TW202100719A - 波長轉換構件及其製造方法、與發光裝置 - Google Patents

波長轉換構件及其製造方法、與發光裝置 Download PDF

Info

Publication number
TW202100719A
TW202100719A TW109112930A TW109112930A TW202100719A TW 202100719 A TW202100719 A TW 202100719A TW 109112930 A TW109112930 A TW 109112930A TW 109112930 A TW109112930 A TW 109112930A TW 202100719 A TW202100719 A TW 202100719A
Authority
TW
Taiwan
Prior art keywords
wavelength conversion
conversion member
thermally conductive
conductive particles
light
Prior art date
Application number
TW109112930A
Other languages
English (en)
Other versions
TWI830902B (zh
Inventor
福本彰太郎
藤田俊輔
Original Assignee
日商日本電氣硝子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本電氣硝子股份有限公司 filed Critical 日商日本電氣硝子股份有限公司
Publication of TW202100719A publication Critical patent/TW202100719A/zh
Application granted granted Critical
Publication of TWI830902B publication Critical patent/TWI830902B/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0087Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for illuminating phosphorescent or fluorescent materials, e.g. using optical arrangements specifically adapted for guiding or shaping laser beams illuminating these materials

Abstract

本發明之目的在於提供一種能夠抑制波長轉換構件之溫度上升而抑制經時性之發光強度之降低或構成材料之變形、變色的波長轉換構件及其製造方法、與發光裝置。 本發明之波長轉換構件10之特徵在於:其係具備導熱性粒子1及螢光體粒子4之波長轉換構件,且導熱性粒子1包含平均粒徑相互不同之兩種導熱性粒子1。

Description

波長轉換構件及其製造方法、與發光裝置
本發明係關於一種將發光二極體(LED:Light Emitting Diode)或雷射二極體(LD:Laser Diode)等所發出之光之波長轉換成其他波長之波長轉換構件及其製造方法、與發光裝置。
就低耗電、小型輕量、容易光量調節之觀點而言,使用LED或LD之發光裝置受到注目。例如,LED上配置有吸收來自LED之光之一部分之波長轉換構件的發光裝置發出LED所出射之激發光(例如藍色光)與波長轉換構件所出射之轉換光(例如黃色光)之合成光(例如白色光)。作為波長轉換構件,例如揭示有使螢光體粒子於樹脂基質或玻璃基質中分散固定而成者(專利文獻1~3)。 [先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開2000-208815號公報 [專利文獻2]日本專利特開2003-258308號公報 [專利文獻3]日本專利第4895541號公報
[發明所欲解決之問題]
近年,隨著發光裝置之高功率化,激發光之強度正在逐步提高。當被照射高強度之激發光時,螢光體粒子所發出之熱之強度增加,波長轉換構件容易具有過量之熱。於先前之波長轉換構件中,有因該過量之熱,而容易產生發光強度之經時性之降低(溫度淬滅)或構成材料之變形、變色等問題。
鑒於以上內容,本發明之目的在於提供一種能夠抑制波長轉換構件之溫度上升而抑制經時性之發光強度之降低或構成材料之變形、變色的波長轉換構件及其製造方法、與發光裝置。 [解決問題之技術手段]
本發明之波長轉換構件之特徵在於:其係具備導熱性粒子及螢光體粒子者,且導熱性粒子包含平均粒徑相互不同之兩種導熱性粒子。
於上述構成之中,導熱性粒子包含平均粒徑相互不同之兩種。藉由如上所述存在粒徑不同之導熱性粒子,導熱性粒子容易密集存在於波長轉換構件內,當向波長轉換構件照射激發光時,容易使螢光體粒子所發出之熱有效率地向外部釋出。結果,容易抑制發光強度之經時性之降低(溫度淬滅)或構成材料之變形、變色。
本發明之波長轉換構件較佳為導熱性粒子與螢光體粒子之燒結體。
本發明之波長轉換構件較佳為導熱性粒子包含大粒徑導熱性粒子及小粒徑導熱性粒子,且大粒徑導熱性粒子之平均粒徑D與小粒徑導熱性粒子之平均粒徑d滿足下述之條件(A)及(B)。 (A)0.5 μm≦D≦50 μm (B)0.0001≦d/D≦0.1
本發明之波長轉換構件較佳為大粒徑導熱性粒子之平均粒徑D與螢光體粒子之平均粒徑DP 滿足下述之條件(C)。 (C)0.1≦DP /D≦10
本發明之波長轉換構件較佳為波長轉換構件中大粒徑導熱性粒子所占之含量V與螢光體粒子所占之含量VP 滿足下述之條件(D)。 (D)50%≦VP +V≦90%
本發明之波長轉換構件較佳為導熱性粒子包含氧化物。
本發明之波長轉換構件較佳為導熱性粒子為氧化鎂。
本發明之波長轉換構件較佳為螢光體粒子之含量VP 以體積%計為0.01~80%。
本發明之波長轉換構件之特徵在於:其係用於將自光源出射之激發光之波長進行轉換者,且透過波長轉換構件之激發光與轉換激發光之波長而發出之光的合成光於全光線中之色度Cx與色度Cy之偏差之和為0.03以下。
本發明之波長轉換構件之製造方法之特徵在於:其係上述波長轉換構件之製造方法,且具備將包含平均粒徑相互不同之兩種導熱性粒子之導熱性粒子、及螢光體粒子加以混合並進行煅燒之步驟。
本發明之波長轉換構件之製造方法較佳為藉由加熱壓製進行煅燒。
本發明之波長轉換構件之製造方法較佳為煅燒時之最高溫度為1300℃以下。
本發明之波長轉換構件之製造方法較佳為於惰性氣氛、還原氣氛或真空氣氛下進行煅燒。
本發明之發光裝置之特徵在於具備上述波長轉換構件、及對波長轉換構件照射激發光之光源。
本發明之發光裝置較佳為光源為雷射二極體。 [發明之效果]
根據本發明,可提供一種能夠抑制波長轉換構件之溫度上升而抑制經時性之發光強度之降低或構成材料之變形、變色的波長轉換構件及其製造方法、與發光裝置。
以下,使用圖式對本發明之實施形態詳細地進行說明。但本發明不受以下之實施形態任何限定。
圖1係表示本發明之波長轉換構件之一實施形態之模式剖視圖。波長轉換構件10具備導熱性粒子1及螢光體粒子4。導熱性粒子1包含平均粒徑相互不同之兩種導熱性粒子即大粒徑導熱性粒子2、及小粒徑導熱性粒子3。小粒徑導熱性粒子3存在於大粒徑導熱性粒子2彼此之間、或大粒徑導熱性粒子2與螢光體粒子4之間。以下,對各構成要素詳細地進行說明。
(導熱性粒子1) 導熱性粒子1較佳為包含氧化物,特佳為包含導熱性較高之金屬氧化物。具體而言,較佳為氧化鋁、氧化鎂、氧化鋅,特佳為氧化鎂。其中,氧化鎂由於具有較高之熱導率(45~60 W・m-1 ・K-1 ),故而容易使螢光體粒子4所產生之熱有效地向外部釋出。又,於下述螢光體粒子4之激發光波長區域(例如,300~500 nm)及發光波長區域(例如,380~780 nm)中之光吸收較少,不易使波長轉換構件10之光提取效率降低。再者,該等可單獨使用,亦可組合兩種以上使用。
導熱性粒子1之熱導率較佳為15 W・m-1 ・K-1 以上,更佳為20 W・m-1 ・K-1 以上,特佳為30 W・m-1 ・K-1 以上。若如此,則容易使螢光體粒子4所發出之熱有效地向外部釋出。
導熱性粒子1包含平均粒徑相互不同之兩種導熱性粒子。具體而言,包含大粒徑導熱性粒子2及小粒徑導熱性粒子3。大粒徑導熱性粒子2及小粒徑導熱性粒子3較佳為包含相同氧化物。例如,於大粒徑導熱性粒子2為氧化鎂之情形時,小粒徑導熱性粒子3亦較佳為氧化鎂。若如此,則於對波長轉換構件10照射激發光之情形時,於大粒徑導熱性粒子2與小粒徑導熱性粒子3之界面,不易產生因熱膨脹之不同所導致之開裂。又,由於不存在兩者之折射率之差,故而能夠抑制兩者之界面所產生之過量之光散射。進而,當藉由煅燒製造波長轉換構件10時,兩者相互結著,從而容易獲得由緻密之燒結體所形成之波長轉換構件10。
波長轉換構件10整體中大粒徑導熱性粒子2所占之含量V以體積%計較佳為0.01~80%、0.1~75%、1~70%、5~60%、特佳為10~50%。若含量V過多,則難以使小粒徑導熱性粒子3進入大粒徑導熱性粒子2與螢光體粒子4之間,不易緻密化。其結果,不易使螢光體粒子4所產生之熱向外部釋出。即便含量V過少,亦由於由大粒徑導熱性粒子2所得之導熱通道減少,故而不易使螢光體粒子4所產生之熱向外部釋出。
波長轉換構件10整體中小粒徑導熱性粒子3所占之含量Vs 以體積%計特佳為0.01~50%、0.1~40%、1~30%、5~30%、10~30%。若含量Vs 過多,則由於大粒徑導熱性粒子2與螢光體粒子4之間之距離變遠,故而不易使螢光體粒子4所產生之熱向外部釋出。若含量Vs 過少,則小粒徑導熱性粒子3無法充分存在於大粒徑導熱性粒子2及螢光體粒子4之間隙,從而不易使螢光體粒子4所產生之熱向外部釋出。
大粒徑導熱性粒子2之平均粒徑D與小粒徑導熱性粒子3之平均粒徑d較佳為滿足下述之條件(A)及(B)。若如此,則大粒徑導熱性粒子2與小粒徑導熱性粒子3容易相互密集地存在於波長轉換構件10內,從而容易使螢光體粒子4所產生之熱向外部釋出。再者,於本發明中,平均粒徑意指藉由雷射繞射法測得之值,表示藉由雷射繞射法進行測定時之體積基準之累積粒度分佈曲線中,其累計量自粒子較小者開始累積為50%之粒徑。再者,於本發明中,各粒子之粒度分佈原則上視為具有單峰性之分佈形狀者。即,具有雙峰性分佈形狀之粒子視為兩種以上單峰性粒度分佈形狀混合所得者,峰分離後,對每個分佈計算平均粒徑。
(條件A) 大粒徑導熱性粒子2之平均粒徑D較佳為0.5 μm≦D≦50 μm,更佳為1 μm≦D≦40 μm,進而較佳為3 μm≦D≦30 μm,特佳為5 μm≦D≦10 μm。若平均粒徑D過大,則螢光體粒子4容易分佈不均,從而容易產生色不均。若平均粒徑D過小,則大粒徑導熱性粒子2之內部之熱通道之路徑變短,從而難以形成充分之熱通道。
(條件B) 大粒徑導熱性粒子2之平均粒徑D與小粒徑導熱性粒子3之平均粒徑d之粒徑比d/D較佳為0.0001≦d/D≦0.1,更佳為0.0005≦d/D≦0.05,特佳為0.001≦d/D≦0.01。若粒徑比d/D過大,則小粒徑導熱性粒子3難以充分存在於由大粒徑導熱性粒子2及螢光體粒子4所形成之間隙,從而不易使螢光體粒子4所產生之熱向外部釋出。若粒徑比d/D過小,則小粒徑導熱性粒子3彼此容易發生凝集,小粒徑導熱性粒子3難以充分存在於由大粒徑導熱性粒子2及螢光體粒子4所形成之間隙,從而不易使螢光體粒子4所產生之熱向外部釋出。
(螢光體粒子4) 螢光體粒子4較佳為於波長300~500 nm具有激發帶,於波長380~780 nm具有發光峰之無機螢光體。例如可使用氧化物螢光體、氮化物螢光體、氮氧化物螢光體、氯化物螢光體、氧氯化物螢光體、鹵化物螢光體、鋁酸鹽螢光體及鹵磷酸鹽螢光體。尤其是氧化物螢光體、氮氧化物螢光體耐熱性較高,煅燒時不易劣化而較佳。具體而言,較佳為使用包含YAG(釔-鋁-石榴石)螢光體之石榴石系陶瓷螢光體粒子、包含α-SiAlON螢光體及β-SiAlON螢光體之以SiAlON作為主成分之螢光體。特佳為使用包含YAG(釔-鋁-石榴石)螢光體粒子之石榴石系陶瓷螢光體粒子。再者,亦可根據激發光或發光之波長區域,混合複數種螢光體粒子4使用。
螢光體粒子4之平均粒徑DP 較佳為0.1~50 μm,更佳為1~30 μm,特佳為3~20 μm。若平均粒徑DP 過小,則製造時螢光體粒子4容易凝集,波長轉換構件10之發光色容易變得不均勻。又,螢光體粒子4自身之發光效率容易變低,從而降低波長轉換構件10之亮度。即便平均粒徑DP 過大,波長轉換構件10之發光色亦容易變得不均勻。再者,LD由於激發光之光點大小較小,且指向性較強,故而於將波長轉換構件10用於以LD作為光源之發光裝置之情形時,容易發生激發光未照到螢光體粒子4而透過之現象。因此,當將波長轉換構件10用於以LD作為光源之發光裝置時,螢光體粒子4之平均粒徑較佳為15 μm以下,特佳為10 μm以下。
波長轉換構件10整體中螢光體粒子4所占之含量Vp 以體積%計較佳為0.01~80%,更佳為0.1~70%,特佳為1~60%。若螢光體粒子4之含量過多,則大粒徑導熱性粒子2及小粒徑導熱性粒子3之含量相對變少,從而不易使螢光體粒子4所產生之熱向外部釋出。若螢光體粒子4之含量過少,則不易獲得所需之發光強度。再者,於透過型波長轉換構件10中,若螢光體粒子4之含量過多,則因螢光體粒子4之吸收,激發光之透過光量變少,透過光容易更移成螢光之色度。其結果,難以進行出射光之色度調整。因此,透過型波長轉換構件10中之螢光體粒子4之含量Vp 較佳為0.01~50%,更佳為0.1~35%,特佳為1~20%。
螢光體粒子4之平均粒徑DP 與大粒徑導熱性粒子2之平均粒徑D較佳為滿足0.1≦DP /D≦10,更佳為滿足0.5≦DP /D≦5,進而較佳為滿足1≦DP /D≦3,特佳為1<DP /D≦3。若如此,則於波長轉換構件10內,螢光體粒子4及大粒徑導熱性粒子2容易相互均勻地分散而存在,當向波長轉換構件10照射激發光時,容易使螢光體粒子4所發出之熱高效率地向外部釋出。再者,於螢光體粒子4之平均粒徑DP 大於大粒徑導熱性粒子2之平均粒徑D(1<DP /D)之情形時,容易獲得緻密之波長轉換構件10。
波長轉換構件10整體中螢光體粒子4所占之含量VP 與大粒徑導熱性粒子2所占之含量V較佳為滿足50%≦VP +V≦90%,更佳為滿足55%≦VP +V≦85%,特佳為滿足60%≦VP +V≦80%。若如此,則當向波長轉換構件10照射激發光時,容易使螢光體粒子4所發出之熱高效率地向外部釋出。
(波長轉換構件10) 波長轉換構件10較佳為導熱性粒子1與螢光體粒子4之燒結體。若如此,則導熱性粒子1與螢光體粒子4相互結著,從而容易使螢光體粒子4所發出之熱更加有效地向外部釋出。又,與使螢光體粒子於樹脂基質或玻璃基質等透光性材料中分散固定而成之波長轉換構件相比,即便於照射LD之類之高輸出之激發光之情形時,亦不易產生變色或熔解。
波長轉換構件10之熱擴散率為2×10-6 m2 /s以上,較佳為3×10-6 m2 /s以上,進而較佳為4×10-6 m2 /s以上,特佳為5×10-6 m2 /s以上。若如此,則即便於照射高強度之激發光之情形時,亦容易使螢光體粒子4所產生之熱高效率地向外部釋出,從而容易抑制波長轉換構件10之溫度上升。結果,容易抑制由溫度上升所導致之波長轉換構件10之發光效率之降低。
波長轉換構件10之量子效率較佳為20%以上,更佳為40%以上,進而較佳為60%以上,特佳為80%以上。若量子效率過低,則成為熱損耗之能量變大,從而容易降低波長轉換構件10之發光效率。再者,於本發明中,量子效率係指藉由下述式所算出之值,可使用絕對PL(photoluminescence,光致發光)量子產率裝置進行測定。
量子效率={(作為螢光自樣品釋出之光子數)/(被樣品吸收之光子數)}×100(%)
波長轉換構件10之形狀例如可設為板狀(矩形板狀、圓盤狀等)。波長轉換構件10之厚度較佳為1000 μm以下,更佳為800 μm以下,特佳為500 μm以下。若厚度過大,則不易獲得所需之色調之光。又,容易降低發光效率。再者,波長轉換構件10之厚度較佳為30 μm以上,更佳為50 μm以上,特佳為80 μm以上。若厚度過小,則容易降低波長轉換構件10之機械強度。
波長轉換構件10之氣孔率相對於波長轉換構件10之整體體積,較佳為10%以下,更佳為5%以下,特佳為1%以下。若氣孔率過高,則不易使螢光體粒子4所產生之熱向外部釋出。又,容易降低波長轉換構件10之機械強度。進而,容易降低波長轉換構件10之光提取效率。氣孔率之下限值無特別限定,現實而言為0.01%以上。
本發明之波長轉換構件10較佳為色不均較小。具體而言,透過波長轉換構件10之激發光與轉換激發光之波長而發出之光的合成光於全光線中之色度Cx與色度Cy之偏差之和為0.03以下,特佳為0.025以下、0.02以下、0.015以下。再者,於本發明中,色度Cx與色度Cy之偏差之和可利用如下方法(i)(ii)求出。
(i)波長轉換構件10之激發光入射面之大小超過5 mm×5 mm之情形 首先,以成為5 mm×5 mm之大小之方式切出波長轉換構件10之一部分,將所獲得之板狀試樣分割成4個2.5 mm×2.5 mm尺寸而製作4塊小片。其次,準備2塊中心開有Φ2.4 mm之圓狀貫通孔之板(例如,表面經黑氧化鋁膜處理之鋁板),將1塊上述小片夾於2塊板之間。此時,使小片之中心與貫通孔之中心重疊。其次,自小片之一個面照射激發光,將來自另一個面之出射光引入至積分球,測定全光線之色度。分別對4塊小片進行測定。色度Cx之偏差設為4塊小片之中最大之色度Cx(Cxmax )與4塊小片之中最小之色度Cx(Cxmin )的差(Cxmax -Cxmin )。又,色度Cy之偏差設為4塊小片之中最大之色度Cy(Cymax )與4塊小片之中最小之色度Cy(Cymin )的差(Cymax -Cymin )。可根據該等值算出色度Cx之偏差與色度Cy之偏差之和{(Cxmax -Cxmin )+(Cymax -Cymin )}。
(ii)波長轉換構件10之激發光入射面之大小為5 mm×5 mm以下之情形 首先,以成為X mm×X mm之大小之方式切出波長轉換構件10之一部分,將所獲得之板狀試樣分割成4個X/2 mm×X/2 mm尺寸而製作4塊小片。此處,板狀試樣之一邊之長度X較佳為以X mm×X mm之面積成為最大之方式進行選擇。其次,準備2塊中心開有Φ(X-0.1) mm之貫通孔之板(例如,表面經黑氧化鋁膜處理之鋁板),使中心重疊,夾住1塊上述小片。自一個面照射激發光,將來自另一個面之出射光引入至積分球,測定全光線之色度。分別對4塊小片進行測定。根據所獲得之資料求出色度Cx之偏差及色度Cy之偏差。色度Cx之偏差與色度Cy之偏差之和的求出方法設為與上述方法(i)相同。
(波長轉換構件10之製造方法) 本發明之波長轉換構件10之製造方法較佳為具備將包含平均粒徑相互不同之兩種導熱性粒子之導熱性粒子1、及螢光體粒子4加以混合並進行煅燒之步驟。
煅燒較佳為藉由加熱壓製而進行。若如此,則容易獲得緻密之燒結體,從而容易提高波長轉換構件10之導熱性。壓製面壓可根據目標波長轉換構件10之厚度而適當調節。例如,較佳為1 MPa以上,更佳為10 MPa以上,特佳為設為20 MPa以上。上限無特別限定,為了防止壓製模具之破損,較佳為設為100 MPa以下,特佳為設為50 MPa以下。
煅燒時之最高溫度較佳為1300℃以下,更佳為1200℃以下,進而較佳為1100℃以下,特佳為1000℃以下。若煅燒時之最高溫度過高,則螢光體粒子4容易因熱而劣化。再者,若煅燒時之最高溫度過低,則不易獲得緻密之燒結體。就此種觀點而言,煅燒時之最高溫度較佳為600℃以上,更佳為650℃以上,特佳為700℃以上。
壓製時間較佳為以可獲得緻密之燒結體之方式而進行適當調節。例如,較佳為設為0.1~300分鐘,更佳為設為0.5~120分鐘,特佳為設為1~60分鐘。
進行煅燒時之氣氛較佳為惰性氣氛、還原氣氛或真空氣氛。若如此,則容易抑制螢光體粒子4之劣化或導熱性粒子1之變質。又,容易抑制由壓製模具之氧化所導致之劣化。具體而言,於惰性氣氛中,較佳為使用氮或氬。就運轉成本之觀點而言,特佳為使用氮。於還原氣氛中,較佳為使用氫,特佳為使用氫與惰性氣體之混合氣體。此處,惰性氣體係指氮或氬。
再者,除了加熱壓製以外,亦可藉由模具對螢光體粒子4、大粒徑導熱性粒子2及小粒徑導熱性粒子3之混合粉末進行加壓,將所獲得之預成型體進行煅燒,藉此製造燒結體。又,亦可將預成形體內包於橡膠模具,藉由熱均壓加壓法製造燒結體。
(發光裝置) 圖2係表示本發明之一實施形態之發光裝置之模式剖視圖。如圖2所示,發光裝置50具備波長轉換構件10及光源6。光源6以激發光L0 入射至波長轉換構件10之方式進行配置。自光源6出射之激發光L0 藉由波長轉換構件10而波長轉換成波長比激發光L0 長之螢光L1 。又,激發光L0 之一部分透過波長轉換構件10。因此,自波長轉換構件10出射激發光L0 與螢光L1 之合成光L2 。例如,於激發光L0 為藍色光,螢光L1 為黃色光之情形時,可獲得白色之合成光L2
光源6較佳為LED或LD。就提高發光裝置50之發光強度之觀點而言,特佳為使用可出射高強度之光之LD。 [實施例]
以下,使用實施例對本發明之波長轉換構件詳細地進行說明,但本發明並不限定於以下之實施例。
表1、2表示本發明之實施例(No.1、3~14)及比較例(No.2)。
[表1]
      No.1 No.2 No.3 No.4 No.5 No.6 No.7
螢光體粒子 種類 YAG YAG YAG YAG YAG YAG YAG
平均粒徑(μm) 24 24 24 8 24 24 24
含量(體積%) 20 20 20 20 20 20 20
大粒徑導熱性粒子 種類 MgO MgO MgO MgO MgO MgO MgO
平均粒徑(μm) 8 8 47 8 3 12 25
含量(體積%) 55 80 55 75 55 55 55
小粒徑導熱性粒子 種類 MgO - MgO MgO MgO MgO MgO
平均粒徑(μm) 0.05 - 0.05 0.05 0.05 0.05 0.05
含量(體積%) 25 - 25 5 25 25 25
煅燒條件 熱處理溫度(℃) 1000 1000 1000 1000 1000 1000 1000
壓製面壓(Mpa) 40 - 40 40 40 40 40
壓製時間(min) 60 - 60 60 60 60 60
熱處理氣氛 N2 大氣 N2 N2 N2 N2 N2
熱擴散率(×10-6 m2 /s) 2.7 1.0 3.7 2.5 2.0 3.2 3.5
量子效率(%) 89 79 80 81 90 88 86
色不均 × × ×
[表2]
      No.8 No.9 No.10 No.11 No.12 No.13 No.14
螢光體粒子 種類 YAG YAG YAG YAG YAG YAG YAG
平均粒徑(μm) 8 8 8 8 8 8 8
含量(體積%) 20 20 20 20 20 20 20
大粒徑導熱性粒子 種類 MgO MgO MgO MgO MgO MgO MgO
平均粒徑(μm) 3 8 12 25 8 8 8
含量(體積%) 55 55 55 55 35 45 65
小粒徑導熱性粒子 種類 MgO MgO MgO MgO MgO MgO MgO
平均粒徑(μm) 0.05 0.05 0.05 0.05 0.05 0.05 0.05
含量(體積%) 25 25 25 25 45 35 15
煅燒條件 熱處理溫度(℃) 1000 1000 1000 1000 1000 1000 1000
壓製面壓(Mpa) 40 40 40 40 40 40 40
壓製時間(min) 60 60 60 60 60 60 60
熱處理氣氛 N2 N2 N2 N2 N2 N2 N2
熱擴散率(×10-6 m2 /s) 3.1 3.5 3.8 4.1 2.8 3.1 3.2
量子效率(%) 90 89 89 87 89 89 85
色不均
實施例(No.1、3~14)係如下所示進行製作。首先,將螢光體粒子、大粒徑導熱性粒子及小粒徑導熱性粒子以成為表1、2所示之含量之方式加以混合,從而獲得混合物。各材料使用以下者。
(a)螢光體粒子 YAG螢光體粒子(Y3 Al5 O12 、平均粒徑:8 μm、24 μm)
(b)大粒徑導熱性粒子 MgO粒子(熱導率:約45 W/m・K、平均粒徑:3 μm、8 μm、12 μm、25 μm、47 μm、折射率(nd):1.74)
(c)小粒徑導熱性粒子 MgO粒子(熱導率:約45 W/m・K、平均粒徑:0.05 μm、折射率(nd):1.74)
將上述所獲得之混合物放入模具,於表1所記載之條件下進行加熱壓製煅燒後,緩冷至常溫,藉此製作作為燒結體之波長轉換構件。
比較例(No.2)係如下所示進行製作。首先,將螢光體粒子及大粒徑導熱性粒子以成為表1所示之含量之方式加以混合,從而獲得混合物。各材料使用與實施例(No.1)相同者。
將上述所獲得之混合物放入模具,於0.45 MPa下進行壓製,藉此製成壓粉體後,於表1所記載之條件下進行煅燒。煅燒後,緩冷至常溫,藉此製作作為燒結體之波長轉換構件。
對於所獲得之波長轉換構件,藉由以下之方法評價熱擴散率、量子效率、色不均。將結果示於表1、2。
熱擴散率係藉由ai-Phase公司製造之熱擴散率測定裝置ai-phase進行測定。熱擴散率之測定於105±5℃之條件下進行共計11次,將平均11次之結果所得之值設為試樣之熱擴散率。
量子效率係指藉由下述式所算出之值,使用絕對PL量子產率裝置(Hamamatsu Photonics公司製造)進行測定。
量子效率={(作為螢光自樣品釋出之光子數)/(被樣品吸收之光子數)}×100(%)
色不均係如下所示進行評價。首先,將所獲得之波長轉換構件進行鏡面研磨,製作厚度200 μm之板狀試樣。以成為5 mm×5 mm之大小之方式切出所獲得之板狀試樣之一部分,分割成4個2.5 mm×2.5 mm尺寸而獲得4塊小片。其次,準備2塊中心開有Φ2.4 mm之圓狀貫通孔的30 mm×30 mm之表面經黑氧化鋁膜處理所得之厚度1 mm之鋁板,將1塊上述小片夾於2塊板之間,將其設為測定試樣。其次,自測定試樣之一個主面照射激發光(波長450 nm),將來自測定試樣之另一個主面之出射光引入至積分球,進行色度測定。又,使用剩餘3塊小片以同樣之方式製作測定試樣而進行色度測定。根據所獲得之資料求出色度Cx之最大值Cxmax 及最小值Cxmin 、色度Cy之最大值Cymax 及最小值Cymin ,從而算出色度Cx之偏差與色度Cy之偏差之和{(Cxmax -Cxmin )+(Cymax -Cymin )}。所獲得之色度Cx與色度Cy之偏差之和為0.03以下之情形記為「〇」,大於0.03之情形記為「×」。
由表1、2可知,實施例(No.1、3~14)之波長轉換構件之熱擴散率高達2.0×10-6 m2 /s以上。又,量子效率高達80%以上。另一方面,比較例(No.2)之波長轉換構件之熱擴散率低至1.0×10-6 m2 /s,量子效率亦低至79%。
1:導熱性粒子 2:大粒徑導熱性粒子 3:小粒徑導熱性粒子 4:螢光體粒子 6:光源 10:波長轉換構件 50:發光裝置 L0:激發光 L1:螢光 L2:合成光
圖1係表示本發明之波長轉換構件之一實施形態之模式剖視圖。 圖2係表示本發明之發光裝置之一實施形態之模式剖視圖。
1:導熱性粒子
2:大粒徑導熱性粒子
3:小粒徑導熱性粒子
4:螢光體粒子
10:波長轉換構件

Claims (17)

  1. 一種波長轉換構件,其特徵在於:其係具備導熱性粒子及螢光體粒子者,且 上述導熱性粒子包含平均粒徑相互不同之兩種上述導熱性粒子。
  2. 如請求項1之波長轉換構件,其係上述導熱性粒子與上述螢光體粒子之燒結體。
  3. 如請求項1或2之波長轉換構件,其中上述導熱性粒子包含大粒徑導熱性粒子及小粒徑導熱性粒子,且 上述大粒徑導熱性粒子之平均粒徑D與上述小粒徑導熱性粒子之平均粒徑d滿足下述之條件(A)及(B): (A)0.5 μm≦D≦50 μm (B)0.0001≦d/D≦0.1。
  4. 如請求項3之波長轉換構件,其中上述大粒徑導熱性粒子之平均粒徑D與上述螢光體粒子之平均粒徑DP 滿足下述之條件(C): (C)0.1≦DP /D≦10。
  5. 如請求項3或4之波長轉換構件,其中上述波長轉換構件中上述大粒徑導熱性粒子所占之含量V與上述螢光體粒子所占之含量VP 滿足下述之條件(D): (D)50%≦VP +V≦90%。
  6. 如請求項1至5中任一項之波長轉換構件,其中上述導熱性粒子包含氧化物。
  7. 如請求項1至5中任一項之波長轉換構件,其中上述導熱性粒子為氧化鎂。
  8. 如請求項1至7中任一項之波長轉換構件,其中上述螢光體粒子之含量VP 為0.01~80%。
  9. 一種波長轉換構件,其特徵在於:其係包含螢光體粒子及導熱性粒子者,且熱擴散率為2×10-6 m2 /s以上。
  10. 如請求項1至9中任一項之波長轉換構件,其量子效率為20%以上。
  11. 一種波長轉換構件,其特徵在於:其係用於將自光源出射之激發光之波長進行轉換者,且 透過上述波長轉換構件之上述激發光與轉換上述激發光之波長而發出之光的合成光於全光線中之色度Cx與色度Cy之偏差之和為0.03以下。
  12. 一種波長轉換構件之製造方法,其特徵在於:其係如請求項1至11中任一項之波長轉換構件之製造方法,且 具備將包含平均粒徑相互不同之兩種導熱性粒子之導熱性粒子、及螢光體粒子加以混合並進行煅燒之步驟。
  13. 如請求項12之波長轉換構件之製造方法,其藉由加熱壓製進行煅燒。
  14. 如請求項12或13之波長轉換構件之製造方法,其中煅燒時之最高溫度為1300℃以下。
  15. 如請求項12至14中任一項之波長轉換構件之製造方法,其於惰性氣氛、還原氣氛或真空氣氛下進行煅燒。
  16. 一種發光裝置,其特徵在於具備如請求項1至11中任一項之波長轉換構件、及對波長轉換構件照射激發光之光源。
  17. 如請求項16之發光裝置,其中光源為雷射二極體。
TW109112930A 2019-04-18 2020-04-17 波長轉換構件及其製造方法、與發光裝置 TWI830902B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-079329 2019-04-18
JP2019079329 2019-04-18

Publications (2)

Publication Number Publication Date
TW202100719A true TW202100719A (zh) 2021-01-01
TWI830902B TWI830902B (zh) 2024-02-01

Family

ID=72837805

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109112930A TWI830902B (zh) 2019-04-18 2020-04-17 波長轉換構件及其製造方法、與發光裝置

Country Status (6)

Country Link
US (1) US20220187519A1 (zh)
JP (1) JPWO2020213456A1 (zh)
CN (1) CN113474439A (zh)
DE (1) DE112020001953T5 (zh)
TW (1) TWI830902B (zh)
WO (1) WO2020213456A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7447694B2 (ja) 2020-06-22 2024-03-12 ウシオ電機株式会社 半導体発光装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW383508B (en) 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
JP4158012B2 (ja) 2002-03-06 2008-10-01 日本電気硝子株式会社 発光色変換部材
JP4895541B2 (ja) 2005-07-08 2012-03-14 シャープ株式会社 波長変換部材、発光装置及び波長変換部材の製造方法
JP2011040715A (ja) * 2009-07-17 2011-02-24 Toray Ind Inc Led実装基板およびその製造方法
TWI437077B (zh) * 2011-12-08 2014-05-11 Univ Nat Cheng Kung 釔鋁石榴石螢光材料、其製作方法、及包含其之發光二極體裝置
CN103794704A (zh) * 2013-09-18 2014-05-14 吴震 波长转换装置和发光装置
JP2016225581A (ja) * 2015-06-04 2016-12-28 日本電気硝子株式会社 波長変換部材及びそれを用いた発光装置
JP6688973B2 (ja) * 2015-12-11 2020-04-28 パナソニックIpマネジメント株式会社 波長変換体、波長変換部材及び発光装置
JP6288575B2 (ja) * 2016-03-10 2018-03-07 パナソニックIpマネジメント株式会社 発光装置
JP6787334B2 (ja) * 2016-09-05 2020-11-18 東レ株式会社 色変換組成物、色変換シート、それを含む発光体、照明装置、バックライトユニットおよびディスプレイ
CN108610023B (zh) * 2016-12-09 2021-07-23 深圳光峰科技股份有限公司 陶瓷复合材料的制备方法、陶瓷复合材料及波长转换器
US20190341530A1 (en) * 2016-12-27 2019-11-07 Panasonic Intellectual Property Management Co., Ltd. Wavelength converter and wavelength conversion member
JP6541638B2 (ja) * 2016-12-28 2019-07-10 堺化学工業株式会社 蛍光体含有多層膜シート、並びに発光装置
JP6802983B2 (ja) * 2017-04-13 2020-12-23 日本電気硝子株式会社 波長変換部材及び波長変換素子、並びにそれらを用いた発光装置
JP7268315B2 (ja) * 2017-12-12 2023-05-08 日本電気硝子株式会社 波長変換部材及びその製造方法、並びに発光装置

Also Published As

Publication number Publication date
CN113474439A (zh) 2021-10-01
DE112020001953T5 (de) 2021-12-30
WO2020213456A1 (ja) 2020-10-22
US20220187519A1 (en) 2022-06-16
TWI830902B (zh) 2024-02-01
JPWO2020213456A1 (zh) 2020-10-22

Similar Documents

Publication Publication Date Title
US10267963B2 (en) Wavelength conversion member, wavelength conversion element, and light emitting apparatus using those
TWI726910B (zh) 波長轉換構件、發光裝置、及波長轉換構件之製造方法
TWI497747B (zh) 半導體發光裝置及使用該發光裝置之光源裝置
TWI788436B (zh) 波長轉換構件及其之製造方法、與發光裝置
JP6941821B2 (ja) 波長変換体及びその製造方法、並びに波長変換体を用いた発光装置
JP6984599B2 (ja) 焼結蛍光体、発光装置、照明装置及び車両用表示灯
WO2018205710A1 (zh) 一种荧光复合陶瓷及其制备方法和应用
CN109896851B (zh) 具有浓度梯度的陶瓷复合体、制备方法及光源装置
JP2016225581A (ja) 波長変換部材及びそれを用いた発光装置
Cheng et al. Composition and luminescence properties of highly robust green-emitting LuAG: Ce/Al 2 O 3 composite phosphor ceramics for high-power solid-state lighting.
TW202100719A (zh) 波長轉換構件及其製造方法、與發光裝置
WO2016209871A1 (en) Glass composite wavelength converter and light source having same
WO2019116916A1 (ja) 波長変換部材及びその製造方法、並びに発光装置
JP7469847B2 (ja) 波長変換部材及びそれを用いた発光装置
JP2023083288A (ja) 波長変換部材及びそれを用いた発光装置
WO2021132212A1 (ja) 波長変換部材、発光素子及び発光装置
TWI824138B (zh) 波長轉換構件及其製造方法、與發光裝置
JP7361314B2 (ja) 蛍光体およびそれを使用した発光装置
Yu et al. Optothermal Performances Investigation of Phosphor-Converted White LDs With Alumina Substrate-Based PiGF Converters
JP2022163459A (ja) 蛍光体およびそれを使用した発光装置
JP2022163451A (ja) 蛍光体およびそれを使用した発光装置