TWI692868B - Semiconductor structure - Google Patents
Semiconductor structure Download PDFInfo
- Publication number
- TWI692868B TWI692868B TW108113124A TW108113124A TWI692868B TW I692868 B TWI692868 B TW I692868B TW 108113124 A TW108113124 A TW 108113124A TW 108113124 A TW108113124 A TW 108113124A TW I692868 B TWI692868 B TW I692868B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- item
- patent application
- substrate
- semiconductor
- Prior art date
Links
Images
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
本發明是關於半導體結構,特別是關於具有成對與晶種層接觸之導通孔的半導體結構。The present invention relates to a semiconductor structure, and in particular to a semiconductor structure having a pair of via holes in contact with a seed layer.
氮化鎵系(GaN-based)半導體材料具有許多優秀的材料特性,例如高抗熱性、寬能隙(band-gap)、高電子飽和速率。因此,氮化鎵系半導體材料適合應用於高速與高溫的操作環境。近年來,氮化鎵系半導體材料已廣泛地應用於發光二極體(light emitting diode,LED)元件、高頻率元件,例如具有異質界面結構的高電子遷移率電晶體(high electron mobility transistor,HEMT)。GaN-based semiconductor materials have many excellent material characteristics, such as high heat resistance, wide band-gap, and high electron saturation rate. Therefore, GaN-based semiconductor materials are suitable for high-speed and high-temperature operating environments. In recent years, GaN-based semiconductor materials have been widely used in light emitting diode (LED) devices and high-frequency devices, such as high electron mobility transistors (HEMTs) with heterointerface structures ).
然而,在高電子遷移率電晶體(HEMT)元件的運作中,位於元件結構中較底層的磊晶層,因其本身材料特性而存有許多帶負電荷的雜質,此時,若施加高電壓,則這些負電荷將朝上層元件的方向被吸引上來,而影響上層元件的運作。在現有技術中為了解決此問題,通常會將磊晶層下方的矽基板接地以排出雜質之負電荷。然而,此方法並無法應用至各類基板中。However, in the operation of the High Electron Mobility Transistor (HEMT) device, the lower epitaxial layer in the device structure contains many negatively charged impurities due to its own material characteristics. At this time, if a high voltage is applied , Then these negative charges will be attracted towards the upper element and affect the operation of the upper element. In order to solve this problem in the prior art, the silicon substrate under the epitaxial layer is usually grounded to discharge negative charges of impurities. However, this method cannot be applied to various substrates.
隨著隨著氮化鎵系半導體材料的發展,這些使用氮化鎵系半導體材料的半導體裝置應用於更嚴苛工作環境中,例如更高頻、更高溫或更高電壓。因此,具有氮化鎵系半導體材料的半導體裝置仍需進一步改善來克服所面臨的挑戰。With the development of gallium nitride-based semiconductor materials, these semiconductor devices using gallium nitride-based semiconductor materials are used in more severe working environments, such as higher frequencies, higher temperatures, or higher voltages. Therefore, semiconductor devices with gallium nitride-based semiconductor materials still need to be further improved to overcome the challenges they face.
本發明的一些實施例提供一種半導體結構,包含:具有主動區及隔離區之基底、位於基底上之絕緣層、位於絕緣層上之晶種層、位於晶種層上之化合物半導體層、位於化合物半導體層上且位於主動區中之閘極結構、位於基底上且位於隔離區中之隔離結構、位於隔離區中且位於閘極結構之兩側的一對導通孔、位於基底上且位於閘極結構之兩側源極結構與汲極結構。此對導通孔穿過隔離結構並接觸晶種層。源極結構與汲極結構分別藉由此對導通孔電性連接至晶種層。Some embodiments of the present invention provide a semiconductor structure including: a substrate having an active region and an isolation region, an insulating layer on the substrate, a seed layer on the insulating layer, a compound semiconductor layer on the seed layer, a compound Gate structure on the semiconductor layer and in the active region, isolation structure on the substrate and in the isolation region, a pair of vias in the isolation region and on both sides of the gate structure, on the substrate and in the gate The source structure and the drain structure on both sides of the structure. The pair of vias pass through the isolation structure and contact the seed layer. The source structure and the drain structure are electrically connected to the seed layer through the via holes respectively.
本發明的一些實施例提供一種半導體結構,包含:具有一主動區及一隔離區之陶瓷基底、位於此基底上之絕緣層、位於此絕緣層上之晶種層、位於此晶種層上之化合物半導體層、位於此化合物半導體層上且位於此主動區中之閘極結構、位於此基底上且位於此閘極結構之兩側之源極結構與汲極結構。源極結構及汲極結構分別電性連接至晶種層。Some embodiments of the present invention provide a semiconductor structure including: a ceramic substrate having an active region and an isolation region, an insulating layer on the substrate, a seed layer on the insulating layer, and a seed layer on the seed layer A compound semiconductor layer, a gate structure on the compound semiconductor layer and in the active region, a source structure and a drain structure on the substrate and on both sides of the gate structure. The source structure and the drain structure are electrically connected to the seed layer respectively.
以下揭露提供了許多的實施例或範例,用於實施所提供的半導體結構之不同元件。各元件和其配置的具體範例描述如下,以簡化本發明實施例之說明。當然,這些僅僅是範例,並非用以限定本發明實施例。舉例而言,敘述中若提及第一元件形成在第二元件之上,可能包含第一和第二元件直接接觸的實施例,也可能包含額外的元件形成在第一和第二元件之間,使得它們不直接接觸的實施例。此外,本發明實施例可能在不同的範例中重複參考數字及/或字母。如此重複是為了簡明和清楚,而非用以表示所討論的不同實施例之間的關係。The following disclosure provides many embodiments or examples for implementing different elements of the provided semiconductor structure. Specific examples of components and their configurations are described below to simplify the description of the embodiments of the present invention. Of course, these are only examples and are not intended to limit the embodiments of the present invention. For example, if the first element is formed on the second element in the description, it may include an embodiment where the first and second elements are in direct contact, or may include additional elements formed between the first and second elements , So that they do not directly contact the embodiment. In addition, embodiments of the present invention may repeat reference numerals and/or letters in different examples. This repetition is for conciseness and clarity, not for expressing the relationship between the different embodiments discussed.
此外,其中可能用到與空間相對用詞,例如「在…下方」、「下方」、「較低的」、「上方」、「較高的」及類似的用詞,這些空間相對用詞係為了便於描述圖示中一個(些)元件或特徵與另一個(些)元件或特徵之間的關係,這些空間相對用詞包括使用中或操作中的裝置之不同方位,以及圖式中所描述的方位。當裝置被轉向不同方位時(旋轉90度或其他方位),則其中所使用的空間相對形容詞也將依轉向後的方位來解釋。In addition, relative terms may be used, such as "below", "below", "lower", "above", "higher" and similar terms. These spatial relative terms In order to facilitate the description of the relationship between one or more elements or features in the illustration and the other element or features, these spatial relative terms include different orientations of the device in use or in operation, as well as the description in the drawings Position. When the device is turned to different orientations (rotated 90 degrees or other orientations), the relative adjectives used in the space will also be interpreted according to the turned orientation.
在此,「約」、「大約」、「大抵」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」、「大約」、「大抵」的情況下,仍可隱含「約」、「大約」、「大抵」之含義。Here, the terms “about”, “approximately” and “approximately” generally mean within 20% of a given value or range, preferably within 10%, and more preferably within 5%, or 3 Within %, or within 2%, or within 1%, or within 0.5%. It should be noted that the quantity provided in the description is an approximate quantity, that is, if there is no specific description of "about", "approximate", "approximately", "about", "approximate", "" The meaning of "approximately".
雖然所述的一些實施例中的部件以特定順序描述,這些描述方式亦可以其他合邏輯的順序進行。本發明實施例中的半導體結構可加入其他的部件。在不同實施例中,可替換或省略一些部件。Although the components in some of the described embodiments are described in a specific order, these descriptions can also be performed in other logical orders. The semiconductor structure in the embodiment of the present invention may incorporate other components. In different embodiments, some components may be replaced or omitted.
本發明實施例所提供的半導體結構藉由一對位於基底之隔離區中的導通孔分別將半導體結構中的源極結構及汲極結構電性連接至基底上的晶種層(seed layer)。藉由上述導通孔的配置,可在晶種層的內部產生電壓差(即為源極與汲極的電壓差)而使得電力線延伸至位於晶種層下方的膜層(例如絕緣層)。內部具有電壓差的晶種層不會屏蔽半導體結構中之高電場區的電力線,進而使電場重新分布、提升崩潰電壓(breakdown voltage),以允許半導體裝置應用於高電壓操作。The semiconductor structure provided by the embodiments of the present invention electrically connects the source structure and the drain structure in the semiconductor structure to the seed layer on the substrate through a pair of via holes in the isolation region of the substrate. With the configuration of the above-mentioned via holes, a voltage difference (that is, a voltage difference between the source and the drain) can be generated inside the seed layer, so that the power line extends to the film layer (such as an insulating layer) located below the seed layer. The seed layer with a voltage difference inside will not shield the power lines of the high electric field region in the semiconductor structure, thereby redistributing the electric field and raising the breakdown voltage to allow the semiconductor device to be applied to high voltage operation.
第1A圖是根據本發明的一些實施例,繪示出例示性半導體結構100的剖面示意圖。根據本發明一些實施例,半導體結構100包含具有主動區201與隔離區202的基底200、設置於基底200上之絕緣層210、設置於絕緣層210上之晶種層220、設置於晶種層220上之化合物半導體層230、設置於化合物半導體層230上且位於主動區210中的閘極結構300、設置於基底200上且位於閘極結構300之兩側的源極結構400與汲極結構500、以及穿過設置於隔離區202中之隔離結構240的一對導通孔601、602。FIG. 1A is a schematic cross-sectional view of an
在一些實施例中,基底200可為摻雜的(例如以p型或n型摻雜物進行摻雜)或未摻雜的半導體基底,例如矽基底、矽鍺基底、砷化鎵基底或類似的半導體基底。在其他實施例中,基底200可為陶瓷基底,例如氮化鋁(AlN)基底、碳化矽(SiC)基底、氧化鋁基底(Al
2O
3)(或稱為藍寶石(Sapphire)基底)或其他類似的基底。上述的陶瓷基底可藉由粉末冶金將陶瓷粉末高溫燒結所形成。
In some embodiments, the
設置於基底200上之絕緣層210是在高溫具有良好熱穩定性高品質的膜層。在一些實施例,絕緣層210是例如由四乙氧基矽烷(tetraethoxysilane,TEOS)所製得的高品質氧化矽絕緣層。在其他實施例中,絕緣層210是藉由電漿增強化學氣相沉積(plasma-enhanced chemical vapor deposition,PECVD)所形成的介電層,例如氧化矽、氮化矽、氮氧化矽、碳化矽、其他類似材料或前述之組合。根據本發明一些實施例,絕緣層210可提供較高品質的表面以利於後續將半導體結構的其他膜層形成在其表面上。在一些實施例中,絕緣層的厚度可在約0.5微米至約10微米的範圍,例如約2微米。The
在一些實施例中,形成於絕緣層210上之晶種層220的材料可為矽。在其他實施例中,晶種層220可由其他半導體材料例如摻雜碳化矽(silicon carbide)(例如在碳化矽中摻雜氮或磷可以形成n型半導體,而摻雜鋁、硼、鎵或鈹形成p型半導體)、三五族(III-V)化合物半導體材料、或其他類似的材料來形成。在另一些實施例中,晶種層220可包含氧化鋁(Al
2O
3)。在一些實施例中,晶種層220可由磊晶成長製程形成,例如金屬有機化學氣相沉積(metal organic chemical vapor deposition,MOCVD)、氫化物氣相磊晶法(hydride vapor phase epitaxy,HVPE)、分子束磊晶法(molecular beam epitaxy,MBE)、前述之組合或類似方法順應形成於絕緣層210上。
In some embodiments, the material of the
在一些實施例中,形成於晶種層220上之化合物半導體層230可包含設置於晶種層220上的緩衝層231、設置於緩衝層231上的通道層232、以及設置於通道層232上的阻障層233。In some embodiments, the
緩衝層231可減緩後續形成於緩衝層231上方的通道層232的應變(strain),以防止缺陷形成於上方的通道層232中。應變是由通道層232與基底200不匹配造成。在一些實施例中,緩衝層231的材料可以是AlN、GaN、Al
xGa
1-xN(其中0<x<1)、前述之組合、或其他類似的材料。緩衝層231可由磊晶成長製程形成,例如金屬有機化學氣相沉積(MOCVD)、氫化物氣相磊晶法(HVPE)、分子束磊晶法(MBE)、前述之組合、或類似方法。在一些實施例中,所形成之緩衝層231的厚度可在約0.5微米至約10微米的範圍,例如約3微米。值得注意的是,雖然在如第1A圖所示的實施例中緩衝層231為單層結構,但緩衝層231在其他實施例中也可以是多層結構(未繪示)。
The
根據本發明一些實施例,二維電子氣(two-dimensional electron gas,2DEG)(未繪示)形成於通道層232與阻障層233之間的異質界面上。如第1A圖所示之半導體結構100是利用二維電子氣(2DEG)作為導電載子的高電子遷移率電晶體(high electron mobility transistor,HEMT)。在一些實施例中,通道層232可為氮化鎵(GaN)層,而形成於通道層232上之阻障層233可為氮化鎵鋁(AlGaN)層,其中氮化鎵層與氮化鎵鋁層可具有摻雜物(例如n型摻雜物或p型摻雜物)或不具有摻雜物。通道層232與阻障層233皆可由磊晶成長製程形成,例如金屬有機化學氣相沉積(MOCVD)、氫化物氣相磊晶法(HVPE)、分子束磊晶法(MBE)、前述之組合或其他類似的方法。在一些實施例中,所形成之通道層232的厚度可在約300奈米至約1微米的範圍,例如約0.6微米。在一些實施例中,所形成之阻障層233的厚度可在約5奈米至約30奈米的範圍,例如約25奈米。According to some embodiments of the present invention, two-dimensional electron gas (2DEG) (not shown) is formed on the heterogeneous interface between the
接著,根據本發明一些實施例,可在基底200之化合物半導體層230中形成隔離結構240,以定義出主動區201與隔離區202。在一些實施例中,如第1A圖所示,隔離結構240之底面可位於化合物半導體層230所包含之緩衝層231中。在其他實施例中,隔離結構240之底面可與緩衝層231之底面齊平並與晶種層220接觸(未繪示)。在一些實施例中,藉由隔離結構240的形成,可將形成於通道層232與阻障層233之間之異質界面上二維電子氣(2DEG)隔絕在主動區201內。Next, according to some embodiments of the present invention, an
根據本發明一些實施例,隔離結構204之形成可藉由將隔離結構240之預定位置之化合物半導體層230的晶格(crystal lattice)結構破壞,使得這部分的化合物半導體層230失去壓電效應(piezoelectricity)而無法導電。在這些實施例中,可藉由離子佈植(ion implantation)製程將氮(N)、氧(O)、或其他適合的元素植入化合物半導體層230(例如為氮化鎵層)中,以破壞其晶格結構,從而將隔離結構240之預定位置的化合物半導體層230轉變成隔離結構240。在其他實施例中,隔離結構240的材料可是介電材料,例如氧化矽、氮化矽、氮氧化矽、氧化鋁、類似材料或前述之組合,並且可透過蝕刻製程和沉積製程形成溝槽隔離結構於化合物半導體層230中。According to some embodiments of the present invention, the isolation structure 204 can be formed by destroying the crystal lattice structure of the
接著,在主動區201中於化合物半導體層230(例如阻障層233)上形成閘極結構300,在閘極結構300之兩側形成源極結構400與汲極結構500,並形成內層介電層(例如第一介電層250、第二介電層260、與第三介電層270)於化合物半導體層230上,以形成半導體結構100。根據本發明一些實施例,半導體結構100為高電子遷移率電晶體(high electron mobility transistor,HEMT)。在一些實施例中,閘極結構300包含閘極電極301及閘極金屬層302,其中閘極電極301位於阻障層233上,而閘極金屬層302位於閘極電極301上並與其電性連接。在其他實施例中,閘極電極301與阻障層233之間可包含可選的(optional)摻雜化合物半導體層234,其細節將在後續進一步描述。源極結構400包含彼此電性連接之源極電極401、源極接觸件402、及源極金屬層403,而汲極結構500包含彼此電性連接之汲極電極501、汲極接觸件502、及汲極金屬層503。在一些實施例中,位於閘極電極301之兩側的源極電極401與汲極電極501皆位於主動區201中,並且穿過阻障層233而與通道層232接觸。Next, a
在一些實施例中,閘極電極301的材料可為導電材料,例如金屬、金屬氮化物或半導體材料。在一些實施例中,金屬可為金(Au)、鎳(Ni)、鉑(Pt)、鈀(Pd)、銥(Ir)、鈦(Ti)、鉻(Cr)、鎢(W)、鋁(Al)、銅(Cu)、類似材料、前述之組合或前述之多層。半導體材料可為多晶矽或多晶鍺。上述的導電材料可藉由例如化學氣相沉積法(chemical vapor deposition,CVD)、濺鍍(sputtering)、電阻加熱蒸鍍法、電子束蒸鍍法、或其它合適的沉積方式形成於阻障層233上,再經由圖案化製程來形成閘極電極301。In some embodiments, the material of the
根據本發明之一些實施例,在形成閘極電極301之前,可先形成摻雜化合物半導體層234於阻障層233上,才接續將閘極電極301形成在摻雜化合物半導體層234上。藉由設置摻雜化合物半導體層234於閘極電極301與阻障層233之間可抑制閘極電極301下方的二維電子氣(2DEG)之產生,以達成半導體裝置100之常關狀態。在一些實施例中,摻雜的化合物半導體層234的材料可以是以p型摻雜或n型摻雜的氮化鎵(GaN)。形成摻雜化合物半導體區234的步驟可包含藉由磊晶成長製程在阻障層233上沉積摻雜化合物半導體層(未繪示)並對其執行圖案化製程,以形成摻雜化合物半導體層234對應於預定形成閘極電極301的位置。在一些實施例中,所形成之摻雜化合物半導體層234的厚度可在約50奈米至約100奈米的範圍。According to some embodiments of the present invention, before forming the
形成於閘極電極301之兩側且位於主動區201中的源極電極401與汲極電極501包含大抵相同於閘極電極301的材料,故此處不在贅述。在一些實施例中,如第1A圖所示,源極電極401與汲極電極501穿過阻障層233而與通道層231接觸。The
在一些實施例中,閘極金屬層302、源極接觸件402、源極金屬層403、汲極接觸件502、及汲極金屬層503可藉由沉積製程與圖案化製程所形成,其材料包含導電材料,例如鋁(Al)、銅(Cu)、鎢(W)、鈦(Ti)、鉭(Ta)、氮化鈦(titanium nitride, TiN)、氮化鉭(tantalum nitride,TaN)、矽化鎳(nickel silicide,NiSi)、矽化鈷(cobalt silicide,CoSi)、碳化鉭(tantulum carbide, TaC)、矽氮化鉭(tantulum silicide nitride,TaSiN)、碳氮化鉭(tantalum carbide nitride,TaCN)、鋁化鈦(titanium aluminide,TiAl),鋁氮化鈦(titanium aluminide nitride, TiAlN)、金屬氧化物、金屬合金、其他適合的導電材料或前述之組合。In some embodiments, the
根據本發明一些實施例,如第1A圖所示,閘極電極301埋置於第一介電層250中,而閘極金屬層302埋置於第一介電層250與形成於第一介電層250上的第二介電層260中。並且,位於閘極結構300之兩側的源極接觸件402與汲極接觸件502皆穿過形成於化合物半導體層230上第一介電層250與第二介電層260而分別與源極電極402與汲極電極502接觸,而源極金屬層403與汲極金屬層503形成於第二介電層260上且分別電性連接至源極接觸件402與汲極接觸件502。According to some embodiments of the present invention, as shown in FIG. 1A, the
在一些實施例中,第一介電層250與第二介電層260可分別包含一或多種單層或多層介電材料,例如氧化矽、氮化矽、氮氧化矽、四乙氧基矽烷(tetraethoxysilane,TEOS)、磷矽玻璃(phosphosilicate glass,PSG)、硼磷矽酸鹽玻璃(borophosphosilicate glass,BPSG)、低介電常數介電材料、及/或其他適合的介電材料。低介電常數介電材料可包含但不限於氟化石英玻璃(fluorinated silica glass,FSG)、氫倍半矽氧烷(hydrogen silsesquioxane,HSQ)、摻雜碳的氧化矽、非晶質氟化碳(fluorinated carbon)、聚對二甲苯(parylene)、苯並環丁烯(bis-benzocyclobutenes,BCB)、或聚醯亞胺(polyimide)。舉例而言,可使用旋轉塗佈製程(spin coating)、化學氣相沉積(CVD)、物理氣相沉積(physical vapor deposition,PVD)、原子層沉積(atomic layer deposition,ALD)、高密度電漿化學氣相沉積(high density plasma CVD,HDPCVD)、其他合適的方法或前述之組合,將上述介電材料沉積於化合物半導體層230(例如阻障層233)與隔離結構240上以形成第一介電層250與第二介電層260。
In some embodiments, the
根據本發明一些實施例,繪示於第1A圖之半導體結構100所包含的一對導通孔601、602設置於隔離區202中並位於閘極結構300的兩側。在一些實施例中,此對導通孔可為氮化鎵穿孔(through-GaN via,TGV)。導通孔601、602穿過位於隔離區202之第二介電層260、第一介電層250、隔離結構240、緩衝層231而接觸晶種層220。在隔離結構240之底面直接接觸晶種層220的實施例中,穿過隔離結構240之導通孔601、602可直接與晶種層220接觸而不經過緩衝層231(未繪示)。藉由將導通孔601、602設置於隔離區202中,可避免導通孔601、602與形成於通道層232與阻障層233之間之異質界面上二維電子氣(2DEG)接觸而發生電性異常。According to some embodiments of the present invention, the pair of
參照第1A圖,源極結構400與汲極結構500分別藉由導通孔601與導通孔602電性連接至晶種層220。具體來說,源極結構400是藉由橫跨主動區201與隔離區202之源極金屬層403與導通孔601接觸而電性連接至晶種層220,而汲極結構500是藉由藉由橫跨主動區201與隔離區202之汲極金屬層503與導通孔602接觸而電性連接至晶種層220。根據本發明一些實施例,分別與源極結構400及汲極結構500電性連接之晶種層220的內部所產生的電壓差可大抵相同於源極電極401與汲極電極501之間的電壓差。Referring to FIG. 1A, the
根據本發明之一些實施例,導通孔601、602之形成包含先執行微影和蝕刻製程於隔離區202的化合物半導體層230、隔離結構240、第一介電層250、以及第二介電層260,以形成一對位於閘極結構300之兩側的一對孔洞(未繪示)。接著,將導電材料填入此對孔洞中以形成導通孔601、602。在一些實施例中,此導電材料可選自前述用於形成閘極金屬層302、源極接觸件402、源極金屬層403、汲極接觸件502、及汲極金屬層503的材料,故此處不再贅述。根據本發明之一些實施例,導通孔601、602的孔徑可各自在約0.5微米(micrometer,um)至約5微米的範圍。藉由導通孔601、602的配置,可在晶種層的內部產生電壓差(即為源極與汲極的電壓差)而使得電力線延伸至位於晶種層下方的膜層(例如絕緣層),進而使電場重新分布、提升崩潰電壓(breakdown voltage)。並且,將上述導通孔601、602的配置應用於使用陶瓷基底的半導體裝置,可使其在高電壓操作下的效能顯著提升。According to some embodiments of the present invention, the formation of the
請搭配參照第1B圖,在第1B圖中所繪示之半導體結構100’與在第1A圖中所繪示之半導體結構100大抵相同,其差異在於半導體結構100’所包含之導通孔601、602更穿過晶種層220並與絕緣層210接觸。在一些實施例中,導通孔601、602之底面可位於絕緣層210中(即如第1B圖所示)。在其他實施例中,導通孔601、602之底面可接觸絕緣層210之頂面(未繪示)。Please refer to FIG. 1B together. The
綜上所述,藉由上述導通孔601、602的配置,可在晶種層220的內部產生電壓差(即為源極電極401與汲極電極501的電壓差)而使得電力線延伸至位於晶種層220下方的絕緣層210。內部具有電壓差的晶種層220不會屏蔽半導體結構100、100’中之高電場區(例如位於主動區201中閘極結構300下方的化合物半導體層230)的電力線,進而使電場重新分布。如此一來,半導體結構100、100’中的絕緣層210可與形成在絕緣層210上的化合物半導體層230一併承受所施加的電壓,進而提升崩潰電壓(breakdown voltage),以允許半導體裝置100、100’應用於高電壓操作。In summary, through the configuration of the via holes 601 and 602, a voltage difference (that is, the voltage difference between the
值得注意的是,雖然此處僅繪示出一對導通孔601、602,但本發明實施例亦可包含多對導通孔分別同時電性連接源極結構400與晶種層220並電性連接汲極結構500與晶種層220(未繪示)。在其他實施例中,電性連接源極結構400與晶種層220之導通孔的數量可不同於電性連接極結構500與晶種層220之導通孔的數量(未繪示)。It is worth noting that although only one pair of
根據本發明一些實施例,在第1A圖中所示的半導體結構100可包含形成於第二介電層260之上的第三介電層270,其覆蓋源極金屬層403與汲極金屬層503,以及穿過第三介電層270而與源極金屬層403、汲極金屬層503電性連接的金屬層280。在一些實施例中,第三介電層270之材料可選自前述用於形成第一介電層250與第二介電層260的材料,而金屬層280之材料與形成方法大抵相同於源極金屬層403與汲極金屬層503,故此處不再贅述。值得注意的是,雖然本發明實施例僅繪示出單層第三介電層270與單層金屬層280,但本發明實施例並不侷限於此。第三介電層270與金屬層280之膜層數量可根據產品設計而調整。According to some embodiments of the present invention, the
根據本發明一些實施例,在第1A圖中所繪示之半導體結構100可在上視圖中具有各種的配置形態,例如在第2A、2B、及2C圖中所繪示之半導體結構100A、100B、及100C 。舉例來說,繪示於第1A圖中的半導體結構100可對應於在第2A圖中所繪示之剖面A-A’,其中剖面A-A’並不會經過晶種層220之開口700。在其他實施例中,在第1A圖中所繪示之半導體結構100的晶種層220可不具有開口(未繪示)。According to some embodiments of the present invention, the
第2A圖是根據本發明的一些實施例,繪示出例示性半導體結構100A的部分上視圖。值得注意的是,為了簡明地描述本發明之實施例並突顯其特徵,並未將半導體結構100A的所有結構繪示於第2A圖中。參照第2A圖,半導體結構100A包含主動區201、圍繞主動區201的隔離區202、形成於主動區210中的閘極結構300、源極結構400、及汲極結構500、形成於隔離區202中的導通孔601及602、以及位於主動區201中具有複數個開口700之晶種層220。在一些實施例中,晶種層220之開口700可露出位於晶種層220下方的絕緣層210。根據本發明一些實施例,在上視圖中,位於主動區201中的開口700可排列成一矩陣,即如第2A圖所示。舉例來說,矩陣可包含五行及五列對齊排列之開口700。FIG. 2A is a partial top view illustrating an
第2B圖是根據本發明的其他實施例,繪示出例示性半導體結構100B的部分上視圖。在第2B圖中所繪示之半導體結構100B大抵相似於在第2A圖中所繪示之半導體結構100A,故此處不再贅述。半導體結構100B與半導體結構100A之差異在於,在半導體結構100B中位於主動區201之晶種層220的複數個開口700彼此交錯排列。FIG. 2B is a partial top view illustrating an
第2C圖是根據本發明的其他實施例,繪示出例示性半導體結構100C的部分上視圖。在第2C圖中所繪示之半導體結構100C大抵相似於在第2A、2B圖中所繪示之半導體結構100A、100B,故此處不再贅述。半導體結構100C與半導體結構100A、100B之差異在於,在半導體結構100C中位於主動區201之晶種層220具有複數個長條形開口800。如第2C圖所示,長條形開口800之長軸是以平行於從導通孔601朝向導通孔602的方向延伸,並且這些長條形開口800是沿著其短軸方向在主動區201中排列。FIG. 2C is a partial top view illustrating an
根據本發明一些實施例,形成於主動區201中之晶種層220的複數個開口可形成高阻抗區域而降低汲極結構與源極結構間的漏電流。值得注意的是,在第2A、2B、及2C圖中所繪示之晶種層220之開口的形狀、數量、尺寸、以及排列方式僅為例示性,晶種層220之開口的配置可依產品設計而調整,故本發明實施例並不侷限於此。According to some embodiments of the present invention, the plurality of openings of the
綜上所述,本發明實施例所提供之半導體結構藉由以一對導通孔將源極結構與汲極結構分別電性連接至晶種層的配置,可在晶種層的內部產生電壓差而使得電力線可延伸至位於晶種層下方的膜層(例如絕緣層)。根據本發明之實施例,內部具有電壓差的晶種層不會屏蔽半導體結構中之高電場區(例如位於閘極下方的化合物半導體層)的電力線,進而使電場重新分布。如此一來,半導體結構中的絕緣層可與形成在絕緣層上的化合物半導體層一併承受所施加的電壓,進而提升崩潰電壓(breakdown voltage),改善半導體結構的效能。In summary, the semiconductor structure provided by the embodiment of the present invention can generate a voltage difference inside the seed layer by electrically connecting the source structure and the drain structure to the seed layer through a pair of via holes Therefore, the power line can be extended to a film layer (for example, an insulating layer) located under the seed layer. According to an embodiment of the present invention, the seed layer with a voltage difference inside does not shield the power lines of the high electric field region (such as the compound semiconductor layer under the gate) in the semiconductor structure, thereby redistributing the electric field. In this way, the insulating layer in the semiconductor structure can withstand the applied voltage together with the compound semiconductor layer formed on the insulating layer, thereby improving the breakdown voltage and improving the performance of the semiconductor structure.
以上概述數個實施例,以便在本發明所屬技術領域中具有通常知識者可以更理解本發明實施例的觀點。在本發明所屬技術領域中具有通常知識者應該理解,他們能以本發明實施例為基礎,設計或修改其他製程和結構,以達到與在此介紹的實施例相同之目的及/或優勢。在本發明所屬技術領域中具有通常知識者也應該理解到,此類等效的製程和結構並無悖離本發明的精神與範圍,且他們能在不違背本發明之精神和範圍之下,做各式各樣的改變、取代和替換。The above summarizes several embodiments so that those with ordinary knowledge in the technical field to which the present invention pertains can better understand the viewpoints of the embodiments of the present invention. Those with ordinary knowledge in the technical field to which the present invention belongs should understand that they can design or modify other processes and structures based on the embodiments of the present invention to achieve the same purposes and/or advantages as the embodiments described herein. Those with ordinary knowledge in the technical field to which the present invention belongs should also understand that such equivalent processes and structures do not depart from the spirit and scope of the present invention, and they can do so without departing from the spirit and scope of the present invention, Make various changes, substitutions and replacements.
100、100’、100A、100B、100C:半導體結構100, 100’, 100A, 100B, 100C: semiconductor structure
200:基底200: base
201:主動區201: Active area
202:隔離區202: Quarantine
210:絕緣層210: insulating layer
220:晶種層220: Seed layer
230:化合物半導體層230: Compound semiconductor layer
231:緩衝層231: Buffer layer
232:通道層232: channel layer
233:阻障層233: barrier layer
234:摻雜化合物半導體層234: Doped compound semiconductor layer
240:隔離結構240: Isolation structure
250:第一介電層250: first dielectric layer
260:第二介電層260: Second dielectric layer
270:第三介電層270: third dielectric layer
280:金屬層280: metal layer
300:閘極結構300: Gate structure
301:閘極電極301: Gate electrode
302:閘極金屬層302: Gate metal layer
400:源極結構400: source structure
401:源極電極401: source electrode
402:源極接觸件402: Source contact
403:源極金屬層403: source metal layer
500:汲極結構500: Drain structure
501:汲極電極501: Drain electrode
502:汲極接觸件502: Drain contact
503:汲極金屬層503: Drain metal layer
601、602:導通孔601, 602: via hole
700、800:開口700, 800: opening
A-A’:剖面A-A’: Profile
以下將配合所附圖式詳述本發明實施例。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製且僅用以說明例示。事實上,可能任意地放大或縮小元件的尺寸,以清楚地表現出本發明實施例的特徵。 第1A圖是根據本發明的一些實施例,繪示出例示性半導體結構的剖面示意圖。 第1B圖是根據本發明的其他實施例,繪示出例示性半導體結構的剖面示意圖。 第2A圖是根據本發明的一些實施例,繪示出例示性半導體結構的部分上視圖。 第2B圖是根據本發明的其他實施例,繪示出例示性半導體結構的部分上視圖。 第2C圖是根據本發明的另一些實施例,繪示出例示性半導體結構的部分上視圖。The embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings. It should be noted that according to standard practices in the industry, various features are not drawn to scale and are used for illustration only. In fact, the size of the element may be arbitrarily enlarged or reduced to clearly show the features of the embodiments of the present invention. FIG. 1A is a schematic cross-sectional view illustrating an exemplary semiconductor structure according to some embodiments of the present invention. FIG. 1B is a schematic cross-sectional view illustrating an exemplary semiconductor structure according to other embodiments of the present invention. FIG. 2A is a partial top view illustrating an exemplary semiconductor structure according to some embodiments of the present invention. FIG. 2B is a partial top view illustrating an exemplary semiconductor structure according to other embodiments of the present invention. FIG. 2C is a partial top view illustrating an exemplary semiconductor structure according to other embodiments of the present invention.
100:半導體結構 100: semiconductor structure
200:基底 200: base
201:主動區 201: Active area
202:隔離區 202: Quarantine
210:絕緣層 210: insulating layer
220:晶種層 220: Seed layer
230:化合物半導體層 230: Compound semiconductor layer
231:緩衝層 231: Buffer layer
232:通道層 232: channel layer
233:阻障層 233: barrier layer
234:摻雜化合物半導體層 234: Doped compound semiconductor layer
240:隔離結構 240: Isolation structure
250:第一介電層 250: first dielectric layer
260:第二介電層 260: Second dielectric layer
270:第三介電層 270: third dielectric layer
280:金屬層 280: metal layer
300:閘極結構 300: Gate structure
301:閘極電極 301: Gate electrode
302:閘極金屬層 302: Gate metal layer
400:源極結構 400: source structure
401:源極電極 401: source electrode
402:源極接觸件 402: Source contact
403:源極金屬層 403: source metal layer
500:汲極結構 500: Drain structure
501:汲極電極 501: Drain electrode
502:汲極接觸件 502: Drain contact
503:汲極金屬層 503: Drain metal layer
601、602:導通孔 601, 602: via hole
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108113124A TWI692868B (en) | 2019-04-16 | 2019-04-16 | Semiconductor structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108113124A TWI692868B (en) | 2019-04-16 | 2019-04-16 | Semiconductor structure |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI692868B true TWI692868B (en) | 2020-05-01 |
TW202040819A TW202040819A (en) | 2020-11-01 |
Family
ID=71895869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108113124A TWI692868B (en) | 2019-04-16 | 2019-04-16 | Semiconductor structure |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI692868B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI755008B (en) * | 2020-07-31 | 2022-02-11 | 世界先進積體電路股份有限公司 | Semiconductor structure |
TWI794609B (en) * | 2020-06-05 | 2023-03-01 | 世界先進積體電路股份有限公司 | Semiconductor structures |
US11677002B2 (en) | 2020-09-16 | 2023-06-13 | Vanguard International Semiconductor Corporation | Semiconductor structure |
US11955397B2 (en) | 2020-11-09 | 2024-04-09 | Vanguard International Semiconductor Corporation | Semiconductor structure |
US12002857B2 (en) | 2021-11-30 | 2024-06-04 | Vanguard International Semiconductor Corporation | High electron mobility transistor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI803845B (en) * | 2021-03-24 | 2023-06-01 | 新唐科技股份有限公司 | Semiconductor structure |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6845034B2 (en) * | 2003-03-11 | 2005-01-18 | Micron Technology, Inc. | Electronic systems, constructions for detecting properties of objects, and assemblies for identifying persons |
US20160086980A1 (en) * | 2013-07-29 | 2016-03-24 | Efficient Power Conversion Corporation | Gan transistors with polysilicon layers used for creating additional components |
-
2019
- 2019-04-16 TW TW108113124A patent/TWI692868B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6845034B2 (en) * | 2003-03-11 | 2005-01-18 | Micron Technology, Inc. | Electronic systems, constructions for detecting properties of objects, and assemblies for identifying persons |
US20160086980A1 (en) * | 2013-07-29 | 2016-03-24 | Efficient Power Conversion Corporation | Gan transistors with polysilicon layers used for creating additional components |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI794609B (en) * | 2020-06-05 | 2023-03-01 | 世界先進積體電路股份有限公司 | Semiconductor structures |
TWI755008B (en) * | 2020-07-31 | 2022-02-11 | 世界先進積體電路股份有限公司 | Semiconductor structure |
US11677002B2 (en) | 2020-09-16 | 2023-06-13 | Vanguard International Semiconductor Corporation | Semiconductor structure |
US11955397B2 (en) | 2020-11-09 | 2024-04-09 | Vanguard International Semiconductor Corporation | Semiconductor structure |
US12002857B2 (en) | 2021-11-30 | 2024-06-04 | Vanguard International Semiconductor Corporation | High electron mobility transistor |
Also Published As
Publication number | Publication date |
---|---|
TW202040819A (en) | 2020-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI692868B (en) | Semiconductor structure | |
US10886394B1 (en) | Semiconductor structure | |
US11664430B2 (en) | Semiconductor device | |
US11043583B2 (en) | Semiconductor structure and method for forming the same | |
TWI703696B (en) | Semiconductor structure | |
TWI676216B (en) | Semiconductor devices and methods for fabricating the same | |
US10930745B1 (en) | Semiconductor structure | |
US20210257476A1 (en) | Semiconductor structure | |
TWI775027B (en) | Semiconductor structure | |
TWI693716B (en) | Semiconductor devices and methods for fabricating the same | |
TWI768270B (en) | Semiconductor structures and the method for forming the same | |
TWI676237B (en) | Semiconductor devices, high electron mobility transistors and methods for fabricating semiconductor devices | |
CN112951901A (en) | Semiconductor structure | |
US11670708B2 (en) | Semiconductor device | |
US11049799B1 (en) | Semiconductor structure and method for forming the same | |
TWI732239B (en) | Semiconductor structure and method for forming the same | |
CN111863955A (en) | Semiconductor structure | |
US11133246B1 (en) | Semiconductor structure employing conductive paste on lead frame | |
US20210167197A1 (en) | Semiconductor structure and method for forming the same | |
TWI727872B (en) | Semiconductor device | |
TWI719484B (en) | Semiconductor structure | |
TWI732343B (en) | Semiconductor structure | |
CN112242442B (en) | Semiconductor structure and forming method thereof | |
CN113224010A (en) | Semiconductor structure | |
TWI833433B (en) | Semiconductor device |