TWI794609B - Semiconductor structures - Google Patents

Semiconductor structures Download PDF

Info

Publication number
TWI794609B
TWI794609B TW109118913A TW109118913A TWI794609B TW I794609 B TWI794609 B TW I794609B TW 109118913 A TW109118913 A TW 109118913A TW 109118913 A TW109118913 A TW 109118913A TW I794609 B TWI794609 B TW I794609B
Authority
TW
Taiwan
Prior art keywords
layer
compound semiconductor
doped compound
semiconductor layer
opening
Prior art date
Application number
TW109118913A
Other languages
Chinese (zh)
Other versions
TW202147619A (en
Inventor
林鑫成
林志鴻
林柏亨
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW109118913A priority Critical patent/TWI794609B/en
Publication of TW202147619A publication Critical patent/TW202147619A/en
Application granted granted Critical
Publication of TWI794609B publication Critical patent/TWI794609B/en

Links

Images

Abstract

A semiconductor structure includes: a substrate; a channel layer on the substrate; a barrier layer on the channel layer; a source structure and a drain structure on opposite sides of the barrier layer; a doped compound semiconductor layer on the barrier layer, and the doped compound semiconductor layer has a first side adjacent to the source structure, a second side adjacent to the drain structure, and at least one opening exposing at least a portion of the barrier layer; a dielectric layer on the doped compound semiconductor layer and the barrier layer; and a gate structure on the doped compound semiconductor layer.

Description

半導體結構semiconductor structure

本發明實施例是關於半導體裝置,特別是關於一種具有摻雜化合物半導體的半導體裝置。The embodiments of the present invention relate to a semiconductor device, in particular to a semiconductor device with a doped compound semiconductor.

氮化鎵系(GaN-based)半導體材料具有許多優秀的材料特性,例如:高抗熱性、寬能隙(band-gap)、高電子飽和速率。因此,氮化鎵系半導體材料適合應用於高速與高溫的操作環境。近年來,氮化鎵系半導體材料已廣泛地應用於發光二極體(light emitting diode,LED)元件、高頻率元件,例如具有異質界面結構的高電子遷移率電晶體(high electron mobility transistor,HEMT)。Gallium nitride-based (GaN-based) semiconductor materials have many excellent material properties, such as high heat resistance, wide band-gap, and high electron saturation rate. Therefore, gallium nitride-based semiconductor materials are suitable for high-speed and high-temperature operating environments. In recent years, gallium nitride-based semiconductor materials have been widely used in light-emitting diode (light emitting diode, LED) components, high-frequency components, such as high electron mobility transistors (high electron mobility transistors, HEMTs) with heterogeneous interface structures. ).

在高電子遷移率電晶體元件的製程期間,半導體材料可能受到環境的影響(例如溫度或環境中的元素的影響),而造成去活化(deactivation),導致元件的閘極控制力降低,進而影響電流驅動能力,也使相同或類似製程的不同批次產品在電性均勻性的表現變差。During the manufacturing process of high electron mobility transistor components, the semiconductor material may be affected by the environment (such as the influence of temperature or elements in the environment), resulting in deactivation (deactivation), resulting in a decrease in the gate control of the device, which in turn affects The current driving capability also deteriorates the electrical uniformity performance of different batches of products with the same or similar process.

隨著氮化鎵系半導體材料的發展,這些使用氮化鎵系半導體材料的裝置應用於更嚴苛工作環境中,例如更高頻、更高溫、或更高電壓。因此,具有氮化鎵系半導體材料的半導體裝置仍需進一步改善來克服所面臨的挑戰。With the development of GaN-based semiconductor materials, these devices using GaN-based semiconductor materials are used in more severe working environments, such as higher frequency, higher temperature, or higher voltage. Therefore, semiconductor devices with gallium nitride-based semiconductor materials still need to be further improved to overcome the challenges faced.

本發明實施例提供一種半導體結構,包括:基底;通道層,位於基底上;阻障層,位於通道層上;源極結構及汲極結構,位於阻障層之兩側;摻雜化合物半導體層,位於阻障層上,摻雜化合物半導體層具有鄰近源極結構的第一側邊、鄰近汲極結構的第二側邊、以及至少一開口,此至少一開口露出阻障層的至少一部分;介電層,位於摻雜化合物半導體層及阻障層上;以及閘極結構,位於摻雜化合物半導體層上。An embodiment of the present invention provides a semiconductor structure, including: a substrate; a channel layer located on the substrate; a barrier layer located on the channel layer; a source structure and a drain structure located on both sides of the barrier layer; a doped compound semiconductor layer , located on the barrier layer, the doped compound semiconductor layer has a first side adjacent to the source structure, a second side adjacent to the drain structure, and at least one opening, the at least one opening exposes at least a part of the barrier layer; The dielectric layer is located on the doped compound semiconductor layer and the barrier layer; and the gate structure is located on the doped compound semiconductor layer.

本發明實施例提供一種半導體結構,包括:基底;緩衝層,位於基底上;通道層,位於緩衝層上;阻障層,位於通道層上;源極結構及汲極結構,位於阻障層之兩側;摻雜化合物半導體層,位於阻障層上,其中在從源極結構至汲極結構之第一方向上,摻雜化合物半導體層的至少一部分為不連續的;介電層,位於摻雜化合物半導體層及阻障層上;以及閘極結構,位於摻雜化合物半導體層上。An embodiment of the present invention provides a semiconductor structure, including: a substrate; a buffer layer located on the substrate; a channel layer located on the buffer layer; a barrier layer located on the channel layer; a source structure and a drain structure located on the barrier layer On both sides; the doped compound semiconductor layer is located on the barrier layer, wherein at least a part of the doped compound semiconductor layer is discontinuous in the first direction from the source structure to the drain structure; the dielectric layer is located on the doped on the hetero compound semiconductor layer and the barrier layer; and the gate structure on the doped compound semiconductor layer.

以下揭露提供了許多的實施例或範例,用於實施所提供的標的物之不同元件。各元件和其配置的具體範例描述如下,以簡化本發明實施例之說明。當然,這些僅僅是範例,並非用以限定本發明實施例。舉例而言,敘述中若提及第一元件形成在第二元件之上,可能包含第一和第二元件直接接觸的實施例,也可能包含額外的元件形成在第一和第二元件之間,使得它們不直接接觸的實施例。此外,本發明實施例可能在各種範例中重複參考數值以及∕或字母。如此重複是為了簡明和清楚之目的,而非用以表示所討論的不同實施例及∕或配置之間的關係。The following disclosure provides a number of embodiments, or examples, for implementing different elements of the provided subject matter. Specific examples of each component and its configuration are described below to simplify the description of the embodiments of the present invention. Of course, these are just examples, not intended to limit the embodiments of the present invention. For example, if a description mentions that a first element is formed on a second element, it may include an embodiment in which the first and second elements are in direct contact, or may include an additional element formed between the first and second elements , so that they are not in direct contact with the example. In addition, the embodiments of the present invention may repeat reference numerals and/or letters in various examples. This repetition is for the purpose of brevity and clarity and not to show the relationship between the different embodiments and/or configurations discussed.

再者,其中可能用到與空間相對用詞,例如「在……之下」、「下方」、「較低的」、「上方」、「較高的」等類似用詞,是為了便於描述圖式中一個(些)部件或特徵與另一個(些)部件或特徵之間的關係。空間相對用詞用以包括使用中或操作中的裝置之不同方位,以及圖式中所描述的方位。當裝置被轉向不同方位時(旋轉90度或其他方位),其中所使用的空間相對形容詞也將依轉向後的方位來解釋。Furthermore, terms relative to space may be used, such as "below", "below", "lower", "above", "higher", etc., for the convenience of description The relationship between one component or feature(s) and another component(s) or feature(s) in a drawing. Spatially relative terms are intended to encompass different orientations of the device in use or operation, as well as orientations depicted in the drawings. When the device is turned to a different orientation (rotated 90 degrees or otherwise), the spatially relative adjectives used therein shall also be interpreted in accordance with the turned orientation.

以下敘述一些本發明實施例,在這些實施例中所述的多個階段之前、期間以及∕或之後,可提供額外的步驟。一些所述階段在不同實施例中可被替換或刪去。半導體裝置結構可增加額外部件。一些所述部件在不同實施例中可被替換或刪去。儘管所討論的一些實施例以特定順序的步驟執行,這些步驟仍可以另一合乎邏輯的順序執行。此外,此處所使用的用語「約」,表示一給定量的數值可基於目標半導體裝置相關的特定技術節點而改變。在一些實施例中,基於特定的技術節點,用語「約」可表示一給定量的數值在例如該數值之10%至30%的範圍(例如:數值之±10%、±20%、或±30%)。Some embodiments of the invention are described below, and additional steps may be provided before, during and/or after various stages described in these embodiments. Some of the described stages may be replaced or omitted in different embodiments. The semiconductor device structure may add additional components. Some of the described components may be substituted or omitted in different embodiments. Although some embodiments discussed perform steps in a particular order, the steps may be performed in another logical order. In addition, the term "about" as used herein indicates that a given quantity may vary based on the particular technology node associated with the target semiconductor device. In some embodiments, based on a specific technology node, the word "about" can mean that a given quantity is in the range of, for example, 10% to 30% of the value (for example: ±10%, ±20%, or ± 30%).

本發明實施例提供的半導體結構藉由降低摻雜化合物半導體層在半導體結構中的比例,以提昇電性均勻性,進而改善裝置效能。一些實施例中,透過設置於摻雜化合物半導體層側壁上和阻障層上的襯層或保護層、以及設置於源極電極和汲極電極下的襯層,可進一步提昇裝置效能。The semiconductor structure provided by the embodiments of the present invention improves electrical uniformity by reducing the proportion of the doped compound semiconductor layer in the semiconductor structure, thereby improving device performance. In some embodiments, the performance of the device can be further improved through the liner or protection layer disposed on the sidewall of the doped compound semiconductor layer and the barrier layer, and the liner layer disposed under the source electrode and the drain electrode.

第1圖是根據本發明的一些實施例,繪示出半導體結構之部分投影上視圖。第2圖是根據本發明的一些實施例,繪示出第1圖A-A’之剖面示意圖。半導體結構200包括:基底110、通道層112、阻障層113、源極電極114和源極金屬層122構成的源極結構、汲極電極115和汲極金屬層123構成的汲極結構、摻雜化合物半導體層116、介電層117、以及由閘極電極118和閘極金屬層119構成的閘極結構。基底110可為摻雜的(例如以p型或n型摻質摻雜)或未摻雜的半導體基底。舉例而言,基底110可包括:元素半導體,包括矽或鍺;化合物半導體,包括砷化鎵(GaAs)、磷化鎵(GaP)、磷化銦(InP)、砷化銦(InAs)及/或銻化銦(InSb);合金半導體,包括矽鍺合金、磷砷鎵合金、砷鋁銦合金、砷鋁鎵合金、砷銦鎵合金、磷銦鎵合金及/或磷砷銦鎵合金、或前述材料之組合。一些實施例中,基底110也可以是絕緣體上覆半導體(semiconductor on insulator)基底,例如:絕緣體上覆矽或絕緣體上覆矽鍺(silicon germanium on insulator,SGOI)。其他實施例中,基底110可為陶瓷基底,例如氮化鋁(AlN)基底、碳化矽(SiC)基底、氧化鋁(Al2 O3 )基底 (或稱為藍寶石(Sapphire)基底)、或其他類似的基底。一些實施例中,基底110可包含陶瓷基材以及分別設於陶瓷基材的上下表面的一對阻隔層,其中陶瓷基材可包含陶瓷材料,而陶瓷材料包含金屬無機材料。舉例而言,陶瓷基材可包含:碳化矽、氮化鋁、藍寶石基材、或其他適合的材料。前述藍寶石基材可以是氧化鋁。FIG. 1 is a partial projected top view of a semiconductor structure according to some embodiments of the present invention. Fig. 2 is a schematic cross-sectional view of AA' in Fig. 1 according to some embodiments of the present invention. The semiconductor structure 200 includes: a substrate 110, a channel layer 112, a barrier layer 113, a source structure composed of a source electrode 114 and a source metal layer 122, a drain structure composed of a drain electrode 115 and a drain metal layer 123, a doped The hetero compound semiconductor layer 116 , the dielectric layer 117 , and the gate structure formed by the gate electrode 118 and the gate metal layer 119 . The substrate 110 may be a doped (eg doped with p-type or n-type dopants) or an undoped semiconductor substrate. For example, the substrate 110 may include: elemental semiconductors, including silicon or germanium; compound semiconductors, including gallium arsenide (GaAs), gallium phosphide (GaP), indium phosphide (InP), indium arsenide (InAs) and/or or indium antimonide (InSb); alloy semiconductors, including silicon germanium alloys, phosphorus gallium arsenic alloys, arsenic aluminum indium alloys, arsenic aluminum gallium alloys, indium gallium arsenic alloys, indium gallium phosphorus alloys and/or indium arsenic gallium alloys, or A combination of the aforementioned materials. In some embodiments, the substrate 110 may also be a semiconductor on insulator (semiconductor on insulator) substrate, such as silicon on insulator or silicon germanium on insulator (SGOI). In other embodiments, the substrate 110 can be a ceramic substrate, such as an aluminum nitride (AlN) substrate, a silicon carbide (SiC) substrate, an aluminum oxide (Al 2 O 3 ) substrate (or called a sapphire (Sapphire) substrate), or other similar base. In some embodiments, the substrate 110 may include a ceramic substrate and a pair of barrier layers respectively disposed on upper and lower surfaces of the ceramic substrate, wherein the ceramic substrate may include a ceramic material, and the ceramic material may include a metal-inorganic material. For example, the ceramic substrate may include silicon carbide, aluminum nitride, sapphire substrate, or other suitable materials. The aforementioned sapphire substrate may be alumina.

通道層112位於基底110上。一些實施例中,通道層的材料包含二元(binary)III-V族化合物半導體材料,例如III族氮化物。舉例而言,通道層的材料可為氮化鎵。在一些實施例中,可用n型摻質或p型摻質摻雜通道層。通道層可由磊晶成長製程形成,例如:金屬有機化學氣相沉積(MOCVD)、氫化物氣相磊晶法(HVPE)、分子束磊晶法(MBE)、前述之組合、或類似方法。一些實施例中,高電子遷移率電晶體的崩潰電壓(breakdown voltage)主要取決於氮化鎵通道層的厚度。舉例而言,氮化鎵通道層的厚度增加1µm可提升高電子遷移率電晶體的崩潰電壓(breakdown voltage)約100V。在形成氮化鎵層的磊晶成長製程期間,需要使用具有高熱傳導性和高機械強度的基底來沉積氮化鎵材料於其上,否則可能造成基底彎曲,甚至破裂。相較於矽基底,氮化鋁基底具有較高熱傳導性和較高機械強度,因此可形成較厚的氮化鎵層於氮化鋁基底上。例如,在矽基底表面上形成的氮化鎵層的厚度可為約2µm至約4µm,而在氮化鋁基底表面上形成的氮化鎵通道層的厚度可達到約5µm至約15µm。The channel layer 112 is located on the substrate 110 . In some embodiments, the material of the channel layer includes a binary III-V compound semiconductor material, such as III-nitride. For example, the material of the channel layer can be gallium nitride. In some embodiments, the channel layer can be doped with n-type dopants or p-type dopants. The channel layer can be formed by epitaxial growth processes, such as metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE), combinations thereof, or similar methods. In some embodiments, the breakdown voltage of the high electron mobility transistor mainly depends on the thickness of the GaN channel layer. For example, increasing the thickness of the GaN channel layer by 1 µm can increase the breakdown voltage of the high electron mobility transistor by about 100V. During the epitaxial growth process for forming the GaN layer, it is necessary to use a substrate with high thermal conductivity and high mechanical strength to deposit the GaN material on it, otherwise the substrate may be bent or even cracked. Compared with the silicon substrate, the aluminum nitride substrate has higher thermal conductivity and higher mechanical strength, so a thicker gallium nitride layer can be formed on the aluminum nitride substrate. For example, the thickness of the GaN layer formed on the surface of the silicon substrate may be about 2 µm to about 4 µm, and the thickness of the GaN channel layer formed on the surface of the AlN substrate may be about 5 µm to about 15 µm.

由於通道層112與基底110之間可能具有晶格差異或熱膨脹係數不同的情形,導致通道層112在與基底110的界面處或界面處附近可能產生應變(strain),容易在通道層112形成裂縫或翹曲等缺陷。一些實施例中,半導體結構200可包括位於基底110與通道層112之間的緩衝層111,如第2圖所示。緩衝層111可減緩形成於其上方的通道層112之應變,以防止缺陷形成於通道層112中。緩衝層111的材料可包括:AlN、GaN、Alx Ga1-x N(其中0>x>1)、前述之組合、或其他類似的材料,且可由磊晶成長製程形成,例如:金屬有機化學氣相沉積、氫化物氣相磊晶法、分子束磊晶法、前述之組合、或類似方法。Since the channel layer 112 and the substrate 110 may have lattice differences or different thermal expansion coefficients, the channel layer 112 may generate strain at or near the interface with the substrate 110, and cracks may easily form in the channel layer 112. Or warping and other defects. In some embodiments, the semiconductor structure 200 may include a buffer layer 111 between the substrate 110 and the channel layer 112 , as shown in FIG. 2 . The buffer layer 111 can relieve the strain of the channel layer 112 formed thereon to prevent defects from forming in the channel layer 112 . The material of the buffer layer 111 may include: AlN, GaN, AlxGa1 -xN (where 0>x>1), a combination of the foregoing, or other similar materials, and may be formed by an epitaxial growth process, such as: metal organic Chemical vapor deposition, hydride vapor phase epitaxy, molecular beam epitaxy, combinations of the foregoing, or similar methods.

雖然在第2圖所示的緩衝層111為單層結構,但緩衝層111也可為多層結構(未繪示)。舉例而言,緩衝層111可包括超晶格緩衝層及/或漸變式緩衝層,其中超晶格緩衝層設置於基底110上,漸變式緩衝層設置於超晶格緩衝層上,可以有效避免基底110內的差排(dislocation)進入通道區,進一步提升上方的其他膜及/或層的結晶品質。此外,超晶格緩衝層和漸變式緩衝層也可為多層結構,例如,超晶格緩衝層可包含多組交替層,每一組交替層各自包含交錯排列的至少一氮化鋁(AlN)層和至少一氮化鋁鎵(Alx Ga(1-x) N)層,並可根據不同的鋁含量以Alx Ga(1-x) N表示,其中0≦x>1;漸變式緩衝層可包含多個氮化鋁鎵(Aly Ga(1-y) N)層,並且可以根據不同的鋁含量,以Aly Ga(1-y) N表示,其中0≦y>1。Although the buffer layer 111 shown in FIG. 2 is a single-layer structure, the buffer layer 111 may also be a multi-layer structure (not shown). For example, the buffer layer 111 may include a superlattice buffer layer and/or a graded buffer layer, wherein the superlattice buffer layer is disposed on the substrate 110, and the graded buffer layer is disposed on the superlattice buffer layer, which can effectively avoid Dislocations within the substrate 110 enter the channel region, further enhancing the crystalline quality of other films and/or layers above. In addition, the superlattice buffer layer and the graded buffer layer can also be a multilayer structure. For example, the superlattice buffer layer can include multiple sets of alternating layers, and each set of alternating layers includes at least one aluminum nitride (AlN) layer in a staggered arrangement. layer and at least one aluminum gallium nitride (Al x Ga (1-x) N) layer, and can be represented by Al x Ga (1-x) N according to different aluminum contents, where 0≦x>1; gradient buffer The layer may comprise a plurality of aluminum gallium nitride ( AlyGa (1-y) N) layers, and may be represented by AlyGa (1-y) N according to different aluminum contents, where 0≦y>1.

一些實施例中,可形成晶種層(未繪示)於基底110與緩衝層111之間。晶種層的材料可包含: AlN、Al2 O3 、AlGaN、SiC、Al、前述之組合、或類似材料。晶種層可為單層或多層結構,且可透過前述的磊晶成長製程或類似製程來形成。在一些實施例中,緩衝層111的材料是取決於晶種層的材料和磊晶製程時所通入的氣體。In some embodiments, a seed layer (not shown) may be formed between the substrate 110 and the buffer layer 111 . The material of the seed layer may include: AlN, Al 2 O 3 , AlGaN, SiC, Al, combinations thereof, or similar materials. The seed layer can be a single-layer or multi-layer structure, and can be formed through the aforementioned epitaxial growth process or similar processes. In some embodiments, the material of the buffer layer 111 depends on the material of the seed layer and the gas introduced during the epitaxy process.

阻障層113設置於通道層112上。阻障層113的材料可包含三元(ternary)III-V族化合物半導體,例如III族氮化物。舉例而言,阻障層的材料可為AlGaN、AlInN、或前述之組合。其他實施例中,阻障層113也可包括:GaN、AlN、GaAs、GaInP、AlGaAs、InP、InAlAs、InGaAs、其他適當的III-V族材料、或前述之組合。一些實施例中,阻障層113可具有摻質,例如n型摻質或p型摻質。阻障層可由磊晶成長製程形成,例如:金屬有機化學氣相沉積、氫化物氣相磊晶法、分子束磊晶法、前述之組合、或類似方法。根據本發明的一些實施例,通道層112與阻障層113的材料不同,其界面處為異質接面(heterojunction)結構,其中因為通道層112與阻障層113的晶格不匹配而產生應力,導致壓電極化效應,且III族金屬(例如Al、Ga、或In)與氮之鍵結的離子性較強,導致自發極化。由於通道層112與阻障層113的能隙(energy gap)不同以及前述的壓電極化與自發極化效應,形成了二維電子氣(two-dimensional electron gas,2DEG)(未繪示)於通道層112與阻障層113之間的異質界面上。本發明實施例中的一些半導體裝置是利用二維電子氣(2DEG)作為導電載子的高電子遷移率電晶體(HEMT)。The barrier layer 113 is disposed on the channel layer 112 . The material of the barrier layer 113 may include ternary group III-V compound semiconductors, such as group III nitrides. For example, the material of the barrier layer can be AlGaN, AlInN, or a combination thereof. In other embodiments, the barrier layer 113 may also include: GaN, AlN, GaAs, GaInP, AlGaAs, InP, InAlAs, InGaAs, other appropriate III-V materials, or combinations thereof. In some embodiments, the barrier layer 113 may have dopants, such as n-type dopants or p-type dopants. The barrier layer can be formed by an epitaxial growth process, such as metal organic chemical vapor deposition, hydride vapor phase epitaxy, molecular beam epitaxy, combinations of the foregoing, or similar methods. According to some embodiments of the present invention, the materials of the channel layer 112 and the barrier layer 113 are different, and the interface thereof is a heterojunction structure, where stress is generated due to lattice mismatch between the channel layer 112 and the barrier layer 113 , resulting in a piezoelectric polarization effect, and the bonding of Group III metals (such as Al, Ga, or In) to nitrogen is highly ionic, resulting in spontaneous polarization. Due to the difference in energy gap between the channel layer 112 and the barrier layer 113 and the aforementioned piezoelectric polarization and spontaneous polarization effects, a two-dimensional electron gas (two-dimensional electron gas, 2DEG) (not shown) is formed in the On the heterointerface between the channel layer 112 and the barrier layer 113 . Some semiconductor devices in the embodiments of the present invention are high electron mobility transistors (HEMTs) using two-dimensional electron gas (2DEG) as conductive carriers.

參照第2圖,摻雜化合物半導體層116設置於阻障層113上。摻雜化合物半導體層116具有鄰近源極結構的側邊E1 、鄰近汲極結構的側邊E2 、以及開口OP1 。側邊E1 與側邊E2 的間距為D1 ,開口OP1 的寬度為W1 且露出部分阻障層113。摻雜化合物半導體層116可抑制之後將形成於其上的閘極電極118之下方的二維電子氣(2DEG)產生,以達成半導體裝置的常關(normally-off)狀態。在製程期間,摻雜化合物半導體層116可能受到環境的影響(例如溫度或環境中的元素)而造成去活化(deactivation),本發明實施例藉由具有開口OP1 的摻雜化合物半導體層116來減少半導體結構200中的摻雜化合物半導體層116的面積,以降低摻雜化合物半導體層116在元件設計中所佔的比例,進而改善因為摻雜化合物半導體層116在製程中受到環境因素的影響所導致的元件性能降低。一些實施例中,開口OP1 的寬度W1 為側邊E1 與側邊E2 之間距D1 的1/3至2/3,如此,可在不實質影響摻雜化合物半導體層116原先具有的功能及特性的情況下,改善摻雜化合物半導體層116在製程中受到環境因素的影響所導致的元件性能降低。此外,由於減少了摻雜化合物半導體層116的面積,可避免摻雜化合物半導體層在製程中受到環境因素的影響而導致閘極電極118的控制能力變差,進而提昇電流驅動能力。Referring to FIG. 2 , the doped compound semiconductor layer 116 is disposed on the barrier layer 113 . The doped compound semiconductor layer 116 has a side E 1 adjacent to the source structure, a side E 2 adjacent to the drain structure, and an opening OP 1 . The distance between the side E 1 and the side E 2 is D 1 , the width of the opening OP 1 is W 1 and part of the barrier layer 113 is exposed. Doping the compound semiconductor layer 116 can suppress the generation of two-dimensional electron gas (2DEG) under the gate electrode 118 formed thereon to achieve a normally-off state of the semiconductor device. During the manufacturing process, the doped compound semiconductor layer 116 may be affected by the environment (such as temperature or elements in the environment) to cause deactivation (deactivation). In the embodiment of the present invention, the doped compound semiconductor layer 116 having the opening OP1 Reducing the area of the doped compound semiconductor layer 116 in the semiconductor structure 200, so as to reduce the proportion of the doped compound semiconductor layer 116 in the device design, thereby improving the effect of the doped compound semiconductor layer 116 being affected by environmental factors during the manufacturing process. result in reduced component performance. In some embodiments, the width W 1 of the opening OP 1 is 1/3 to 2/3 of the distance D 1 between the side E 1 and the side E 2 . In the case of the functions and characteristics of the doped compound semiconductor layer 116 being affected by environmental factors during the manufacturing process, the degradation of device performance is improved. In addition, since the area of the doped compound semiconductor layer 116 is reduced, the control ability of the gate electrode 118 caused by the influence of environmental factors in the manufacturing process of the doped compound semiconductor layer can be avoided, thereby improving the current driving ability.

根據本發明的一些實施例,摻雜化合物半導體層116的材料可為p型摻雜或n型摻雜的GaN。摻雜化合物半導體層116的厚度可為約50nm至約150nm。形成摻雜化合物半導體層116的步驟可包含:透過磊晶成長製程,在阻障層113上沉積摻雜化合物半導體並在摻雜化合物半導體上形成圖案化遮罩層,接著對摻雜化合物半導體執行蝕刻製程,以移除摻雜化合物半導體未被圖案化遮罩層覆蓋的部分,由此形成摻雜化合物半導體層116,其對應於預定形成閘極電極118的位置。之後,再將圖案化遮罩移除。前述圖案化遮罩層可為硬遮罩或光阻。在一些實施例中,摻雜的化合物半導體層可與晶種層、緩衝層111、通道層112、及阻障層113於相同的沉積腔室中原位(in-situ)沉積。此外,摻雜化合物半導體層116可以是如第2圖所示的長方形剖面,也可以是其他形狀,例如梯形剖面。再者,摻雜化合物半導體層116的上表面也可以不是平坦的。According to some embodiments of the present invention, the material of the doped compound semiconductor layer 116 may be p-type doped or n-type doped GaN. The thickness of the doped compound semiconductor layer 116 may be about 50 nm to about 150 nm. The step of forming the doped compound semiconductor layer 116 may include: depositing a doped compound semiconductor on the barrier layer 113 through an epitaxial growth process and forming a patterned mask layer on the doped compound semiconductor, and then performing An etching process is performed to remove the portion of the doped compound semiconductor not covered by the patterned mask layer, thereby forming the doped compound semiconductor layer 116 corresponding to the predetermined position for forming the gate electrode 118 . Afterwards, the patterned mask is removed. The foregoing patterned mask layer can be a hard mask or a photoresist. In some embodiments, the doped compound semiconductor layer can be deposited in-situ in the same deposition chamber as the seed layer, the buffer layer 111 , the channel layer 112 , and the barrier layer 113 . In addition, the doped compound semiconductor layer 116 may have a rectangular cross-section as shown in FIG. 2 , or may have other shapes, such as a trapezoidal cross-section. Furthermore, the upper surface of the doped compound semiconductor layer 116 may not be flat.

其他實施例中,摻雜化合物半導體層116可包括其他的p型摻雜III-V族半導體,例如:AlGaN、AlN、GaAs、AlGaAs、InP、InAlAs、或InGaAs。此外,摻雜化合物半導體層108還可包括p型摻雜的II-VI族半導體,例如:CdS、CdTe、或ZnS。一些實施例中,可使用Li、Be、C、Na、Mg、Zn、Ca、Sr、Ba、Ra、Ag、Au等元素對摻雜化合物半導體層116進行摻雜,而使摻雜化合物半導體層116為p型摻雜。In other embodiments, the doped compound semiconductor layer 116 may include other p-type doped III-V semiconductors, such as AlGaN, AlN, GaAs, AlGaAs, InP, InAlAs, or InGaAs. In addition, the doped compound semiconductor layer 108 may also include p-type doped II-VI semiconductors, such as CdS, CdTe, or ZnS. In some embodiments, the doped compound semiconductor layer 116 can be doped with elements such as Li, Be, C, Na, Mg, Zn, Ca, Sr, Ba, Ra, Ag, Au, so that the doped compound semiconductor layer 116 is p-type doping.

繼續參照第2圖,介電層117位於阻障層113及摻雜化合物半導體層116上,閘極電極118設置於摻雜化合物半導體層116上並埋置於介電層117中,而閘極金屬層119設置於介電層117上並可作為閘極場板。如前所述,閘極電極118設置於摻雜化合物半導體層116上,摻雜化合物半導體層116可抑制閘極電極118下方的二維電子氣(2DEG)產生,以達成半導體裝置的常關狀態。介電層117可包含一或多種單層或多層介電材料,例如:氧化矽、氮化矽、氮氧化矽、四乙氧基矽烷(tetraethoxysilane,TEOS)、磷矽玻璃(phosphosilicate glass,PSG)、硼磷矽酸鹽玻璃(borophosphosilicate glass,BPSG)、低介電常數介電材料、及/或其他適合的介電材料。低介電常數介電材料可包含(但不限於):氟化矽玻璃(fluorinated silica glass,FSG)、氫倍半矽氧烷(hydrogen silsesquioxane,HSQ)、摻雜碳的氧化矽、非晶質氟化碳(fluorinated carbon)、聚對二甲苯(parylene)、苯並環丁烯(bis-benzocyclobutenes,BCB)、或聚醯亞胺(polyimide)。舉例而言,可使用旋轉塗佈 (spin coating)、化學氣相沉積、物理氣相沉積、原子層沉積、高密度電漿化學氣相沉積、其他合適的方法或前述之組合來形成介電層117。Continuing to refer to FIG. 2, the dielectric layer 117 is located on the barrier layer 113 and the doped compound semiconductor layer 116, the gate electrode 118 is disposed on the doped compound semiconductor layer 116 and embedded in the dielectric layer 117, and the gate The metal layer 119 is disposed on the dielectric layer 117 and serves as a gate field plate. As mentioned above, the gate electrode 118 is disposed on the doped compound semiconductor layer 116, and the doped compound semiconductor layer 116 can suppress the generation of two-dimensional electron gas (2DEG) under the gate electrode 118 to achieve a normally-off state of the semiconductor device. . The dielectric layer 117 may include one or more single-layer or multi-layer dielectric materials, such as silicon oxide, silicon nitride, silicon oxynitride, tetraethoxysilane (tetraethoxysilane, TEOS), phosphosilicate glass (PSG) , borophosphosilicate glass (BPSG), low dielectric constant dielectric material, and/or other suitable dielectric materials. Low-k dielectric materials may include (but are not limited to): fluorinated silica glass (FSG), hydrogen silsesquioxane (HSQ), carbon-doped silicon oxide, amorphous Fluorinated carbon, parylene, bis-benzocyclobutenes (BCB), or polyimide. For example, the dielectric layer may be formed using spin coating, chemical vapor deposition, physical vapor deposition, atomic layer deposition, high density plasma chemical vapor deposition, other suitable methods, or combinations thereof 117.

閘極電極118的材料可為導電材料,例如:金屬、金屬氮化物或半導體材料,舉例而言,金屬可為:Au、Ni、Pt、Pd、Ir、Ti、Cr、W、Al、Cu、類似材料、前述之組合、或前述之多層結構;金屬氮化物可為: MoN、WN、TiN、TaN、或類似材料;半導體材料可為:多晶矽或多晶鍺。可透過沉積製程來形成前述導電材料,例如:化學氣相沉積(CVD)、原子層沉積(ALD)、或物理氣相沉積(PVD)(如濺鍍或蒸鍍),然後將導電材料圖案化,以形成閘極電極118。一些實施例中,可透過類似方法形成閘極金屬層119。閘極金屬層119可包括與閘極電極118相同或類似的材料,且可由同一道製程來形成或是由不同的製程來形成。閘極金屬層119的材料可包括: NiSi、CoSi、TaC、TaSiN、TaCN、TiAl、TiAlN、金屬氧化物、金屬合金、其他適合的導電材料、或前述之組合。The material of the gate electrode 118 can be a conductive material, such as: metal, metal nitride or semiconductor material, for example, the metal can be: Au, Ni, Pt, Pd, Ir, Ti, Cr, W, Al, Cu, Similar materials, combinations of the foregoing, or multilayer structures of the foregoing; metal nitrides can be: MoN, WN, TiN, TaN, or similar materials; semiconductor materials can be: polycrystalline silicon or polycrystalline germanium. The aforementioned conductive material can be formed by a deposition process, such as chemical vapor deposition (CVD), atomic layer deposition (ALD), or physical vapor deposition (PVD) (such as sputtering or evaporation), and then the conductive material is patterned , to form the gate electrode 118 . In some embodiments, the gate metal layer 119 can be formed by a similar method. The gate metal layer 119 may include the same or similar material as the gate electrode 118 and may be formed by the same process or by a different process. The material of the gate metal layer 119 may include: NiSi, CoSi, TaC, TaSiN, TaCN, TiAl, TiAlN, metal oxide, metal alloy, other suitable conductive materials, or a combination thereof.

如第2圖所示,源極結構與汲極結構設置於阻障層113的兩側。源極結構可包括源極電極114以及設置源極電極114上的源極金屬層122,汲極結構可包括汲極電極115以及設置汲極電極115上的汲極金屬層123。一些實施例中,源極電極114和汲極電極115的形成方法包括:對阻障層執行圖案化製程,以形成一對(或多個)開口於阻障層中,然後將導電材料填入開口中並執行平坦化製程(如化學機械研磨)或回蝕刻(etch back)製程,以移除開口外的多餘材料,由此形成源極電極114和汲極電極115。其他實施例中,可在形成介電層117後再執行類似的製程來形成源極電極114和汲極電極115。前述導電材料及其形成方法與上述閘極電極118的導電材料類似。一些實施例中,可在後續製程中形成透過類似方法形成源極金屬層122或汲極金屬層123。根據本發明的一些實施例,前述閘極電極118的形成方法可與源極電極114和汲極電極115的形成方法類似。As shown in FIG. 2 , the source structure and the drain structure are disposed on both sides of the barrier layer 113 . The source structure may include a source electrode 114 and a source metal layer 122 disposed on the source electrode 114 , and the drain structure may include a drain electrode 115 and a drain metal layer 123 disposed on the drain electrode 115 . In some embodiments, the method for forming the source electrode 114 and the drain electrode 115 includes: performing a patterning process on the barrier layer to form a pair (or more) of openings in the barrier layer, and then filling the conductive material into the barrier layer. A planarization process (such as chemical mechanical polishing) or an etch back process is performed in the opening to remove excess material outside the opening, thereby forming the source electrode 114 and the drain electrode 115 . In other embodiments, the source electrode 114 and the drain electrode 115 can be formed by performing a similar process after forming the dielectric layer 117 . The aforementioned conductive material and its forming method are similar to the aforementioned conductive material of the gate electrode 118 . In some embodiments, the source metal layer 122 or the drain metal layer 123 can be formed in a subsequent process by a similar method. According to some embodiments of the present invention, the formation method of the aforementioned gate electrode 118 may be similar to the formation method of the source electrode 114 and the drain electrode 115 .

一些實施例中,源極金屬層122可直接位於源極電極114上並與其直接接觸,或透過接觸件與源極電極114電性連接。類似地,汲極金屬層123可直接位於汲極電極115上並與其直接接觸,或透過接觸件與汲極電極115電性連接。舉例而言,源極結構的源極電極114埋置於介電層117中,而源極結構的源極金屬層122可設置於介電層117上,其中源極電極114與源極金屬層122藉由埋置於介電層117中的源極接觸件電性連接。與源極電極114電性連接之源極金屬層122之電位不同於與閘極電極118電性連接之閘極金屬層119之電位,在此些實施例中,源極金屬層122沿著從源極結構至汲極結構的方向延伸並作為源極場板(source field plate),由此降低電場強度。其他實施例中,源極電極114和汲極電極115可穿過阻障層113而與通道層112接觸。源極金屬層122和汲極金屬層123可包括與源極電極114和汲極電極115相同或類似的材料,且可由同一道製程形成或是由不同的製程來形成。一些實施例中,源極金屬層122和汲極金屬層123的材料可包括:NiSi、CoSi、TaC、TaSiN、TaCN、TiAl、TiAlN、金屬氧化物、金屬合金、其他適合的導電材料、或前述之組合。In some embodiments, the source metal layer 122 may be directly located on the source electrode 114 and in direct contact with it, or be electrically connected to the source electrode 114 through a contact. Similarly, the drain metal layer 123 can be directly located on and in contact with the drain electrode 115 , or electrically connected to the drain electrode 115 through a contact. For example, the source electrode 114 of the source structure is buried in the dielectric layer 117, and the source metal layer 122 of the source structure can be disposed on the dielectric layer 117, wherein the source electrode 114 and the source metal layer 122 is electrically connected by a source contact embedded in dielectric layer 117 . The potential of the source metal layer 122 electrically connected to the source electrode 114 is different from the potential of the gate metal layer 119 electrically connected to the gate electrode 118. The direction from the source structure to the drain structure extends and acts as a source field plate, thereby reducing the electric field strength. In other embodiments, the source electrode 114 and the drain electrode 115 may pass through the barrier layer 113 and contact the channel layer 112 . The source metal layer 122 and the drain metal layer 123 may include the same or similar materials as the source electrode 114 and the drain electrode 115 , and may be formed by the same process or by different processes. In some embodiments, the materials of the source metal layer 122 and the drain metal layer 123 may include: NiSi, CoSi, TaC, TaSiN, TaCN, TiAl, TiAlN, metal oxides, metal alloys, other suitable conductive materials, or the aforementioned combination.

此外,如前所述,在製程期間受到環境(例如溫度或環境中的元素)影響的摻雜化合物半導體層116可能產生去活化(deactivation)現象。去活化可能造成閘極電極118的控制能力變差,進而影響電流驅動能力。因此,為降低摻雜化合物半導體層116在元件設計中所佔的比例,本發明實施例藉由具有開口OP1 的摻雜化合物半導體層116來減少半導體結構200中的摻雜化合物半導體層116的面積,可改善因為摻雜化合物半導體層116在製程中受到環境因素的影響而導致閘極電極118的控制能力變差,進而提昇電流驅動能力以及電性均勻性。舉例而言,在相同的條件下(例如相同電壓),具有開口OP1 的摻雜化合物半導體層116,可提昇元件的驅動電流約25%以上。根據一些實施例,開口OP1 的寬度W1 為側邊E1 與側邊E2 之間距D1 的1/3至2/3,可在不實質影響化合物半導體層116原先具有的功能及特性的情況下,改善由於摻雜化合物半導體層116在製程中受到環境因素的影響而導致閘極電極118的控制能力變差,進而提昇電流驅動能力。In addition, as mentioned above, deactivation may occur in the doped compound semiconductor layer 116 affected by the environment (such as temperature or elements in the environment) during the process. The deactivation may cause the control capability of the gate electrode 118 to deteriorate, thereby affecting the current driving capability. Therefore, in order to reduce the proportion of the doped compound semiconductor layer 116 in the device design, the embodiment of the present invention uses the doped compound semiconductor layer 116 with the opening OP1 to reduce the proportion of the doped compound semiconductor layer 116 in the semiconductor structure 200. The area can improve the control ability of the gate electrode 118 caused by the influence of environmental factors on the doped compound semiconductor layer 116 during the manufacturing process, thereby improving the current driving ability and electrical uniformity. For example, under the same conditions (eg, the same voltage), the doped compound semiconductor layer 116 with the opening OP 1 can increase the driving current of the device by more than 25%. According to some embodiments, the width W 1 of the opening OP 1 is 1/3 to 2/3 of the distance D 1 between the side E 1 and the side E 2 , without substantially affecting the original functions and characteristics of the compound semiconductor layer 116. In this case, the deterioration of the control ability of the gate electrode 118 due to the influence of environmental factors on the doped compound semiconductor layer 116 during the manufacturing process is improved, thereby improving the current driving ability.

一些實施例中,半導體結構200可更包括保護層以及襯層(未繪示)。保護層可設置於摻雜化合物半導體層116的側壁和部分上表面上、以及阻障層113的部分上表面上。一些實施例中,保護層可修復前述蝕刻製程在摻雜化合物半導體層116之側壁上所導致的晶格缺陷,由此降低所形成元件的閘極漏電流。此外,形成於阻障層113之部分上表面上的保護層可用以防止阻障層113的表面氧化,提升所形成元件的效能。依製程的需求或元件的設計而定,保護層的厚度可為約0.5nm至約500nm。保護層的材料可包含絕緣材料或介電材料,例如: SiO2 、SiN、SiON、Al2 O3 、AlN、MgO、Mg3 N2 、ZnO、TiO2 、前述之組合、或類似材料。In some embodiments, the semiconductor structure 200 may further include a protection layer and a liner layer (not shown). The protective layer may be disposed on sidewalls and a portion of the upper surface of the doped compound semiconductor layer 116 and a portion of the upper surface of the barrier layer 113 . In some embodiments, the passivation layer can repair the lattice defects caused by the aforementioned etching process on the sidewall of the doped compound semiconductor layer 116 , thereby reducing the gate leakage current of the formed device. In addition, the protective layer formed on a part of the upper surface of the barrier layer 113 can be used to prevent the oxidation of the surface of the barrier layer 113 and improve the performance of the formed device. Depending on the requirement of the process or the design of the device, the thickness of the passivation layer may be about 0.5 nm to about 500 nm. The material of the protective layer may include insulating or dielectric materials, such as SiO 2 , SiN, SiON, Al 2 O 3 , AlN, MgO, Mg 3 N 2 , ZnO, TiO 2 , combinations thereof, or similar materials.

在一些實施例中,保護層的材料為氮化物,例如氮化矽或氮化鋁,其可較佳地修復摻雜化合物半導體層116之側壁的晶格缺陷。在一些實施例中,可透過化學氣相沉積,例如電漿輔助化學氣相沉積、原子層沉積、物理氣相沉積(例如濺鍍)、或類似方法,在基底110之上形成前述材料層,並將其圖案化以形成保護層。其他實施例中,圖案化製程可完全移除在摻雜化合物半導體層116之上表面上的保護層,使保護層位於摻雜化合物半導體層116的側壁及阻障層113之上表面上。In some embodiments, the protection layer is made of nitride, such as silicon nitride or aluminum nitride, which can preferably repair the lattice defects of the sidewall of the doped compound semiconductor layer 116 . In some embodiments, the foregoing material layer may be formed on the substrate 110 by chemical vapor deposition, such as plasma-assisted chemical vapor deposition, atomic layer deposition, physical vapor deposition (such as sputtering), or the like, and pattern it to form a protective layer. In other embodiments, the patterning process can completely remove the protective layer on the upper surface of the doped compound semiconductor layer 116 , so that the protective layer is located on the sidewalls of the doped compound semiconductor layer 116 and the upper surface of the barrier layer 113 .

一些實施例中,襯層可設置於源極電極114和汲極電極115的底部和部分側壁上、以及阻障層113的部分上表面上。一些實施例中,襯層有助於產生更多的二維電子氣(2DEG)於源極電極114和汲極電極115的異質界面上,以降低源極電極114和汲極電極115與通道層112之間的接觸電阻(Rcontact ),進而降低半導體結構的導通電阻。此外,形成於阻障層113之部分上表面上的襯層可用以防止阻障層113的表面氧化,提升所形成元件的效能。In some embodiments, the liner may be disposed on the bottom and part of the sidewalls of the source electrode 114 and the drain electrode 115 , and part of the upper surface of the barrier layer 113 . In some embodiments, the liner helps to generate more two-dimensional electron gas (2DEG) on the heterointerface of the source electrode 114 and the drain electrode 115, so as to reduce the contact between the source electrode 114 and the drain electrode 115 and the channel layer. The contact resistance (R contact ) between 112, thereby reducing the on-resistance of the semiconductor structure. In addition, the liner formed on part of the upper surface of the barrier layer 113 can be used to prevent the surface oxidation of the barrier layer 113 and improve the performance of the formed device.

一些實施例中,襯層的材料可包含六方晶系(hexagonal crystal)的二元(binary)化合物半導體,例如: AlN、ZnO、InN、前述之組合、或類似材料,並且可透過原子層沉積或磊晶成長製程(如金屬有機化學氣相沉積)來沉積。在一實施例中,襯層是由金屬有機化學氣相沉積形成,由於金屬有機化學氣相沉積為選區成長(selective area growth,SAG)製程,因此襯層形成於阻障層113之上表面未被保護層覆蓋的區域上,以與保護層相接,而不會形成於保護層上。在另一實施例中,由原子層沉積所形成的襯層不僅形成於阻障層113之上表面未被保護層覆蓋的區域上,還延伸至保護層上。此外,在另一些實施例中,襯層的材料還可包含具有六方晶系的石墨烯(graphene),並且可透過化學氣相沉積、原子層沉積來形成襯層。在一些實施例中,襯層的材料可與保護層的材料相同,例如,兩者皆為AlN。另一些實施例中,襯層的材料不同於保護層的材料,例如,襯層為AlN,保護層為矽化鋁SiN。In some embodiments, the material of the lining layer may include a hexagonal crystal binary (binary) compound semiconductor, such as: AlN, ZnO, InN, a combination of the foregoing, or similar materials, and may be deposited by atomic layer deposition or epitaxial growth process (such as metal organic chemical vapor deposition) to deposit. In one embodiment, the liner layer is formed by metal-organic chemical vapor deposition. Since metal-organic chemical vapor deposition is a selective area growth (SAG) process, the liner layer is formed on the upper surface of the barrier layer 113 On the area covered by the protective layer, so as to be in contact with the protective layer without forming on the protective layer. In another embodiment, the liner layer formed by atomic layer deposition is not only formed on the upper surface of the barrier layer 113 not covered by the passivation layer, but also extends to the passivation layer. In addition, in some other embodiments, the material of the lining layer may also include graphene having a hexagonal crystal system, and the lining layer may be formed by chemical vapor deposition or atomic layer deposition. In some embodiments, the material of the liner layer and the protection layer may be the same, for example, both are AlN. In some other embodiments, the material of the lining layer is different from that of the protective layer, for example, the lining layer is AlN, and the protective layer is aluminum silicide SiN.

第3圖是根據本發明的一些實施例,繪示出半導體結構之部分投影上視圖。第4圖是根據本發明的一些實施例,繪示出第3圖A-A’之剖面示意圖。半導體結構400與半導體結構200類似,不同處為半導體結構400的摻雜化合物半導體層316具有兩個開口,為簡化起見,在第4圖中與第2圖相同的部件是使用相同的標號並省略其說明。如第4圖所示,摻雜化合物半導體層316具有鄰近源極結構的側邊E3 、鄰近汲極結構的側邊E4 、以及開口OP3a 和OP3b 。側邊E3 與側邊E4 的間距為D3 ,開口OP3a 的寬度為W3a 且開口OP3b 的寬度為W3b ,前述二個開口露出部分的阻障層113。半導體結構400包含具有開口OP3a 和OP3b 的摻雜化合物半導體層316,如前所述,由於減少了半導體結構400中的摻雜化合物半導體層316的面積,可改善因為摻雜化合物半導體層316在製程中受到環境因素的影響而導致閘極電極118的控制能力變差,進而提昇電流驅動能力。FIG. 3 is a partial projected top view illustrating a semiconductor structure according to some embodiments of the present invention. Fig. 4 is a schematic cross-sectional view of AA' of Fig. 3 according to some embodiments of the present invention. The semiconductor structure 400 is similar to the semiconductor structure 200. The difference is that the doped compound semiconductor layer 316 of the semiconductor structure 400 has two openings. For the sake of simplicity, the same components in FIG. 4 and FIG. Its description is omitted. As shown in FIG. 4 , the doped compound semiconductor layer 316 has a side E 3 adjacent to the source structure, a side E 4 adjacent to the drain structure, and openings OP 3 a and OP 3 b . The distance between the side E 3 and the side E 4 is D 3 , the width of the opening OP 3a is W 3a and the width of the opening OP 3b is W 3b , and the aforementioned two openings expose part of the barrier layer 113 . The semiconductor structure 400 includes a doped compound semiconductor layer 316 having openings OP 3a and OP 3b . As mentioned above, since the area of the doped compound semiconductor layer 316 in the semiconductor structure 400 is reduced, the area of the doped compound semiconductor layer 316 can be improved. Influenced by environmental factors during the manufacturing process, the control capability of the gate electrode 118 is deteriorated, thereby improving the current driving capability.

根據一些實施例,開口OP3a 的寬度W3a 與開口OP3b 的寬度W3b 之和為側邊E3 與側邊E4 之間距D3 的1/3至2/3,可在不實質影響化合物半導體層316原先具有的功能及特性的情況下,改善由於摻雜化合物半導體層316在製程中受到環境因素的影響而導致閘極電極118的控制能力變差,進而提昇電流驅動能力。應注意的是,第4圖所繪示的開口數量僅是作為範例,本發明實施例的化合物半導體層之開口數量也可為二個以上。在一些化合物半導體層具有二個開口以上的實施例中,開口的寬度和為摻雜化合物半導體層鄰近源極結構的側邊與鄰近汲極結構的側邊之間距的1/3至2/3,如上所述的,可在不實質影響化合物半導體層原先具有的功能及特性的情況下,改善閘極電極的控制能力,進而提昇電流驅動能力。一些實施例中,半導體結構400也可包括如保護層及/或襯層,以實現降低所形成元件的閘極漏電流及/或降低半導體結構400的導通電阻、以及防止阻障層113的表面氧化,提升所形成元件的效能。此外,如上視圖第3圖所示,摻雜化合物半導體層316具有矩形開口OP3a 及橢圓形開口OP3b ,詳細而言,在從源極電極114至汲極電極115(或從源極結構至汲極結構)之A-A’方向上,摻雜化合物半導體層316具有兩開口OP3a 及OP3b ,且開口OP3a 與OP3b 在A-A’方向具有最大寬度和(W3a +W3b )。一些實施例中,為了維持摻雜化合物半導體層316原先具有的功能及特性,開口OP3a 與OP3b 在A-A’方向的最大寬度和(W3a +W3b )為摻雜化合物半導體層316在A-A’方向的最大寬度D3 的1/3至2/3,且開口OP3a 與OP3b 在A-A’方向上的相鄰最小間距為開口OP3a 與OP3b 在A-A’方向上之寬度的平均值,亦即(W3a +W3b )/2。而具有開口的摻雜化合物半導體層316,如上所述,可改善閘極電極的控制能力,提昇電流驅動能力。According to some embodiments, the sum of the width W 3a of the opening OP 3a and the width W 3b of the opening OP 3b is 1/3 to 2/3 of the distance D 3 between the side E 3 and the side E 4 , which may be without substantially affecting In the case of original functions and characteristics of the compound semiconductor layer 316 , the poor control ability of the gate electrode 118 caused by the influence of environmental factors during the manufacturing process of the doped compound semiconductor layer 316 is improved, thereby improving the current driving ability. It should be noted that the number of openings shown in FIG. 4 is only an example, and the number of openings in the compound semiconductor layer of the embodiment of the present invention may be more than two. In some embodiments where the compound semiconductor layer has more than two openings, the width of the opening is 1/3 to 2/3 of the distance between the side of the doped compound semiconductor layer adjacent to the source structure and the side of the drain structure. As mentioned above, the control ability of the gate electrode can be improved without substantially affecting the original functions and characteristics of the compound semiconductor layer, thereby improving the current driving ability. In some embodiments, the semiconductor structure 400 may also include, for example, a protective layer and/or a liner layer, so as to reduce the gate leakage current of the formed element and/or reduce the on-resistance of the semiconductor structure 400, and prevent the surface of the barrier layer 113 from Oxidation improves the performance of the formed components. In addition, as shown in FIG. 3 of the top view, the doped compound semiconductor layer 316 has a rectangular opening OP 3a and an elliptical opening OP 3b . Specifically, from the source electrode 114 to the drain electrode 115 (or from the source structure to In the AA' direction of the drain structure), the doped compound semiconductor layer 316 has two openings OP 3a and OP 3b , and the openings OP 3a and OP 3b have a maximum width sum (W 3a +W 3b ) in the AA' direction . In some embodiments, in order to maintain the original functions and characteristics of the doped compound semiconductor layer 316, the sum of the maximum widths of the openings OP 3a and OP 3b in the A-A' direction (W 3a +W 3b ) is the doped compound semiconductor layer 316 in The maximum width D 3 in the A-A' direction is 1/3 to 2/3, and the minimum distance between the openings OP 3a and OP 3b in the A-A' direction is the distance between the openings OP 3a and OP 3b in A-A' The average value of the width in the direction, that is, (W 3a +W 3b )/2. The doped compound semiconductor layer 316 with openings, as mentioned above, can improve the controllability of the gate electrode and enhance the current driving capability.

第5-11圖是根據本發明的一些變化實施例,繪示出半導體結構之部分投影上視圖。參照第5圖,其中包含源極電極114、汲極電極115、以及摻雜化合物半導體層516,如上視圖所示,摻雜化合物半導體層516具有矩形開口OP5a 、橢圓形開口OP5b 、及三角形開口OP5c ,在從源極電極114至汲極電極115(或從源極結構至汲極結構)之A-A’方向上,摻雜化合物半導體層516具有三個開口,且開口OP5a 、OP5b 、及OP5c 在A-A’方向具有最大寬度和(W5a +W5b +W5c )。一些實施例中,為了維持摻雜化合物半導體層516原先具有的功能及特性,開口OP5a 、OP5b 、及OP5c 在A-A’方向的最大寬度和(W5a +W5b +W5c )為摻雜化合物半導體層516在A-A’方向的最大寬度D5 的1/3至2/3,且開口OP5a 、OP5b 、及OP5c 在A-A’方向上的相鄰最小間距為開口OP5a 、OP5b 、及OP5c 在A-A’方向上之寬度的平均值,亦即(W5a +W5b +W5c )/3。而具有開口的摻雜化合物半導體層516,可改善閘極電極的控制能力,提昇電流驅動能力。5-11 are partial projected top views of semiconductor structures according to some variant embodiments of the present invention. Referring to Fig. 5, which includes the source electrode 114, the drain electrode 115, and the doped compound semiconductor layer 516, as shown in the top view, the doped compound semiconductor layer 516 has a rectangular opening OP5a , an oval opening OP5b , and a triangular opening OP5b. Opening OP 5c , in the AA' direction from the source electrode 114 to the drain electrode 115 (or from the source structure to the drain structure), the doped compound semiconductor layer 516 has three openings, and the openings OP 5a , OP 5b and OP 5c have a maximum width sum (W 5a + W 5b + W 5c ) in the A-A' direction. In some embodiments, in order to maintain the original functions and characteristics of the doped compound semiconductor layer 516, the maximum width sum (W 5a + W 5b + W 5c ) of the openings OP 5a , OP 5b , and OP 5c in the A-A' direction is doped The maximum width D5 of the hybrid compound semiconductor layer 516 in the AA' direction is 1/3 to 2/3, and the adjacent minimum distance between the openings OP5a , OP5b , and OP5c in the AA' direction is 1/3 to 2/3. The average value of the widths of OP 5a , OP 5b , and OP 5c in the A-A' direction is (W 5a +W 5b +W 5c )/3. The doped compound semiconductor layer 516 with openings can improve the control capability of the gate electrode and enhance the current driving capability.

參照第6圖,其中包含源極電極114、汲極電極115、以及摻雜化合物半導體層616,如上視圖所示,摻雜化合物半導體層616具有矩形開口OP6a 及OP6b ,在從源極電極114至汲極電極115(或從源極結構至汲極結構)之A-A’方向上,摻雜化合物半導體層616的至少一部分是不連續的,且開口OP6a 在平行A-A’方向的一方向上具有寬度W6a 、開口OP6b 在A-A’方向具有寬度W6b ,其中W6b 大於W6a 。一些實施例中,為了維持摻雜化合物半導體層616原先具有的功能及特性,開口OP6b 具有的較大寬度W6b為摻雜化合物半導體層616在A-A’方向的最大寬度D6 的1/3至2/3,並且開口OP6a 與開口OP6b 在垂直於A-A’方向的B-B’方向上的間距S1 的最小值為摻雜化合物半導體層616在A-A’方向的最大寬度D6 的1/2。而具有開口的摻雜化合物半導體層616,如上所述,可改善閘極電極的控制能力,提昇電流驅動能力。Referring to Fig. 6, which includes source electrode 114, drain electrode 115, and doped compound semiconductor layer 616, as shown in the top view, doped compound semiconductor layer 616 has rectangular openings OP 6a and OP 6b , from the source electrode 114 to the drain electrode 115 (or from the source structure to the drain structure) in the AA' direction, at least a part of the doped compound semiconductor layer 616 is discontinuous, and the opening OP 6a is parallel to the AA' direction The opening OP 6b has a width W 6a in one direction, and the opening OP 6b has a width W 6b in the AA' direction, wherein W 6b is larger than W 6a . In some embodiments, in order to maintain the original functions and characteristics of the doped compound semiconductor layer 616, the larger width W6b of the opening OP 6b is 1/ of the maximum width D6 of the doped compound semiconductor layer 616 in the AA' direction. 3 to 2/3, and the minimum distance S 1 between the opening OP 6a and the opening OP 6b in the BB' direction perpendicular to the AA' direction is the distance between the doped compound semiconductor layer 616 in the AA' direction 1/2 of the maximum width D 6 . The doped compound semiconductor layer 616 with openings, as mentioned above, can improve the controllability of the gate electrode and enhance the current driving capability.

參照第7圖,其中包含源極電極114、汲極電極115、以及摻雜化合物半導體層716,如上視圖所示,摻雜化合物半導體層716具有矩形開口OP7a 、梯形開口OP7b 及圓形開口OP7c ,在從源極電極114至汲極電極115(或從源極結構至汲極結構)之A-A’方向上,摻雜化合物半導體層716的至少一部分是不連續的,且矩形開口OP7a 在平行A-A’方向的一方向上具有寬度W7a 、梯形開口OP7b 在A-A’方向上的較大底邊具有寬度W7b 、圓形開口OP7c 在平行A-A’方向的另一方向具有寬度W7c ,其中W7b 大於W7a 及W7c 。一些實施例中,為了維持摻雜化合物半導體層716原先具有的功能及特性,開口OP7b 的較大底邊的寬度W7b 為摻雜化合物半導體層716在A-A’方向的最大寬度D7 的1/3至2/3,並且開口OP7a 與開口OP7b 在垂直於A-A’方向的B-B’方向上的間距S2 的最小值、以及開口OP7b 與開口OP7c 在垂直於A-A’方向的B-B’方向上的間距S3 的最小值為摻雜化合物半導體層716在A-A’方向的最大寬度D7 的1/2。而具有開口的摻雜化合物半導體層716,如上所述,可改善閘極電極的控制能力,提昇電流驅動能力。Referring to Fig. 7, which includes source electrode 114, drain electrode 115, and doped compound semiconductor layer 716, as shown in the top view, doped compound semiconductor layer 716 has a rectangular opening OP 7a , a trapezoidal opening OP 7b and a circular opening OP 7c , in the AA' direction from the source electrode 114 to the drain electrode 115 (or from the source structure to the drain structure), at least a part of the doped compound semiconductor layer 716 is discontinuous, and the rectangular opening The OP 7a has a width W 7a in one direction parallel to the A-A' direction, the larger base of the trapezoidal opening OP 7b has a width W 7b in the A-A' direction, and the circular opening OP 7c has a width W 7b in the direction parallel to the A-A' direction. The other direction has a width W 7c , wherein W 7b is larger than W 7a and W 7c . In some embodiments, in order to maintain the original functions and characteristics of the doped compound semiconductor layer 716, the width W 7b of the larger bottom side of the opening OP 7b is the maximum width D 7 of the doped compound semiconductor layer 716 in the AA' direction 1/3 to 2/3 of , and the minimum value of the spacing S 2 between the opening OP 7a and the opening OP 7b in the BB' direction perpendicular to the AA' direction, and the opening OP 7b and the opening OP 7c in the vertical The minimum value of the spacing S 3 in the BB' direction in the AA' direction is 1/2 of the maximum width D 7 of the doped compound semiconductor layer 716 in the AA' direction. The doped compound semiconductor layer 716 with openings, as mentioned above, can improve the controllability of the gate electrode and enhance the current driving capability.

前述摻雜化合物半導體層的開口形狀僅是作為範例,而非用以限定本發明實施例,開口之形狀可包括:矩形、菱形、梯形、圓形、橢圓形、三角形、或前述之組合。此外,本發明實施例也適用於不規則形狀之開口。The opening shape of the above-mentioned doped compound semiconductor layer is just an example and not intended to limit the embodiment of the present invention. The shape of the opening may include: rectangle, rhombus, trapezoid, circle, ellipse, triangle, or a combination thereof. In addition, the embodiments of the present invention are also applicable to openings with irregular shapes.

除了開口之外,摻雜化合物半導體層也可在其平行A-A’方向的兩側邊E5 、E6 的至少其中之一上具有缺口,如第8圖所示,其中包含源極電極114、汲極電極115、以及摻雜化合物半導體層816,摻雜化合物半導體層816具有矩形缺口N8 ,在從源極電極114至汲極電極115(或從源極結構至汲極結構)之A-A’方向上,摻雜化合物半導體層816的至少一部分是不連續的,缺口N8 的朝向垂直於A-A’方向且缺口N8 在A-A’方向的最大寬度為W8 。一些實施例中,為了維持摻雜化合物半導體層816原先具有的功能及特性,缺口N8 在A-A’方向的最大寬度W8 為摻雜化合物半導體層816在A-A’方向的最大寬度D8 的1/3至2/3。而具有開口的摻雜化合物半導體層816,由於減少了半導體結構中的摻雜化合物半導體層的面積,可改善因為摻雜化合物半導體層在製程中受到環境因素的影響而導致閘極電極的控制能力變差,進而提昇電流驅動能力。In addition to the opening, the doped compound semiconductor layer may also have a gap on at least one of its two sides E5 , E6 parallel to the AA' direction, as shown in Figure 8, which contains the source electrode 114, the drain electrode 115, and the doped compound semiconductor layer 816, the doped compound semiconductor layer 816 has a rectangular gap N 8 , between the source electrode 114 and the drain electrode 115 (or from the source structure to the drain structure) In the AA' direction, at least a part of the doped compound semiconductor layer 816 is discontinuous, the orientation of the notch N 8 is perpendicular to the AA' direction, and the maximum width of the notch N 8 in the AA' direction is W 8 . In some embodiments, in order to maintain the original functions and characteristics of the doped compound semiconductor layer 816, the maximum width W8 of the gap N8 in the AA' direction is the maximum width of the doped compound semiconductor layer 816 in the AA' direction 1/3 to 2/3 of D 8 . The doped compound semiconductor layer 816 with openings can improve the controllability of the gate electrode because the doped compound semiconductor layer is affected by environmental factors during the manufacturing process due to the reduction of the area of the doped compound semiconductor layer in the semiconductor structure. become worse, thereby improving the current driving capability.

摻雜化合物半導體層也可在其平行A-A’方向的兩側邊E7 、E8 的至少其中之一上具有一個以上的缺口,而形成M型或梳子形(comb shape),如第9圖所示,其中包含源極電極114、汲極電極115、以及摻雜化合物半導體層916,摻雜化合物半導體層916具有局部的橢圓形缺口N9a 及三角形缺口N9b ,在從源極電極114至汲極電極115(或從源極結構至汲極結構)之A-A’方向上,摻雜化合物半導體層916的至少一部分是不連續的,所述二個缺口的朝向垂直於A-A’方向且局部的橢圓形缺口N9a 與三角形缺口N9b 在A-A’方向具有最大寬度和(W9a +W9b )。一些實施例中,為了維持摻雜化合物半導體層916原先具有的功能及特性,局部的橢圓形缺口N9a 與三角形缺口N9b 在A-A’方向的最大寬度和(W9a +W9b )為摻雜化合物半導體層916在A-A’方向的最大寬度D9 的1/3至2/3,且橢圓形缺口N9a 與三角形缺口N9b 在A-A’方向上的相鄰最小間距為橢圓形缺口N9a 與三角形缺口N9b 在A-A’方向上之寬度的平均值,亦即(W9a +W9b )/2。而具有缺口的摻雜化合物半導體層916,如上所述,可改善閘極電極的控制能力,提昇電流驅動能力。The doped compound semiconductor layer may also have more than one notch on at least one of its two sides E 7 , E 8 parallel to the AA' direction, so as to form an M-type or a comb shape (comb shape), as shown in the first 9, it includes source electrode 114, drain electrode 115, and doped compound semiconductor layer 916. The doped compound semiconductor layer 916 has local elliptical notches N9a and triangular notches N9b . 114 to the drain electrode 115 (or from the source structure to the drain structure) in the AA' direction, at least a part of the doped compound semiconductor layer 916 is discontinuous, and the direction of the two gaps is perpendicular to A- The partially elliptical notch N 9a and the triangular notch N 9b in the A' direction have a maximum width sum (W 9a +W 9b ) in the A-A' direction. In some embodiments, in order to maintain the original functions and characteristics of the doped compound semiconductor layer 916, the maximum width (W 9a + W 9b ) of the partial elliptical notch N 9a and the triangular notch N 9b in the A-A' direction is the doped The maximum width D9 of the hybrid compound semiconductor layer 916 in the AA' direction is 1/3 to 2/3, and the adjacent minimum distance between the elliptical notch N9a and the triangular notch N9b in the AA' direction is an ellipse The average value of the width of the notch N 9a and the notch N 9b in the A-A' direction is (W 9a +W 9b )/2. The doped compound semiconductor layer 916 with gaps, as mentioned above, can improve the controllability of the gate electrode and enhance the current driving capability.

參照第10圖,其中包含源極電極114、汲極電極115、以及摻雜化合物半導體層1016,如此上視圖所示,摻雜化合物半導體層1016為U形,在從源極電極114至汲極電極115(或從源極結構至汲極結構)之A-A’方向上,摻雜化合物半導體層1016的至少一部分是不連續的,摻雜化合物半導體層1016的缺口之朝向垂直於該A-A’方向且此缺口在A-A’方向上具有最大寬度W10 。一些實施例中,為了維持摻雜化合物半導體層1016原先具有的功能及特性,其缺口在A-A’方向的最大寬度W10 為摻雜化合物半導體層1016在A-A’方向的最大寬度D10 的1/3至2/3。而具有缺口的摻雜化合物半導體層1016,如上所述,可改善閘極電極的控制能力,提昇電流驅動能力。Referring to FIG. 10, it includes a source electrode 114, a drain electrode 115, and a doped compound semiconductor layer 1016. As shown in the top view, the doped compound semiconductor layer 1016 is U-shaped, and is formed from the source electrode 114 to the drain electrode. In the A-A' direction of the electrode 115 (or from the source structure to the drain structure), at least a part of the doped compound semiconductor layer 1016 is discontinuous, and the direction of the gap in the doped compound semiconductor layer 1016 is perpendicular to the A-A' direction. A' direction and the notch has a maximum width W 10 in the A-A' direction. In some embodiments, in order to maintain the original functions and characteristics of the doped compound semiconductor layer 1016, the maximum width W 10 of the gap in the AA' direction is the maximum width D of the doped compound semiconductor layer 1016 in the AA' direction 1/3 to 2/3 of 10 . The doped compound semiconductor layer 1016 with gaps, as mentioned above, can improve the controllability of the gate electrode and enhance the current driving capability.

前述摻雜化合物半導體層的缺口形狀僅是作為範例,而非用以限定本發明實施例,缺口之形狀可包括:矩形、梯形、局部的圓形、局部的橢圓形、三角形、或前述之組合。本發明實施例也未限定具有缺口的摻雜化合物半導體層的形狀,可包括:M形、U形、梳子形、或前述之組合。The aforementioned shape of the notch in the doped compound semiconductor layer is only an example and not intended to limit the embodiment of the present invention. The shape of the notch may include: rectangle, trapezoid, partial circle, partial ellipse, triangle, or a combination of the foregoing . The embodiments of the present invention also do not limit the shape of the doped compound semiconductor layer with notches, which may include: M-shape, U-shape, comb-shape, or a combination thereof.

參照第11圖,其中包含源極電極114、汲極電極115、以及由多個分離的摻雜化合物半導體島構成的摻雜化合物半導體層1116,如此上視圖所示,此些摻雜化合物半導體島包括矩形摻雜化合物半導體島1116a、橢圓形摻雜化合物半導體島1116b、橢圓形摻雜化合物半導體島1116c,在從源極電極114至汲極電極115(或從源極結構至汲極結構)之A-A’方向上,摻雜化合物半導體層1116是不連續的,且摻雜化合物半導體島1116a、1116b、與1116c在A-A’方向具有最大寬度和(W11a +W11b +W11c )。一些實施例中,為了維持摻雜化合物半導體層1116原先具有的功能及特性,摻雜化合物半導體島1116a、1116b、及1116c在A-A’方向的最大寬度和(W11a +W11b +W11c )為相鄰的摻雜化合物半導體島在A-A’方向之間隔距離和(S4 +S5 )的1/2至2倍。而由多個分離的摻雜化合物半導體島構成的摻雜化合物半導體層1116,同樣可減少半導體結構中的摻雜化合物半導體層的面積,進而提昇電流驅動能力。前述的摻雜化合物半導體島的形狀僅是作為範例,而非用以限定本發明實施例,摻雜化合物半導體島的形狀可包括:矩形、梯形、圓形、橢圓形、三角形、或前述之組合。Referring to FIG. 11, it includes a source electrode 114, a drain electrode 115, and a doped compound semiconductor layer 1116 composed of a plurality of separated doped compound semiconductor islands. As shown in the top view, these doped compound semiconductor islands Including a rectangular doped compound semiconductor island 1116a, an elliptical doped compound semiconductor island 1116b, and an elliptical doped compound semiconductor island 1116c, between the source electrode 114 and the drain electrode 115 (or from the source structure to the drain structure) In the AA' direction, the doped compound semiconductor layer 1116 is discontinuous, and the doped compound semiconductor islands 1116a, 1116b, and 1116c have a maximum width sum (W 11a +W 11b +W 11c ) in the AA' direction. In some embodiments, in order to maintain the original functions and characteristics of the doped compound semiconductor layer 1116, the maximum width sum (W 11a + W 11b + W 11c ) of the doped compound semiconductor islands 1116a, 1116b, and 1116c in the A-A' direction is: Adjacent doped compound semiconductor islands are separated by 1/2 to 2 times the distance sum (S 4 +S 5 ) in the AA' direction. The doped compound semiconductor layer 1116 composed of a plurality of isolated doped compound semiconductor islands can also reduce the area of the doped compound semiconductor layer in the semiconductor structure, thereby improving the current driving capability. The above-mentioned shapes of the doped compound semiconductor islands are only examples and are not intended to limit the embodiments of the present invention. The shapes of the doped compound semiconductor islands may include: rectangle, trapezoid, circle, ellipse, triangle, or a combination of the foregoing .

第12圖為比較例與第6圖之實施例的實驗數據比較,Y軸為靠近半導體結構表面處的通道層與阻障層間的電場強度,X軸為前述電場強度在半導體結構的水平方向上所對應的位置,X軸原點為半導體結構中靠近源極處的位置,隨X軸座標增加而遠離源極往汲極靠近。其中比較例為摻雜化合物半導體層未具有任何開口或缺口,第6圖實施例透過減少摻雜化合物半導體層之面積,有效地降低接近表面的電場。Fig. 12 is a comparison of the experimental data between the comparative example and the embodiment in Fig. 6. The Y-axis is the electric field strength between the channel layer and the barrier layer near the surface of the semiconductor structure, and the X-axis is the electric field strength in the horizontal direction of the semiconductor structure. For the corresponding position, the origin of the X-axis is the position close to the source in the semiconductor structure, and as the coordinate of the X-axis increases, it moves away from the source and approaches the drain. In the comparative example, the doped compound semiconductor layer does not have any openings or gaps. The embodiment in FIG. 6 effectively reduces the electric field close to the surface by reducing the area of the doped compound semiconductor layer.

本發明實施例所提供的具有開口或缺口的摻雜化合物半導體層、或是具有不連續結構的摻雜化合物半導體層,由於減少了半導體結構中的摻雜化合物半導體層的面積,可改善因為摻雜化合物半導體層在製程中受到環境因素的影響而導致閘極電極的控制能力變差,而提昇電流驅動能力及電性均勻度,進一步改善元件性能。此外,減少了半導體結構中的摻雜化合物半導體層的面積還可進一步降低表面附近的電場,達到降低表面電場(REduced SURface Field,RESURF)的功效。The doped compound semiconductor layer with openings or gaps, or the doped compound semiconductor layer with a discontinuous structure provided by the embodiments of the present invention can improve the doped compound semiconductor layer because of the reduced area of the doped compound semiconductor layer in the semiconductor structure. The hybrid compound semiconductor layer is affected by environmental factors during the manufacturing process, which leads to poor control ability of the gate electrode, and improves current driving ability and electrical uniformity, further improving device performance. In addition, reducing the area of the doped compound semiconductor layer in the semiconductor structure can further reduce the electric field near the surface to achieve the effect of reducing the surface electric field (REduced SURface Field, RESURF).

以上概述數個實施例之特點,以便在本發明所屬技術領域中具有通常知識者可更好地了解本發明的各個方面。在本發明所屬技術領域中具有通常知識者,應理解其可輕易地利用本發明實為基礎,設計或修改其他製程及結構,以達到和此中介紹的實施例之相同的目的及/或優點。在本發明所屬技術領域中具有通常知識者,也應理解此類等效的結構並無背離本發明的精神與範圍,且其可於此作各種的改變、取代、和替換而不背離本發明的精神與範圍。The features of several embodiments are summarized above, so that those skilled in the art of the present invention can better understand various aspects of the present invention. Those who have ordinary knowledge in the technical field of the present invention should understand that they can easily use the present invention as a basis to design or modify other processes and structures to achieve the same purpose and/or advantages as the embodiments described herein . Those with ordinary knowledge in the technical field of the present invention should also understand that such equivalent structures do not depart from the spirit and scope of the present invention, and that various changes, substitutions, and substitutions can be made here without departing from the present invention. spirit and scope.

200,400:半導體結構 110:基底 112:通道層 111:緩衝層 113:阻障層 114:源極電極 115:汲極電極 116,316,516:摻雜化合物半導體層 117:介電層 118:閘極電極 119:閘極金屬層 122:源極金屬層 123:汲極金屬層 616,716,816,916,1016,1116:摻雜化合物半導體層 1116a,1116b,1116c:摻雜化合物半導體島 E1 ,E2 ,E3 ,E4 ,E5 ,E6 ,E7 ,E8 :側邊 OP1 ,OP3a ,OP3b ,OP5a ,OP5b ,OP5c :開口 OP6a ,OP6b ,OP7a ,OP7b ,OP7c :開口 N8 ,N9a ,N9b :缺口 D1 ,D3 ,S1 ,S2 ,S3 ,S4 ,S5 :間距 D5 ,D6 ,D7 ,D8 ,D9, D10 :寬度 W1 ,W3a ,W3b ,W5a ,W5b ,W5c ,W6a ,W6b :寬度 W7a ,W7b ,W7c ,W8 ,W9a ,W9b ,W10 ,W11a ,W11b ,W11c :寬度200,400: semiconductor structure 110: substrate 112: channel layer 111: buffer layer 113: barrier layer 114: source electrode 115: drain electrode 116,316,516: doped compound semiconductor layer 117: dielectric layer 118: gate electrode 119: gate Pole metal layer 122: source metal layer 123: drain metal layer 616, 716, 816, 916, 1016, 1116: doped compound semiconductor layers 1116a, 1116b, 1116c: doped compound semiconductor islands E 1 , E 2 , E 3 , E 4 , E 5 , E 6 , E 7 , E 8 : side OP 1 , OP 3a , OP 3b , OP 5a , OP 5b, OP 5c: opening OP 6a, OP 6b, OP 7a, OP 7b , OP 7c : opening N 8 , N 9a , N 9b : Gap D 1 , D 3 , S 1 , S 2 , S 3 , S 4 , S 5 : Spacing D 5 , D 6 , D 7 , D 8 , D 9 , D 10 : Width W 1 ,W 3a ,W 3b ,W 5a ,W 5b ,W 5c ,W 6a ,W 6b : Width W 7a ,W 7b ,W 7c ,W 8 ,W 9a ,W 9b ,W 10 ,W 11a ,W 11b ,W 11c : Width

由以下的詳細敘述配合所附圖式,可最好地理解本發明實施例。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製。事實上,可任意地放大或縮小各種元件的尺寸,以清楚地表現出本發明實施例之特徵。 第1圖是根據本發明的一些實施例,繪示出半導體結構的部分投影上視圖。 第2圖是根據本發明的一些實施例,繪示出第1圖之半導體結構的A-A’之剖面示意圖。 第3圖是根據本發明的一些實施例,繪示出半導體結構的部分投影上視圖。 第4圖是根據本發明的一些實施例,繪示出第3圖之半導體結構的A-A’之剖面示意圖。 第5-11圖是根據本發明的另一些實施例,繪示出半導體結構的部分投影上視圖。 第12圖是根據本發明的一些實施例,繪示出半導體結構在鄰近表面的電場強度圖。Embodiments of the present invention are best understood from the following detailed description in conjunction with the accompanying drawings. It should be noted that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various elements may be arbitrarily expanded or reduced to clearly illustrate the features of the embodiments of the invention. FIG. 1 is a partial projected top view illustrating a semiconductor structure according to some embodiments of the present invention. FIG. 2 is a schematic cross-sectional view showing A-A' of the semiconductor structure in FIG. 1 according to some embodiments of the present invention. FIG. 3 is a partial projected top view illustrating a semiconductor structure according to some embodiments of the present invention. FIG. 4 is a schematic cross-sectional view showing A-A' of the semiconductor structure in FIG. 3 according to some embodiments of the present invention. 5-11 are partial projected top views illustrating semiconductor structures according to other embodiments of the present invention. FIG. 12 is a diagram illustrating electric field strength near a surface of a semiconductor structure according to some embodiments of the present invention.

200:半導體結構200: Semiconductor Structures

110:基底110: base

111:緩衝層111: buffer layer

112:通道層112: Channel layer

113:阻障層113: barrier layer

114:源極電極114: source electrode

115:汲極電極115: drain electrode

116:摻雜化合物半導體層116: doped compound semiconductor layer

117:介電層117: dielectric layer

118:閘極電極118: gate electrode

119:閘極金屬層119: gate metal layer

122:源極金屬層122: source metal layer

123:汲極金屬層123: drain metal layer

D1 :間距D 1 : Spacing

OP1 :開口OP 1 : Opening

W1 :寬度W 1 : width

E1 ,E2 :側邊E 1 , E 2 : side

Claims (14)

一種半導體結構,包括: 一基底; 一通道層,位於該基底上; 一阻障層,位於該通道層上; 一源極結構及一汲極結構,位於該阻障層之兩側; 一摻雜化合物半導體層,位於該阻障層上,該摻雜化合物半導體 層具有鄰近該源極結構的一第一側邊、鄰近該汲極結構的一第二側邊、以及至少一開口,該至少一開口露出該阻障層的至少一部分; 一介電層,位於該摻雜化合物半導體層及該阻障層上;以及 一閘極結構,位於該摻雜化合物半導體層上。A semiconductor structure comprising: a base; a channel layer located on the substrate; a barrier layer located on the channel layer; A source structure and a drain structure are located on both sides of the barrier layer; a doped compound semiconductor layer located on the barrier layer, the doped compound semiconductor The layer has a first side adjacent to the source structure, a second side adjacent to the drain structure, and at least one opening exposing at least a portion of the barrier layer; a dielectric layer on the doped compound semiconductor layer and the barrier layer; and A gate structure is located on the doped compound semiconductor layer. 如請求項1之半導體結構,其中該至少一開口的寬度為該摻雜化合物半導體層之該第一側邊與該第二側邊之距離的1/3至2/3。The semiconductor structure according to claim 1, wherein the width of the at least one opening is 1/3 to 2/3 of the distance between the first side and the second side of the doped compound semiconductor layer. 如請求項1之半導體結構,其中該至少一開口為複數個,該些開口的寬度和為該摻雜化合物半導體層之該第一側邊與該第二側邊之距離的1/3至2/3。The semiconductor structure according to claim 1, wherein the at least one opening is plural, and the sum of the widths of the openings is 1/3 to 2 of the distance between the first side and the second side of the doped compound semiconductor layer /3. 如請求項1之半導體結構,更包括一緩衝層,位於該基底與該通道層之間。The semiconductor structure according to claim 1, further comprising a buffer layer located between the substrate and the channel layer. 一種半導體結構,包括: 一基底; 一緩衝層,位於該基底上; 一通道層,位於該緩衝層上; 一阻障層,位於該通道層上; 一源極結構及一汲極結構,位於該阻障層之兩側; 一摻雜化合物半導體層,位於該阻障層上,其中在從該源極結構至該汲極結構之一第一方向上,該摻雜化合物半導體層的至少一部分為不連續的; 一介電層,位於該摻雜化合物半導體層及該阻障層上;以及 一閘極結構,位於該摻雜化合物半導體層上。A semiconductor structure comprising: a base; a buffer layer located on the substrate; a channel layer located on the buffer layer; a barrier layer located on the channel layer; A source structure and a drain structure are located on both sides of the barrier layer; a doped compound semiconductor layer on the barrier layer, wherein at least a portion of the doped compound semiconductor layer is discontinuous in a first direction from the source structure to the drain structure; a dielectric layer on the doped compound semiconductor layer and the barrier layer; and A gate structure is located on the doped compound semiconductor layer. 如請求項5之半導體結構,其中該摻雜化合物半導體層具有至少一開口。The semiconductor structure according to claim 5, wherein the doped compound semiconductor layer has at least one opening. 如請求項6之半導體結構,其中該至少一開口在該第一方向上具有一最大開口寬度,且該最大開口寬度為該摻雜化合物半導體層沿該第一方向之最大寬度的1/3至2/3。The semiconductor structure according to claim 6, wherein the at least one opening has a maximum opening width in the first direction, and the maximum opening width is 1/3 to the maximum width of the doped compound semiconductor layer along the first direction 2/3. 如請求項6之半導體結構,其中該至少一開口為複數個,該些開口在該第一方向上具有一最大寬度和,該最大寬度和為該摻雜化合物半導體層沿該第一方向之最大寬度的1/3至2/3。The semiconductor structure according to claim 6, wherein the at least one opening is plural, and the openings have a maximum width sum in the first direction, and the maximum width sum is the maximum of the doped compound semiconductor layer along the first direction 1/3 to 2/3 of the width. 如請求項6之半導體結構,其中該至少一開口為複數個,該些開口在垂直於該第一方向的一第二方向上的相鄰最小間距為該摻雜化合物半導體層沿該第一方向之最大寬度的1/2,該些開口中的一開口中在該第一方向上具有一最大開口寬度,且該最大開口寬度為該摻雜化合物半導體層沿該第一方向之最大寬度的1/3至2/3。The semiconductor structure according to claim 6, wherein the at least one opening is plural, and the minimum distance between adjacent adjacent openings in a second direction perpendicular to the first direction is that the doped compound semiconductor layer is along the first direction 1/2 of the maximum width of the opening, one of the openings has a maximum opening width in the first direction, and the maximum opening width is 1 of the maximum width of the doped compound semiconductor layer along the first direction /3 to 2/3. 如請求項5之半導體結構,其中該摻雜化合物半導體層具有平行該第一方向之兩側邊,且該兩側邊的至少其中之一上具有至少一缺口。The semiconductor structure according to claim 5, wherein the doped compound semiconductor layer has two sides parallel to the first direction, and at least one gap is formed on at least one of the two sides. 如請求項10之半導體結構,其中該至少一缺口在該第一方向上具有一最大缺口寬度,且該最大缺口寬度為該摻雜化合物半導體層沿該第一方向之最大寬度的1/3至2/3。The semiconductor structure according to claim 10, wherein the at least one gap has a maximum gap width in the first direction, and the maximum gap width is 1/3 to the maximum width of the doped compound semiconductor layer along the first direction 2/3. 如請求項10之半導體結構,其中該至少一缺口為複數個,該些缺口在該第一方向上具有一最大寬度和,該最大寬度和為該摻雜化合物半導體層沿該第一方向之最大寬度的1/3至2/3。The semiconductor structure according to claim 10, wherein the at least one gap is plural, and the gaps have a maximum width sum in the first direction, and the maximum width sum is the maximum of the doped compound semiconductor layer along the first direction 1/3 to 2/3 of the width. 如請求項7之半導體結構,其中該摻雜化合物半導體層是由多個分離的摻雜化合物半導體島構成。The semiconductor structure according to claim 7, wherein the doped compound semiconductor layer is composed of a plurality of separated doped compound semiconductor islands. 如請求項13之半導體結構,其中該些摻雜化合物半導體在該第一方向上具有一最大寬度和,該最大寬度和為相鄰的摻雜化合物半導體島在該第一方向上之間隔距離和的1/2至2倍。The semiconductor structure as claimed in claim 13, wherein the doped compound semiconductors have a maximum width sum in the first direction, and the maximum width sum is the sum of the distances between adjacent doped compound semiconductor islands in the first direction 1/2 to 2 times of that.
TW109118913A 2020-06-05 2020-06-05 Semiconductor structures TWI794609B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109118913A TWI794609B (en) 2020-06-05 2020-06-05 Semiconductor structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109118913A TWI794609B (en) 2020-06-05 2020-06-05 Semiconductor structures

Publications (2)

Publication Number Publication Date
TW202147619A TW202147619A (en) 2021-12-16
TWI794609B true TWI794609B (en) 2023-03-01

Family

ID=80784032

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109118913A TWI794609B (en) 2020-06-05 2020-06-05 Semiconductor structures

Country Status (1)

Country Link
TW (1) TWI794609B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201904066A (en) * 2017-03-24 2019-01-16 美商高通公司 Compound semiconductor field effect transistor gate length scaling
TWI692868B (en) * 2019-04-16 2020-05-01 世界先進積體電路股份有限公司 Semiconductor structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201904066A (en) * 2017-03-24 2019-01-16 美商高通公司 Compound semiconductor field effect transistor gate length scaling
TWI692868B (en) * 2019-04-16 2020-05-01 世界先進積體電路股份有限公司 Semiconductor structure

Also Published As

Publication number Publication date
TW202147619A (en) 2021-12-16

Similar Documents

Publication Publication Date Title
JP5114947B2 (en) Nitride semiconductor device and manufacturing method thereof
US10707322B2 (en) Semiconductor devices and methods for fabricating the same
US10700189B1 (en) Semiconductor devices and methods for forming the same
JP4210823B2 (en) Shiyaki barrier diode and manufacturing method thereof
US10886394B1 (en) Semiconductor structure
TWI676216B (en) Semiconductor devices and methods for fabricating the same
US11677002B2 (en) Semiconductor structure
TWI483397B (en) Power device and method for manufacturing the same
CN110690275B (en) Semiconductor device and method for manufacturing the same
TWI673868B (en) Semiconductor devices and methods for fabricating the same
TWI794609B (en) Semiconductor structures
US11049799B1 (en) Semiconductor structure and method for forming the same
US11127848B2 (en) Semiconductor structure and method for forming the same
US11876118B2 (en) Semiconductor structure with gate metal layer
US20210384338A1 (en) Semiconductor component and manufacturing method thereof
TW202301675A (en) Semiconductor structure and high electron mobility transistor
CN114496787A (en) Semiconductor device and method of forming the same
TW202230799A (en) High electron mobility transistor and fabrication method thereof
CN113871474A (en) Semiconductor structure
TW202201788A (en) High electron mobility transistor
US11450764B2 (en) Semiconductor device and method of forming the same
TWI790655B (en) Semiconductor structure and high electron mobility transistor
TWI755091B (en) Semiconductor device and method of forming the same
TWI794599B (en) High electron mobility transistor and fabrication method thereof
US11967642B2 (en) Semiconductor structure, high electron mobility transistor and fabrication method thereof