感應熱電漿之串列構造。藉由構成感應熱電漿的串列構造,可生成在電漿炬14的軸方向尺寸長的高溫場。藉由利用上述尺寸長的高溫場,能讓高熔點材料完全蒸發。又調變感應熱電漿火焰是指,讓熱電漿火焰以既定時間間隔周期性地成為高溫狀態、溫度比該高溫狀態低的低溫狀態者,亦即將熱電漿火焰的溫度狀態進行時間調變者。
在電漿產生部21,例如第1電源部21a對第1線圈60供給振幅調變後的第1高頻電流(參照圖3),第2電源部21b對第2線圈62供給振幅調變後的第2高頻電流(參照圖4)。 對第1線圈60供給的第1高頻電流也稱為第1線圈電流,對第2線圈62供給的第2高頻電流也稱為第2線圈電流。 在此,圖3顯示第1電源部之高頻電流的波形的一例之示意圖,圖4顯示第2電源部之高頻電流的波形的一例之示意圖。 圖3顯示上述振幅調變後的第1高頻電流之波形,振幅隨著時間而周期性地調變。圖4顯示上述振幅調變後的第2高頻電流之波形,振幅隨著時間而周期性地調變。圖4顯示矩形波振幅調變。振幅調變並不限定於圖3及圖4所示的矩形波振幅調變,除此以外,當然也能使用包含三角波、鋸齒波、倒鋸齒波、或含有正弦波等的曲線之反覆波所構成的波形。
在振幅調變後的第1高頻電流及第2高頻電流中,將電流振幅的高值稱為HCL(Higher Current Level),將電流振幅的低值稱為LCL(Lower Current Level),在調變一周期中,將設為HCL的時間定義為ON時間,將設為LCL的時間定義為OFF時間。又將一周期中之ON時間的比例(ON時間/(ON時間+OFF時間)×100(%))稱為工作週期(DF)。此外,將振幅的比(LCL/HCL×100(%))稱為電流調變率(SCL)。電流調變率(SCL)表示電流振幅的調變度,100%SCL表示無調變狀態,0%SCL表示電流振幅進行最大的調變。在0%SCL,在OFF時間、亦即後述般之高頻電流的電流振幅低的區域,高頻電流的電流值為0A(安培)。
第1高頻電流的振幅調變及第2高頻電流的振幅調變,只要是如上述般第1高頻電流的調變度比第2高頻電流的調變度小即可,並沒有特別的限定,振幅調變可為0%SCL~未達100%SCL。又因為越接近0%SCL調變度越大,亦即振幅調變越大,第2高頻電流的振幅調變最佳為0%SCL。亦即較佳為,在第2高頻電流之電流振幅低的區域,電流值為0安培。 ON時間(參照圖3及圖4)為高頻電流的電流振幅高的區域,OFF時間(參照圖3及圖4)為高頻電流的電流振幅低的區域。OFF時間也稱為調變時間。此外,上述的ON時間、OFF時間及一週期都是,較佳為微秒~數秒的等級。
在電漿產生部21,例如,若第1電源部21a對第1線圈60供給振幅調變後的第1高頻電流(參照圖3),第2電源部21b對第2線圈62供給振幅調變後的第2高頻電流(參照圖4),會在電漿炬14的內部產生熱電漿火焰100。藉由對第1線圈60供給之振幅調變後的第1高頻電流及對第2線圈62供給之振幅調變後的第2高頻電流,可讓熱電漿火焰100的溫度以更大的溫差產生變動,結果可將電漿炬14內部的溫度以更大的溫差進行控制。如此,可獲得熱電漿火焰100的溫度狀態進行時間調變後之溫差大的變動溫度場,使熱電漿火焰100的溫度狀態周期性地成為高溫狀態、溫度比高溫狀態低的低溫狀態。藉由熱電漿火焰100所產生之大變動溫度場,可控制微粒子的粒徑,而能獲得粒徑小的微粒子。
電漿炬14內之壓力氣氛,是按照微粒子的製造條件而適宜地決定,例如為大氣壓以下。在此,關於大氣壓以下的氣氛並沒有特別的限定,例如可設為5Torr (666.5Pa)~750Torr(99.975kPa)。
圖1所示般的腔室16,從接近電漿炬14側起,以與電漿炬14同軸方向地安裝上游腔室16a。接下來,與上游腔室16a垂直地設置下游腔室16b,在更下游設置回收部18,回收部18具備用於捕集微粒子之所期望的過濾器18a。在製造裝置10中,微粒子的回收場所是例如過濾器18a。 腔室16是與氣體供給部22連接。藉由從氣體供給部22供給的急冷氣體,在腔室16內生成對應於原料的材料之微粒子(未圖示)。此外,腔室16具備冷卻槽的功能。
回收部18係具備:具有過濾器18a之回收室、及透過設置於該回收室內下方的管來連接之真空泵18b。來自腔室16的微粒子,藉由上述的真空泵18b進行吸引,微粒子被拉進回收室內,而以停留在過濾器18a表面的狀態將微粒子回收。
氣體供給部22,是對腔室16內的熱電漿火焰100供給急冷氣體。急冷氣體具備冷卻氣體的功能。氣體供給部22係具有:貯留氣體之氣體供給源(未圖示)、及對朝向腔室16內供給的急冷氣體施加壓力之壓縮機、鼓風機等的壓力賦予部(未圖示)。此外還設有:用於控制來自氣體供給源的氣體供給量之調整閥(未圖示)。氣體供給源是使用對應於急冷氣體的組成者,氣體的種類並不限定於1種,當急冷氣體為混合氣體的情況,是準備複數個氣體供給源。 急冷氣體只要可發揮冷卻功能即可,並沒有特別的限定。急冷氣體,例如可使用不與原料反應之氬氣、氮氣、氦氣等的惰性氣體。急冷氣體,除此以外可含有氫氣。此外,急冷氣體可含有與原料反應之反應性氣體。作為反應性氣體,例如可舉出:甲烷、乙烷、丙烷、丁烷、乙炔、乙烯、丙烯、丁烯等的碳氫化合物氣體等。
氣體供給部22,例如朝向熱電漿火焰100的尾部100b(參照圖2)、亦即與電漿氣體供給口14d為相反側之熱電漿火焰100的端、亦即熱電漿火焰100的終端部,例如以45°的角度供給急冷氣體(冷卻氣體),且是沿著腔室16的內壁從上方朝向下方供給急冷氣體(冷卻氣體)。又並不限定於朝向熱電漿火焰100的終端部供給急冷氣體。
藉由從氣體供給部22朝向腔室16內供給的急冷氣體,使藉由熱電漿火焰100成為氣相狀態的混合物急冷,而獲得對應於原料的材料之微粒子。除此以外,上述急冷氣體還具備有助於微粒子的分級等之附加作用。 若讓對應於原料之材料的微粒子剛生成後的微粒子彼此碰撞,會形成凝聚體而產生粒徑的不均一,成為品質降低的主要原因。然而,藉由朝向熱電漿火焰的尾部100b(終端部)供給急冷氣體,利用急冷氣體稀釋微粒子,可防止微粒子彼此碰撞而發生凝聚。 此外,藉由沿著腔室16的內壁面供給急冷氣體,在微粒子回收的過程中,可防止微粒子附著於腔室16的內壁,而提高所生成的微粒子之產率(yield)。
氣體供給部22朝向熱電漿火焰100之急冷氣體的供給方法沒有特別的限定,可從單一方向供給急冷氣體。此外,亦可包圍熱電漿火焰100的周圍而從複數方向供給急冷氣體。在此情況,在腔室16的外周面沿著圓周方向將複數個急冷氣體的供給口例如等間隔地設置,但並不限定於等間隔。 從複數個方向供給急冷氣體的情況,供給定時沒有特別的限定,可從複數個方向同步供給急冷氣體。除此以外,例如也能以順時針方向或逆時針方向的順序供給急冷氣體。在此情況,藉由急冷氣體在腔室16內產生迴旋流等的氣流。從複數個方向供給急冷氣體的情況,亦可不決定供給順序而隨機地供給。 如果不使用急冷氣體也能生成微粒子的話,不一定要設置氣體供給部22。當構成為沒有氣體供給部22的情況,可將製造裝置10的裝置構造簡化,且將微粒子之製造方法的工序簡化。
原料供給部12,如上述般,是朝向熱電漿火焰100供給原料者,例如供給預定量的原料,不管時間如何,都供給一定量的原料。 原料供給部12,並不限定於供給一定量的原料者,亦可將原料朝向熱電漿火焰100中的供給量進行時間調變,而將原料往熱電漿火焰100中供給。藉此,可在圖3及圖4所示的ON時間供給大量的原料。藉此,能夠大量製造更小的微粒子。在此情況,例如在供給管13設置間歇供給部15。藉由間歇供給部15,將原料進行時間調變而供給到腔室16內。原料之供給量的變化,沒有特別的限定,可為正弦波狀、三角波狀、方形波狀、鋸齒波狀,較佳為與對第1線圈60供給的第1高頻電流之振幅調變及對第2線圈62供給的第2高頻電流之振幅調變一致。亦即較佳為,用函數表示的第1高頻電流之振幅調變及第2高頻電流之振幅調變的時間變化是與原料供給量的變化相同。如此,使ON時間和原料供給之定時變得容易匹配。
間歇供給部15,例如使用連接於供給管13之螺線管閥(電磁閥)來將原料的供給量進行時間調變。藉由控制部24控制螺線管閥的開閉。除了螺線管閥以外也能使用球閥。在此情況也是,藉由控制部24控制球閥的開閉。藉由控制部24,例如以在ON時間將原料供給量增多且在OFF時間將原料供給量減少的模式,將原料的供給量進行時間調變。藉此,能大量製造更小的微粒子。因此,原料的供給較佳為,在ON時間將原料的供給量增多,在OFF時間將原料的供給量減少。如此般,藉由在ON時間供給原料,能讓大量的原料蒸發,結果,微粒子的大量生成成為可能,能提高生產率,可效率良好地大量製造微粒子。
接下來,針對使用上述製造裝置10的微粒子之製造方法,以金屬微粒子為例來做說明。 首先,作為金屬微粒子之原料的粉末,將例如體積平均粒徑30μm以下的Si粉末投入原料供給部12。 電漿氣體是使用例如氬氣。藉由第1電源部21a將振幅調變後的第1高頻電流往第1線圈60供給。藉由第2電源部21b將振幅調變後的第2高頻電流往第2線圈62供給。藉此,在電漿炬14的內部產生熱電漿火焰100。對第1線圈60供給之第1高頻電流的振幅調變是例如90%SCL,對第2線圈62供給之第2高頻電流的振幅調變是例如0%SCL,調變周期為15ms,ON時間10ms,OFF時間5ms。
接下來,作為載體氣體,例如使用氬氣將Si粉末進行氣體搬運,透過供給管13往電漿炬14內部之熱電漿火焰100中供給(第1工序)。所供給的Si粉末,在熱電漿火焰100中蒸發而成為氣相狀態的混合物45(參照圖2)。將氣相狀態的混合物45(參照圖2)冷卻(第2工序)。藉此獲得Si微粒子(金屬微粒子)。 而且,在腔室16內獲得的Si微粒子,藉由真空泵18b所產生之來自回收部18的負壓(吸引力),而由回收部18的過濾器18a捕集。 如上述般,因為可使熱電漿火焰100在穩定狀態下周期性地成為高溫狀態、和溫度比高溫狀態低的低溫狀態,可控制微粒子的粒徑,且能獲得粒徑均一性良好的微粒子。
又上述氣相狀態的混合物45(參照圖2)之冷卻(第2工序),沒有特別的限定,亦可為不使用急冷氣體等的冷卻介質而讓其冷卻之自然冷卻。不使用急冷氣體的情況,藉由將第2高頻電流的SCL值減小,亦即藉由將第2高頻電流的調變度增大,因為可維持ON時間之熱電漿火焰100的溫度並降低OFF時間之熱電漿火焰100的溫度,縱使不進行使用急冷氣體的冷卻,仍能獲得更小尺寸的Si微粒子(金屬微粒子)。在此情況,可將微粒子之製造方法的工序簡化。 此外,也能從氣體供給部22朝向熱電漿火焰100的尾部100b(參照圖2)、亦即熱電漿火焰100的終端部,供給作為急冷氣體之例如氬氣,而將混合物45(參照圖2)急冷。藉此,讓熱電漿火焰100急冷而生成Si微粒子(金屬微粒子),這時,在腔室16內產生溫度低的區域,而獲得更小的Si微粒子(金屬微粒子)。
在將Si粉末往電漿炬14內部之熱電漿火焰100中供給時,如上述般較佳為,在ON時間將Si粉末的供給量增多,在OFF時間將Si粉末的供給量減少。此外亦可為,在ON時間供給Si粉末,在OFF時間不進行Si粉末的供給。不管是哪個情況,從螺線管閥開啟到實際搬運原料而使熱電漿火焰100中的原料供給量變多為止要花時間,因此必須預估此搬運時間所耗費的時間來控制螺線管閥等。 在此,圖5(a)顯示第1高頻電流及第2高頻電流之波形的一例的圖形,圖5(b)顯示閥的開閉定時的圖形,圖5(c)顯示原料供給的圖形。
在本實施形態,例如根據第1線圈60之矩形波振幅調變後的波形信號80(參照圖5(a))及第2線圈62之矩形波振幅調變後的波形信號82(參照圖5(a)),考慮搬運時間來決定閥的開閉定時,獲得圖5(b)所示之閥的開閉之定時信號84,藉此將閥以既定的時間間隔進行開閉。結果,依圖5(c)所示的波形86,例如,在ON時間將原料粉末往電漿炬14內供給,結果可將原料間歇地供給。 較佳為,將朝向第1線圈60及第2線圈62之平均輸入電力分別設為一定,並進行振幅調變。此外,例如,電漿炬之內部的壓力在微粒子之製造中設為一定。
依據上述說明,藉由振幅調變後的第1高頻電流及振幅調變後的第2高頻電流,可形成熱電漿火焰100所產生之溫差大的變動溫度場,藉由在ON時間投入原料,可進行原料之更完全的蒸發。進而,在ON時間附近投入的原料,比起無調變狀態時是被進一步急冷,因此進一步抑制處於成長階段之粒子的成長是可期待的。因此,藉由將第1高頻電流及第2高頻電流進行振幅調變,可實行高效率的奈米粒子生成程序。再者,藉由將第2高頻電流的SCL值設定為比第1高頻電流的SCL值小,能使熱電漿火焰之變動溫度場的溫度在OFF時間變得更低,可謀求更確實的蒸發及處於成長階段之粒子之高效率的冷卻。如此,可獲得更小的微粒子。
本實施形態的製造裝置10,在原料例如使用Si粉體,可製造出奈米尺寸的Si微粒子。但並不限定於此,也能使用其他元素的粒子作為微粒子製造用的原料,來進行其氧化物、金屬、氮化物、碳化物等之微粒子的製造。在此情況,縱使漿體化也能進行微粒子之製造。
原料是粉末的情況,是以可在熱電漿火焰中輕易蒸發的方式將其平均粒徑適宜地設定,關於平均粒徑,例如依BET比表面積換算的粒徑為100μm以下,較佳為10μm以下,更佳為5μm以下。 例如,作為原料,只要是可藉由熱電漿火焰讓其蒸發者即可,其種類不拘,較佳為以下者。亦即,可適當地選擇:包含選自由原子序3~6、11~15、19~34、37~52、55~60、62~79及81~83的元素所組成的群中之至少1種的單體氧化物、複合氧化物、複氧化物、氧化物固溶體、金屬、合金、氫氧化物、碳酸化合物、鹵化物、硫化物、氮化物、碳化物、氫化物、金屬鹽或金屬有機化合物。
單體氧化物是指由氧以外的1種元素所構成之氧化物,複合氧化物是指複數種氧化物所構成者,複氧化物是指2種以上的氧化物所構成之高級氧化物,氧化物固溶體是指不同氧化物互相均一地溶解而成之固體。此外,金屬是指僅由1種以上的金屬元素所構成者,合金是指由2種以上的金屬元素所構成者。作為合金的組織狀態包含:成為固溶體、共晶混合物、金屬間化合物或是其等的混合物的情況。
此外,氫氧化物是指羥基和1種以上的金屬元素所構成者,碳酸化合物是指碳酸基和1種以上的金屬元素所構成者,鹵化物是指鹵素元素和1種以上的金屬元素所構成者,硫化物是指硫和1種以上的金屬元素所構成者。此外,氮化物是指氮和1種以上的金屬元素所構成者,碳化物是指碳和1種以上的金屬元素所構成者,氫化物是指氫和1種以上的金屬元素所構成者。此外,金屬鹽是指含有至少1種以上的金屬元素之離子性化合物,金屬有機化合物是指含有1種以上的金屬元素和至少C、O、N元素中任一者的鍵結之有機化合物,可舉出金屬烷氧化物及有機金屬錯合物等。
例如,作為單體氧化物,可舉出:二氧化鈦(TiO2 )、二氧化鋯(ZrO2 )、氧化鈣(CaO)、二氧化矽(SiO2 )、氧化鋁(Alumina:Al2 O3 )、氧化銀(Ag2 O)、氧化鐵、氧化鎂(MgO)、氧化錳(Mn3 O4 )、氧化釔(Y2 O3 )、氧化鈰、氧化釤、氧化鈹(BeO)、氧化釩(V2 O5 )、氧化鉻(Cr2 O3 )、氧化鋇(BaO)等。
此外,作為複合氧化物,可舉出:偏鋁酸鋰(LiAlO2 )、釩酸釔、磷酸鈣、鋯酸鈣(CaZrO3 )、鋯鈦酸鉛、鈦酸亞鐵(FeTiO3 )、鈦酸鈷(CoTiO3 )等。作為複氧化物 可舉出:錫酸鋇(BaSnO3 )、鈦酸鋇(BaTiO3 )、鈦酸鉛(PbTiO3 )、讓二氧化鋯及氧化鈣溶入鈦酸鋇而成之固溶體等。 再者,作為氧化物可舉Zr(OH)4 ,作為碳酸化合物可舉CaCO3 ,作為鹵化物可舉MgF2 ,作為硫化物可舉ZnS,作為氮化物可舉TiN,作為碳化物可舉SiC,作為氫化物可舉TiH2 等。
針對使用上述圖1所示的製造裝置10的微粒子之製造,做更具體的說明。 朝向第1線圈及第2線圈之時間平均輸入電力分別設為10kW。此外,將第1線圈之高頻電流的頻率設為460kHz,將第2線圈之高頻電流的頻率設為320kHz。 將第1高頻電流及第2高頻電流進行矩形波振幅調變。表示調變度的SCL,在第1高頻電流設定為90%,在第2高頻電流設定為0%。調變周期為15ms,ON時間為10ms,OFF時間為5ms。工作週期(DF)%為66%。
將電漿炬內的壓力設為300Torr(約40kPa)。作為鞘流氣體,是將Ar氣體以90公升/分的流量導入。此外,使用Ar氣體(載體氣體)將Si原料粉體以4公升/分的流量往熱電漿火焰供給。又並未使用急冷氣體。 Si原料粉體是使用體積平均粒徑26μm的Si粉體(純度97%)。關於Si原料粉體的供給,在第1高頻電流(調變電流)及第2高頻電流(調變電流)的調變,是讓螺線管閥與ON時間同步,將Si原料粉體以供給量3.0g/分間歇地投入。以下稱為例1。
又為了比較,不讓第1線圈的高頻電流進行振幅調變而設為100%SCL,讓第2線圈的高頻電流進行振幅調變而設為0%SCL,將Si原料粉體的供給量設為1.5g/分,除此以外是依與上述例1相同的條件製造微粒子。以下稱為例2。 進而,為了比較,是讓第1線圈及第2線圈的高頻電流都不進行振幅調變,亦即設為100%SCL,將Si原料粉體的供給量設為2.8g/分,除此以外是依與上述例1相同的條件製造微粒子。以下稱為例3。
針對上述例1~例3的各微粒子,求出粒徑分布。關於粒徑分布,是取得所製造之複數個微粒子之SEM圖像,從複數個微粒子之SEM圖像任意選出300個微粒子。根據SEM圖像測定所選出之各微粒子的粒徑,根據各微粒子的粒徑獲得粒徑分布。根據所獲得的微粒子之粒徑分布來求出微粒子的平均粒徑、標準偏差。結果如圖6所示。微粒子的平均粒徑是任意選出的300個微粒子之直徑的平均值。標準偏差是根據任意選出的300個微粒子的直徑所得出。
圖6的符號90a表示例1的平均粒徑d,符號90b表示例2的平均粒徑d,符號90c表示例3的平均粒徑d。符號92a表示例1的粒徑分布之標準偏差σ,符號92b表示例2的粒徑分布之標準偏差σ,符號92c表示例3的粒徑分布之標準偏差σ。例1的平均粒徑d為63.0nm,標準偏差σ為38.5nm;例2的平均粒徑d為72.5nm,標準偏差σ為44.5nm;例3的平均粒徑d為82.7nm,標準偏差σ為68.3nm。
如圖6所示般,將第1高頻電流及第2高頻電流進行振幅調變後的例1,平均粒徑及標準偏差小。不讓第1高頻電流進行振幅調變而僅將第2高頻電流進行振幅調變後的例2,平均粒徑及標準偏差比例1大,但比例3小。第1高頻電流及第2高頻電流都不進行振幅調變之例3,平均粒徑及標準偏差比例2更大。 例1和例3之Si原料粉體的供給量大致相同,但例2之Si原料粉體的供給量為例1的一半而較少。一般而言,若原料粉體的供給量減少,有粒徑變小的傾向。然而,相較於例1,例2之平均粒徑大且標準偏差也大。此外,在例1,縱使Si原料粉體的供給量比例2更多仍可完成微粒子的製造,因此例1的生產性高。
針對例1~例3的各微粒子,使用XRD(X射線繞射法)實施結晶構造的解析。結果如圖7所示。又在圖7中,符號94表示例1的XRD圖譜,符號96表示例2的XRD圖譜,符號98表示例3的XRD圖譜。 根據圖7所示之基於X射線繞射法(XRD)之結晶構造的解析結果,例1~例3都是由Si所構成。 此外,例1的微粒子之SEM圖像顯示於圖8,例2的微粒子之SEM圖像顯示於圖9,例3的微粒子之SEM圖像顯示於圖10。圖8及圖9的倍率為100000倍,圖10的倍率為95000倍。
如圖8及圖10所示般,相較於例3的微粒子,例1的微粒子之粒徑小,且例1之粗大粒子少,微粒子均一。 如圖8及圖9所示般,相較於例2的微粒子,例1的微粒子之粒徑小,且例1之粗大粒子少,微粒子均一。 在例2的微粒子和例3的微粒子,例2的微粒子僅將第2高頻電流實施振幅調變,其粒徑是比例3的微粒子小,且例2之粗大粒子少。
本發明基本上是如以上般構成。以上是針對本發明的微粒子之製造裝置及微粒子之製造方法做詳細地說明,但本發明並不限定於上述實施形態,在不脫離本發明的主旨之範圍內,當然可進行各種的改良或變更。
10:微粒子之製造裝置(製造裝置) 12:原料供給部 13:供給管 14:電漿炬 14a:石英管 14b:高頻振盪用線圈 14c:供給口 14d:電漿氣體供給口 14e:石英管 14f:冷卻水 15:間歇供給部 16:腔室 16a:上游腔室 16b:下游腔室 18:回收部 18a:過濾器 18b:真空泵 20:電漿氣體供給部 21:電漿產生部 21a:第1電源部 21b:第2電源部 22:氣體供給部 24:控制部 45:混合物 60:第1線圈 62:第2線圈 80,82:波形信號 84:定時信號 86:波形 90a:例1的平均粒徑 90b:例2的平均粒徑 90c:例3的平均粒徑 92a:例1的粒徑分布之標準偏差 92b:例2的粒徑分布之標準偏差 92c:例3的粒徑分布之標準偏差 94:例1的XRD圖譜 96:例2的XRD圖譜 98:例3的XRD圖譜 100:熱電漿火焰 100b:尾部
[圖1]係顯示本發明的實施形態的微粒子之製造裝置的一例之示意圖。 [圖2]係顯示本發明的實施形態的微粒子之製造裝置之電漿炬的一例之示意的局部剖面圖。 [圖3]係顯示第1電源部之高頻電流之波形的一例之示意圖。 [圖4]係顯示第2電源部之高頻電流之波形的一例之示意圖。 [圖5(a)]係顯示第1高頻電流及第2高頻電流之波形的一例的圖形,[圖5(b)]係顯示閥的開閉定時的圖形,[圖5(c)]係顯示原料供給的圖形。 [圖6]係顯示例1~例3的平均粒徑及粒徑分布之標準偏差。 [圖7]係顯示例1~例3之基於X射線繞射法的結晶構造之解析結果。 [圖8]係顯示例1之微粒子的SEM圖像之示意圖。 [圖9]係顯示例2之微粒子的SEM圖像之示意圖。 [圖10]係顯示例3之微粒子的SEM圖像之示意圖。
10:微粒子之製造裝置(製造裝置)
12:原料供給部
13:供給管
14:電漿炬
14b:高頻振盪用線圈
15:間歇供給部
16:腔室
16a:上游腔室
16b:下游腔室
18:回收部
18a:過濾器
18b:真空泵
20:電漿氣體供給部
21:電漿產生部
21a:第1電源部
21b:第2電源部
22:氣體供給部
24:控制部
45:混合物
60:第1線圈
62:第2線圈
100:熱電漿火焰

Claims (14)

  1. 一種微粒子之製造裝置,係具有原料供給部、電漿炬、及電漿產生部, 前述原料供給部是將微粒子製造用的原料往熱電漿火焰中供給; 前述電漿炬,是在內部讓前述熱電漿火焰產生,利用前述熱電漿火焰讓藉由前述原料供給部供給的前述原料蒸發而成為氣相狀態的混合物; 前述電漿產生部是在前述電漿炬的前述內部讓前述熱電漿火焰產生; 前述電漿產生部係具有:包圍前述電漿炬的周圍之第1線圈、設置在前述第1線圈的下方且包圍前述電漿炬的周圍之第2線圈、對前述第1線圈供給振幅調變後的第1高頻電流之第1電源部、及對前述第2線圈供給振幅調變後的第2高頻電流之第2電源部,前述第1線圈和前述第2線圈是沿著前述電漿炬的長度方向配置,前述第1高頻電流的調變度比前述第2高頻電流的調變度小。
  2. 如請求項1所述的微粒子之製造裝置, 其係具有氣體供給部,該氣體供給部是對前述熱電漿火焰供給急冷氣體。
  3. 如請求項1所述的微粒子之製造裝置, 前述電漿產生部,是將基於前述第1電源部往前述第1線圈之前述第1高頻電流和基於前述第2電源部往前述第2線圈之前述第2高頻電流以相同的定時供給, 前述原料供給部,在對前述第1線圈供給之前述第1高頻電流的電流振幅高及對前述第2線圈供給之前述第2高頻電流的電流振幅高的區域,將前述原料的供給量增多。
  4. 如請求項2所述的微粒子之製造裝置, 前述電漿產生部,是將基於前述第1電源部往前述第1線圈之前述第1高頻電流和基於前述第2電源部往前述第2線圈之前述第2高頻電流以相同的定時供給, 前述原料供給部,在對前述第1線圈供給之前述第1高頻電流的電流振幅高及對前述第2線圈供給之前述第2高頻電流的電流振幅高的區域,將前述原料的供給量增多。
  5. 如請求項1至4之任一項所述的微粒子之製造裝置,其中, 對前述第2線圈供給之前述振幅調變後的前述第2高頻電流,在前述第2高頻電流之電流振幅低的區域,其電流值為0安培。
  6. 如請求項1至4之任一項所述的微粒子之製造裝置,其中, 前述原料供給部,是將前述原料以分散成粒子狀的狀態往前述熱電漿火焰中供給。
  7. 如請求項1至4之任一項所述的微粒子之製造裝置,其中, 前述原料供給部,是讓前述原料分散於液體而成為漿體,並將前述漿體液滴化而往前述熱電漿火焰中供給。
  8. 一種微粒子之製造方法,係使用在電漿炬的內部所產生的熱電漿火焰之微粒子之製造方法, 係設有:包圍前述電漿炬的周圍之第1線圈、設置在前述第1線圈的下方且包圍前述電漿炬的周圍之第2線圈、對前述第1線圈供給振幅調變後的第1高頻電流之第1電源部、及對前述第2線圈供給振幅調變後的第2高頻電流之第2電源部,前述第1線圈和前述第2線圈是沿著前述電漿炬的長度方向配置,藉由前述第1電源部及前述第2電源部讓前述熱電漿火焰產生, 前述微粒子之製造方法具有第1工序及第2工序, 前述第1工序,是朝向在前述電漿炬的前述內部所產生之前述熱電漿火焰供給微粒子製造用的原料, 前述第2工序,是利用前述熱電漿火焰讓前述原料蒸發而成為氣相狀態的混合物,並將前述混合物冷卻, 在前述第1工序及前述第2工序中,前述第1電源部是對前述第1線圈供給振幅調變後的第1高頻電流,前述第2電源部是對前述第2線圈供給振幅調變後的第2高頻電流,前述第1高頻電流的調變度比前述第2高頻電流的調變度小。
  9. 如請求項8所述的微粒子之製造方法,其中, 前述第2工序,是朝向前述熱電漿火焰供給急冷氣體,而將氣相狀態的前述混合物冷卻。
  10. 如請求項8所述的微粒子之製造方法,其中, 在前述第1工序,將基於前述第1電源部往前述第1線圈之前述第1高頻電流和基於前述第2電源部往前述第2線圈之前述第2高頻電流以相同的定時供給,在對前述第1線圈供給之前述第1高頻電流的電流振幅高及對前述第2線圈供給之前述第2高頻電流的電流振幅高的區域,將前述原料的供給量增多。
  11. 如請求項9所述的微粒子之製造方法,其中, 在前述第1工序,將基於前述第1電源部往前述第1線圈之前述第1高頻電流和基於前述第2電源部往前述第2線圈之前述第2高頻電流以相同的定時供給,在對前述第1線圈供給之前述第1高頻電流的電流振幅高及對前述第2線圈供給之前述第2高頻電流的電流振幅高的區域,將前述原料的供給量增多。
  12. 如請求項8至11之任一項所述的微粒子之製造方法,其中, 對前述第2線圈供給之前述振幅調變後的前述第2高頻電流,在前述第2高頻電流之電流振幅低的區域,其電流值為0安培。
  13. 如請求項8至11之任一項所述的微粒子之製造方法,其中, 在前述第1工序,是將前述原料以分散成粒子狀的狀態往前述熱電漿火焰中供給。
  14. 如請求項8至11之任一項所述的微粒子之製造方法,其中, 在前述第1工序,是讓前述原料分散於液體而成為漿體,並將前述漿體液滴化而往前述熱電漿火焰中供給。
TW109118569A 2019-06-05 2020-06-03 微粒子之製造裝置及微粒子之製造方法 TW202102301A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019105218 2019-06-05
JP2019-105218 2019-06-05

Publications (1)

Publication Number Publication Date
TW202102301A true TW202102301A (zh) 2021-01-16

Family

ID=73653321

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109118569A TW202102301A (zh) 2019-06-05 2020-06-03 微粒子之製造裝置及微粒子之製造方法

Country Status (7)

Country Link
US (1) US11986885B2 (zh)
JP (1) JP7470945B2 (zh)
KR (1) KR20220016841A (zh)
CN (1) CN113924162A (zh)
CA (1) CA3140013A1 (zh)
TW (1) TW202102301A (zh)
WO (1) WO2020246551A1 (zh)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6693253B2 (en) * 2001-10-05 2004-02-17 Universite De Sherbrooke Multi-coil induction plasma torch for solid state power supply
CN1297781C (zh) * 2004-04-14 2007-01-31 中国科学院广州能源研究所 一种利用高频等离子体处理固体有机废弃物的方法
JP4988164B2 (ja) 2005-03-08 2012-08-01 株式会社日清製粉グループ本社 微粒子の製造方法と装置
CA2771947C (en) 2004-09-07 2014-05-20 Nisshin Seifun Group Inc. Process and apparatus for producing fine particles
JP2010131577A (ja) * 2008-10-30 2010-06-17 Kanazawa Univ 微粒子の製造方法およびその製造装置
KR101785440B1 (ko) 2009-03-24 2017-11-06 테크나 플라즈마 시스템 인코포레이티드 나노분말의 합성 및 재료 가공용 플라즈마 반응기
JP5564370B2 (ja) * 2010-09-09 2014-07-30 株式会社日清製粉グループ本社 微粒子の製造装置および微粒子の製造方法
JP2016054041A (ja) * 2014-09-03 2016-04-14 株式会社島津製作所 高周波電源装置
JP2017105680A (ja) 2015-12-11 2017-06-15 国立大学法人金沢大学 ナノワイヤの製造方法
US20180324937A1 (en) * 2017-05-08 2018-11-08 Baruch Boris Gutman Shock wave nano-technology method
KR102636490B1 (ko) * 2018-05-11 2024-02-13 가부시키가이샤 닛신 세이훈 구루프혼샤 미립자의 제조 방법 및 미립자의 제조 장치

Also Published As

Publication number Publication date
KR20220016841A (ko) 2022-02-10
US11986885B2 (en) 2024-05-21
US20220219236A1 (en) 2022-07-14
CA3140013A1 (en) 2020-12-10
WO2020246551A1 (ja) 2020-12-10
JP7470945B2 (ja) 2024-04-19
JPWO2020246551A1 (zh) 2020-12-10
CN113924162A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
US7828999B2 (en) Process and apparatus for producing fine particles
JP3383608B2 (ja) ナノ結晶性材料を合成するための装置
JP4988164B2 (ja) 微粒子の製造方法と装置
JP4794869B2 (ja) 微粒子の製造方法
RU2489232C1 (ru) Способ получения наноразмерного порошка металла
US20230032362A1 (en) Lithium lanthanum zirconium oxide (llzo) materials
JP7223379B2 (ja) 微粒子の製造装置および微粒子の製造方法
JP4140324B2 (ja) 金属ホウ化物粉末及びその製造方法
TWI543200B (zh) 金屬粉末之製造方法、藉以製得之金屬粉末、導電糊及多層陶瓷電子組件
TW202102301A (zh) 微粒子之製造裝置及微粒子之製造方法
KR100480393B1 (ko) 입자크기와 응집상태를 조절할 수 있는 고순도의 나노 및서브미크론 입자의 기상 제조방법
CN113543876B (zh) 微粒子的制造装置以及微粒子的制造方法
TW202033273A (zh) 微粒子的製造裝置以及微粒子的製造方法
JP4360070B2 (ja) 高結晶性複酸化物粉末の製造方法
JP2024079091A (ja) 酸化亜鉛微粒子の製造方法