TW202042287A - 用於表面貼裝微型led流體組裝的發光顯示基板及製備方法 - Google Patents

用於表面貼裝微型led流體組裝的發光顯示基板及製備方法 Download PDF

Info

Publication number
TW202042287A
TW202042287A TW109115129A TW109115129A TW202042287A TW 202042287 A TW202042287 A TW 202042287A TW 109115129 A TW109115129 A TW 109115129A TW 109115129 A TW109115129 A TW 109115129A TW 202042287 A TW202042287 A TW 202042287A
Authority
TW
Taiwan
Prior art keywords
substrate
electrode
top surface
light
forming
Prior art date
Application number
TW109115129A
Other languages
English (en)
Other versions
TWI750650B (zh
Inventor
保羅·約翰 舒勒
長青 戰
健司 佐佐木
葛特 鄂孟
宗霑 李
Original Assignee
美商伊樂視有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/406,196 external-priority patent/US10643981B2/en
Application filed by 美商伊樂視有限公司 filed Critical 美商伊樂視有限公司
Publication of TW202042287A publication Critical patent/TW202042287A/zh
Application granted granted Critical
Publication of TWI750650B publication Critical patent/TWI750650B/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/95053Bonding environment
    • H01L2224/95085Bonding environment being a liquid, e.g. for fluidic self-assembly

Abstract

用於表面貼裝微型LED流體組裝的發光顯示基板及其製備方法被提出。該發光顯示基板包括:支撐基板,具有平面的頂表面以及包括列和行導線的陣列的發光二極體(LED)交叉點控制矩陣;第一薄膜層,覆蓋所述支撐基板的頂表面且包括複數個阱;其中,每個阱具有凸的底表面、與對應的列導線連接的第一基板電極、以及與對應的行導線連接的第二基板電極。

Description

用於表面貼裝微型LED流體組裝的發光顯示基板及製備方法
本發明總體上涉及顯示技術,更具體地涉及具有改善的電極介面表面平整度的表面貼裝(SM)無機微型發光二極體(μLED)的設計。
彩色顯示器由發射與可見光紅色、綠色和藍色對應的三種波長的光的畫素組成,這種被稱為RGB顯示器。畫素的RGB元件以有序的方式打開和關閉,以累加產生可見光譜的顏色。有幾種可以不同方式生成RGB圖像的顯示類型。液晶顯示器(LCD)是最流行的技術,它們藉由子畫素的彩色濾光片照射白色光源(通常是螢光體產生的白色LED)來產生RGB圖像。白光波長的某些部分被吸收,而另一些則穿過濾色鏡透射彩色濾光片。有機發光二極體(OLED)顯示器藉由從有機發光材料內部以畫素級別直接發射那些波長的每個波長的光來產生RGB光。有機發光二極體(OLED)顯示器藉由從有機發光材料內部以畫素級別直接發射那些波長的每個波長的光來產生RGB光。
第三種顯示技術是微型LED顯示器。該顯示技術使用微米級(直徑為10至150μm)的無機LED來直接發射畫素級的光。為了使用微型LED製造RGB顯示器,須組裝分別在每個RGB波長範圍內發光的三種不同類型的微型LED的大面積陣列。微型LED顯示器的低成本製造需要使用大規模並行流體組裝技術,以將數百萬個單獨的微型LED放置在規則的陣列中。當前具有HDTV解析度的主流電視具有600萬畫素,而更高解析度的4K和8K標準分別具有25和99百萬畫素。
為了生產具有適當亮度的高產量低成本顯示器,流體組裝技術對微型LED結構提出了一些獨特的要求,本文將討論其中的一些。實用的顯示技術須解決顯示器以不同尺寸和解析度製造的現實,因此要求畫素尺寸的靈活性,從個人設備的每英寸300畫素(ppi)到非常大的10-20ppi大型公共資訊顯示應用。顯示幕亮度要求也因應用不同而有所不同,手機顯示幕需要300尼特(每平方米的坎德拉),電視機需要1000尼特,而戶外資訊顯示幕則需要5000尼特。因此,micro-LED技術須適應廣泛的解析度和亮度要求,同時仍保持使用流體組裝所必需的物理性能。
用於普通照明的基於氮化鎵(GaN)的藍色LED和用於各種指示燈的鋁鎵磷化(AlGaInP)紅色LED的開發已經發展了許多代且這些工藝可以以非常低的成本生產出可靠的高效器件。因此,也許最重要的要求是微型LED結構須與商用無機LED的習知金屬有機化學氣相沉積(MOCVD)製造相容。LED製造中有許多可能的變體,因此,本概述僅提供一個非常簡短的概述,以識別製造高品質LED所需的因素,同時還描述了傳統LED與此處所述的微型LED之間的特有的區別。由張和劉(Ning Zhang和Zhiqiang Liu,“InGaN材料系統和藍/綠色發光體”,in Li, Jinmin、 Zhang, G. Q.(編),發光二極體,固態照明技術和應用系列4(Springer,Switzerland,2019))和Wang等人的基於AlGaInP的紅色LED(Guohong Wang、 Xiaoyan Yi、 Teng Zhan 和 Yang Huang, “AlGaInP/AlGaAs材料系統和紅色/黃色LED”, in Li, Jinmin, Zhang, G. Q.(編),發光二極體,固態照明技術和應用系列4(Springer,Switzerland,發明人:Schuele,Zhan,Sasaki,Ulmer和Lee 2019)是習知LED技術在可見光譜中的有用總結。
圖1A至1C是描繪用於一般照明目的的GaN LED晶片的圖(習知技術)。發藍光(約440奈米(nm))和綠光(約530nm)的GaN基LED以一系列複雜的高溫MOCVD步驟被製造,以產生圖1A的橫截面所示的垂直LED結構。在直徑為50至200毫米(mm)的拋光藍寶石、矽(Si)或碳化矽(SiC)的生長基板上進行製造。藉由沉積可選的AIN緩衝層和未摻雜的GaN來製備表面,以產生具有低缺陷和GaN晶格常數的晶體表面。此初始沉積的厚度和溫度被調整以補償生長基板和GaN之間的晶格失配。表面重量隨厚度的增加而提高,因此高效器件的厚度超過約3微米(μm)。由於MOCVD沉積工藝複雜且昂貴,因此重要的是優化微型LED工藝以最有效地利用生長晶片(生長基板)的整個區域。
在初始生長以製備晶體GaN表面之後,生長第一LED層並添加Si摻雜以生產用於陰極的n+GaN(n-GaN)。可選地,該疊層可以包括為電子注入和空穴阻擋而調整的層。接下來,用氮化銦鎵(Inx Ga1-x N)和GaN的交替層沉積多量子阱(MQW)結構,其中銦含量和層的厚度決定了器件的發射光的波長。銦含量的增加將發射峰移動至更長的波長,但由於晶格失配也會增加內部應力,因此無法製造出高效率的GaN器件用於發紅光,綠色發光器件的效率低於藍色LED的效率。在MQW之後,疊層可以包括為電子阻擋和空穴注入而調整的層。最後,藉由沉積摻雜鎂(Mg)的GaN形成p+陽極來完成MOCVD序列。
完成的基板然後被圖案化和蝕刻以形成單獨的LED,且進行額外的處理以在陽極和陰極上形成電極,如圖1B所示。在最簡單的工藝流程中,藉由沉積氧化鎳(NiOx )的薄層以匹配p+GaN(p-GaN)功函數,然後沉積100至300nm厚度的銦錫氧化物(ITO)的層來形成透明導電電極。對該層進行圖案化和蝕刻以在陽極上方形成電流擴散層。
穿過疊層圖案化並蝕刻一小塊區域,使其與n+GaN接觸。鈍化層,通常為二氧化矽(SiO2 ),被沉積以防止陽極和陰極之間發生洩漏電流,並在電極上方開設接觸窗。電極(通常由鈦/鋁(Ti/Al)製成)被沉積以形成陰極接接觸點,並添加可以是鎳/金(Ni/Au)、鉻/金(Cr/Au)等的第二電極(陽極)。藉由研磨所述基板被減薄至約100μm,並藉由切割或鋸切將各個裝置單個化。藉由該工藝製造的裝置通常為100μm厚,並且尺寸(橫截面)為150至1000μm,例如如圖1C所示。
圖2A和圖2B是示出用於製造紅色發光指示器的砷化鎵(GaAs)LED晶片的圖(習知技術)。如圖2A所示,基於GaAs材料系統使用明顯不同的MOCVD工藝順序製造高亮度紅色LED。生長基板是幾百微米厚的n摻雜GaAs晶片,被沉積的第一層是GaAs,以產生高品質的晶體表面。下一層是鋁/砷化物(AlAs),其隨後將其用作釋放層。LED疊層可以從可選的n摻雜分散式布拉格反射器(DBR)層或n摻雜GaInP視窗層和n摻雜AlGaInP包覆層開始。然後,在MQW活性區上沉積AlGaInP和AlGaAs的交替層,並對其厚度和成分進行調整,以使高效率LED在選定的波長下發光。活性區被AlGaInP的p摻雜覆層和p摻雜的GaInP窗口層覆蓋以完成LED。AlAs釋放層上方的整個LED疊層的厚度可以為10至15μm。
GaAs生長基板與AlGaInP的MOCVD生長為晶格匹配的,但是GaAs吸光並且非常脆,這對於LED封裝來說是嚴重的缺點。因此,如圖2B所示,藉由完全蝕刻基板或藉由使用選擇性濕蝕刻(通常為鹽酸(HCl):醋酸)來對裝置進行底切和釋放,從而從基板上移除LED裝置。在從基板上移除LED之前,藉由電鍍沉積銅的厚層用作散熱器和每個裝置的處理介面。首先,金觸擊層被沉積且被圖案化以定義銅區域,然後將銅電鍍至約100μm的厚度。然後,在銅島周圍向下蝕刻LED疊層直到GaAs緩衝層,隨後藉由濕法蝕刻AlAs層釋放蝕刻底切裝置。裝置尺寸(橫截面)類似於GaN一般照明LED的150至1000微米。
圖3A和3B分別描繪了傳統的封裝的藍色和紅色LED(習知技術)的局部截面圖。呈現這些圖是為了區別微型LED(在下面的詳細說明中提供)和用於更大LED的習知封裝技術。對於一般照明,由發藍光的GaN裝置產生白光,如圖1B所示,具有覆蓋LED並將某些藍光轉換為更長的波長的一個額外的顏色轉換螢光體,通常是發出寬黃光的螢光體,例如摻有鈰(III)的YAG(YAG:Ce3 或Y3 Al5 O12 :Ce3+ )。所使用的封裝具有用於進行電連接的引線框,用於消散LED中產生的熱能的散熱片以及將光導向使用者的反射器。LED藉由導熱膠黏在散熱片上,LED端子藉由引線黏接連接引線框。黏接後,封裝腔中會充滿透明的密封劑,通常是矽樹脂或環氧樹脂,可保護裝置免受機械損壞以及環境中空氣和水的腐蝕。密封劑還可以包含顏色轉換螢光體,或者螢光體可以在封裝(未示出)上方的單獨的膜中。包裝完成後,將在稱為重新分級(binning)的過程中測試設備的效率和峰值波長。如果該裝置具有可接受的性能,則將其與陣列中的其他裝置一起黏接到印刷電路板(PCB)上。重要的是要注意,照明陣列包含根據所需的工作電壓和亮度串聯、並聯或串聯/並聯的複數個裝置。與要求每個畫素具有可控制的亮度以產生圖像的顯示器陣列(例如電視或智慧手機顯示器)不同,普通照明陣列中的所有裝置都同時工作。
製造畫素密度(PPI)在10至600範圍內的顯示器必然要求微型LED的橫截面(直徑)小於150微米。如以下更詳細描述的,微型LED尺寸和內部結構是藉由使用習知的光刻工藝來形成由掩模設計、膜厚和光刻膠曝光控制的圖案而產生的。使用光刻圖案作為掩模,蝕刻工藝選擇性地去除材料以形成完整裝置的特徵。例如在GaN的情況下,跨越整個晶圓以及晶圓之間的蝕刻均不能完全均勻地進行,因此,創建具有共面N墊(N-pad,連接n+半導體的電極)和P墊(P-pad,連接p+半導體的電極)的結構所需的堆積量可能會有很大變化。堆積金屬的沉積是藉由蒸發或濺射進行的,並且厚度控制的精度甚至不如光刻步驟。如果微型LED的N-pad和P-pad電極不共面,則微型LED與顯示基板的電連接可能不完整,從而導致故障或高串聯電阻。
為了使使用SM-LED的顯示基板的製造中的故障最小化的目的,如果LED電極的基板介面可以最大化的平坦則將是有利的。
本文描述的是直徑在10到150μm之間的微型發光二極體(LED)結構,其適合大面積陣列的流體組裝以製造高解析度的紅-綠-藍(RGB)顯示器。微型LED的製造工藝與藉由習知金屬-有機化學氣相沉積(MOCVD)生長技術生產的基於氮化鎵(GaN)的藍/綠色LED和基於磷化鋁鎵銦(AlGaInP)的紅色LED相容。所得的微型LED具有電極結構,該電極結構可在流體組裝之後電性和物理結合顯示基板中的陣列接觸點以形成主動或被動矩陣顯示器。所公開的微型LED結構能夠在不改變微型LED的結構的情況下在滿足不同顯示要求的範圍內改變畫素亮度,從而不影響流體組裝工藝的產量和可靠性。
因此,提供了一種用於製造表面貼裝(SM)微型LED(μLED)的方法。該方法在生長基板上提供了MOCVD-LED結構。 一疊層覆蓋生長基板,該生長基板包括具有在第一平面中的頂表面的第一摻雜半導體、覆蓋具有在第二平面中的頂表面的第一摻雜半導體的多量子阱(MQW)層以及覆蓋MQW層且在第三平面中具有頂表面的第二摻雜半導體,其中第一和第二摻雜半導體被相反地摻雜有n和p摻雜劑,參見圖1A和2A。在氮化鎵微型LED的情況下,第一和第二摻雜半導體是摻雜的GaN。在砷化鎵(GaAs)微型LED的情況下,第一和第二摻雜半導體可以是摻雜的磷化鎵(p-GaP)或摻雜的磷化銦鎵(n-GaInP)。
該方法蝕刻MOCVD疊層以在生長基板上形成複數個單個的晶片。藉由首先選擇性地蝕刻上述疊層從每個晶片製造μLED。電絕緣體被保形地沉積以在覆蓋蝕刻疊層的第四平面中形成頂表面,然後被選擇性地蝕刻以暴露第二摻雜半導體,以產生第一過孔。還執行選擇性蝕刻以暴露第一摻雜半導體,從而形成第二過孔。第一電極形成為覆蓋第一過孔並藉由第一過孔連接第二摻雜半導體,並在第五平面中具有基板介面表面。第二電極形成為覆蓋第二過孔並藉由第二過孔連接第一摻雜半導體,並在第五平面中具有基板介面表面。最後,將製成的μLED與生長基板分離。由於使用了習知的MOCVD晶片,LED具有與第一、第二和第三平面共面的最大橫截面150微米,與第一、第二和第三平面正交於的平臺疊層高度小於2微米,第五平面的平均平面度公差小於10奈米。
更明確地,該方法能夠藉由選擇性地蝕刻疊層以形成由暴露第一摻雜半導體的溝槽包圍的中心平臺疊層和由暴露第一摻雜半導體的周邊溝槽谷分割的周邊疊層,從而製造SM中心發光μLED。然後,將電絕緣體保形地沉積在蝕刻疊層上包括形成覆蓋中心平臺疊層和周邊疊層的第四平面。選擇性刻蝕以暴露第二摻雜半導體的步驟包括:刻蝕覆蓋中心平臺疊層的電絕緣體的一部分以形成第一過孔,而選擇性蝕刻以暴露第一摻雜半導體的步驟包括:蝕刻覆蓋周邊溝槽谷的電絕緣體以形成第二個過孔。結果,第一電極覆蓋中心平臺疊層,並且藉由第一過孔連接第二摻雜半導體,第二摻雜半導體在第五平面中具有基板介面表面。第二電極具有形成在周邊溝槽谷上的第一部分,並藉由第二過孔連接第一摻雜半導體。第二電極具有第二部分(與第一部分連接),該第二部分覆蓋形成在周邊疊層上的電絕緣體,並在第五平面中具有基板介面表面。
藉由選擇性蝕刻疊層以形成中心平臺疊層來形成SM周邊發光μLED,該中心平臺疊層藉由暴露第一摻雜半導體的溝槽而與周邊疊層分離。共形沉積的電絕緣體覆蓋中心平臺疊層和周邊疊層。選擇性蝕刻以暴露第二摻雜半導體的步驟包括:蝕刻覆蓋周邊疊層的電絕緣體的一部分以暴露第二摻雜半導體,且選擇性蝕刻以暴露第一摻雜半導體的步驟包括:蝕刻電絕緣體的一部分、以及中心平臺疊層中第二摻雜半導體和MQW層的下層部分以暴露第一摻雜半導體。結果,第二電極形成為覆蓋中心平臺疊層並藉由第二過孔連接第一摻雜半導體。第一電極形成為覆蓋在周邊疊層上形成的電絕緣體之上,並且藉由第一過孔連接第二摻雜半導體。
藉由選擇性地蝕刻疊層以形成平臺疊層和在平臺疊層中且暴露第一摻雜半導體的周邊溝槽谷,從而製造出SM-μLED全區域發光μLED。選擇性蝕刻以暴露第二摻雜半導體的步驟包括:蝕刻電絕緣層覆蓋平臺疊層的一部分,以暴露第二摻雜半導體。選擇性蝕刻以暴露第一摻雜半導體的步驟包括:蝕刻覆蓋周邊溝槽谷的電絕緣體。第一電極覆蓋平臺疊層並藉由第一過孔連接第二摻雜半導體。第二電極包括覆蓋周邊溝槽過孔的第一部分,並藉由第二過孔連接第一摻雜半導體。第二電極的第二部分(與第一部分連接)覆蓋形成在平臺疊層的周邊上的電絕緣體,並且在第五平面中具有基板介面表面。
還提供了具有非平面基板電極介面表面的發光顯示基板。顯示器由具有平面的頂表面和形成列和行導線陣列的LED交叉點控制矩陣的支撐基板組成。第一薄膜層覆蓋支撐基板的頂表面,並且包括複數個阱。每個阱具有凸的底表面,連接相應的列線的第一基板電極和連接相應的行線的第二基板電極。第二薄膜層插在支撐基板頂表面和第一薄膜層之間。阱底部凸的表面由插在支撐基板頂表面和第二薄膜層之間且位於每個阱底部下方的墊片形成。
下面將提供上述方法的其他詳細資訊,以及中心、周邊、全區域發光SM微型LED裝置以及具有凸的阱底表面的發光基板。
使用無機LED和在顯示器底板上的流體組裝製造微型發光二極體(μLED)顯示器的一般方法被在先家族專利申請(美國專利號9,825,202,申請號15/412,73)所公開,其藉由引用併入本文。特別是,美國專利9,825,202中圖17的說明中描述了製造合適的顯示器底板的工藝流程。在圖16的說明中提出了流體組裝的幾何要求。本文所述的裝置是對以上引用的在先家族專利申請中所討論的表面貼裝的微型LED結構的改進,其簡化了裝置的製造,同時提高了微型LED顯示器的產量和多功能性。
美國專利第9,825,202號描述了兩種類型的氮化鎵(GaN)微型LED。圖4A和圖4B中示出了在裝置的中心處具有發光區域的結構,且具有發光器在外環中的結構被示出在圖5中,如下所述。
圖4A和圖4B分別是能夠用作表面安貼裝(SM)LED的發光元件的局部截面圖和平面圖。SM-LED300包括具有n型摻雜劑或p型摻雜劑的第一半導體層404。第二半導體層402使用在第一半導體層404中未使用的摻雜劑類型。多量子阱(MQW)層406插在第一半導體層404和第二半導體層402之間。MQW層406通常可以為未示出的一系列量子阱層(通常為5層,例如,將5nm的氮化銦鎵(InGaN)與9nm的n摻雜GaN(n-GaN)交替排列)。在MQW層和p摻雜半導體層之間可能還存在一個氮化鋁鎵(AlGaN)電子阻擋層(未示出)。外部半導體層可以是約200nm厚的p摻雜GaN(Mg摻雜)。如果在MQW中使用較高的銦含量,則可以形成高亮度的藍色LED或綠色的LED。最實用的第一半導體層材料和第二半導體層材料是能夠發藍光或綠光的GaN或能夠發紅光的磷化鋁鎵銦(AlGaInP)。
第二電接觸點308被配置為環狀,且第一半導體層404具有周邊在第二電接觸點環下方的盤形。第一電接觸點306形成在第二電接觸點308的環周內,且第二半導體層402和MQW層406是位於第一電接觸點下面的疊層。一條溝槽可形成在第二電接觸點308的環和第一電接觸點306之間,並被電絕緣體408填充。
習知的LED工藝(例如用於照明的LED)僅在與藍寶石基板分離之前在一個表面上發生。其中一些工藝使用鐳射剝離(LLO)來將LED與藍寶石基板分離作為最後一步。其他工藝不使用LLO,而是切出藍寶石基板以將LED單個化。但是,SM-LED體系結構要求在與柱(導航龍骨)相對的表面上有電極,以便在將μLED從生長基板上移除後再製成柱。當從藍寶石上移除LED時習知工藝無法提供維持每個LED已知位置的方法,因此可以在LED底部進行光刻。需要精確的x-y位置才能將柱準確地定位在LED頂表面上的所需位置(例如在中心)。需要精確的z(垂直)位置才能建立用於光刻的焦平面,以藉由流體組裝所需的尺寸控制(例如,表面方向)對柱結構成像。即,SM-LED之LLO要求須以受控方式將SM-LED放置在轉移基板上以形成其柱,然後將其從轉移基板上釋放以製成用於流體組裝的懸浮液。
圖5是描繪圖4A的LED的替代方案的局部截面圖。在這個方面,第一電接觸點(電極)306被配置為環,且第二半導體層402和MQW層406是在第一電接觸點下方的環形的疊層。第二電接觸點308形成在第一電接觸點306的環周內。第一半導體層404具有中心部分位元於第二電接觸點下方的圓盤形狀。如圖所示,一條溝槽形成在第一電接觸點306的環和第二電接觸點308之間。電絕緣體408填充該溝槽。
圖6A至圖6J描繪了如美國專利9,825,202中所述的製造微型LED的步驟。為了描述的一致性,相對於生長基板定義了微型LED的頂和底表面,這是在MOCVD工藝中生長的最後一層,具有電極,底面具有可選擇性的柱。因此,用於連接基板的表面貼裝構造是底側向上的。為簡單起見,假定MOCVD疊層中的底層為n-GaN,頂層為p-GaN,但是當然,相反的結構也是可能的,可以適當選擇摻雜和電極功函數。對於GaN和GaAs變體,圖6A至6J示意性示出的示例性製造工藝流程基本上相同,過程如下。
1)如上所述,LED疊層藉由MOCVD被沉積在藍寶石晶片上。 可以使用其他基板,例如碳化矽(SiC)或矽,但藍寶石基板允許藉由鐳射剝離(LLO)從生長基板中移除μLED,從而使與藍寶石基板相鄰的底部器件表面的GaN分解。MQW結構被調整以產生所需的發光顏色,並且所得結構的厚度在2到7μm之間。 也參見圖1A是各個層的示例。
2)電流擴散層被沉積在p-GaN表面上。成分通常是薄的NiOx 介面層加上透明的導電氧化物,例如銦錫氧化物(ITO),其厚度可能為100至500奈米(nm)。
3)發光區域藉由光刻法被界定,且MOCVD疊層被蝕刻到延伸到n摻雜GaN層中的深度。取決於MOCVD結構,蝕刻深度(ZMESA )可以為300nm至2微米(μm)。通常小於1微米。
4)μLED區域藉由光刻被界定,然後整個疊層被向下蝕刻到藍寶石基板。通常,圖案是緊密排列的微型LED陣列以最大程度地提高微型LED在一塊MOCVD晶圓上的產量。微型LED的尺寸被選擇以匹配顯示基板上的俘獲位點的寬度,並且直徑通常在15至150μm的範圍內。
5)絕緣層,可以是SU8或可光圖案化的聚醯亞胺,被沉積並被圖案化,以防止N-pad和P-pad之間發生電流洩漏。
6)光刻圖案被形成以防止金屬沉積在N-pad區域之外,並且金屬層被沉積以建立電極以匹配P-pad的高度。選擇第一層以匹配n摻雜的GaN的功函數,可以是10至50nm厚的Ti或Cr。藉由沉積適當厚度的金以匹配活性區薹面的高度來完成堆積。
7)金屬和光阻劑藉由剝離被去除,在n-GaN接觸區域上留下堆積。
8)光刻被進行以防止沉積在N-pad和P-pad接觸區域之外,且金屬疊層被沉積以連接μLED接觸孔。
a.第一金屬被選擇作為堆積物和焊料材料之間的導電層,可以是總厚度為100-200nm的鉻/金(Cr/Au)或鈦/鎳(Ti/Ni)。
b.頂層是可以黏結到基板電極上的低熔點的焊料。一種系統是錫(Sn)合金,例如錫-銦(Sn-In)、錫-銦-銀(Sn-In-Ag)、和錫-銀-銻(Sn-Ag-Sb),其中選擇的焊料金屬類似於習知的低熔點焊料材料。另一種金屬焊料系統是金/鍺(Au/Ge)。
9)多餘的金屬藉由剝離工藝被移除。
10)將完成的晶圓頂面側用黏合劑層黏合到臨時載體上,並藉由LLO(laser liftoff,鐳射剝離)去除藍寶石生長晶圓。
11)現在,μLED為底部朝上在適用於進一步處理的平面陣列中的臨時載體上。為了清楚起見,維持了基於原始生長取向來識別微型LED的頂表面和底表面的約定。
12)可選地,n-GaN可被蝕刻以減小微型LED的厚度。
13)用於流體組裝的柱結構,也稱為導航龍骨,可在微型LED中心附近的底部上被製造。柱可以是圓柱形的、圓錐形的或凹入的形狀,其中柱的高度和直徑被選擇為便於在流體組裝過程中μLED的底側朝上的取向,如下麵更詳細地解釋的。
14)最後,藉由使用合適的溶劑溶解黏合劑,完整的μLED被收集到懸浮液中。
由製造過程產生的微型LED均具有關鍵尺寸,例如直徑、厚度和柱高,以及電極的尺寸和排列,這些尺寸被配置為與顯示基板上的阱和電極的幾何形狀匹配,因此微型LED可與P-pad和N-pad電極組裝並結合在一起,而P-pad和N-pad電極分別連接顯示基板的行和列介面。如圖8A和圖8B所示,每個子畫素在基板上都具有以具有垂直壁(也稱為阱)的陷阱結構為中心的兩個電極。盤形的微型LED以及匹配的圓形阱和電極被簡單示出,但是可以使用諸如正方形或三角形的其他形狀,只要該形狀被設計為匹配基板中的互補形狀,使得兩個微型LED電極都電性連接正確的基板電極而不短路。
藉由在顯示基板上方的液體懸浮液中分配微型LED來進行微型LED的流體組裝。懸浮液組分的一些實例包括水、醇、酮、烷烴和有機酸。流體會受到某些方式的幹擾,例如刷子或刀片,或溶劑或氣體流,從而在整個基板上產生液體流。隨著微型LED在基板上移動,隨著微型LED被捕獲並固定在基板阱結構中以創建自組裝的微型LED陣列精確定位其表面貼裝電極與基板阱中的電介面(基板電極)的接觸,會進行許多捕獲嘗試。當流體組裝完成時,由可使用攝像頭和機器視覺演算法確定組裝成品率的現場監控系統確定,懸浮液被移除,並藉由退火以在微型LED與基板電極之間形成焊料結合來完成顯示器。流體組裝本質上是一個隨機過程,因此,根據捕集效率的統計分析來選擇裝置和捕集阱的尺寸以及組裝過程的參數。
圖7A至圖7C描繪了懸浮介質向具有導航龍骨(支柱)的微型LED施加扭矩。眾所周知,流體速度在封閉表面從零開始拋物線增加,因此微型LED上的力隨著與基板頂表面距離的增加而增加。當懸浮液首先分佈在基板上時,在沉降到基板表面上之前微型LED可以相對快速地被分配。到達基板後,微型LED在流體流的影響下繼續移動,因此,如圖1所示,如圖7A所示的具有立柱向下的裝置經歷扭矩趨於使方向發生翻轉,使得電極朝下,立柱朝上。類似地,如果微型LED在柱向下的情況下進入阱中(圖7B),則柱會阻止盤被捕獲,並且盤上的作用力傾向於將微型LED推出阱並翻轉方向使電極向下。如果將微型LED捕獲在阱中,如圖7C所示,由於柱的橫截面較小,流體流動產生的合力要小得多,因此脫困的可能性很低。 成功的流體組裝要求對微型LED進行適當的處理,以使其最穩定的配置也是與基板以正確的位置和方向結合。
圖8A和8B分別是微型LED子畫素佈局的平面圖和局部截面圖。顯示陣列中的每個微型LED子畫素由施加到分別佈置在行線802和列線804的交叉點矩陣中的兩個電極的電壓驅動。在典型的平板顯示器製造中,行和列互連線是厚度在200至1500nm之間的鋁或銅薄膜。給定的微型LED發出的光量由外部驅動器晶片提供的電流量以及作為子畫素一部分的TFT控制電路(未示出)的電阻控制。用於製造微型LED的關鍵點在於,SM微型LED上的兩個電極須與低電阻的基板電極結合,以允許正確量的電流流過微型LED。基板電極被選擇是為了實現低電阻以及與微型LED上的焊料層相容。在一種情況下,基板電極是200至1000nm厚的銅,以與錫基焊料層形成銅-錫金屬間化合物。當然,相反的佈置,其中在基板電極上具有焊料且在微型LED上具有金電極,也是可能的。從圖8B可以看出,成功的流體組裝要求微型LED的直徑小於阱的直徑,因此微型LED可被捕獲並與基板電極結合。
圖9A至9E是描繪示例性阱(well)變化中的微型LED對位元元的局部橫截面圖。圖9A描繪了阱直徑稍微大於微型LED直徑,這有利於對準和結合。圖9B中,由於阱太小而導致不利的對準和結合,從而阻止了微型LED與基板之間的電性接觸。圖9C中,阱直徑太大,以至於允許LED電極引起行和列基板電極之間的短路。
所有這些尺寸都是使用相對習知的光刻工藝藉由光罩設計、膜厚和光阻劑曝光來控制尺寸的結果。用於堆積的沉積厚度被選擇以匹配薹面蝕刻的深度(參見圖6B),該深度定義了中心活性(發光)區,因此須藉由測量蝕刻深度來確定目標厚度。GaN蝕刻是在單個晶圓蝕刻腔室中被執行的,因此蝕刻速率在連續的晶圓之間可以相差10-20%。另外,蝕刻速率在整個晶片上不是完全均勻,從中心到邊緣還有多達10-15%的變化。結果,對於標稱目標為1微米的蝕刻,中心薹面(ZMESA )的高度差異可能高達400nm。堆積金屬的沉積通常是藉由蒸發或濺射來完成的,通常是在批次處理中將許多晶片一起加工,因此每個晶片的單獨沉積厚度是不可行的。對於這種情況,無論上述蝕刻的差異如何,都將堆積沉積的目標厚度選擇為所有晶片的ZMESA 平均值,且結果對於某些晶片而言堆積的厚度太大,而對於其他晶片而言則太薄。由於GaN蝕刻和堆積金屬沉積的變化,最終結構N-pad(連接n+半導體的電極)和P-pad(連接p+半導體的電極)可能不在同一平面上。這種差異在一個微型LED到另一個微型LED之間會有所不同,並且可能多達600nm,這可能會對微型LED和基板接觸點之間的電性連接的良率和可靠性產生明顯的負面影響。
圖9D中,周邊的微型LED之N-pad太厚,因此微型LED的中心電極(P-pad)不會與基板電介面接觸,因為N-pad和P-pad的高度不共面。結果是由於對電極平面性的控制不當而導致畫素變暗。相反,圖9E中,周邊上的N-pad相對於中心電極太“低”,導致電極與匹配的基板的電介面不完全接觸。傾斜的微型LED導致N-pad和基板電極之間的接觸被限制在一個很小的區域,而不是整個周邊。小面積的接觸會增加串聯電阻並降低電性連接的可靠性。為了防止所描述的對準和結合失效機制,以使P-pad和N-pad電極始終處於正確的相對共面高度的方式製造微型LED,以實現與基板電極的最佳接觸將是有利的。
圖10A至圖10C是基板阱和配合的微型LED的局部截面圖,示出了阱底表面墊片。發光顯示基板1000包括具有平坦的頂表面1002的支撐基板1001和包括列和行導線的陣列的LED交叉點控制矩陣。由於僅示出了一個LED,因此僅存在一對列線和行線,分別在圖8A中以804和802示出。主動和被動矩陣系統被具體解釋在先家族申請美國專利9,825,202中,其藉由引用加入本文。如以上背景技術部分中所述,發光顯示基板通常包括數百萬個LED。第一薄膜層1008覆蓋在支撐基板頂表面1002上。再次,僅示出了單個阱1010。每個阱1010具有由參考標號1012表示的凸的底表面,其中底表面具有連接相應的列線(804,見圖8A)的第一基板電極1014和連接相應的行線(802,圖8A)的第二基板電極1016。
第二薄膜層1018插在支撐基板頂表面1002和第一薄膜層1008之間。如圖10B和10C所示,第二薄膜層1018可以由TFT層1018a組成,該TFT層1018a包含未示出的薄膜電晶體(TFT),並且互連到一行列導線,為了使LED能工作。第二薄膜層1018也可以由一些氧化物或絕緣層構成,以第一氧化物層1018b和第二氧化物層1018c為例。墊片1020插在支撐基板頂表面1002和第二薄膜層1018之間,在每個阱底部下方。墊片1020可以是絕緣材料,如圖10A所示,或電導體,如圖10B和10C所示。第一薄膜層阱1010每個具有直徑1022或橫截面(在非圓形LED的情況下)。墊片1020具有小於直徑1022的寬度1024和頂面1026。阱之凸的底表面1012是由於墊片頂面1026和支撐基板頂表面1002之間的高度差。
如所有示例中所示,第一基板電極1014是中心基板電極,其具有用於電連接微型LED的第一電介面表面1028,且第二基板電極1016是具有第二電介面表面1030的周邊基板電極,比第一電介面表面更低,這是相對於支撐基板頂表面1002所界定的,也用於電連接微型LED。如圖10B和10C明確所示,將墊片直接形成在列線上,從而形成列互連墊片1020。第一基板電極1014是覆蓋過孔1032的中心基板電極,並連接列互連墊片1020。
幾種方法可被用來使微型LED電極與顯示基板上的電介面結構匹配,以促進焊料結合。如圖所示,可以將附加的墊片結構添加到中心基板電極下方的基板上,以藉由墊片層的厚度使其在對外環基板電極上方升高。墊片可以由其他地方用於互連的金屬膜製成,例如鋁或銅,或者由絕緣層製成,且厚度可為50至500nm。如果墊片是導電的,則如圖所示其藉由層間電介質與中心基板電極隔離。可替代地,中心和邊緣基板電極可用具有不同厚度的層被分別製造。結果是中心電極和邊緣電極不再共面,並且高度差為Dsub =ZC -ZE (圖10A)。可以看出,當電極高度DLED =ZP -ZN 等於DSUB 時,基板電極結構與微型LED最匹配。因此,這種結構可在DLED >DSUB 的任何情況下補償“低”P-pad(中心)電極,但以增加複雜性和可變性為代價。當然,對於具有“高”P-pad電極(DLED >0)的微型LED,該結構將具有較低的性能,並導致接觸面積減小,如圖9E所示。
只要基板電極的高度通常為50至500nm,且高度差適合與微型LED介面,則可以以各種方式來製造墊片。在主動矩陣顯示器的情況下(例如圖10B),在用於製造TFT(未示出)的層上構造微型LED佈線。微型LED佈線由以行和列排列的金屬互連線組成,這些金屬互連線連接基板介面電極。為低電阻行和列互連線通常為銅或鋁,並且線的厚度為100至900nm。因此,由於金屬層被絕緣層(通常為氧化矽)隔開,因此電極連接可以彼此通過而不會發生短路。圖10B中,第一氧化物層1018b將列和行互連線(804和802,見圖8A)分開,而第二氧化物層1018c將列互連和第一基板電極分開,並且層之間的連接藉由適當放置的過孔來實現。圖10B中,位於中心基板電極下方的墊片是由與用於製造列互連線的金屬膜相同的金屬製成的,因此藉由該膜的厚度使中心基板電極被提升。圖10C中,使用替代策略,其中藉由第一氧化物層和列互連層的厚度使中心基板電極的高度增加。
使用上述墊片,具有“高”周邊電極的微型LED,如圖9D所示,可以成功地與圖10A,10B和10C所示的凸的阱底結構匹配。然而,即使微型LED的中心電極和周邊電極是平面的,如圖9A所示,或者微型LED中心電極比周邊電極“更高”,如圖9E所示,微型LED電極將能夠與基板電極連接,但代價是更高的電流電阻和減小的接觸面積。
本文更詳細地公開了一種更簡單且更有效的方法來製造具有相等(共平面)基板介面表面的微發光二極體電極。為了避免與先蝕刻MOCVD疊層的部分然後沉積和圖案化薄膜有關的公差問題,固有地共面的MOCVD疊層有利地用作機械元件,以將N-pad電極提升到與P-pad相同的高度,確保DLED =0。GaN和AlGaInP的MOCVD生長是異質外延的過程,其中晶體結構是由基礎結構作為範本逐層建立的。與上述物理沉積過程不同,上述物理沉積過程通常會因晶粒生長而導致拓撲變化,而異質外延成功導致其表面在最多幾個原子層內局部(小於或等於微型LED直徑)平坦(平面)。類似地,絕緣層,通常是藉由電漿增強化學氣相沉積法沉積的二氧化矽,是平滑的並且局部(如上所定義)是平面的。因此,用作表面貼裝電極的基底的第四平面基本上具有較低的可變性,通常小於10奈米。如上所述的具有低熔點焊料的表面貼裝電極沉積在第四平面上,且最終電極介面表面位於同一第五平面上。電極沉積厚度的整體可變性會導致不同厚度的微型LED,但是當局部考慮時,所有微型LED的兩個表面貼裝電極介面表面均在同一(第五個)平面上。與CVD工藝不同,金屬的物理氣相沉積(PVD)會導致焊料表面由於結塊和晶粒生長而具有一定的粗糙度。因此,最終表面的表面粗糙度可能約為10至100nm。考慮到該潛在的表面粗糙度,可以說微型LED電極介面表面具有10nm的平均第五平面公差。由於微型LED的製造使得DLED 始終為零,因此圖10的墊片結構沒有優勢,且參照圖10,可以用DSUB =0來製造顯示基板。
圖11A至圖11D分別是平面SM中心發光μLED的平面圖、兩個局部截面圖和透視圖。中心發光μLED1100包括形成為基底並摻雜有n或p摻雜劑的第一摻雜半導體1102。如圖11A和11C所示,在該示例中第一摻雜半導體1102基底具有圓形的周邊,但是不限於任何特定形狀。第一摻雜半導體1102具有形成在第一平面1104中的頂表面,該第一平面1104包括與周邊1102b(由單獨的虛線區分)分開的中心平臺1102a(由虛線區分)。MQW層1106(通常形成為幾個子層)具有在第二平面1108中形成的頂表面,該頂表面覆蓋第一摻雜半導體中心平臺1102a和周邊1102b。摻雜有與在第一摻雜半導體1102中使用的摻雜劑相反的摻雜劑的第二摻雜半導體1110形成為具有在MQW層1106上方的第三平面1112中的頂表面的層。
電絕緣體具有形成為具有覆蓋第二摻雜半導體1110的第四表面1116中的頂表面的層的第一部分1114a,以及覆蓋劃分周邊1102b的周邊溝槽谷1118的第二部分1114b。絕緣體的關鍵功能是防止第一和第二摻雜半導體之間的電流洩漏。第一電極1120覆蓋中心平臺,藉由中心過孔1124連接第二摻雜半導體1110,並且在第五平面1122中具有基板介面表面。第二電極具有形成在周邊溝槽谷1118上的第一部分1126a,並且藉由周邊過孔1128連接第一摻雜半導體1102。第二電極具有覆蓋在電絕緣體第一部分1114a的周邊上的第二部分1126b,並連接第二電極第一部分,且在第五平面1122中具有基板介面表面。
SM中心發光μLED1100還包括形成在第一摻雜半導體1102中的溝槽1130,其將中心平臺1102a與周邊1102b分開。溝槽1130和周邊溝槽谷1118具有形成在位於第一平面1104下方的第六平面1132中的頂表面。
一方面,第一摻雜半導體1102和第二摻雜半導體1110是摻雜的GaN。或者,第一摻雜半導體1102和第二摻雜半導體1110是p摻雜的磷化鎵(p-GaP)或n摻雜的磷化銦鎵(n-GaInP)。從技術上講,摻雜的半導體也可以是n-GaP和p-GaInP,但實用性較差。
儘管未明確示出,但是如本領域所公知的,GaN裝置可以可選地包括電子和空穴注入和阻擋層。在GaAs裝置的情況下,可選的p和n包覆層可被使用,這也是本領域眾所周知的。通常,對於紅色和藍色微型LED,都希望最大化電子和空穴在MQW層中的停留時間。例如僅考慮陽極側,期望防止電子離開,因此電子阻擋層(AlGaN)對導帶中的電子具有高勢壘。還希望空穴容易進入,因此可以在電子阻擋層上添加單獨的空穴注入層以消除價帶中的小的不連續性。在AlGaInP情況下,n和p包覆層具有相同的目的,但出於歷史原因,它們被稱為視窗和包覆層。如圖所示,SM中心發光μLED1100可包括由複數個周邊溝槽谷1118分隔開的複數個第一摻雜半導體周邊段1102b。在那種情況下,MQW層1106、第二摻雜半導體1110和電絕緣體第一部分1114a覆蓋每個第一摻雜半導體周邊段1102b。第二電極第一部分1126a形成在每個周邊溝槽谷1118上,並藉由相應的周邊過孔1128連接第一摻雜半導體1102。第二電極第二部分1126b覆蓋電絕緣體第一部分1114a的分段的周邊且在第五平面1122中具有基板介面表面。
第一摻雜半導體1102、MQW層1106和第二摻雜半導體1110形成蝕刻疊層,蝕刻疊層具有與第一平面1104、第二平面1108和第三平面1112正交的高度1134小於2微米,並且第一、第二、第三和第四平面的平面度公差小於10奈米。如上所述,第五平面中的電極介面表面具有小於10nm的平均平面度公差。不是依靠使用薄膜堆積工藝來形成平面電極表面所固有的更大的公差,如圖6A-6J所示,本文所述的裝置使用MOCVD疊層的預先存在的平坦表面。因此,即使在晶片上的晶片之間或晶片之間的疊層蝕刻中存在差異,MOCVD平面也可用來維持最終形成的電極的基板介面之間的平坦性。簡而言之,微型LED1100、以及下面呈現的微型LED1300和1400可被描述為一種裝置,其中電極形成在蝕刻的MOCVD晶片(即蝕刻疊層)上,而沒有隨後沉積的介入的半導體層。
在未示出的一個方面中,焊料層形成第一和第二電極介面表面的一部分,並且由諸如銦/錫(In/Sn)或金/鍺(Au/Ge)的合金製成。可替代地,第一電極和第二電極的基板介面表面是金的。可選地,如圖所示,導航龍骨或柱1136被附接到第一摻雜半導體基底底表面1138上。
如圖11A所示,該示例性的中心發光器設計使用環形的N-pad電極的四個等間隔的島狀結構支撐段。設計中的一個關鍵因素是N-pad和P-pad電極共面。還請注意,島(周邊)結構不具有電活性,且藉由絕緣體與N-pad電極隔離,因此與N-pad電極的連接是藉由在島之間隔開的4個接觸點進行的。島的數量通常取決於微型LED的尺寸,從一到六個或更多,但是在島狀結構中設有至少一個用於與N摻雜區域接觸的開口。較少的接觸允許更大的面積用於焊料接觸基板電極,但是增加了n摻雜層中的擴散電阻。相反,島之間的開口越多,用於使微型LED與基板電極之間接觸的最終面積越小。一方面,已經發現三個或四個島/接觸點為優選的以在串聯電阻和結合強度之間取得最佳折衷。
本發明的工藝流程類似於上面提出的習知技術流程,其中去除了與N-pad堆積相關的照片、沉積和剝離步驟(上述步驟6和7),因此在生產具有完美共面表面貼裝電極的微型LED時降低了成本和複雜性。製造當前設計的基於GaN的微型LED的示例性工藝流程如下:
1)如上所述,LED疊層藉由MOCVD被沉積在藍寶石晶片上。 可以使用其他基板,例如SiC或矽,但是藍寶石基板允許藉由鐳射剝離(LLO)從生長基板中移除μLED。MQW結構被調整以產生所需的發光顏色且所得結構的厚度在2到7μm之間,另請參見圖1A。
2)電流擴散層被沉積在p-GaN表面上。該成分通常是薄的(10nm或更小)NiOx 介面層加上厚度可為100至500nm的透明導電氧化物,例如ITO。
3)發光區域藉由光刻法被界定,且MOCVD疊層被蝕刻到延伸到n摻雜GaN層中的深度,從而形成本文中稱為“蝕刻疊層”的結構。
4)藉由光刻和將整個疊層向下蝕刻到藍寶石基板來界定μLED區域。
5)一絕緣層,通常是厚度為100至400nm的電漿增強CVD(PECVD)的二氧化矽(SiO2),被沉積以防止裝置上電流洩漏。
6)與p-GaN和n-GaN區對應的接觸點被開設在絕緣層中。
7)光刻圖案被形成以防止金屬沉積在N-pad和P-pad接觸區域之外,且金屬疊層被沉積以連接μLED接觸孔。
a.第一金屬層被選擇為了與氧化物黏合,並且功函數與n摻雜的GaN相匹配。典型的材料是10至50nm厚的Cr。
b.下一種金屬被選擇作為黏附層和焊料材料之間的導電阻擋層,可以是總厚度為100-200nm的Cr/Au或Ti/Ni。
c.頂層是可以黏結基板電極的低熔點的焊料。一種系統是用於焊料熔化溫度的錫合金。另一種金屬系統是Au/Ge。
d.可替代地,微型LED可以僅接收來自步驟7a和7b的金屬,而低熔點焊料可以形成在顯示基板電極上。
8)多餘的金屬藉由剝離工藝被去除。
9)將完成的晶片頂面藉由黏合劑層與臨時載體黏結,並藉由LLO移除藍寶石生長晶片。
10)現在,μLED以適合於進一步處理的平面陣列在載體晶圓上底面朝上。
11)可選地,n-GaN可被蝕刻以減小μLED的厚度。
12)用於流體組裝的柱(導航龍骨)結構可選地被製造在μLED中心附近的底面上。柱可以是圓柱形、圓錐形或凹入的形狀,其中柱的高度和直徑經選擇以利於在流體組裝過程中μLED的底側向上的取向。
13)最後,藉由使用合適的溶劑溶解黏合劑,完整的μLED被收集到懸浮液中。
由於紅色LED是在不同的MOCVD工藝中製造的,因此針對GaAs基的裝置修改了工藝流程。裝置的形狀以及電極和柱的位置與GaN裝置的相似,但裝置的厚度可能不同。示例性處理流程如下進行:
1)如上所述,藉由MOCVD LED疊層被沉積在GaAs晶片上。MQW結構被調整以產生所需的發光顏色,且所得結構的厚度在5到10μm之間。也參見圖2A。
2)可選地,p-GaP可被蝕刻以減小疊層的厚度。
3)將完成的晶片頂面藉由黏合劑層黏結玻璃或藍寶石臨時基板上,並藉由濕蝕刻移除GaAs生長晶片。
4)μLED區域藉由光刻被界定,整個疊層被蝕刻。
5)發光區域藉由光刻法被界定,且MOCVD疊層被蝕刻到延伸到p摻雜的GaP層中的深度,從而形成蝕刻疊層。
6)諸如Cr/Au的金屬層被沉積在與該層的功函數匹配的p-GaP區域上。
7)諸如Ti/Au的金屬層被沉積在與該層的功函數匹配的n-GaP區域上。
8)沉積一層絕緣層,通常為100至400nm厚的PECVD的SiO2 被沉積以防止在裝置上電流洩漏。
9)在絕緣層中開設與p-GaP和n-GaP區域對應的接觸點。
10)光刻圖案被形成以防止金屬沉積在N-pad和P-pad接觸區域之外,且金屬疊層被沉積以連接μLED接觸孔。
a.選擇第一金屬作為黏附層和焊料材料之間的導電阻擋層,其可以是總厚度為100-200nm的Cr/Au或Ti/Ni。
b.頂層是可黏結基板電極的低熔點的焊料。一種系統是用於降低焊料的熔化溫度的錫合金。另一種合適的低熔點金屬系統是Au/Ge。或者,該焊料層可被形成在基板電極上。
11)多餘的金屬藉由剝離工藝被移除。
12)用黏合劑層將完成的晶片頂面黏合到臨時晶片上,並藉由溶解第一黏合劑移除第一臨時基板。
13)現在,μLEDs以適合於進一步處理的平面陣列在臨時晶片上底面朝上。
14)可選地,n-GaP可被蝕刻以減小微型LED的厚度。
15)用於流體組裝的柱結構可選地製造在微型LED中心附近的底部。柱可以是圓柱形的、圓錐形的或凹入的形狀,其中柱的高度和直徑選擇為利於在流體組裝過程中使微型LED的底部朝上的取向。
16)藉由使用合適的溶劑溶解第二黏合劑,完成的微型LED被收集在懸浮液中。
圖12是示出作為電流密度的函數的通量和效率之間的關係的圖。微型LED顯示器最重要的優點之一是無機LED可以實現非常高的亮度,這使靈活性能夠使顯示器的發光性能與產品的特定解析度和亮度要求相匹配。小型可穿戴的顯示器可能只需要150-200尼特(坎德拉每平方米)亮度,而電視可能是500-1500尼特,而戶外公共資訊顯示器(PID)可能是2000-4000尼特。手機或平板電腦的小型顯示器的解析度可能超過600畫素每英寸(ppi),而大型PID顯示器的解析度可能僅為20至60ppi,因此每個微型LED的可用面積也大不相同。對於發440nm(藍光)的GaN微型LED,如圖12所示,來自微型LED的光通量在相對較寬範圍內是電流密度的近似線性函數。因此,微型LED顯示器藉由控制提供給每個子畫素的電流來調節灰度強度。 微型LED的電光轉化效率(光輸出/電功率)以相對較低的通量達到峰值,然後在很寬的施加電流範圍內逐漸降低(下降)。對於顯示器操作,期望在效率峰值附近操作以最小化顯示器中散發的廢熱。但是,非常低的電流很難調節,因此給定顯示器的最佳電流密度取決於多種因素。普通照明LED在大約70安培/平方釐米(A/cm2 )的高電流密度下運行,以使每個裝置的光輸出最大化,從而使每個燈泡的成本最小化。微型LED顯示器通常以較低的電流密度工作以實現更高的可靠性和更低的散熱,因此工作範圍可能在1到30A/cm2 之間。影響微型LED配置選擇的其他因素包括每個彩色微型LED的效率、色域要求以及以綠色為中心的人類視覺系統的靈敏度。因此,有利的是具有一種結構,該結構允許微型LED發光面積的調整,以平衡性能要求,同時保持固定的微型LED特性,例如柱高、厚度和直徑,這對於高產量流體組裝是至關重要的。
圖13A和13B分別是描繪平面SM周邊發光μLED的平面圖和局部截面圖。周邊發光μLED1300包括形成為基底並摻雜有n或p摻雜劑的第一摻雜半導體1302。第一摻雜半導體1302具有形成在包括與周邊1302b分開的中心平臺1302a的第一平面1304中的頂表面。如圖13A所示,第一摻雜半導體基底是圓形的,但是其他眾所周知的幾何形狀也是可能的。具有頂表面的MQW層1306形成在覆蓋第一摻雜半導體中心平臺1302a和周邊1302b的第二平面1308中。摻雜有與用於第一摻雜半導體1302的摻雜劑相反的摻雜劑的第二摻雜半導體1310在覆蓋MQW層1306的第三平面1312中具有頂表面。
電絕緣體1314形成為在覆蓋第二摻雜半導體1310的第四平面1316中具有頂表面的層。第一電極1318覆蓋中心平臺1302a,並藉由中心過孔1320連接第一摻雜半導體1302。第一電極1318在第五平面1322中具有基板介面表面。第二電極1324覆蓋電絕緣體1314的周邊,並且藉由周邊過孔1326連接第二摻雜半導體1310。第二電極1324在第五平面1322中具有基板介面表面。在第一摻雜半導體1302中形成溝槽1328,該溝槽1328將中心平臺1302a與周邊1302b分開。溝槽具有形成在第一平面1302下方的第六平面1330中的頂表面。一方面,第一摻雜半導體1302和第二摻雜半導體1310是摻雜的GaN。或者,第一摻雜半導體1302和第二摻雜半導體1310是p摻雜的p-GaP或n摻雜的n-GaInP。第一摻雜半導體中心平臺1302a、MQW層1306以及第二摻雜半導體1310形成經蝕刻疊層,蝕刻疊層具有垂直於第一平面1304、第二平面1308和第三平面1312的高度1332小於2微米,且對第一、第二、第三和第四平面的平面度公差小於10奈米。第五平面中的電極介面表面的平均平面度公差也小於10nm。
一方面,未示出的,焊料層形成第一和第二電極介面表面的一部分,並由諸如In/Sn或Au/Ge的合金製成。或者,第一電極和第二電極的基板介面表面是金。可選地,如圖所示,導航龍骨或柱1334附接第一摻雜半導體基底底表面1336。
上面描述的並且在圖11A和11C中示出的中心發光器包括:發光面積為盤狀微型LED的總表面積的10%至15%,其中微型LED的表面積平行於第一、第二和第三平面。如圖13A-13B所示,可以改變結構使得發光區域是被P-pad覆蓋的外環結構,而中心島(平臺)是對N-pad電極的機械支撐。在這個方面,發光面積可是微型LED盤表面積的約50%。這種結構的優點是連續的P-pad電極不會被接觸孔打斷,因此可以實現與基板介面電接觸點的完整360度環接觸。在這種結構中,在擴散電阻和減小平臺的面積之間進行了權衡,該擴散電阻藉由增加中心接觸面積而降低,而平臺的面積使焊料與基板電極保持接觸。
圖14A和圖14B分別是平面SM全區域發光μLED的平面圖和局部截面圖。全區域發光μLED1400包括形成為基底且摻雜有n或p摻雜劑的第一摻雜半導體1402。儘管第一摻雜半導體基底被描繪為圓形,但是它不限於任何特定的幾何形狀。第一摻雜半導體1402具有形成在包括平臺的第一平面1404中的頂表面。MQW層1406具有在覆蓋第一摻雜半導體平臺的第二平面1408中形成的頂表面。摻雜有與第一摻雜半導體中使用的摻雜劑相反的摻雜劑的第二摻雜半導體1410形成為在覆蓋MQW層1406的第三平面1412中具有頂表面的層。具有第一部分1414a的電絕緣體形成為在覆蓋第二摻雜半導體1410的第四平面1416中具有頂表面的層。第二絕緣體1414b覆蓋第一摻雜半導體周邊溝槽谷1418。
第一電極1420覆蓋該平臺並藉由平臺過孔1423連接第二摻雜半導體1410。第一電極1420在第五平面1422中具有基板介面表面。第二電極具有覆蓋周邊溝槽谷1418的第一部分1424a。第二電極具有覆蓋周邊溝槽谷1418的第一部分1424a,且藉由周邊過孔1426連接第一摻雜半導體1402。第二電極第二部分1424b形成為覆蓋在第五平面1422中具有基板介面表面的電絕緣體第一部分1414a的周邊。第一摻雜半導體周邊溝槽谷1418具有形成在位於第一平面1408下方的第六平面1428中的頂表面。
一方面,第一摻雜半導體1402和第二摻雜半導體1410是摻雜的GaN。或者,第一摻雜半導體1402和第二摻雜半導體1410是p摻雜的p-GaP或n摻雜的n-GaInP。如圖所示,SM全區域發光μLED可包括複數個第一摻雜半導體周邊溝槽谷1418。在那種情況下,第二電極第一部分1424a形成在每個周邊溝槽谷1418上,且藉由相應的周邊過孔1426連接第一摻雜半導體1402。第二電極第二部分1424b覆蓋在第五平面1422中具有基板介面表面的電絕緣體第一部分1414a的周邊部分。
第一摻雜半導體1402、MQW層1406和第二摻雜半導體1410形成蝕刻疊層,該蝕刻疊層具有與第一平面1404、第二平面1408和第三平面1412正交的高度1430小於2微米,且具有第一、第二、第三和第四平面的平面度公差小於10奈米。第五平面中的電極介面表面的平均平面度公差也小於10nm。
一方面,未示出的,焊料層形成第一和第二電極介面表面的一部分,並且由諸如銦/錫(In/Sn)或金/鍺(Au/Ge)的合金製成。或者,第一和第二電極的基板介面表面是金。可選地,如圖所示,導航龍骨或柱1432附接第一摻雜半導體基底底表面1434。
圖15A至圖15C是比較中心發光(圖11A)、周邊發光(圖13A)和全區域發光(圖14A)的微型LED的發光表面積的平面圖。如果需要大的發光面積,則圖14A的全發光器設計可被採用。活性發光區也是P-pad電極的機械支撐島,因此使活性島(平臺)中的開口(顯示3個)被形成以接觸n-GaN區。在這種情況下,發光面積約為微型LED盤直徑的75%。對於GaAs基的裝置,與四接觸點變體相比,三接觸點幾何形狀通常更有利,因為在任何分裂平面上只有一個薄區域,從而使微型LED的機械強度更高。全發光結構的另一個優點是,對裝置周邊的蝕刻損傷對效率的影響較小。這對於AlGaInP裝置尤其重要,在該裝置中,由於蝕刻損壞而引起的表面重組會導致圍繞LED周邊的發光率降低,從而限制了小型微型LED的發光。
本文所述的微型LED設計與習知MOCVD製造相容,並且有利於流體組裝以及與在同一平面上形成的表面貼裝電極的結合。所述結構的另一個好處是可以靈活地將發光面積從微型LED面積的10%更改為75%,而無需更改對於成功進行流體組裝至關重要的物理特性(直徑、厚度、側壁角度和接柱尺寸)。
圖16是示出用於製造SM μLED的方法的流程圖。儘管為清楚起見該方法被描述為一系列編號的步驟,但是編號不一定指示步驟的順序。應當理解,這些步驟中的一些可以被跳過,並存執行或在不要求維持嚴格順序的情況下執行。然而,通常該方法遵循所描繪步驟的數位順序。該方法始於步驟1600。
步驟1602提供了一種MOCVD LED結構,該MOCVD LED結構包括生長基板、覆蓋在包括在第一平面中具有頂表面的第一摻雜半導體的生長基板上的疊層、覆蓋在第二平面中具有頂表面的第一摻雜半導體的MQW層、以及覆蓋MQW層並在第三平面中具有頂表面的第二摻雜半導體,參見圖1A和2A。第一和第二摻雜半導體相反地摻雜有n和p摻雜劑。上面提到了可以使用的明確的半導體材料。
步驟1604蝕刻MOCVD疊層以在生長基板上形成複數個單個的晶片。步驟1606如下從每個晶片製造μLED。步驟1606a選擇性地蝕刻疊層。步驟1606b共形地沉積電絕緣體以在覆蓋蝕刻疊層的第四平面上形成頂表面。步驟1606c選擇性地蝕刻以暴露第二摻雜半導體,從而形成第一過孔。步驟1606d選擇性地蝕刻以暴露第一摻雜半導體,從而形成第二過孔。注意:在某些情況下可在步驟1606c之前執行步驟1606d,或者在適當的光刻和圖案化之後同時執行步驟1606d。步驟1606e形成覆蓋第一過孔的第一電極,藉由第一過孔連接第二摻雜半導體,且在第五平面中具有基板介面表面。步驟1606f形成覆蓋第二過孔的第二電極,藉由第二過孔連接第一摻雜半導體,並且在第五平面中具有基板介面表面。在一些方面,步驟1606e和1606f可以以相反的循序執行或與適當的光刻和圖案化同時執行。步驟1608將製造的μLED與生長基板分離。
一方面,該方法製造中心發光μLED,在這種情況下,選擇性地蝕刻疊層(步驟1606a)包括創建被暴露第一摻雜半導體的溝槽包圍的中心平臺疊層,以及由暴露第一摻雜半導體的周邊溝槽谷分割的周邊疊層。在步驟1606b中將電絕緣體保形地沉積在經蝕刻疊層上包括形成覆蓋中心平臺疊層和周邊疊層的第四平面。在步驟1606c中選擇性地蝕刻以暴露第二摻雜半導體包括蝕刻覆蓋中心平臺疊層的電絕緣體的一部分以創建第一過孔,且在步驟1606d中選擇性地蝕刻以暴露第一摻雜半導體包括蝕刻覆蓋周邊溝槽谷的電絕緣體以創建第二過孔。然後,在步驟1606e中形成第一電極包括形成覆蓋中心平臺疊層的第一電極,藉由第一過孔連接第二摻雜半導體。在步驟1606f中形成第二電極包括:形成第二電極,該第二電極具有形成在周邊溝槽谷上的第一部分,該第一部分藉由第二過孔連接第一摻雜半導體,以及形成第二部分,該第二部分覆蓋形成在周邊疊層上的電絕緣體,具有在第五平面中的基板介面表面。
另一方面,該方法藉由選擇性地蝕刻MOCVD疊層(步驟1606a)以產生藉由暴露第一摻雜半導體的溝槽而與周邊疊層分離的中心平臺疊層,來製造周邊發光μLED。在步驟1606b中保形地沉積電絕緣體包括形成覆蓋中心平臺疊層和周邊疊層的第四平面。在步驟1606c中選擇性地蝕刻以暴露第二摻雜半導體包括:蝕刻電絕緣體的覆蓋周邊疊層的一部分以暴露第二摻雜半導體。在步驟1606d中選擇性蝕刻以暴露第一摻雜半導體包括:蝕刻電絕緣體的一部分以及中心平臺疊層中的第二摻雜半導體和MQW層的下面部分,以暴露第一摻雜半導體。在步驟1606e中形成第一電極包括形成覆蓋形成在周邊疊層上的電絕緣體上且藉由第一過孔連接第二摻雜半導體的第一電極。在步驟1606f中形成第二電極包括形成覆蓋中心平臺疊層且藉由第二過孔連接第一摻雜半導體的第二電極。
在另一變更中,該方法藉由選擇性地蝕刻MOCVD疊層(步驟1606a)以形成平臺疊層和在平臺疊層中以暴露第一摻雜半導體的周邊溝槽谷,從而製造全區域發光μLED。步驟1606c中選擇性地蝕刻以暴露第二摻雜半導體包括:蝕刻電絕緣體覆蓋平臺疊層的一部分以暴露第二摻雜半導體。步驟1606d中選擇性地蝕刻以暴露第一摻雜半導體包括蝕刻覆蓋周邊溝槽谷的電絕緣體。步驟1606e中形成第一電極包括形成覆蓋在平臺疊層之上且藉由第一過孔連接第二摻雜半導體的第一電極。步驟1606f中形成第二電極包括:形成第二電極的第一部分,該第一部分覆蓋藉由第二過孔連接第一摻雜半導體的周邊溝槽通孔;以及形成第二部分,該第二部分覆蓋形成在平臺疊層的周邊的電絕緣體,且在第五平面中具有基板介面表面。
如上所述,步驟1608製成μLED具有與第一平面、第二平面和第三平面共面的最大橫截面150微米,與第一平面、第二平面和第三平面正交的平臺疊層(蝕刻疊層)高度小於2微米,以及小於10奈米的平均第五平面的平面度公差。
圖17是示出用於製造具有阱底表面墊片的顯示基板的方法的流程圖。儘管為清楚起見,該方法被描述為一系列編號的步驟,但是編號不一定代表步驟的順序。應當理解的,這些步驟中的一些可以被跳過、並存執行或在不要求嚴格順序的情況下執行。然而,通常,該方法如上所述,並且通常遵循以下呈現的步驟的數位順序。
該方法開始於步驟1700。步驟1702提供具有平坦頂表面的支撐基板和包括列和行導線陣列的LED交叉點控制矩陣。步驟1704形成覆蓋支撐基板頂表面的凸的阱底部結構的陣列。步驟1706形成覆蓋支撐基板頂表面和凸的阱底部結構的第一薄膜層。步驟1708形成在第一薄膜層中且暴露出凸的阱底部結構的阱。步驟1710流體沉積表面貼裝微型LED於阱中。
一方面,步驟1704中形成凸的阱底部結構的陣列包括:對於每個凸的阱底部結構,形成電連接對應的列線的第一基板電極和電連接對應的行線的第二基板電極。另一方面,形成第一薄膜層之前,步驟1704a形成覆蓋支撐基板頂表面的墊片的陣列。墊片可以是導電的或絕緣的材料。步驟1704b形成覆蓋墊片陣列的第二薄膜層。
一方面,步驟1704a中形成墊片的陣列包括形成具有寬度和頂表面的墊片。然後,步驟1708中在第一薄膜層中形成阱包括形成具有大於墊片寬度的直徑(橫截面)的阱。阱的凸的底表面的形狀回應於墊片頂表面和支撐基板頂表面之間的高度差。
另一方面,步驟1704中形成凸的阱底部結構的陣列包括附加的子步驟。步驟1704c形成具有用於電連接微型LED的第一電介面表面的中心第一基板電極。步驟1704d形成具有第二電介面表面的周邊第二基板電極,該第二電介面表面相對於支撐基板頂表面限定為低於第一電介面表面,用於電連接微型LED。
又一方面,步驟1704a中形成墊片的陣列包括形成直接覆蓋(與之電接觸)列線的每個墊片,形成列互連墊片。然後,步驟1704b中形成第二薄膜層包括在覆蓋每個列互連墊片的第二薄膜層中形成過孔,且在步驟1704c中形成中心第一基板電極包括形成覆蓋過孔且電連接列互連墊片的中心第一基板電極。
步驟1710中沉積表面貼裝微型LED通常包括用具有頂部表面和基板介面表面的微型LED填充阱,該微型LED的頂表面具有中心第一電極和周邊第二電極,該基板介面表面分別連接第一基板電極和第二基板電極。一方面,微型LED具有帶有共面的基板介面表面的中心第一電極和周邊第二電極,例如上面詳細描述的中心發光、周邊發光和全區域發光微型LED。或者,微型LED可具有非共面的中心第一電極和周邊第二電極基板介面表面,如圖9D和9E所示。
平面表面貼裝微型LED和相關的製造工藝已示出。特定的半導體材料、幾何形狀和明確的工藝步驟的示例已示出以說明本發明。然而,本發明不僅限於這些示例。所屬領域技術人員將想到本發明的其他變型和實施例。
300:SM-LED 306:第一電接觸點 308:第二電接觸點 402:第二半導體層 404:第一半導體層 406、1106、1306:MQW層 408、1314:電絕緣體 802:行線 804:列線 1000:發光顯示基板 1001:支撐基板 1002:支撐基板頂表面 1008:第一薄膜層 1010:阱 1012:凸的底表面 1014:第一基板電極 1016:第二基板電極 1018:第二薄膜層 1018a:TFT層 1018b:第一氧化物層 1018c:第二氧化物層 1020:墊片 1022:直徑 1024:寬度 1026:頂面 1028:第一電介面表面 1030:第二電介面表面 1032:過孔 1100:中心發光μLED 1102、1302、1402:第一摻雜半導體 1102a、1302a:中心平臺 1102b、1302b:周邊 1110、1310、1410:第二摻雜半導體 1114a、1414a:電絕緣體第一部分 1114b、1414b:電絕緣體第二部分 1118、1418:周邊溝槽谷 1120、1318、1420:第一電極 1124、1320:中心過孔 1126a、1424a:第二電極第一部分 1126b、1424b:第二電極第二部分 1128、1326、1426:周邊過孔 1130、1328:溝槽 1134、1332、1430:蝕刻疊層高度 1104、1304、1404:第一平面 1108、1308、1408:第二平面 1112、1312、1412:第三平面 1116、1316、1416:第四平面 1122、1322、1422:第五平面 1132、1330、1428:第六平面 1136、1432:導航龍骨或柱 1300、1400:微型LED 1324:第二電極 1336、1434:第一摻雜半導體基底底表面 1423:平臺過孔
圖1A至1C是描繪用於一般照明目的的GaN-LED晶片(習知技術)的圖。
圖2A和圖2B是示出用於製造紅色發光指示器的砷化鎵(GaAs)LED晶片(習知技術)的圖。
圖3A和3B分別描繪了傳統封裝的藍色和紅色LED(習知技術)的局部截面圖。
圖4A和圖4B分別是能夠用作表面貼裝(SM)LED的發光元件的局部截面圖和平面圖。
圖5是描繪圖4的LED的替代方案的局部截面圖。
圖6A至圖6J描繪了如美國專利9,825,202中所述的製造微型LED的步驟。
圖7A至圖7C描繪了懸浮介質向具有導航龍骨(支柱)的微型LED施加扭矩。
圖8A和8B分別是微型LED子畫素佈局的平面圖和局部截面圖。
圖9A至9E是描繪示例性阱變化中的微型LED對位元元元的局部橫截面圖。
圖10A至圖10C是基板阱和配合的微型LED的局部截面圖,示出了阱底表面墊片。
圖11A至圖11D分別是平面SM中心發光μLED的平面圖、兩個局部截面圖和透視圖。
圖12是示出作為電流密度的函數的通量和效率之間的關係的圖。
圖13A和13B分別是描繪平面SM周邊發光μLED的平面圖和局部截面圖。
圖14A和圖14B分別是平面SM全區域發光μLED的平面圖和局部截面圖。
圖15A至圖15C是比較中心發光(圖11A)、周邊發光(圖13A)和全區域發光(圖14A)的微型LED的發光表面積的平面圖。
圖16是示出用於製造SM μLED的方法的流程圖。
圖17是示出用於製造具有阱底表面墊片的顯示基板的方法的流程圖。
300:SM-LED
306:第一電接觸點
308:第二電接觸點
402:第二半導體層
404:第一半導體層
406:MQW層
408:電絕緣體

Claims (22)

  1. 一種發光顯示基板,其改良在於,包括: 支撐基板,具有平面的頂表面以及包括列和行導線的陣列的發光二極體(LED)交叉點控制矩陣; 第一薄膜層,覆蓋所述支撐基板的頂表面且包括複數個阱; 其中,每個阱具有凸的底表面、與對應的列導線連接的第一基板電極、以及與對應的行導線連接的第二基板電極。
  2. 如請求項1所述的發光顯示基板,其中,所述發光顯示基板進一步包括: 位於所述支撐基板的頂表面和第一薄膜層之間的第二薄膜層; 位於所述支撐基板的頂表面和第二薄膜層之間且位於每個阱底部下方的墊片。
  3. 如請求項2所述的發光顯示基板,其中,所述第一薄膜層的每個阱具有第一直徑; 其中,所述墊片具有小於第一直徑的寬度和一頂表面; 其中,所述阱的凸的底表面是由於所述墊片的頂表面和所述支撐基板的頂表面之間的高度差。
  4. 如請求項2所述的發光顯示基板,其中,所述墊片選自導電材料和電絕緣材料。
  5. 如請求項2所述的發光顯示基板,其中,所述第一基板電極是具有用於電連接微型LED的第一電介面表面的中心基板電極,且所述第二基板電極是具有第二電介面表面的周邊基板電極,相對於所述支撐基板的頂表面所界定的,所述第二電介面表面比所述第一電介面表面更低且用於電連接微型LED。
  6. 如請求項2所述的發光顯示基板,其中,所述墊片直接覆蓋所述列導線,形成一列互連墊片; 其中,所述第二薄膜層包括覆蓋所述列互連墊片的過孔;以及 其中,所述第一基板電極是覆蓋所述過孔並連接所述列互連墊片的中心基板電極。
  7. 如請求項5所述的發光顯示基板,其中,所述發光顯示基板進一步包括: 填充所述複數個阱的複數個表面貼裝微型LED, 每個微型LED具有帶有中心第一電極和周邊第二電極的頂表面以及分別連接所述第一基板電極和所述第二基板電極的基板介面表面。
  8. 如請求項7所述的發光顯示基板,其中,所述微型LED的中心第一電極和周邊第二電極具有共面的基板介面表面。
  9. 如請求項8所述的發光顯示基板,其中,所述表面貼裝微型LED選自中心發光、周邊發光和全區域發光的微型LED。
  10. 如請求項7所述的發光顯示基板,其中,所述微型LED的中心第一電極和周邊第二電極基板的基板介面表面不是共面的。
  11. 一種製備發光顯示基板的方法,其改良在於,包括: 提供支撐基板,其具有平面的頂表面以及包括列和行導線的陣列的發光二極體(LED)交叉點控制矩陣; 形成覆蓋所述支撐基板的頂表面的凸的阱底部結構的陣列; 形成覆蓋所述支撐基板的頂表面和凸的阱底部結構的第一薄膜層;以及 在所述第一薄膜層中形成複數個阱,從而暴露出凸的阱底部結構。
  12. 如請求項11所述的方法,其中,形成所述凸的阱底部結構的陣列包括:對於每個凸的阱底部結構,形成電連接對應的列導線的第一基板電極和電連接對應的行導線的第二基板電極。
  13. 如請求項12所述的方法,其中,形成所述凸的阱底部結構的陣列包括: 在形成所述第一薄膜層之前,形成覆蓋所述支撐基板的頂表面的墊片的陣列;以及 形成覆蓋所述墊片的陣列的第二薄膜層。
  14. 如請求項13所述的方法,其中,形成所述墊片的陣列包括形成具有寬度和頂表面的墊片; 其中,在所述第一薄膜層中形成複數個阱包括形成直徑大於所述墊片寬度的複數個阱;以及 其中,所述阱的凸的底表面的形狀回應於所述墊片的頂表面和所述支撐基板的頂表面之間的高度差。
  15. 如請求項13所述的方法,其中,形成所述墊片的陣列包括由選自導電和電絕緣材料的材料形成墊片。
  16. 如請求項12所述的方法,其中,形成所述凸的阱底部結構的陣列包括: 形成具有用於電連接微型LED的第一電介面表面的中心第一基板電極;以及 形成具有第二電介面表面的周邊第二基板電極,相對於支撐基板的頂表面所界定的,所述第二電介面表面比第一電介面表面更低且用於電連接微型LED。
  17. 如請求項16所述的方法,其中,形成所述墊片的陣列包括: 形成直接覆蓋所述列導線的每個墊片,形成列互連墊片; 其中,形成所述第二薄膜層包括在所述第二薄膜層中形成覆蓋每個列互連墊片的過孔;以及 其中,形成所述中心第一基板電極包括形成覆蓋所述過孔並電連接所述列互連墊片的中心第一基板電極。
  18. 如請求項11所述的方法,其中,所述方法進一步包括: 流體沉積複數個表面貼裝微型LED於所述複數個阱中。
  19. 如請求項18所述的方法,其中,沉積所述複數個表面貼裝微型LED包括用複數個微型LED填充所述複數個阱,所述微型LED具有帶有中心第一電極和周邊第二電極的頂表面和分別連接第一基板電極和第二基板電極的基板介面表面。
  20. 如請求項19所述的方法,其中,沉積所述複數個表面貼裝微型LED包括沉積具有中心第一電極和周邊第二電極共面基板介面表面的微型LED。
  21. 如請求項20所述的方法,其中,沉積所述複數個表面貼裝微型LED包括沉積選自中心發光、周邊發光和全區域發光的微型LED。
  22. 如請求項19所述的方法,其中,沉積所述複數個表面貼裝微型LED包括沉積具有非共面中心第一電極和周邊第二電極基板介面表面的微型LED。
TW109115129A 2019-05-08 2020-05-06 用於表面貼裝微型led流體組裝的發光顯示基板及製備方法 TWI750650B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/406,196 US10643981B2 (en) 2014-10-31 2019-05-08 Emissive display substrate for surface mount micro-LED fluidic assembly
US16/406196 2019-05-08

Publications (2)

Publication Number Publication Date
TW202042287A true TW202042287A (zh) 2020-11-16
TWI750650B TWI750650B (zh) 2021-12-21

Family

ID=71679052

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109115129A TWI750650B (zh) 2019-05-08 2020-05-06 用於表面貼裝微型led流體組裝的發光顯示基板及製備方法

Country Status (2)

Country Link
CN (1) CN111462651B (zh)
TW (1) TWI750650B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI781616B (zh) * 2021-05-12 2022-10-21 鴻海精密工業股份有限公司 顯示面板及顯示面板的製備方法
TWI820627B (zh) * 2021-02-08 2023-11-01 隆達電子股份有限公司 顯示裝置及其製造方法
TWI820389B (zh) * 2021-02-08 2023-11-01 隆達電子股份有限公司 發光元件封裝體、顯示裝置及製造顯示裝置的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112365801B (zh) * 2020-11-16 2022-11-18 武汉蓝辉机电设备有限公司 一种散热良好的船用大屏幕显示屏

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050133808A1 (en) * 2003-09-11 2005-06-23 Kyocera Corporation Package for housing light-emitting element, light-emitting apparatus and illumination apparatus
US8860635B2 (en) * 2005-04-04 2014-10-14 The Invention Science Fund I, Llc Self assembling display with substrate
US20110042124A1 (en) * 2007-12-05 2011-02-24 Mitsubishi Plastics, Inc. Multilayer wiring substrate having cavity portion
JP5176750B2 (ja) * 2008-07-24 2013-04-03 ソニー株式会社 発光素子組立体、面状光源装置、及び、液晶表示装置組立体
US8299473B1 (en) * 2009-04-07 2012-10-30 Soraa, Inc. Polarized white light devices using non-polar or semipolar gallium containing materials and transparent phosphors
CN102427080B (zh) * 2011-11-18 2015-07-29 贵州大学 一种多量子阱tft-led阵列显示基板及其制造方法
US9755110B1 (en) * 2016-07-27 2017-09-05 Sharp Laboratories Of America, Inc. Substrate with topological features for steering fluidic assembly LED disks
US10535640B2 (en) * 2014-10-31 2020-01-14 eLux Inc. System and method for the fluidic assembly of micro-LEDs utilizing negative pressure
CN107431106B (zh) * 2015-04-07 2020-05-05 伊乐视有限公司 流体组装顶接触led圆盘
CN105870265A (zh) * 2016-04-19 2016-08-17 京东方科技集团股份有限公司 发光二极管基板及其制备方法、显示装置
US9627437B1 (en) * 2016-06-30 2017-04-18 Sharp Laboratories Of America, Inc. Patterned phosphors in through hole via (THV) glass
CN106206605B (zh) * 2016-08-04 2019-09-03 上海君万微电子科技有限公司 一种led微显示阵列倒装芯片及制作方法
KR102037225B1 (ko) * 2016-09-15 2019-10-30 일룩스 아이엔씨. 표면 실장 발광 소자를 구비하는 디스플레이
TWI630729B (zh) * 2017-08-28 2018-07-21 友達光電股份有限公司 發光裝置
TWI662288B (zh) * 2018-07-04 2019-06-11 友達光電股份有限公司 顯示面板及發光元件基板的檢測方法
CN108899337B (zh) * 2018-07-05 2021-01-26 京东方科技集团股份有限公司 微发光二极管基板及其制备方法、显示面板

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI820627B (zh) * 2021-02-08 2023-11-01 隆達電子股份有限公司 顯示裝置及其製造方法
TWI820389B (zh) * 2021-02-08 2023-11-01 隆達電子股份有限公司 發光元件封裝體、顯示裝置及製造顯示裝置的方法
TWI781616B (zh) * 2021-05-12 2022-10-21 鴻海精密工業股份有限公司 顯示面板及顯示面板的製備方法

Also Published As

Publication number Publication date
TWI750650B (zh) 2021-12-21
CN111462651B (zh) 2021-12-10
CN111462651A (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
US10643981B2 (en) Emissive display substrate for surface mount micro-LED fluidic assembly
US10804426B2 (en) Planar surface mount micro-LED for fluidic assembly
TWI750650B (zh) 用於表面貼裝微型led流體組裝的發光顯示基板及製備方法
US9825013B2 (en) Transfer-bonding method for the light emitting device and light emitting device array
US8722441B2 (en) Manufacturing process for solid state lighting device on a conductive substrate
JP2019534565A (ja) 窒化インジウムガリウム赤色発光ダイオード、および、その製造方法
US11908974B2 (en) Light emitting diodes containing deactivated regions and methods of making the same
US11362073B2 (en) Light emitting device including multiple transparent electrodes for display and display apparatus having the same
TW201944627A (zh) 用於直視型顯示器之子像素發光二極體及其製造方法
WO2023071910A1 (zh) Micro-LED芯片结构及其制作方法
TWI437737B (zh) 發光二極體結構及其製造方法
TWI469382B (zh) 發光二極體結構與元件以及其製造方法
WO2019199946A1 (en) Light emitting diodes formed on nanodisk substrates and methods of making the same
CN114171394A (zh) 半导体装置的制备方法和半导体装置
TWI796658B (zh) 單體電子器件、測試基片及其形成與測試方法
TWI740488B (zh) 用於流體組裝的平面表面貼裝微型led及其製備方法
JP2022003678A (ja) 発光ダイオード
US11973172B2 (en) Subpixel light emitting diodes for direct view display and methods of making the same
CN113451146A (zh) 化合物半导体装置的制备方法和化合物半导体装置
US20230113198A1 (en) Light emitting diodes with lattice matching sidewall passivation layer and method of making thereof
CN115863326B (zh) 微型发光二极管显示器件及制备方法
US11227975B2 (en) Semiconductor structure having a bridge layer
TWI834220B (zh) 光電半導體元件
TWI833439B (zh) 發光元件及其製造方法
TW202404116A (zh) 光電半導體元件