TW202040819A - Semiconductor structure - Google Patents

Semiconductor structure Download PDF

Info

Publication number
TW202040819A
TW202040819A TW108113124A TW108113124A TW202040819A TW 202040819 A TW202040819 A TW 202040819A TW 108113124 A TW108113124 A TW 108113124A TW 108113124 A TW108113124 A TW 108113124A TW 202040819 A TW202040819 A TW 202040819A
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor
substrate
drain
semiconductor structure
Prior art date
Application number
TW108113124A
Other languages
Chinese (zh)
Other versions
TWI692868B (en
Inventor
林鑫成
林文新
韓 好
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW108113124A priority Critical patent/TWI692868B/en
Application granted granted Critical
Publication of TWI692868B publication Critical patent/TWI692868B/en
Publication of TW202040819A publication Critical patent/TW202040819A/en

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

A semiconductor structure includes a substrate having an active region and an isolation region, an insulating layer disposed on the substrate, a seed layer disposed on the insulating layer, a compound semiconductor layer disposed on the seed layer, a gate structure in the active region disposed on the compound semiconductor layer, an isolation structure in the isolation region disposed on the substrate, a pair of through-substrate vias in the isolation region disposed at the opposite sides of the gate structure, and a source structure and a drain structure disposed on the substrate and at the opposite sides of the gate structure. The pair of through-substrate vias pass through the isolation structure and contact the seed layer. The source structure and the drain structure electrically connect the seed layer by the pair of through-substrate vias.

Description

半導體結構Semiconductor structure

本發明是關於半導體結構,特別是關於具有成對與晶種層接觸之導通孔的半導體結構。The present invention relates to a semiconductor structure, in particular to a semiconductor structure having a pair of via holes in contact with a seed layer.

氮化鎵系(GaN-based)半導體材料具有許多優秀的材料特性,例如高抗熱性、寬能隙(band-gap)、高電子飽和速率。因此,氮化鎵系半導體材料適合應用於高速與高溫的操作環境。近年來,氮化鎵系半導體材料已廣泛地應用於發光二極體(light emitting diode,LED)元件、高頻率元件,例如具有異質界面結構的高電子遷移率電晶體(high electron mobility transistor,HEMT)。GaN-based semiconductor materials have many excellent material properties, such as high heat resistance, wide band-gap, and high electron saturation rate. Therefore, GaN-based semiconductor materials are suitable for high-speed and high-temperature operating environments. In recent years, GaN-based semiconductor materials have been widely used in light emitting diode (LED) devices and high-frequency devices, such as high electron mobility transistors (HEMTs) with heterogeneous interface structures. ).

然而,在高電子遷移率電晶體(HEMT)元件的運作中,位於元件結構中較底層的磊晶層,因其本身材料特性而存有許多帶負電荷的雜質,此時,若施加高電壓,則這些負電荷將朝上層元件的方向被吸引上來,而影響上層元件的運作。在現有技術中為了解決此問題,通常會將磊晶層下方的矽基板接地以排出雜質之負電荷。然而,此方法並無法應用至各類基板中。However, in the operation of high electron mobility transistor (HEMT) devices, the lower epitaxial layer in the device structure contains many negatively charged impurities due to its material characteristics. At this time, if a high voltage is applied , These negative charges will be attracted toward the upper-layer components, and affect the operation of the upper-layer components. In order to solve this problem in the prior art, the silicon substrate under the epitaxial layer is usually grounded to discharge the negative charge of impurities. However, this method cannot be applied to various substrates.

隨著隨著氮化鎵系半導體材料的發展,這些使用氮化鎵系半導體材料的半導體裝置應用於更嚴苛工作環境中,例如更高頻、更高溫或更高電壓。因此,具有氮化鎵系半導體材料的半導體裝置仍需進一步改善來克服所面臨的挑戰。With the development of gallium nitride-based semiconductor materials, these semiconductor devices using gallium nitride-based semiconductor materials are used in more severe working environments, such as higher frequency, higher temperature, or higher voltage. Therefore, semiconductor devices with gallium nitride-based semiconductor materials still need to be further improved to overcome the challenges they face.

本發明的一些實施例提供一種半導體結構,包含:具有主動區及隔離區之基底、位於基底上之絕緣層、位於絕緣層上之晶種層、位於晶種層上之化合物半導體層、位於化合物半導體層上且位於主動區中之閘極結構、位於基底上且位於隔離區中之隔離結構、位於隔離區中且位於閘極結構之兩側的一對導通孔、位於基底上且位於閘極結構之兩側源極結構與汲極結構。此對導通孔穿過隔離結構並接觸晶種層。源極結構與汲極結構分別藉由此對導通孔電性連接至晶種層。Some embodiments of the present invention provide a semiconductor structure including: a substrate with active regions and isolation regions, an insulating layer on the substrate, a seed layer on the insulating layer, a compound semiconductor layer on the seed layer, and a compound semiconductor layer on the seed layer. The gate structure on the semiconductor layer and in the active region, the isolation structure on the substrate and in the isolation region, a pair of via holes in the isolation region and on both sides of the gate structure, on the substrate and in the gate The source structure and drain structure on both sides of the structure. The pair of via holes penetrate the isolation structure and contact the seed layer. The source structure and the drain structure are electrically connected to the seed layer through the pair of via holes respectively.

本發明的一些實施例提供一種半導體結構,包含:具有一主動區及一隔離區之陶瓷基底、位於此基底上之絕緣層、位於此絕緣層上之晶種層、位於此晶種層上之化合物半導體層、位於此化合物半導體層上且位於此主動區中之閘極結構、位於此基底上且位於此閘極結構之兩側之源極結構與汲極結構。源極結構及汲極結構分別電性連接至晶種層。Some embodiments of the present invention provide a semiconductor structure comprising: a ceramic substrate having an active region and an isolation region, an insulating layer on the substrate, a seed layer on the insulating layer, and a seed layer on the seed layer The compound semiconductor layer, the gate structure on the compound semiconductor layer and in the active region, the source structure and the drain structure on the substrate and on both sides of the gate structure. The source structure and the drain structure are respectively electrically connected to the seed layer.

以下揭露提供了許多的實施例或範例,用於實施所提供的半導體結構之不同元件。各元件和其配置的具體範例描述如下,以簡化本發明實施例之說明。當然,這些僅僅是範例,並非用以限定本發明實施例。舉例而言,敘述中若提及第一元件形成在第二元件之上,可能包含第一和第二元件直接接觸的實施例,也可能包含額外的元件形成在第一和第二元件之間,使得它們不直接接觸的實施例。此外,本發明實施例可能在不同的範例中重複參考數字及/或字母。如此重複是為了簡明和清楚,而非用以表示所討論的不同實施例之間的關係。The following disclosure provides many embodiments or examples for implementing different elements of the provided semiconductor structure. Specific examples of each element and its configuration are described below to simplify the description of the embodiments of the present invention. Of course, these are only examples and are not intended to limit the embodiments of the present invention. For example, if the description mentions that the first element is formed on the second element, it may include an embodiment in which the first and second elements are in direct contact, or may include additional elements formed between the first and second elements. , So that they do not directly touch the embodiment. In addition, the embodiment of the present invention may repeat reference numbers and/or letters in different examples. Such repetition is for conciseness and clarity, and is not used to express the relationship between the different embodiments discussed.

此外,其中可能用到與空間相對用詞,例如「在…下方」、「下方」、「較低的」、「上方」、「較高的」及類似的用詞,這些空間相對用詞係為了便於描述圖示中一個(些)元件或特徵與另一個(些)元件或特徵之間的關係,這些空間相對用詞包括使用中或操作中的裝置之不同方位,以及圖式中所描述的方位。當裝置被轉向不同方位時(旋轉90度或其他方位),則其中所使用的空間相對形容詞也將依轉向後的方位來解釋。In addition, words that are relative to space may be used, such as "below", "below", "lower", "above", "higher" and similar terms. These space-relative terms are In order to facilitate the description of the relationship between one element or feature(s) and another element(s) or feature in the figure, these spatially relative terms include the different orientations of the device in use or operation, and the description in the figure The orientation. When the device is turned in different directions (rotated by 90 degrees or other directions), the spatially relative adjectives used therein will also be interpreted according to the turned position.

在此,「約」、「大約」、「大抵」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」、「大約」、「大抵」的情況下,仍可隱含「約」、「大約」、「大抵」之含義。Here, the terms "about", "approximately", and "approximately" usually mean within 20% of a given value or range, preferably within 10%, and more preferably within 5%, or 3 Within %, or within 2%, or within 1%, or within 0.5%. It should be noted that the quantity provided in the manual is an approximate quantity, that is, without specific description of "about", "approximately", "approximately", "about", "approximately" and "approximately" can still be implied. The meaning of "probably".

雖然所述的一些實施例中的部件以特定順序描述,這些描述方式亦可以其他合邏輯的順序進行。本發明實施例中的半導體結構可加入其他的部件。在不同實施例中,可替換或省略一些部件。Although the components in some of the described embodiments are described in a specific order, these descriptions can also be performed in other logical orders. Other components can be added to the semiconductor structure in the embodiment of the present invention. In different embodiments, some components may be replaced or omitted.

本發明實施例所提供的半導體結構藉由一對位於基底之隔離區中的導通孔分別將半導體結構中的源極結構及汲極結構電性連接至基底上的晶種層(seed layer)。藉由上述導通孔的配置,可在晶種層的內部產生電壓差(即為源極與汲極的電壓差)而使得電力線延伸至位於晶種層下方的膜層(例如絕緣層)。內部具有電壓差的晶種層不會屏蔽半導體結構中之高電場區的電力線,進而使電場重新分布、提升崩潰電壓(breakdown voltage),以允許半導體裝置應用於高電壓操作。The semiconductor structure provided by the embodiment of the present invention electrically connects the source structure and the drain structure in the semiconductor structure to the seed layer on the substrate through a pair of via holes located in the isolation region of the substrate. With the configuration of the above-mentioned via holes, a voltage difference (that is, the voltage difference between the source and the drain) can be generated inside the seed layer, so that the power lines extend to the film layer (such as the insulating layer) under the seed layer. The internal seed layer with voltage difference does not shield the power lines in the high electric field area of the semiconductor structure, thereby redistributing the electric field and increasing the breakdown voltage, so as to allow the semiconductor device to be applied to high voltage operation.

第1A圖是根據本發明的一些實施例,繪示出例示性半導體結構100的剖面示意圖。根據本發明一些實施例,半導體結構100包含具有主動區201與隔離區202的基底200、設置於基底200上之絕緣層210、設置於絕緣層210上之晶種層220、設置於晶種層220上之化合物半導體層230、設置於化合物半導體層230上且位於主動區210中的閘極結構300、設置於基底200上且位於閘極結構300之兩側的源極結構400與汲極結構500、以及穿過設置於隔離區202中之隔離結構240的一對導通孔601、602。FIG. 1A is a schematic cross-sectional view of an exemplary semiconductor structure 100 according to some embodiments of the present invention. According to some embodiments of the present invention, the semiconductor structure 100 includes a substrate 200 having an active region 201 and an isolation region 202, an insulating layer 210 disposed on the substrate 200, a seed layer 220 disposed on the insulating layer 210, and a seed layer The compound semiconductor layer 230 on 220, the gate structure 300 disposed on the compound semiconductor layer 230 and located in the active region 210, the source structure 400 and the drain structure disposed on the substrate 200 and located on both sides of the gate structure 300 500, and a pair of via holes 601, 602 passing through the isolation structure 240 disposed in the isolation region 202.

在一些實施例中,基底200可為摻雜的(例如以p型或n型摻雜物進行摻雜)或未摻雜的半導體基底,例如矽基底、矽鍺基底、砷化鎵基底或類似的半導體基底。在其他實施例中,基底200可為陶瓷基底,例如氮化鋁(AlN)基底、碳化矽(SiC)基底、氧化鋁基底(Al2 O3 )(或稱為藍寶石(Sapphire)基底)或其他類似的基底。上述的陶瓷基底可藉由粉末冶金將陶瓷粉末高溫燒結所形成。In some embodiments, the substrate 200 may be a doped (for example, doped with p-type or n-type dopants) or an undoped semiconductor substrate, such as a silicon substrate, a silicon germanium substrate, a gallium arsenide substrate, or the like The semiconductor substrate. In other embodiments, the substrate 200 may be a ceramic substrate, such as an aluminum nitride (AlN) substrate, a silicon carbide (SiC) substrate, an aluminum oxide substrate (Al 2 O 3 ) (or called a sapphire (Sapphire) substrate) or others. Similar base. The above ceramic substrate can be formed by high temperature sintering of ceramic powder by powder metallurgy.

設置於基底200上之絕緣層210是在高溫具有良好熱穩定性高品質的膜層。在一些實施例,絕緣層210是例如由四乙氧基矽烷(tetraethoxysilane,TEOS)所製得的高品質氧化矽絕緣層。在其他實施例中,絕緣層210是藉由電漿增強化學氣相沉積(plasma-enhanced chemical vapor deposition,PECVD)所形成的介電層,例如氧化矽、氮化矽、氮氧化矽、碳化矽、其他類似材料或前述之組合。根據本發明一些實施例,絕緣層210可提供較高品質的表面以利於後續將半導體結構的其他膜層形成在其表面上。在一些實施例中,絕緣層的厚度可在約0.5微米至約10微米的範圍,例如約2微米。The insulating layer 210 disposed on the substrate 200 is a high-quality film with good thermal stability at high temperatures. In some embodiments, the insulating layer 210 is a high-quality silicon oxide insulating layer made of, for example, tetraethoxysilane (TEOS). In other embodiments, the insulating layer 210 is a dielectric layer formed by plasma-enhanced chemical vapor deposition (PECVD), such as silicon oxide, silicon nitride, silicon oxynitride, silicon carbide , Other similar materials or a combination of the foregoing. According to some embodiments of the present invention, the insulating layer 210 can provide a higher-quality surface to facilitate subsequent formation of other layers of the semiconductor structure on the surface. In some embodiments, the thickness of the insulating layer may range from about 0.5 microns to about 10 microns, such as about 2 microns.

在一些實施例中,形成於絕緣層210上之晶種層220的材料可為矽。在其他實施例中,晶種層220可由其他半導體材料例如摻雜碳化矽(silicon carbide)(例如在碳化矽中摻雜氮或磷可以形成n型半導體,而摻雜鋁、硼、鎵或鈹形成p型半導體)、三五族(III-V)化合物半導體材料、或其他類似的材料來形成。在另一些實施例中,晶種層220可包含氧化鋁(Al2 O3 )。在一些實施例中,晶種層220可由磊晶成長製程形成,例如金屬有機化學氣相沉積(metal organic chemical vapor deposition,MOCVD)、氫化物氣相磊晶法(hydride vapor phase epitaxy,HVPE)、分子束磊晶法(molecular beam epitaxy,MBE)、前述之組合或類似方法順應形成於絕緣層210上。In some embodiments, the material of the seed layer 220 formed on the insulating layer 210 may be silicon. In other embodiments, the seed layer 220 can be made of other semiconductor materials such as doped silicon carbide (for example, doping silicon carbide with nitrogen or phosphorus can form an n-type semiconductor, and doping with aluminum, boron, gallium or beryllium) P-type semiconductor), three-five group (III-V) compound semiconductor material, or other similar materials. In other embodiments, the seed layer 220 may include aluminum oxide (Al 2 O 3 ). In some embodiments, the seed layer 220 may be formed by an epitaxial growth process, such as metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), Molecular beam epitaxy (MBE), a combination of the foregoing, or similar methods are compliantly formed on the insulating layer 210.

在一些實施例中,形成於晶種層220上之化合物半導體層230可包含設置於晶種層220上的緩衝層231、設置於緩衝層231上的通道層232、以及設置於通道層232上的阻障層233。In some embodiments, the compound semiconductor layer 230 formed on the seed layer 220 may include a buffer layer 231 disposed on the seed layer 220, a channel layer 232 disposed on the buffer layer 231, and a channel layer 232 disposed on the channel layer 232 The barrier layer 233.

緩衝層231可減緩後續形成於緩衝層231上方的通道層232的應變(strain),以防止缺陷形成於上方的通道層232中。應變是由通道層232與基底200不匹配造成。在一些實施例中,緩衝層231的材料可以是AlN、GaN、Alx Ga1-x N(其中0<x<1)、前述之組合、或其他類似的材料。緩衝層231可由磊晶成長製程形成,例如金屬有機化學氣相沉積(MOCVD)、氫化物氣相磊晶法(HVPE)、分子束磊晶法(MBE)、前述之組合、或類似方法。在一些實施例中,所形成之緩衝層231的厚度可在約0.5微米至約10微米的範圍,例如約3微米。值得注意的是,雖然在如第1A圖所示的實施例中緩衝層231為單層結構,但緩衝層231在其他實施例中也可以是多層結構(未繪示)。The buffer layer 231 can slow down the strain of the channel layer 232 subsequently formed above the buffer layer 231 to prevent defects from being formed in the channel layer 232 above. The strain is caused by the mismatch between the channel layer 232 and the substrate 200. In some embodiments, the material of the buffer layer 231 may be AlN, GaN, Al x Ga 1-x N (where 0<x<1), a combination of the foregoing, or other similar materials. The buffer layer 231 may be formed by an epitaxial growth process, such as metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE), a combination of the foregoing, or the like. In some embodiments, the thickness of the formed buffer layer 231 may range from about 0.5 microns to about 10 microns, for example, about 3 microns. It should be noted that although the buffer layer 231 has a single-layer structure in the embodiment shown in FIG. 1A, the buffer layer 231 may also have a multi-layer structure (not shown) in other embodiments.

根據本發明一些實施例,二維電子氣(two-dimensional electron gas,2DEG)(未繪示)形成於通道層232與阻障層233之間的異質界面上。如第1A圖所示之半導體結構100是利用二維電子氣(2DEG)作為導電載子的高電子遷移率電晶體(high electron mobility transistor,HEMT)。在一些實施例中,通道層232可為氮化鎵(GaN)層,而形成於通道層232上之阻障層233可為氮化鎵鋁(AlGaN)層,其中氮化鎵層與氮化鎵鋁層可具有摻雜物(例如n型摻雜物或p型摻雜物)或不具有摻雜物。通道層232與阻障層233皆可由磊晶成長製程形成,例如金屬有機化學氣相沉積(MOCVD)、氫化物氣相磊晶法(HVPE)、分子束磊晶法(MBE)、前述之組合或其他類似的方法。在一些實施例中,所形成之通道層232的厚度可在約300奈米至約1微米的範圍,例如約0.6微米。在一些實施例中,所形成之阻障層233的厚度可在約5奈米至約30奈米的範圍,例如約25奈米。According to some embodiments of the present invention, a two-dimensional electron gas (2DEG) (not shown) is formed on the hetero interface between the channel layer 232 and the barrier layer 233. The semiconductor structure 100 shown in FIG. 1A is a high electron mobility transistor (HEMT) that uses a two-dimensional electron gas (2DEG) as a conductive carrier. In some embodiments, the channel layer 232 may be a gallium nitride (GaN) layer, and the barrier layer 233 formed on the channel layer 232 may be an aluminum gallium nitride (AlGaN) layer, where the gallium nitride layer and the nitride The gallium aluminum layer may have dopants (for example, n-type dopants or p-type dopants) or no dopants. Both the channel layer 232 and the barrier layer 233 can be formed by an epitaxial growth process, such as metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE), a combination of the foregoing Or other similar methods. In some embodiments, the thickness of the formed channel layer 232 may range from about 300 nanometers to about 1 micrometer, for example, about 0.6 micrometers. In some embodiments, the thickness of the barrier layer 233 formed may range from about 5 nanometers to about 30 nanometers, for example, about 25 nanometers.

接著,根據本發明一些實施例,可在基底200之化合物半導體層230中形成隔離結構240,以定義出主動區201與隔離區202。在一些實施例中,如第1A圖所示,隔離結構240之底面可位於化合物半導體層230所包含之緩衝層231中。在其他實施例中,隔離結構240之底面可與緩衝層231之底面齊平並與晶種層220接觸(未繪示)。在一些實施例中,藉由隔離結構240的形成,可將形成於通道層232與阻障層233之間之異質界面上二維電子氣(2DEG)隔絕在主動區201內。Next, according to some embodiments of the present invention, an isolation structure 240 may be formed in the compound semiconductor layer 230 of the substrate 200 to define the active region 201 and the isolation region 202. In some embodiments, as shown in FIG. 1A, the bottom surface of the isolation structure 240 may be located in the buffer layer 231 included in the compound semiconductor layer 230. In other embodiments, the bottom surface of the isolation structure 240 may be flush with the bottom surface of the buffer layer 231 and contact the seed layer 220 (not shown). In some embodiments, by forming the isolation structure 240, the two-dimensional electron gas (2DEG) formed on the hetero interface between the channel layer 232 and the barrier layer 233 can be isolated in the active region 201.

根據本發明一些實施例,隔離結構204之形成可藉由將隔離結構240之預定位置之化合物半導體層230的晶格(crystal lattice)結構破壞,使得這部分的化合物半導體層230失去壓電效應(piezoelectricity)而無法導電。在這些實施例中,可藉由離子佈植(ion implantation)製程將氮(N)、氧(O)、或其他適合的元素植入化合物半導體層230(例如為氮化鎵層)中,以破壞其晶格結構,從而將隔離結構240之預定位置的化合物半導體層230轉變成隔離結構240。在其他實施例中,隔離結構240的材料可是介電材料,例如氧化矽、氮化矽、氮氧化矽、氧化鋁、類似材料或前述之組合,並且可透過蝕刻製程和沉積製程形成溝槽隔離結構於化合物半導體層230中。According to some embodiments of the present invention, the isolation structure 204 can be formed by destroying the crystal lattice structure of the compound semiconductor layer 230 at a predetermined position of the isolation structure 240, so that this part of the compound semiconductor layer 230 loses the piezoelectric effect ( piezoelectricity) and cannot conduct electricity. In these embodiments, nitrogen (N), oxygen (O), or other suitable elements can be implanted into the compound semiconductor layer 230 (for example, a gallium nitride layer) through an ion implantation process to The lattice structure is destroyed, so that the compound semiconductor layer 230 at a predetermined position of the isolation structure 240 is transformed into the isolation structure 240. In other embodiments, the material of the isolation structure 240 may be a dielectric material, such as silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, similar materials, or a combination of the foregoing, and the trench isolation may be formed through an etching process and a deposition process Structure in the compound semiconductor layer 230.

接著,在主動區201中於化合物半導體層230(例如阻障層233)上形成閘極結構300,在閘極結構300之兩側形成源極結構400與汲極結構500,並形成內層介電層(例如第一介電層250、第二介電層260、與第三介電層270)於化合物半導體層230上,以形成半導體結構100。根據本發明一些實施例,半導體結構100為高電子遷移率電晶體(high electron mobility transistor,HEMT)。在一些實施例中,閘極結構300包含閘極電極301及閘極金屬層302,其中閘極電極301位於阻障層233上,而閘極金屬層302位於閘極電極301上並與其電性連接。在其他實施例中,閘極電極301與阻障層233之間可包含可選的(optional)摻雜化合物半導體層234,其細節將在後續進一步描述。源極結構400包含彼此電性連接之源極電極401、源極接觸件402、及源極金屬層403,而汲極結構500包含彼此電性連接之汲極電極501、汲極接觸件502、及汲極金屬層503。在一些實施例中,位於閘極電極301之兩側的源極電極401與汲極電極501皆位於主動區201中,並且穿過阻障層233而與通道層232接觸。Next, a gate structure 300 is formed on the compound semiconductor layer 230 (for example, the barrier layer 233) in the active region 201, a source structure 400 and a drain structure 500 are formed on both sides of the gate structure 300, and an inner layer is formed Electrical layers (such as the first dielectric layer 250, the second dielectric layer 260, and the third dielectric layer 270) are on the compound semiconductor layer 230 to form the semiconductor structure 100. According to some embodiments of the present invention, the semiconductor structure 100 is a high electron mobility transistor (HEMT). In some embodiments, the gate structure 300 includes a gate electrode 301 and a gate metal layer 302, wherein the gate electrode 301 is located on the barrier layer 233, and the gate metal layer 302 is located on the gate electrode 301 and is electrically connected to the gate electrode 301. connection. In other embodiments, an optional doped compound semiconductor layer 234 may be included between the gate electrode 301 and the barrier layer 233, the details of which will be further described later. The source structure 400 includes a source electrode 401, a source contact 402, and a source metal layer 403 that are electrically connected to each other, and the drain structure 500 includes a drain electrode 501, a drain contact 502, and a drain electrode 501 that are electrically connected to each other. And the drain metal layer 503. In some embodiments, the source electrode 401 and the drain electrode 501 located on both sides of the gate electrode 301 are both located in the active region 201 and pass through the barrier layer 233 to contact the channel layer 232.

在一些實施例中,閘極電極301的材料可為導電材料,例如金屬、金屬氮化物或半導體材料。在一些實施例中,金屬可為金(Au)、鎳(Ni)、鉑(Pt)、鈀(Pd)、銥(Ir)、鈦(Ti)、鉻(Cr)、鎢(W)、鋁(Al)、銅(Cu)、類似材料、前述之組合或前述之多層。半導體材料可為多晶矽或多晶鍺。上述的導電材料可藉由例如化學氣相沉積法(chemical vapor deposition,CVD)、濺鍍(sputtering)、電阻加熱蒸鍍法、電子束蒸鍍法、或其它合適的沉積方式形成於阻障層233上,再經由圖案化製程來形成閘極電極301。In some embodiments, the material of the gate electrode 301 may be a conductive material, such as a metal, a metal nitride, or a semiconductor material. In some embodiments, the metal may be gold (Au), nickel (Ni), platinum (Pt), palladium (Pd), iridium (Ir), titanium (Ti), chromium (Cr), tungsten (W), aluminum (Al), copper (Cu), similar materials, the combination of the foregoing, or the foregoing multilayers. The semiconductor material can be polycrystalline silicon or polycrystalline germanium. The aforementioned conductive material can be formed on the barrier layer by, for example, chemical vapor deposition (CVD), sputtering, resistance heating evaporation, electron beam evaporation, or other suitable deposition methods. On 233, the gate electrode 301 is formed through a patterning process.

根據本發明之一些實施例,在形成閘極電極301之前,可先形成摻雜化合物半導體層234於阻障層233上,才接續將閘極電極301形成在摻雜化合物半導體層234上。藉由設置摻雜化合物半導體層234於閘極電極301與阻障層233之間可抑制閘極電極301下方的二維電子氣(2DEG)之產生,以達成半導體裝置100之常關狀態。在一些實施例中,摻雜的化合物半導體層234的材料可以是以p型摻雜或n型摻雜的氮化鎵(GaN)。形成摻雜化合物半導體區234的步驟可包含藉由磊晶成長製程在阻障層233上沉積摻雜化合物半導體層(未繪示)並對其執行圖案化製程,以形成摻雜化合物半導體層234對應於預定形成閘極電極301的位置。在一些實施例中,所形成之摻雜化合物半導體層234的厚度可在約50奈米至約100奈米的範圍。According to some embodiments of the present invention, before forming the gate electrode 301, the doped compound semiconductor layer 234 may be formed on the barrier layer 233 first, and then the gate electrode 301 may be formed on the doped compound semiconductor layer 234. By disposing the doped compound semiconductor layer 234 between the gate electrode 301 and the barrier layer 233, the generation of two-dimensional electron gas (2DEG) under the gate electrode 301 can be suppressed to achieve the normally-off state of the semiconductor device 100. In some embodiments, the material of the doped compound semiconductor layer 234 may be p-type doped or n-type doped gallium nitride (GaN). The step of forming the doped compound semiconductor region 234 may include depositing a doped compound semiconductor layer (not shown) on the barrier layer 233 by an epitaxial growth process and performing a patterning process on it to form the doped compound semiconductor layer 234 Corresponds to the position where the gate electrode 301 is scheduled to be formed. In some embodiments, the thickness of the formed doped compound semiconductor layer 234 may range from about 50 nanometers to about 100 nanometers.

形成於閘極電極301之兩側且位於主動區201中的源極電極401與汲極電極501包含大抵相同於閘極電極301的材料,故此處不在贅述。在一些實施例中,如第1A圖所示,源極電極401與汲極電極501穿過阻障層233而與通道層231接觸。The source electrode 401 and the drain electrode 501 formed on both sides of the gate electrode 301 and located in the active region 201 comprise substantially the same material as the gate electrode 301, so they will not be repeated here. In some embodiments, as shown in FIG. 1A, the source electrode 401 and the drain electrode 501 pass through the barrier layer 233 and contact the channel layer 231.

在一些實施例中,閘極金屬層302、源極接觸件402、源極金屬層403、汲極接觸件502、及汲極金屬層503可藉由沉積製程與圖案化製程所形成,其材料包含導電材料,例如鋁(Al)、銅(Cu)、鎢(W)、鈦(Ti)、鉭(Ta)、氮化鈦(titanium nitride, TiN)、氮化鉭(tantalum nitride,TaN)、矽化鎳(nickel silicide,NiSi)、矽化鈷(cobalt silicide,CoSi)、碳化鉭(tantulum carbide, TaC)、矽氮化鉭(tantulum silicide nitride,TaSiN)、碳氮化鉭(tantalum carbide nitride,TaCN)、鋁化鈦(titanium aluminide,TiAl),鋁氮化鈦(titanium aluminide nitride, TiAlN)、金屬氧化物、金屬合金、其他適合的導電材料或前述之組合。In some embodiments, the gate metal layer 302, the source contact 402, the source metal layer 403, the drain contact 502, and the drain metal layer 503 can be formed by a deposition process and a patterning process. Contains conductive materials, such as aluminum (Al), copper (Cu), tungsten (W), titanium (Ti), tantalum (Ta), titanium nitride (TiN), tantalum nitride (TaN), Nickel silicide (NiSi), cobalt silicide (CoSi), tantalum carbide (TaC), tantalum silicide nitride (TaSiN), tantalum carbide nitride (TaCN) , Titanium aluminide (TiAl), titanium aluminide nitride (TiAlN), metal oxide, metal alloy, other suitable conductive materials or a combination of the foregoing.

根據本發明一些實施例,如第1A圖所示,閘極電極301埋置於第一介電層250中,而閘極金屬層302埋置於第一介電層250與形成於第一介電層250上的第二介電層260中。並且,位於閘極結構300之兩側的源極接觸件402與汲極接觸件502皆穿過形成於化合物半導體層230上第一介電層250與第二介電層260而分別與源極電極402與汲極電極502接觸,而源極金屬層403與汲極金屬層503形成於第二介電層260上且分別電性連接至源極接觸件402與汲極接觸件502。According to some embodiments of the present invention, as shown in FIG. 1A, the gate electrode 301 is buried in the first dielectric layer 250, and the gate metal layer 302 is buried in the first dielectric layer 250 and formed in the first dielectric layer. In the second dielectric layer 260 on the electrical layer 250. In addition, the source contact 402 and the drain contact 502 located on both sides of the gate structure 300 pass through the first dielectric layer 250 and the second dielectric layer 260 formed on the compound semiconductor layer 230 to respectively connect to the source The electrode 402 is in contact with the drain electrode 502, and the source metal layer 403 and the drain metal layer 503 are formed on the second dielectric layer 260 and electrically connected to the source contact 402 and the drain contact 502, respectively.

在一些實施例中,第一介電層250與第二介電層260可分別包含一或多種單層或多層介電材料,例如氧化矽、氮化矽、氮氧化矽、四乙氧基矽烷(tetraethoxysilane,TEOS)、磷矽玻璃(phosphosilicate glass,PSG)、硼磷矽酸鹽玻璃(borophosphosilicate glass,BPSG)、低介電常數介電材料、及/或其他適合的介電材料。低介電常數介電材料可包含但不限於氟化石英玻璃(fluorinated silica glass,FSG)、氫倍半矽氧烷(hydrogen silsesquioxane,HSQ)、摻雜碳的氧化矽、非晶質氟化碳(fluorinated carbon)、聚對二甲苯(parylene)、苯並環丁烯(bis-benzocyclobutenes,BCB)、或聚醯亞胺(polyimide)。舉例而言,可使用旋轉塗佈製程(spin coating)、化學氣相沉積(CVD)、物理氣相沉積(physical vapor deposition, PVD)、原子層沉積(atomic layer deposition,ALD)、高密度電漿化學氣相沉積(high density plasma CVD, HDPCVD)、其他合適的方法或前述之組合,將上述介電材料沉積於化合物半導體層230(例如阻障層233)與隔離結構240上以形成第一介電層250與第二介電層260。In some embodiments, the first dielectric layer 250 and the second dielectric layer 260 may respectively include one or more single-layer or multi-layer dielectric materials, such as silicon oxide, silicon nitride, silicon oxynitride, and tetraethoxysilane. (tetraethoxysilane, TEOS), phosphosilicate glass (PSG), borophosphosilicate glass (BPSG), low-k dielectric materials, and/or other suitable dielectric materials. Low-k dielectric materials may include, but are not limited to, fluorinated silica glass (FSG), hydrogen silsesquioxane (HSQ), carbon-doped silicon oxide, and amorphous carbon fluoride (fluorinated carbon), parylene, bis-benzocyclobutenes (BCB), or polyimide. For example, spin coating, chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), high density plasma Chemical vapor deposition (high density plasma CVD, HDPCVD), other suitable methods, or a combination of the foregoing, deposit the above-mentioned dielectric material on the compound semiconductor layer 230 (such as the barrier layer 233) and the isolation structure 240 to form a first dielectric The electrical layer 250 and the second dielectric layer 260.

根據本發明一些實施例,繪示於第1A圖之半導體結構100所包含的一對導通孔601、602設置於隔離區202中並位於閘極結構300的兩側。在一些實施例中,此對導通孔可為氮化鎵穿孔(through-GaN via,TGV )。導通孔601、602穿過位於隔離區202之第二介電層206、第一介電層250、隔離結構240、緩衝層231而接觸晶種層220。在隔離結構240之底面直接接觸晶種層220的實施例中,穿過隔離結構240之導通孔601、602可直接與晶種層220接觸而不經過緩衝層231(未繪示)。藉由將導通孔601、602設置於隔離區202中,可避免導通孔601、602與形成於通道層232與阻障層233之間之異質界面上二維電子氣(2DEG)接觸而發生電性異常。According to some embodiments of the present invention, a pair of vias 601 and 602 included in the semiconductor structure 100 shown in FIG. 1A are disposed in the isolation region 202 and located on both sides of the gate structure 300. In some embodiments, the pair of vias may be through-GaN vias (TGV). The via holes 601 and 602 penetrate the second dielectric layer 206, the first dielectric layer 250, the isolation structure 240, and the buffer layer 231 located in the isolation region 202 to contact the seed layer 220. In the embodiment where the bottom surface of the isolation structure 240 directly contacts the seed layer 220, the vias 601, 602 passing through the isolation structure 240 may directly contact the seed layer 220 without passing through the buffer layer 231 (not shown). By arranging the vias 601, 602 in the isolation region 202, it is possible to prevent the vias 601, 602 from contacting the two-dimensional electron gas (2DEG) formed on the heterogeneous interface between the channel layer 232 and the barrier layer 233 to generate electricity Sexual abnormalities.

參照第1A圖,源極結構400與汲極結構500分別藉由導通孔601與導通孔602電性連接至晶種層220。具體來說,源極結構400是藉由橫跨主動區201與隔離區202之源極金屬層403與導通孔601接觸而電性連接至晶種層220,而汲極結構500是藉由藉由橫跨主動區201與隔離區202之汲極金屬層503與導通孔602接觸而電性連接至晶種層220。根據本發明一些實施例,分別與源極結構400及汲極結構500電性連接之晶種層220的內部所產生的電壓差可大抵相同於源極電極401與汲極電極501之間的電壓差。Referring to FIG. 1A, the source structure 400 and the drain structure 500 are electrically connected to the seed layer 220 through the via 601 and the via 602, respectively. Specifically, the source structure 400 is electrically connected to the seed layer 220 by contacting the source metal layer 403 and the via 601 across the active region 201 and the isolation region 202, and the drain structure 500 is electrically connected to the seed layer 220 by The drain metal layer 503 spanning the active region 201 and the isolation region 202 is in contact with the via 602 and is electrically connected to the seed layer 220. According to some embodiments of the present invention, the voltage difference generated inside the seed layer 220 electrically connected to the source structure 400 and the drain structure 500 may be substantially the same as the voltage between the source electrode 401 and the drain electrode 501 difference.

根據本發明之一些實施例,導通孔601、602之形成包含先執行微影和蝕刻製程於隔離區202的化合物半導體層230、隔離結構240、第一介電層250、以及第二介電層260,以形成一對位於閘極結構300之兩側的一對孔洞(未繪示)。接著,將導電材料填入此對孔洞中以形成導通孔601、602。在一些實施例中,此導電材料可選自前述用於形成閘極金屬層302、源極接觸件402、源極金屬層403、汲極接觸件502、及汲極金屬層503的材料,故此處不再贅述。根據本發明之一些實施例,導通孔601、602的孔徑可各自在約0.5微米(micrometer,um)至約5微米的範圍。藉由導通孔601、602的配置,可在晶種層的內部產生電壓差(即為源極與汲極的電壓差)而使得電力線延伸至位於晶種層下方的膜層(例如絕緣層),進而使電場重新分布、提升崩潰電壓(breakdown voltage)。並且,將上述導通孔601、602的配置應用於使用陶瓷基底的半導體裝置,可使其在高電壓操作下的效能顯著提升。According to some embodiments of the present invention, the formation of the vias 601, 602 includes the compound semiconductor layer 230, the isolation structure 240, the first dielectric layer 250, and the second dielectric layer, which are first performed lithography and etching processes in the isolation region 202 260 to form a pair of holes (not shown) on both sides of the gate structure 300. Next, a conductive material is filled into the pair of holes to form via holes 601 and 602. In some embodiments, the conductive material can be selected from the aforementioned materials used to form the gate metal layer 302, the source contact 402, the source metal layer 403, the drain contact 502, and the drain metal layer 503. Therefore, I won't repeat it here. According to some embodiments of the present invention, the apertures of the via holes 601 and 602 may each be in the range of about 0.5 microns (micrometer, um) to about 5 microns. With the configuration of the via holes 601 and 602, a voltage difference (that is, the voltage difference between the source and the drain) can be generated inside the seed layer, so that the power line extends to the film layer (such as an insulating layer) below the seed layer , Thereby redistributing the electric field and increasing the breakdown voltage. In addition, applying the above-mentioned configuration of the vias 601 and 602 to a semiconductor device using a ceramic substrate can significantly improve its performance under high voltage operation.

請搭配參照第1B圖,在第1B圖中所繪示之半導體結構100’與在第1A圖中所繪示之半導體結構100大抵相同,其差異在於半導體結構100’所包含之導通孔601、602更穿過晶種層220並與絕緣層210接觸。在一些實施例中,導通孔601、602之底面可位於絕緣層210中(即如第1B圖所示)。在其他實施例中,導通孔601、602之底面可接觸絕緣層210之頂面(未繪示)。Please refer to Figure 1B in conjunction. The semiconductor structure 100' shown in Figure 1B is substantially the same as the semiconductor structure 100 shown in Figure 1A. The difference lies in the vias 601, 602 further passes through the seed layer 220 and contacts the insulating layer 210. In some embodiments, the bottom surfaces of the vias 601 and 602 may be located in the insulating layer 210 (ie, as shown in FIG. 1B). In other embodiments, the bottom surfaces of the vias 601 and 602 can contact the top surface of the insulating layer 210 (not shown).

綜上所述,藉由上述導通孔601、602的配置,可在晶種層220的內部產生電壓差(即為源極電極401與汲極電極501的電壓差)而使得電力線延伸至位於晶種層220下方的絕緣層210。內部具有電壓差的晶種層220不會屏蔽半導體結構100、100’中之高電場區(例如位於主動區201中閘極結構300下方的化合物半導體層230)的電力線,進而使電場重新分布。如此一來,半導體結構100、100’中的絕緣層210可與形成在絕緣層210上的化合物半導體層230一併承受所施加的電壓,進而提升崩潰電壓(breakdown voltage),以允許半導體裝置100、100’應用於高電壓操作。To sum up, with the configuration of the through holes 601 and 602 described above, a voltage difference (that is, the voltage difference between the source electrode 401 and the drain electrode 501) can be generated inside the seed layer 220, so that the power line extends to the crystal layer. The insulating layer 210 under the seed layer 220. The seed layer 220 with a voltage difference inside does not shield the lines of force in the high electric field regions of the semiconductor structures 100, 100' (for example, the compound semiconductor layer 230 located under the gate structure 300 in the active region 201), thereby redistributing the electric field. In this way, the insulating layer 210 in the semiconductor structure 100, 100' can withstand the applied voltage together with the compound semiconductor layer 230 formed on the insulating layer 210, thereby increasing the breakdown voltage to allow the semiconductor device 100 , 100' is used for high voltage operation.

值得注意的是,雖然此處僅繪示出一對導通孔601、602,但本發明實施例亦可包含多對導通孔分別同時電性連接源極結構400與晶種層220並電性連接汲極結構500與晶種層220(未繪示)。在其他實施例中,電性連接源極結構400與晶種層220之導通孔的數量可不同於電性連接極結構500與晶種層220之導通孔的數量(未繪示)。It is worth noting that although only a pair of via holes 601 and 602 are shown here, the embodiment of the present invention may also include multiple pairs of via holes that are electrically connected to the source structure 400 and the seed layer 220 simultaneously and electrically connected. The drain structure 500 and the seed layer 220 (not shown). In other embodiments, the number of via holes electrically connecting the source structure 400 and the seed layer 220 may be different from the number of via holes electrically connecting the electrode structure 500 and the seed layer 220 (not shown).

根據本發明一些實施例,在第1A圖中所示的半導體結構100可包含形成於第二介電層260之上的第三介電層270,其覆蓋源極金屬層403與汲極金屬層503,以及穿過第三介電層270而與源極金屬層403、汲極金屬層503電性連接的金屬層280。在一些實施例中,第三介電層270之材料可選自前述用於形成第一介電層250與第二介電層260的材料,而金屬層280之材料與形成方法大抵相同於源極金屬層403與汲極金屬層503,故此處不再贅述。值得注意的是,雖然本發明實施例僅繪示出單層第三介電層270與單層金屬層280,但本發明實施例並不侷限於此。第三介電層270與金屬層280之膜層數量可根據產品設計而調整。According to some embodiments of the present invention, the semiconductor structure 100 shown in FIG. 1A may include a third dielectric layer 270 formed on the second dielectric layer 260, which covers the source metal layer 403 and the drain metal layer 503, and a metal layer 280 electrically connected to the source metal layer 403 and the drain metal layer 503 through the third dielectric layer 270. In some embodiments, the material of the third dielectric layer 270 can be selected from the aforementioned materials used to form the first dielectric layer 250 and the second dielectric layer 260, and the material and forming method of the metal layer 280 are substantially the same as the source. The electrode metal layer 403 and the drain metal layer 503 are not described here. It should be noted that although the embodiment of the present invention only illustrates a single-layer third dielectric layer 270 and a single-layer metal layer 280, the embodiment of the present invention is not limited thereto. The number of layers of the third dielectric layer 270 and the metal layer 280 can be adjusted according to product design.

根據本發明一些實施例,在第1A圖中所繪示之半導體結構100可在上視圖中具有各種的配置形態,例如在第2A、2B、及2C圖中所繪示之半導體結構100A、100B、及100C 。舉例來說,繪示於第1A圖中的半導體結構100可對應於在第2A圖中所繪示之剖面A-A’,其中剖面A-A’並不會經過晶種層220之開口700。在其他實施例中,在第1A圖中所繪示之半導體結構100的晶種層220可不具有開口(未繪示)。According to some embodiments of the present invention, the semiconductor structure 100 shown in Figure 1A can have various configurations in the top view, for example, the semiconductor structures 100A, 100B shown in Figures 2A, 2B, and 2C , And 100C. For example, the semiconductor structure 100 shown in FIG. 1A may correspond to the cross-section A-A' shown in FIG. 2A, wherein the cross-section A-A' does not pass through the opening 700 of the seed layer 220 . In other embodiments, the seed layer 220 of the semiconductor structure 100 shown in FIG. 1A may not have openings (not shown).

第2A圖是根據本發明的一些實施例,繪示出例示性半導體結構100A的部分上視圖。值得注意的是,為了簡明地描述本發明之實施例並突顯其特徵,並未將半導體結構100A的所有結構繪示於第2A圖中。參照第2A圖,半導體結構100A包含主動區201、圍繞主動區201的隔離區202、形成於主動區210中的閘極結構300、源極結構400、及汲極結構500、形成於隔離區202中的導通孔601及602、以及位於主動區201中具有複數個開口700之晶種層220。在一些實施例中,晶種層220之開口700可露出位於晶種層220下方的絕緣層210。根據本發明一些實施例,在上視圖中,位於主動區201中的開口700可排列成一矩陣,即如第2A圖所示。舉例來說,矩陣可包含五行及五列對齊排列之開口700。FIG. 2A is a partial top view of an exemplary semiconductor structure 100A according to some embodiments of the present invention. It should be noted that in order to briefly describe the embodiment of the present invention and highlight its features, not all the structures of the semiconductor structure 100A are shown in FIG. 2A. 2A, the semiconductor structure 100A includes an active region 201, an isolation region 202 surrounding the active region 201, a gate structure 300 formed in the active region 210, a source structure 400, and a drain structure 500, which are formed in the isolation region 202 The via holes 601 and 602 in, and the seed layer 220 with a plurality of openings 700 in the active region 201. In some embodiments, the opening 700 of the seed layer 220 may expose the insulating layer 210 under the seed layer 220. According to some embodiments of the present invention, in the top view, the openings 700 located in the active area 201 may be arranged in a matrix, as shown in FIG. 2A. For example, the matrix may include five rows and five columns of aligned openings 700.

第2B圖是根據本發明的其他實施例,繪示出例示性半導體結構100B的部分上視圖。在第2B圖中所繪示之半導體結構100B大抵相似於在第2A圖中所繪示之半導體結構100A,故此處不再贅述。半導體結構100B與半導體結構100A之差異在於,在半導體結構100B中位於主動區201之晶種層220的複數個開口700彼此交錯排列。FIG. 2B is a partial top view of an exemplary semiconductor structure 100B according to another embodiment of the present invention. The semiconductor structure 100B shown in FIG. 2B is substantially similar to the semiconductor structure 100A shown in FIG. 2A, so it will not be repeated here. The difference between the semiconductor structure 100B and the semiconductor structure 100A is that the plurality of openings 700 of the seed layer 220 in the active region 201 in the semiconductor structure 100B are arranged alternately.

第2C圖是根據本發明的其他實施例,繪示出例示性半導體結構100C的部分上視圖。在第2C圖中所繪示之半導體結構100C大抵相似於在第2A、2B圖中所繪示之半導體結構100A、100B,故此處不再贅述。半導體結構100C與半導體結構100A、100B之差異在於,在半導體結構100C中位於主動區201之晶種層220具有複數個長條形開口800。如第2C圖所示,長條形開口800之長軸是以平行於從導通孔601朝向導通孔602的方向延伸,並且這些長條形開口800是沿著其短軸方向在主動區201中排列。FIG. 2C is a partial top view of an exemplary semiconductor structure 100C according to another embodiment of the present invention. The semiconductor structure 100C shown in Fig. 2C is substantially similar to the semiconductor structures 100A and 100B shown in Figs. 2A and 2B, so it will not be repeated here. The difference between the semiconductor structure 100C and the semiconductor structures 100A and 100B is that the seed layer 220 located in the active region 201 in the semiconductor structure 100C has a plurality of elongated openings 800. As shown in Figure 2C, the long axis of the elongated openings 800 is parallel to the direction extending from the via 601 to the via 602, and the elongated openings 800 are located in the active area 201 along the direction of their short axis. arrangement.

根據本發明一些實施例,形成於主動區201中之晶種層220的複數個開口可形成高阻抗區域而降低汲極結構與源極結構間的漏電流。值得注意的是,在第2A、2B、及2C圖中所繪示之晶種層220之開口的形狀、數量、尺寸、以及排列方式僅為例示性,晶種層220之開口的配置可依產品設計而調整,故本發明實施例並不侷限於此。According to some embodiments of the present invention, the plurality of openings of the seed layer 220 formed in the active region 201 can form a high impedance region to reduce the leakage current between the drain structure and the source structure. It is worth noting that the shape, number, size, and arrangement of the openings of the seed layer 220 shown in Figures 2A, 2B, and 2C are only exemplary. The configuration of the openings of the seed layer 220 can be The product design is adjusted, so the embodiment of the present invention is not limited to this.

綜上所述,本發明實施例所提供之半導體結構藉由以一對導通孔將源極結構與汲極結構分別電性連接至晶種層的配置,可在晶種層的內部產生電壓差而使得電力線可延伸至位於晶種層下方的膜層(例如絕緣層)。根據本發明之實施例,內部具有電壓差的晶種層不會屏蔽半導體結構中之高電場區(例如位於閘極下方的化合物半導體層)的電力線,進而使電場重新分布。如此一來,半導體結構中的絕緣層可與形成在絕緣層上的化合物半導體層一併承受所施加的電壓,進而提升崩潰電壓(breakdown voltage),改善半導體結構的效能。In summary, the semiconductor structure provided by the embodiment of the present invention is configured to electrically connect the source structure and the drain structure to the seed layer with a pair of via holes, so that a voltage difference can be generated inside the seed layer. The power line can extend to the film layer (for example, the insulating layer) under the seed layer. According to the embodiment of the present invention, the seed layer with a voltage difference inside does not shield the lines of electric force in the high electric field region (for example, the compound semiconductor layer under the gate) in the semiconductor structure, thereby redistributing the electric field. In this way, the insulating layer in the semiconductor structure and the compound semiconductor layer formed on the insulating layer can withstand the applied voltage together, thereby increasing the breakdown voltage and improving the performance of the semiconductor structure.

以上概述數個實施例,以便在本發明所屬技術領域中具有通常知識者可以更理解本發明實施例的觀點。在本發明所屬技術領域中具有通常知識者應該理解,他們能以本發明實施例為基礎,設計或修改其他製程和結構,以達到與在此介紹的實施例相同之目的及/或優勢。在本發明所屬技術領域中具有通常知識者也應該理解到,此類等效的製程和結構並無悖離本發明的精神與範圍,且他們能在不違背本發明之精神和範圍之下,做各式各樣的改變、取代和替換。The foregoing summarizes several embodiments so that those with ordinary knowledge in the technical field of the present invention can better understand the viewpoints of the embodiments of the present invention. Those with ordinary knowledge in the technical field of the present invention should understand that they can design or modify other processes and structures based on the embodiments of the present invention to achieve the same purpose and/or advantages as the embodiments described herein. Those with ordinary knowledge in the technical field to which the present invention pertains should also understand that such equivalent manufacturing processes and structures do not depart from the spirit and scope of the present invention, and they can, without departing from the spirit and scope of the present invention, Make all kinds of changes, substitutions and replacements.

100、100’、100A、100B、100C:半導體結構200:基底201:主動區202:隔離區210:絕緣層220:晶種層230:化合物半導體層231:緩衝層232:通道層233:阻障層234:摻雜化合物半導體層240:隔離結構250:第一介電層260:第二介電層270:第三介電層280:金屬層300:閘極結構301:閘極電極302:閘極金屬層400:源極結構401:源極電極402:源極接觸件403:源極金屬層500:汲極結構501:汲極電極502:汲極接觸件503:汲極金屬層601、602:導通孔700、800:開口A-A’:剖面100, 100', 100A, 100B, 100C: semiconductor structure 200: substrate 201: active region 202: isolation region 210: insulating layer 220: seed layer 230: compound semiconductor layer 231: buffer layer 232: channel layer 233: barrier Layer 234: doped compound semiconductor layer 240: isolation structure 250: first dielectric layer 260: second dielectric layer 270: third dielectric layer 280: metal layer 300: gate structure 301: gate electrode 302: gate Metal layer 400: source structure 401: source electrode 402: source contact 403: source metal layer 500: drain structure 501: drain electrode 502: drain contact 503: drain metal layer 601, 602 : Via 700, 800: Opening A-A': Section

以下將配合所附圖式詳述本發明實施例。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製且僅用以說明例示。事實上,可能任意地放大或縮小元件的尺寸,以清楚地表現出本發明實施例的特徵。 第1A圖是根據本發明的一些實施例,繪示出例示性半導體結構的剖面示意圖。 第1B圖是根據本發明的其他實施例,繪示出例示性半導體結構的剖面示意圖。 第2A圖是根據本發明的一些實施例,繪示出例示性半導體結構的部分上視圖。 第2B圖是根據本發明的其他實施例,繪示出例示性半導體結構的部分上視圖。 第2C圖是根據本發明的另一些實施例,繪示出例示性半導體結構的部分上視圖。The embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings. It should be noted that, according to standard practices in the industry, various features are not drawn to scale and are only used for illustration and illustration. In fact, it is possible to arbitrarily enlarge or reduce the size of the element to clearly show the characteristics of the embodiment of the present invention. 1A is a schematic cross-sectional view of an exemplary semiconductor structure according to some embodiments of the present invention. 1B is a schematic cross-sectional view of an exemplary semiconductor structure according to another embodiment of the present invention. FIG. 2A is a partial top view of an exemplary semiconductor structure according to some embodiments of the present invention. FIG. 2B is a partial top view of an exemplary semiconductor structure according to other embodiments of the present invention. FIG. 2C is a partial top view of an exemplary semiconductor structure according to other embodiments of the present invention.

100:半導體結構 100: semiconductor structure

200:基底 200: base

201:主動區 201: Active Zone

202:隔離區 202: Quarantine

210:絕緣層 210: insulating layer

220:晶種層 220: seed layer

230:化合物半導體層 230: compound semiconductor layer

231:緩衝層 231: buffer layer

232:通道層 232: Channel layer

233:阻障層 233: Barrier Layer

234:摻雜化合物半導體層 234: doped compound semiconductor layer

240:隔離結構 240: isolation structure

250:第一介電層 250: first dielectric layer

260:第二介電層 260: second dielectric layer

270:第三介電層 270: third dielectric layer

280:金屬層 280: Metal layer

300:閘極結構 300: gate structure

301:閘極電極 301: gate electrode

302:閘極金屬層 302: gate metal layer

400:源極結構 400: Source structure

401:源極電極 401: source electrode

402:源極接觸件 402: source contact

403:源極金屬層 403: source metal layer

500:汲極結構 500: Drain structure

501:汲極電極 501: Drain electrode

502:汲極接觸件 502: Drain contact

503:汲極金屬層 503: Drain metal layer

601、602:導通孔 601, 602: via hole

Claims (20)

一種半導體結構,包括: 一基底,具有一主動區及一隔離區; 一絕緣層,位於該基底上; 一晶種層,位於該絕緣層上; 一化合物半導體層,位於該晶種層上; 一閘極結構,位於該化合物半導體層上且位於該主動區中; 一隔離結構,位於該基底上且位於該隔離區中; 一對導通孔,位於該隔離區中且位於該閘極結構之兩側,其中該對導通孔穿過該隔離結構並接觸該晶種層;以及 一源極結構及一汲極結構,位於該基底上且位於該閘極結構之兩側,其中該源極結構及該汲極結構分別藉由該對導通孔電性連接至該晶種層。A semiconductor structure includes: a substrate with an active region and an isolation region; an insulating layer on the substrate; a seed layer on the insulating layer; a compound semiconductor layer on the seed layer; A gate structure located on the compound semiconductor layer and located in the active region; an isolation structure located on the substrate and located in the isolation region; a pair of via holes located in the isolation region and located in the gate structure On both sides, the pair of vias pass through the isolation structure and contact the seed layer; and a source structure and a drain structure located on the substrate and on both sides of the gate structure, wherein the source structure The drain structure and the drain structure are respectively electrically connected to the seed layer through the pair of via holes. 如申請專利範圍第1項所述之半導體結構,其中化合物半導體層包括: 一緩衝層,位於該晶種層上; 一通道層,位於該緩衝層上且位於該主動區中;以及 一阻障層,位於該通道層上且位於該主動區中。According to the semiconductor structure of claim 1, wherein the compound semiconductor layer includes: a buffer layer on the seed layer; a channel layer on the buffer layer and in the active region; and a barrier The layer is located on the channel layer and in the active area. 如申請專利範圍第2項所述之半導體結構,其中該絕緣層的厚度在0.5微米至10微米的範圍,該緩衝層的厚度在0.5微米至10微米的範圍,該通道層的厚度在300奈米至1微米的範圍,以及該阻障層的厚度在5奈米至30奈米的範圍。In the semiconductor structure described in item 2 of the scope of patent application, the thickness of the insulating layer is in the range of 0.5 to 10 microns, the thickness of the buffer layer is in the range of 0.5 to 10 microns, and the thickness of the channel layer is in the range of 300 nanometers. The thickness of the barrier layer is in the range of 5 nanometers to 30 nanometers. 如申請專利範圍第1項所述之半導體結構,更包括一介電層位於該化合物半導體層上。The semiconductor structure described in item 1 of the scope of patent application further includes a dielectric layer on the compound semiconductor layer. 如申請專利範圍第2項所述之半導體結構,其中該閘極結構包括: 一閘極電極層,位於該阻障層上;以及 一閘極金屬層,位於該閘極電極層上且與該閘極電極層電性連接。According to the semiconductor structure described in claim 2, wherein the gate structure includes: a gate electrode layer located on the barrier layer; and a gate metal layer located on the gate electrode layer and connected to the The gate electrode layer is electrically connected. 如申請專利範圍第5項所述之半導體結構,更包括一摻雜化合物半導體層,該摻雜化合物半導體層位於該閘極電極層與該阻障層之間。The semiconductor structure described in item 5 of the scope of the patent application further includes a doped compound semiconductor layer located between the gate electrode layer and the barrier layer. 如申請專利範圍第1項所述之半導體結構,其中該對導通孔更穿過該晶種層並與該絕緣層接觸。According to the semiconductor structure described in claim 1, wherein the pair of via holes further penetrate the seed layer and contact the insulating layer. 如申請專利範圍第2項所述之半導體結構,其中該源極結構包括: 一源極電極,位於該主動區中並穿過該阻障層與該通道層接觸; 一源極接觸件,位於該主動區中並穿過該介電層與該源極電極接觸;以及 一源極金屬層,位於該介電層上且電性連接該源極接觸件及該對導通孔之其中一者。The semiconductor structure described in claim 2, wherein the source structure includes: a source electrode located in the active region and passing through the barrier layer to contact the channel layer; a source contact located in The active region passes through the dielectric layer and contacts the source electrode; and a source metal layer is located on the dielectric layer and is electrically connected to one of the source contact and the pair of via holes. 如申請專利範圍第8項所述之半導體結構,其中該汲極結構包括: 一汲極電極,位於該主動區中並穿過該阻障層與該通道層接觸; 一汲極接觸件,位於該主動區中並穿過該介電層與該汲極電極接觸;以及 一汲極金屬層,位於該介電層上且電性連接該汲極接觸件及該對導通孔之其中另一者。The semiconductor structure according to claim 8, wherein the drain structure includes: a drain electrode located in the active region and passing through the barrier layer to contact the channel layer; a drain contact located on In the active region and passing through the dielectric layer to contact the drain electrode; and a drain metal layer located on the dielectric layer and electrically connected to the drain contact and the other of the pair of vias . 如申請專利範圍第1項所述之半導體結構,其中該晶種層包括矽、碳化矽、或氧化鋁。The semiconductor structure described in the first item of the patent application, wherein the seed layer includes silicon, silicon carbide, or aluminum oxide. 如申請專利範圍第1項所述之半導體結構,其中該對導通孔的孔徑各自在0.5微米至5微米的範圍。According to the semiconductor structure described in the first item of the scope of the patent application, the apertures of the pair of via holes are each in the range of 0.5 micrometers to 5 micrometers. 如申請專利範圍第1項所述之半導體結構,其中在上視圖中,該晶種層包括複數個開口位於該主動區中。According to the semiconductor structure described in claim 1, wherein in the top view, the seed layer includes a plurality of openings located in the active region. 如申請專利範圍第12項所述之半導體結構,其中在上視圖中,該些開口排列成一矩陣。According to the semiconductor structure described in claim 12, in the top view, the openings are arranged in a matrix. 如申請專利範圍第12項所述之半導體結構,其中在上視圖中,該些開口彼此交錯排列。In the semiconductor structure described in claim 12, in the top view, the openings are arranged alternately. 一種半導體結構,包括: 一陶瓷基底,具有一主動區及一隔離區; 一絕緣層,位於該基底上; 一晶種層,位於該絕緣層上; 一化合物半導體層,位於該晶種層上; 一閘極結構,位於該化合物半導體層上且位於該主動區中;以及 一源極結構及一汲極結構,位於該基底上且位於該閘極結構之兩側,其中該源極結構及該汲極結構分別電性連接至該晶種層。A semiconductor structure includes: a ceramic substrate with an active region and an isolation region; an insulating layer on the substrate; a seed layer on the insulating layer; a compound semiconductor layer on the seed layer A gate structure located on the compound semiconductor layer and located in the active region; and a source structure and a drain structure located on the substrate and on both sides of the gate structure, wherein the source structure and The drain structure is electrically connected to the seed layer. 如申請專利範圍第15項所述之半導體結構,更包括: 一隔離結構,位於該基底上且位於該隔離區中;以及 一對導通孔,位於該隔離區中且位於該閘極結構之兩側,其中該對導通孔穿過該隔離結構並接觸該晶種層,並且該源極結構及該汲極結構分別藉由該對導通孔電性連接至該晶種層。The semiconductor structure described in claim 15 further includes: an isolation structure located on the substrate and located in the isolation region; and a pair of via holes located in the isolation region and located in two of the gate structure Side, wherein the pair of via holes pass through the isolation structure and contact the seed layer, and the source structure and the drain structure are electrically connected to the seed layer through the pair of via holes, respectively. 如申請專利範圍第16項所述之半導體結構,其中該對導通孔更穿過該晶種層並與該絕緣層接觸。In the semiconductor structure described in claim 16, wherein the pair of via holes further penetrate the seed layer and contact the insulating layer. 如申請專利範圍第15項所述之半導體結構,其中該化合物半導體層包括: 一緩衝層,位於該晶種層上; 一通道層,位於該緩衝層上且位於該主動區中;以及 一阻障層,位於該通道層上且位於該主動區中。The semiconductor structure according to claim 15, wherein the compound semiconductor layer includes: a buffer layer on the seed layer; a channel layer on the buffer layer and in the active region; and a resistor The barrier layer is located on the channel layer and in the active area. 如申請專利範圍第15項所述之半導體結構,其中該陶瓷基底為氮化鋁基底、碳化矽基底、或氧化鋁基底。According to the semiconductor structure described in claim 15, wherein the ceramic substrate is an aluminum nitride substrate, a silicon carbide substrate, or an alumina substrate. 如申請專利範圍第15項所述之半導體結構,其中在上視圖中,該晶種層包括複數個長條形開口位於該主動區中。According to the semiconductor structure described in item 15 of the scope of patent application, in the top view, the seed layer includes a plurality of elongated openings located in the active region.
TW108113124A 2019-04-16 2019-04-16 Semiconductor structure TWI692868B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108113124A TWI692868B (en) 2019-04-16 2019-04-16 Semiconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108113124A TWI692868B (en) 2019-04-16 2019-04-16 Semiconductor structure

Publications (2)

Publication Number Publication Date
TWI692868B TWI692868B (en) 2020-05-01
TW202040819A true TW202040819A (en) 2020-11-01

Family

ID=71895869

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108113124A TWI692868B (en) 2019-04-16 2019-04-16 Semiconductor structure

Country Status (1)

Country Link
TW (1) TWI692868B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI803845B (en) * 2021-03-24 2023-06-01 新唐科技股份有限公司 Semiconductor structure

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI794609B (en) * 2020-06-05 2023-03-01 世界先進積體電路股份有限公司 Semiconductor structures
TWI755008B (en) * 2020-07-31 2022-02-11 世界先進積體電路股份有限公司 Semiconductor structure
US11677002B2 (en) 2020-09-16 2023-06-13 Vanguard International Semiconductor Corporation Semiconductor structure
US11955397B2 (en) 2020-11-09 2024-04-09 Vanguard International Semiconductor Corporation Semiconductor structure
US12002857B2 (en) 2021-11-30 2024-06-04 Vanguard International Semiconductor Corporation High electron mobility transistor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6845034B2 (en) * 2003-03-11 2005-01-18 Micron Technology, Inc. Electronic systems, constructions for detecting properties of objects, and assemblies for identifying persons
TWI566328B (en) * 2013-07-29 2017-01-11 高效電源轉換公司 Gan transistors with polysilicon layers for creating additional components

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI803845B (en) * 2021-03-24 2023-06-01 新唐科技股份有限公司 Semiconductor structure

Also Published As

Publication number Publication date
TWI692868B (en) 2020-05-01

Similar Documents

Publication Publication Date Title
TWI692868B (en) Semiconductor structure
US10886394B1 (en) Semiconductor structure
US11043583B2 (en) Semiconductor structure and method for forming the same
US11664430B2 (en) Semiconductor device
TW201709419A (en) Semiconductor device and method for fabricating the same
TWI703696B (en) Semiconductor structure
US10930745B1 (en) Semiconductor structure
TWI676216B (en) Semiconductor devices and methods for fabricating the same
US20210257476A1 (en) Semiconductor structure
TWI775027B (en) Semiconductor structure
TWI693716B (en) Semiconductor devices and methods for fabricating the same
CN112951901A (en) Semiconductor structure
TWI768270B (en) Semiconductor structures and the method for forming the same
CN112038402A (en) Semiconductor structure
US11049799B1 (en) Semiconductor structure and method for forming the same
TWI732239B (en) Semiconductor structure and method for forming the same
CN111863955A (en) Semiconductor structure
US11133246B1 (en) Semiconductor structure employing conductive paste on lead frame
TWI727872B (en) Semiconductor device
TWI719484B (en) Semiconductor structure
TWI716848B (en) Semiconductor structure and method for forming the same
TWI732343B (en) Semiconductor structure
US11670708B2 (en) Semiconductor device
CN112242442B (en) Semiconductor structure and forming method thereof
CN113224010A (en) Semiconductor structure