TWI775027B - Semiconductor structure - Google Patents

Semiconductor structure Download PDF

Info

Publication number
TWI775027B
TWI775027B TW108146872A TW108146872A TWI775027B TW I775027 B TWI775027 B TW I775027B TW 108146872 A TW108146872 A TW 108146872A TW 108146872 A TW108146872 A TW 108146872A TW I775027 B TWI775027 B TW I775027B
Authority
TW
Taiwan
Prior art keywords
semiconductor structure
substrate
gate
layer
region
Prior art date
Application number
TW108146872A
Other languages
Chinese (zh)
Other versions
TW202125829A (en
Inventor
林鑫成
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW108146872A priority Critical patent/TWI775027B/en
Publication of TW202125829A publication Critical patent/TW202125829A/en
Application granted granted Critical
Publication of TWI775027B publication Critical patent/TWI775027B/en

Links

Images

Abstract

Embodiments provide a semiconductor structure and a method for manufacturing the same. The semiconductor structure includes a substrate having a first region and a second region. The semiconductor structure also includes an epitaxial layer above the substrate. The semiconductor structure also includes a first device on the first region of the substrate, and a second device on the second region of the substrate. The first device includes a first gate electrode, a first source electrode and a first drain electrode disposed at two opposite sides of the first gate electrode, wherein a dielectric layer is disposed on the epitaxial layer and covers the first gate electrode. The second device includes a second gate electrode disposed on the dielectric layer, a second source electrode and a second drain electrode disposed at two opposite sides of the second gate electrode, wherein the second source electrode is electrically connected to the first drain electrode. The semiconductor structure also includes an isolation structure disposed on the substrate, so that the portions of the epitaxial layer respectively disposed in the first region and the second region are isolated from each other by the isolation structure.

Description

半導體結構 semiconductor structure

本揭露係有關於半導體結構及其製造方法,且特別係有關於一種適用於高壓操作的半導體結構及其製造方法。 The present disclosure relates to a semiconductor structure and a method of fabricating the same, and more particularly, to a semiconductor structure and a method of fabricating the same suitable for high voltage operation.

近年來,半導體結構在電腦、消費電子等領域中發展快速。目前,半導體結構技術在金屬氧化物半導體場效電晶體的產品市場中已被廣泛接受,具有很高的市場佔有率。半導體結構被用於各種電子應用中,例如高功率裝置、個人電腦、手機、數位相機及其他電子裝置。這些半導體結構一般藉由在半導體基底上沉積絕緣層或介電層、導電層材料和半導體層材料,隨後藉由使用微影(photolithography)製程將各種材料層圖案化以製造而成。因此,在半導體基底上形成電路裝置和組件。 In recent years, semiconductor structures have developed rapidly in the fields of computers and consumer electronics. At present, the semiconductor structure technology has been widely accepted in the product market of metal oxide semiconductor field effect transistors, and has a high market share. Semiconductor structures are used in various electronic applications such as high power devices, personal computers, cell phones, digital cameras and other electronic devices. These semiconductor structures are generally fabricated by depositing insulating or dielectric layers, conductive layer materials, and semiconductor layer materials on a semiconductor substrate, followed by patterning the various material layers using a photolithography process. Thus, circuit devices and components are formed on semiconductor substrates.

在這些裝置中,高電子遷移率電晶體(high-electron mobility transistors,HEMTs)具有例如高輸出功率和高崩潰電壓的優勢,因此它們被廣泛地使用於高功率的應用中。雖然現存的半導體結構及其形成方法可以應付它們原先預定的用途,但目前它們在結構和製法各個技術方面上仍有需要克服的問題。 Among these devices, high-electron mobility transistors (HEMTs) have advantages such as high output power and high breakdown voltage, so they are widely used in high-power applications. Although existing semiconductor structures and methods of forming them can cope with their original intended use, they still have problems to be overcome in various technical aspects of their structures and fabrications.

以系統單封裝(system in a package,SiP)為例,是將數個功能不同的晶片直接封裝成具有完整功能的一個積體電路 (IC),並利用打線電性連接不同晶片再進行封裝,以形成SiP半導體結構。雖然相較於將不同功能的積體電路整合成一個系統單晶片(system on a chip,SoC),系統單封裝的製程容易許多,但使用打線連接兩元件會產生寄生電感和寄生電容,會產生較嚴重的雜訊。例如電流變化率(change rate of input current,L*di/dt)很快的時候,會造成峰值電流(spike of current),進而限制了半導體結構的操作頻率。再者,若峰值電流的上下擺幅太大,可能超過元件的臨界電壓而使元件受損。 Taking system in a package (SiP) as an example, it is to directly package several chips with different functions into an integrated circuit with complete functions (IC), and use wire bonding to electrically connect different chips and then package them to form a SiP semiconductor structure. Although the SoC process is much easier than integrating integrated circuits with different functions into a system on a chip (SoC), the use of wire bonding to connect two components will generate parasitic inductance and parasitic capacitance, which will cause more serious noise. For example, when the change rate of input current (L*di/dt) is very fast, it will cause a spike of current, which in turn limits the operating frequency of the semiconductor structure. Furthermore, if the up and down swing of the peak current is too large, the threshold voltage of the device may be exceeded and the device may be damaged.

本揭露之一些實施例提供一種半導體結構。半導體結構包括一基板,且基板具有第一區域和第二區域。上述半導體結構亦包含位於基板上方的一磊晶層。上述半導體結構亦包含設置於基板的第一區域上的一第一元件,以及設置於基板的第二區域上的一第二元件。一些實施例中,第一元件包含位於磊晶層上的第一閘極,以及分別位於第一閘極的相對兩側的第一源極電極和第一汲極電極,其中,一介電層形成於磊晶層上並覆蓋第一閘極。一些實施例中,第二元件包含位於介電層上的第二閘極,以及分別位於第二閘極的相對兩側的第二源極電極和第二汲極電極,其中第二源極電極電性連接第一汲極電極。上述半導體結構更包含設置於基板上的一隔離結構,且第一區域與第二區域中的磊晶層藉由隔離結構而彼此隔絕開來。 Some embodiments of the present disclosure provide a semiconductor structure. The semiconductor structure includes a substrate, and the substrate has a first region and a second region. The above-mentioned semiconductor structure also includes an epitaxial layer above the substrate. The above-mentioned semiconductor structure also includes a first element disposed on the first region of the substrate, and a second element disposed on the second region of the substrate. In some embodiments, the first element includes a first gate electrode located on the epitaxial layer, and a first source electrode and a first drain electrode respectively located on opposite sides of the first gate electrode, wherein a dielectric layer It is formed on the epitaxial layer and covers the first gate electrode. In some embodiments, the second element includes a second gate electrode located on the dielectric layer, and a second source electrode and a second drain electrode respectively located on opposite sides of the second gate electrode, wherein the second source electrode The first drain electrode is electrically connected. The above-mentioned semiconductor structure further includes an isolation structure disposed on the substrate, and the epitaxial layers in the first region and the second region are isolated from each other by the isolation structure.

根據一些實施例,半導體結構中的第一閘極包含p型摻雜之氮化鎵,第二閘極包含金屬或多晶矽。 According to some embodiments, the first gate in the semiconductor structure comprises p-type doped gallium nitride, and the second gate comprises metal or polysilicon.

根據一些實施例,半導體結構中的第二元件的第二閘極電性連接第一元件的第一源極電極。 According to some embodiments, the second gate electrode of the second element in the semiconductor structure is electrically connected to the first source electrode of the first element.

根據一些實施例,半導體結構中的隔離結構貫穿磊晶層並接觸基板的頂面。 According to some embodiments, the isolation structure in the semiconductor structure penetrates the epitaxial layer and contacts the top surface of the substrate.

根據一些實施例,半導體結構更包括一晶種層位於基板上,其中磊晶層位於晶種層上。 According to some embodiments, the semiconductor structure further includes a seed layer on the substrate, wherein the epitaxial layer is on the seed layer.

根據一些實施例,半導體結構中的隔離結構貫穿磊晶層與晶種層,且隔離結構接觸該基板的頂面。 According to some embodiments, the isolation structure in the semiconductor structure penetrates the epitaxial layer and the seed layer, and the isolation structure contacts the top surface of the substrate.

根據一些實施例,半導體結構中的第一源極電極包含相互電性連接的兩個第一導電部,第一元件更包含一第一貫孔與前述兩個第一導電部其中一者電性連接,且第一貫孔穿過磊晶層並接觸晶種層。 According to some embodiments, the first source electrode in the semiconductor structure includes two first conductive portions electrically connected to each other, and the first element further includes a first through hole and one of the aforementioned two first conductive portions electrically connected, and the first through hole passes through the epitaxial layer and contacts the seed layer.

根據一些實施例,半導體結構中的第二源極電極包含相互電性連接的兩個第二導電部,第二元件更包含一第二貫孔與前述兩個第二導電部其中一者電性連接,且第二貫孔穿過磊晶層並接觸晶種層。 According to some embodiments, the second source electrode in the semiconductor structure includes two second conductive portions electrically connected to each other, and the second element further includes a second through hole and one of the aforementioned two second conductive portions electrically connected, and the second through hole passes through the epitaxial layer and contacts the seed layer.

根據一些實施例,半導體結構中的第一元件是增強型(enhanced mode)高壓電晶體,第二元件是空乏型(depletion mode)高壓電晶體。 According to some embodiments, the first element in the semiconductor structure is an enhancement mode high voltage transistor and the second element is a depletion mode high voltage transistor.

根據一些實施例,半導體結構更包括一層間介電層位於磊晶層上且覆蓋第一元件以及第二元件,其中層間介電層包含前述覆蓋第一閘極的介電層以及覆蓋第二閘極的另一介電層。 According to some embodiments, the semiconductor structure further includes an interlayer dielectric layer located on the epitaxial layer and covering the first element and the second element, wherein the interlayer dielectric layer includes the aforementioned dielectric layer covering the first gate and covering the second gate Another dielectric layer of the pole.

根據一些實施例,半導體結構更包括一第三元件設置於基板的第二區域上,第三元件包含位於介電層上的第三閘極,分別位於第三閘極的相對兩側的一第三源極電極和一第三汲極電極,其中第三元件的第三源極電極電性連接至第二元件的第二汲極電極。 According to some embodiments, the semiconductor structure further includes a third element disposed on the second region of the substrate, the third element including a third gate on the dielectric layer, a first gate on opposite sides of the third gate, respectively Three source electrodes and a third drain electrode, wherein the third source electrode of the third element is electrically connected to the second drain electrode of the second element.

根據一些實施例,半導體結構中的第三元件的第三閘極電性連接至第二元件的第二源極電極。 According to some embodiments, the third gate electrode of the third element in the semiconductor structure is electrically connected to the second source electrode of the second element.

根據一些實施例,半導體結構更包括另一隔離結構設置於基板上,此隔離結構使對應於第二元件和第三元件的磊晶層彼此隔絕。 According to some embodiments, the semiconductor structure further includes another isolation structure disposed on the substrate, and the isolation structure isolates the epitaxial layers corresponding to the second element and the third element from each other.

根據一些實施例,半導體結構中的第一元件是增強型高壓電晶體,第二元件和第三元件是空乏型高壓電晶體。 According to some embodiments, the first element in the semiconductor structure is an enhancement mode high voltage transistor and the second and third elements are depletion mode high voltage transistors.

根據一些實施例,半導體結構中的基板包含一基底和設置於基底上的一絕緣層,且磊晶層位於絕緣層之上方。 According to some embodiments, the substrate in the semiconductor structure includes a base and an insulating layer disposed on the base, and the epitaxial layer is located over the insulating layer.

本揭露之一些實施例提供一種半導體結構的製造方法,包含提供一基板,且基板具有第一區域和第二區域。上述製造方法亦包含形成一磊晶層於基板之上方,以及形成一隔離結構於基板上,其中此隔離結構使第一區域以及第二區域中的磊晶層彼此隔絕。上述製造方法還包含形成一第一元件於基板的第一區域,以及形成一第二元件於基板的第二區域。一些實施例中,第一元件包含位於磊晶層上的第一閘極,以及分別位於第一閘極的相對兩側的第一源極電極和第一汲極電極,其中,一介電層形成於磊晶層上並覆蓋第一閘極。一些實施例中,第二元件包含位於介電層上的第二閘極,以及分別位於第二閘極的相對兩側的第二源極電極和第二汲極電極,其中第二源極電極電性連接第一汲極電極。 Some embodiments of the present disclosure provide a method of fabricating a semiconductor structure, including providing a substrate having a first region and a second region. The above manufacturing method also includes forming an epitaxial layer over the substrate, and forming an isolation structure on the substrate, wherein the isolation structure isolates the epitaxial layers in the first region and the second region from each other. The above manufacturing method further includes forming a first element in the first region of the substrate, and forming a second element in the second region of the substrate. In some embodiments, the first element includes a first gate electrode located on the epitaxial layer, and a first source electrode and a first drain electrode respectively located on opposite sides of the first gate electrode, wherein a dielectric layer It is formed on the epitaxial layer and covers the first gate electrode. In some embodiments, the second element includes a second gate electrode located on the dielectric layer, and a second source electrode and a second drain electrode respectively located on opposite sides of the second gate electrode, wherein the second source electrode The first drain electrode is electrically connected.

一些實施例中,上述半導體結構的製造方法更包括電性連接第二元件的第二閘極至第一元件的第一源極電極。 In some embodiments, the above-mentioned manufacturing method of the semiconductor structure further includes electrically connecting the second gate electrode of the second element to the first source electrode of the first element.

一些實施例中,上述半導體結構的製造方法中,所形成的隔離結構貫穿磊晶層並接觸基板的頂面。 In some embodiments, in the above-mentioned manufacturing method of the semiconductor structure, the formed isolation structure penetrates the epitaxial layer and contacts the top surface of the substrate.

一些實施例中,上述半導體結構的製造方法中,更包括形成一晶種層於該基板上,其中磊晶層形成於晶種層上。 In some embodiments, the above-mentioned manufacturing method of the semiconductor structure further includes forming a seed layer on the substrate, wherein the epitaxial layer is formed on the seed layer.

一些實施例中,上述半導體結構的製造方法中,隔離結構貫穿磊晶層與晶種層,且隔離結構接觸基板的頂面。 In some embodiments, in the above-mentioned manufacturing method of the semiconductor structure, the isolation structure penetrates the epitaxial layer and the seed layer, and the isolation structure contacts the top surface of the substrate.

一些實施例中,上述半導體結構的製造方法中,第一源極電極包含相互電性連接的兩個第一導電部,形成第一元件的步驟更包含形成一第一導孔與前述兩個第一導電部其中一者電性連接,且第一導孔貫穿磊晶層並接觸晶種層。 In some embodiments, in the above-mentioned manufacturing method of the semiconductor structure, the first source electrode includes two first conductive portions that are electrically connected to each other, and the step of forming the first element further includes forming a first via hole and the aforementioned two first conductive portions. One of the conductive parts is electrically connected, and the first via hole penetrates the epitaxial layer and contacts the seed layer.

一些實施例中,上述半導體結構的製造方法中,第二源極電極包含相互電性連接的兩個第二導電部,形成第二元件的步驟更包含形成一第二導孔與前述兩個第二導電部其中一者電性連接,且第二導孔貫穿磊晶層並接觸晶種層。 In some embodiments, in the above-mentioned manufacturing method of the semiconductor structure, the second source electrode includes two second conductive portions that are electrically connected to each other, and the step of forming the second element further includes forming a second via hole and the aforementioned two first conductive portions. One of the two conductive parts is electrically connected, and the second conductive hole penetrates the epitaxial layer and contacts the seed layer.

根據一些實施例,上述半導體結構的製造方法中,所製得的第一元件是增強型高壓電晶體,第二元件是空乏型高壓電晶體。 According to some embodiments, in the above-mentioned manufacturing method of the semiconductor structure, the manufactured first element is an enhancement type high voltage transistor, and the second element is a depletion type high voltage transistor.

根據一些實施例,上述半導體結構的製造方法中,所製得的半導體結構更包括位於磊晶層上且覆蓋第一元件以及第二元件的一層間介電層,其中層間介電層包含覆蓋第一閘極的介電層以及覆蓋第二閘極的另一介電層。 According to some embodiments, in the above-mentioned manufacturing method of the semiconductor structure, the prepared semiconductor structure further includes an interlayer dielectric layer located on the epitaxial layer and covering the first element and the second element, wherein the interlayer dielectric layer includes covering the first element and the second element. A gate dielectric layer and another dielectric layer covering the second gate.

根據一些實施例,上述半導體結構的製造方法中,更包括形成一第三元件於基板的第二區域上,第三元件包含位於介電層上的一第三閘極,分別位於第三閘極的相對兩側的一第三源極電極和一第三汲極電極。其中,第三源極電極與第二汲極電極電性連接。 According to some embodiments, the above-mentioned method for fabricating the semiconductor structure further includes forming a third element on the second region of the substrate, the third element including a third gate on the dielectric layer, respectively located at the third gate A third source electrode and a third drain electrode on opposite sides of the . Wherein, the third source electrode is electrically connected with the second drain electrode.

根據一些實施例,上述半導體結構的製造方法中,所 製得的第三元件的第三閘極係電性連接至第二元件的第二源極電極。 According to some embodiments, in the above-mentioned manufacturing method of the semiconductor structure, all The third gate electrode of the prepared third element is electrically connected to the second source electrode of the second element.

根據一些實施例,上述半導體結構的製造方法中,更包括形成另一隔離結構於基板上,此隔離結構使對應於第二元件和第三元件的磊晶層彼此隔絕。 According to some embodiments, the above-mentioned manufacturing method of the semiconductor structure further includes forming another isolation structure on the substrate, and the isolation structure isolates the epitaxial layers corresponding to the second element and the third element from each other.

根據一些實施例,上述半導體結構的製造方法中,所製得的第一元件是增強型高壓電晶體,第二元件和第三元件是空乏型高壓電晶體。 According to some embodiments, in the above-mentioned manufacturing method of the semiconductor structure, the manufactured first element is an enhancement type high voltage transistor, and the second element and the third element are depletion type high voltage transistors.

為讓本揭露實施例之特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下。 In order to make the features and advantages of the embodiments of the present disclosure more obvious and easy to understand, preferred embodiments are exemplified below, and are described in detail as follows in conjunction with the accompanying drawings.

10、20、30、40、50、60:半導體結構 10, 20, 30, 40, 50, 60: Semiconductor structures

100A:第一區域 100A: The first area

100B:第二區域 100B: Second area

DE1:第一元件 DE 1 : first element

DE2:第二元件 DE 2 : Second element

DE3:第三元件 DE 3 : The third element

100:基板 100: Substrate

101:基底 101: Substrate

102:絕緣層 102: Insulation layer

102a:頂面 102a: Top surface

104:晶種層 104: seed layer

106:緩衝層 106: Buffer layer

108:通道層 108: Channel Layer

110:障壁層 110: Barrier layer

111:磊晶層 111: epitaxial layer

112h:溝槽 112h: Groove

112:隔離結構 112: Isolation Structure

113:第一閘極 113: The first gate

114:第一介電層 114: first dielectric layer

115:第二閘極 115: The second gate

115-2:第三閘極 115-2: The third gate

115-n:第(n+1)閘極 115-n: (n+1)th gate

116:第二介電層 116: Second Dielectric Layer

118:第三介電層 118: The third dielectric layer

121h、123h、125h、127h:開口 121h, 123h, 125h, 127h: Opening

121:第一源極電極 121: first source electrode

1211:第一導電部 1211: The first conductive part

1212:第二導電部 1212: Second conductive part

123:第一汲極電極 123: first drain electrode

124、129:連接部 124, 129: connecting part

125:第二源極電極 125: Second source electrode

1251:第三導電部 1251: The third conductive part

1252:第四導電部 1252: Fourth conductive part

125-2:第三源極電極 125-2: Third source electrode

125-n:第(n+1)源極電極 125-n: (n+1)th source electrode

127:第二汲極電極 127: Second drain electrode

127-2:第三汲極電極 127-2: Third drain electrode

127-n:第(n+1)汲極電極 127-n: (n+1)th drain electrode

125-21、125-22、125-n1、125-n2:導電部 125-21, 125-22, 125-n1, 125-n2: Conductive part

113V、115V、121V、127V:導孔 113V, 115V, 121V, 127V: Via

S、G、D:端點 S, G, D: endpoints

151:第一貫孔 151: The first through hole

152:第二貫孔 152: Second through hole

152-n:第(n+1)貫孔 152-n: (n+1)th through hole

第1A-1G圖是根據本揭露的一些實施例,顯示形成第1G圖之半導體結構100之各個中間階段的剖面示意圖。 FIGS. 1A-1G are schematic cross-sectional views showing various intermediate stages of forming the semiconductor structure 100 of FIG. 1G according to some embodiments of the present disclosure.

第2圖為根據本揭露一些實施例之半導體結構的剖面示意圖,其中串接2個空乏型電晶體於基板的第二區域中。 FIG. 2 is a schematic cross-sectional view of a semiconductor structure according to some embodiments of the present disclosure, wherein two depletion transistors are connected in series in the second region of the substrate.

第3圖為根據本揭露一些實施例之半導體結構的剖面示意圖,其中串接n個空乏型電晶體於基板的第二區域中,n為大於等於3之正整數。 3 is a schematic cross-sectional view of a semiconductor structure according to some embodiments of the present disclosure, wherein n depletion transistors are connected in series in the second region of the substrate, and n is a positive integer greater than or equal to 3.

第4圖為根據本揭露的一些實施例之半導體結構的等效電路圖。 FIG. 4 is an equivalent circuit diagram of a semiconductor structure according to some embodiments of the present disclosure.

第5圖為根據本揭露一些其他的實施例之半導體結構的剖面示意圖,其中各元件具有貫孔以電性連接源極電極和晶種層。 FIG. 5 is a schematic cross-sectional view of a semiconductor structure according to some other embodiments of the present disclosure, wherein each element has through holes to electrically connect the source electrode and the seed layer.

第6圖為根據本揭露一些其他的實施例之半導體結構的剖面示意圖,其中各元件具有貫孔以電性連接源極電極和晶種層。 FIG. 6 is a schematic cross-sectional view of a semiconductor structure according to some other embodiments of the present disclosure, wherein each element has through holes to electrically connect the source electrode and the seed layer.

以下揭露提供了許多的實施例或範例,用於實施所提供的半導體結構之不同元件。各元件和其配置的具體範例描述如下,以簡化本發明實施例之說明。當然,這些僅僅是範例,並非用以限定本發明實施例。舉例而言,敘述中若提及第一元件形成在第二元件之上,可能包含第一和第二元件直接接觸的實施例,也可能包含額外的元件形成在第一和第二元件之間,使得它們不直接接觸的實施例。此外,本發明實施例可能在不同的範例中重複參考數字及/或字母。如此重複是為了簡明和清楚,而非用以表示所討論的不同實施例之間的關係。 The following disclosure provides numerous embodiments or examples for implementing various elements of the provided semiconductor structures. Specific examples of elements and their configurations are described below to simplify the description of embodiments of the invention. Of course, these are only examples, and are not intended to limit the embodiments of the present invention. For example, if the description mentions that the first element is formed on the second element, it may include embodiments in which the first and second elements are in direct contact, and may also include additional elements formed between the first and second elements , so that they are not in direct contact with the examples. Furthermore, embodiments of the present invention may repeat reference numerals and/or letters in different instances. This repetition is for brevity and clarity and is not intended to represent the relationship between the different embodiments discussed.

再者,在以下敘述中可使用空間上相關措辭,例如「在……之下」、「在……下方」、「下方的」、「在……上方」、「上方的」和其他類似的用語,以簡化一元件或部件與其他元件或其他部件之間如圖所示之關係的陳述。此空間相關措辭除了包含圖式所描繪之方向,還包含裝置在使用或操作中的不同方位。裝置可以朝其他方向定位(旋轉90度或在其他方向),且在此使用的空間相關描述可依此相應地解讀。 Furthermore, spatially relative terms such as "below", "below", "below", "above", "above" and the like may be used in the following description A term to simplify the presentation of the relationships between one element or component and other elements or other components as shown in the figures. In addition to the directions depicted in the figures, such spatially relative terms include different orientations of the device in use or operation. The device may be oriented in other orientations (rotated 90 degrees or at other orientations) and the spatially relative descriptions used herein interpreted accordingly.

以下描述實施例的一些變化。在不同圖式和說明的實施例中,相似的元件符號被用來標明相似的元件。可以理解的是,在方法的前、中、後可以提供額外的步驟,且一些敘述的步驟可為了該方法的其他實施例被取代或刪除。 Some variations of the embodiments are described below. Similar reference numerals are used to designate similar elements in the different drawings and illustrated embodiments. It will be appreciated that additional steps may be provided before, during, and after the method, and some of the recited steps may be replaced or deleted for other embodiments of the method.

本揭露內容的實施例提供了半導體結構及其製造方法。一些實施例中,是在相同的基板上製作多個串接的元件,並利用隔離結構以及基板使對應不同元件的磊晶層相互隔絕。根據一些實施 例所提出的元件串接方式,無須形成很厚的磊晶層也能使半導體結構實現高壓元件或超高壓元件的應用。而厚度下降的磊晶層不但減少了磊晶製程的時間,也大幅減輕了基板所承受的磊晶層的重量,降低了磊晶層對基板產生的應力。再者,一些實施例所提出的半導體結構的各元件可以是承受較低電壓的元件,透過上述實施例之串接方式而實現高壓應用。一些實施例中,半導體結構包含串接的一個增強型電晶體和一或多個空乏型電晶體。另外,一些實施例所提出的半導體結構之製程是一種系統單晶片(system on a chip,SoC)的製程,所製得的半導體結構可以避免傳統使用打線連接不同元件所產生的寄生電感和寄生電容所造成的雜訊,進而減少高電流變化率(change rate of input current,di/dt)所造成的峰值電流(spike of current),以進一步提高半導體結構的電性表現。因此,本揭露一些實施例所提出的半導體結構及其製造方法具有改善的電子特性和良好的可靠度。 Embodiments of the present disclosure provide semiconductor structures and methods of fabricating the same. In some embodiments, a plurality of devices connected in series are fabricated on the same substrate, and the epitaxial layers corresponding to different devices are isolated from each other by the isolation structure and the substrate. According to some implementations The device series connection method proposed in the example can also enable the semiconductor structure to realize the application of high-voltage components or ultra-high-voltage components without forming a very thick epitaxial layer. The epitaxial layer with reduced thickness not only reduces the time of the epitaxial process, but also greatly reduces the weight of the epitaxial layer on the substrate and reduces the stress on the substrate caused by the epitaxial layer. Furthermore, each element of the semiconductor structure proposed in some embodiments may be an element that withstands a lower voltage, and a high-voltage application can be realized through the series connection method of the above-mentioned embodiments. In some embodiments, the semiconductor structure includes an enhancement mode transistor and one or more depletion mode transistors in series. In addition, the manufacturing process of the semiconductor structure proposed in some embodiments is a system on a chip (SoC) process, and the fabricated semiconductor structure can avoid the parasitic inductance and parasitic capacitance caused by traditionally using wire bonding to connect different components. The resulting noise further reduces the peak current (spike of current) caused by the high current change rate of input current (di/dt), so as to further improve the electrical performance of the semiconductor structure. Therefore, some embodiments of the present disclosure provide semiconductor structures and fabrication methods thereof with improved electronic properties and good reliability.

在以下的一些實施例中,係以高電子遷移率電晶體(high-electron mobility transistor,HEMT)作為半導體結構中元件結構的示例說明,但本揭露並非以此為限,一些其他的實施例亦可使用其他類型的半導體元件。 In some of the following embodiments, a high-electron mobility transistor (HEMT) is used as an example of the device structure in the semiconductor structure, but the present disclosure is not limited to this, and some other embodiments are also Other types of semiconductor elements can be used.

第1A-1G圖是根據本揭露的一些實施例,顯示形成第1G圖之半導體結構10之各個中間階段的剖面示意圖。 FIGS. 1A-1G are schematic cross-sectional views showing various intermediate stages of forming the semiconductor structure 10 of FIG. 1G according to some embodiments of the present disclosure.

參照第1A圖,根據一些實施例,提供基板100。基板100包含基底101和設置於基底101上的絕緣層102。絕緣層102可提供基板100的絕緣表面。在一些實施例中,基板100包含基底101和密封(encapsulate)基底101的一複合材料層。複合材料層例如包覆住基底101的所有表面(包含上下表面和所有側面),以提供如第1A圖所示之 基底101上的絕緣層102。在一些實施例中,基底101包含陶瓷材料。陶瓷材料包含金屬無機材料。在一些實施例,基底101可以是包含碳化矽(SiC)、氮化鋁(AlN)、藍寶石(Sapphire)或其他適合的材料。上述藍寶石基材為氧化鋁。一些實施例中,包覆住基底101的四周的複合材料層可包含單一或多層的絕緣材料層以及/或其他合適的材料層,其中絕緣材料層例如是氧化物、氮化物、氮氧化物、或其他合適的絕緣材料。另外,在一些其他的實施例中,基底101例如可由矽(Si)、碳化矽、氮化鎵(GaN)、二氧化矽(SiO2)、藍寶石或前述之組合所形成。例如,基板100為絕緣層上覆矽(silicon on Insulator,SOI)之基板,亦即基板100包含矽基底和形成於矽基底上的絕緣層。為簡化圖式,在圖式中的基板100僅示出基底101上方的絕緣層102的部分。於一些實施例中,基板100,其可以為單層基板或多層基板。基板100不限於絕緣層上覆矽(silicon on Insulator,SOI)之基板,也可以為矽晶圓或陶瓷基板。再者,基板100包括第一區域100A和第二區域100B。根據一些實施例,第一區域100A為後續將形成第一元件DE1的區域,第二區域100B為後續將形成第二元件DE2的區域。在以下的一些實施例中,係以高電子遷移率電晶體(high-electron mobility transistor,HEMT)作為第一區域100A和第二區域100B中所形成的元件之結構的示例說明。另外,第一區域100A和第二區域100B的位置亦可視半導體結構的配置需求而任意的調整。在一些實施例中,第一區域100A鄰近於第二區域100B。 1A, according to some embodiments, a substrate 100 is provided. The substrate 100 includes a base 101 and an insulating layer 102 disposed on the base 101 . The insulating layer 102 may provide an insulating surface of the substrate 100 . In some embodiments, the substrate 100 includes a substrate 101 and a composite layer that encapsulates the substrate 101 . The composite material layer, for example, covers all surfaces (including upper and lower surfaces and all sides) of the substrate 101 to provide the insulating layer 102 on the substrate 101 as shown in FIG. 1A . In some embodiments, the substrate 101 comprises a ceramic material. Ceramic materials include metallic inorganic materials. In some embodiments, the substrate 101 may be made of silicon carbide (SiC), aluminum nitride (AlN), sapphire (Sapphire), or other suitable materials. The above-mentioned sapphire substrate is alumina. In some embodiments, the composite material layer covering the periphery of the substrate 101 may include a single or multiple layers of insulating material and/or other suitable material layers, wherein the insulating material layer is, for example, oxide, nitride, oxynitride, or other suitable insulating materials. In addition, in some other embodiments, the substrate 101 may be formed of, for example, silicon (Si), silicon carbide, gallium nitride (GaN), silicon dioxide (SiO 2 ), sapphire, or a combination thereof. For example, the substrate 100 is a silicon-on-insulator (SOI) substrate, that is, the substrate 100 includes a silicon base and an insulating layer formed on the silicon base. To simplify the drawings, the substrate 100 in the drawings only shows a portion of the insulating layer 102 above the base 101 . In some embodiments, the substrate 100 may be a single-layer substrate or a multi-layer substrate. The substrate 100 is not limited to a silicon-on-insulator (SOI) substrate, and can also be a silicon wafer or a ceramic substrate. Furthermore, the substrate 100 includes a first region 100A and a second region 100B. According to some embodiments, the first region 100A is a region where the first element D E1 will be formed later, and the second region 100B is a region where the second element D E2 will be formed later. In some of the following embodiments, a high-electron mobility transistor (HEMT) is used as an example of the structure of the devices formed in the first region 100A and the second region 100B. In addition, the positions of the first region 100A and the second region 100B can also be arbitrarily adjusted according to the configuration requirements of the semiconductor structure. In some embodiments, the first region 100A is adjacent to the second region 100B.

接著,參照第1A圖,在基板100上方形成晶種層(seed layer)104,並且在晶種層104上方形成磊晶層111。 Next, referring to FIG. 1A , a seed layer 104 is formed over the substrate 100 , and an epitaxial layer 111 is formed over the seed layer 104 .

在一些實施例中,晶種層104可由矽(Si)或其他合適 之材料所形成。一些實施例中,晶種層104的形成方法可包含選擇性磊晶成長(selective epitaxy growth,SEG)製程、化學氣相沉積(chemical vapor deposition,CVD)製程、分子束磊晶製程(molecular-beam epitaxy,MBE)、沉積經摻雜的非晶半導體(例如,Si)之後固相磊晶再結晶(solid-phase epitaxial recrystallization,SPER)步驟、藉由直接轉貼晶種的方式、或其他合適的製程。化學氣相沉積製程例如是氣相磊晶(vapor-phase epitaxy,VPE)製程、低壓化學氣相沉積(low pressure chemical vapor deposition,LPCVD)製程、超高真空化學氣相沉積(ultra-high vacuum chemical vapor deposition,UHV-CVD)製程、或其他合適的製程。 In some embodiments, the seed layer 104 may be silicon (Si) or other suitable formed of materials. In some embodiments, the method for forming the seed layer 104 may include a selective epitaxy growth (SEG) process, a chemical vapor deposition (CVD) process, and a molecular-beam epitaxy process (molecular-beam). epitaxy, MBE), deposition of doped amorphous semiconductor (eg, Si) followed by solid-phase epitaxial recrystallization (SPER) step, by direct seeding, or other suitable processes . The chemical vapor deposition process is, for example, a vapor-phase epitaxy (VPE) process, a low pressure chemical vapor deposition (LPCVD) process, and an ultra-high vacuum chemical vapor deposition (ultra-high vacuum chemical) process. vapor deposition, UHV-CVD) process, or other suitable processes.

如第1A圖所示,在一些實施例中,以高電子遷移率電晶體作為第一區域100A和第二區域100B中所形成的元件的結構為例,磊晶層111包含緩衝層106、通道層108以及障壁層110。 As shown in FIG. 1A , in some embodiments, the epitaxial layer 111 includes a buffer layer 106 , a channel, and a structure in which a high electron mobility transistor is used as an element formed in the first region 100A and the second region 100B as an example. layer 108 and barrier layer 110 .

在一些實施例中,在晶種層104上磊晶成長以形成緩衝層106。緩衝層106可幫助減緩後續形成於緩衝層106上方的一通道層108的應變(strain),且防止缺陷形成於上方的通道層108中。在一些實施例中,緩衝層106的材料是III-V族半導體,例如AlN、GaN、AlxGa1-xN(1<x<1)、前述之組合或類似材料。一些實施例中,緩衝層106可由氫化物氣相磊晶法(HVPE)、分子束磊晶法(MBE)、有機金屬化學氣相沉積法(metalorganic chemical vapor deposition,MOCVD)、前述方法之組合或類似方法而形成。儘管在如第1A圖所示的實施例中,緩衝層106為單層結構,但在其他一些實施例中,緩衝層106也可以是多層結構。 In some embodiments, the buffer layer 106 is formed by epitaxial growth on the seed layer 104 . The buffer layer 106 may help relieve the strain of a channel layer 108 formed over the buffer layer 106 subsequently, and prevent defects from forming in the channel layer 108 above. In some embodiments, the material of the buffer layer 106 is a group III-V semiconductor, such as AlN, GaN, AlxGa1-xN (1<x<1), a combination of the foregoing, or the like. In some embodiments, the buffer layer 106 may be formed by hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE), metalorganic chemical vapor deposition (MOCVD), a combination of the foregoing, or formed in a similar way. Although in the embodiment shown in FIG. 1A, the buffer layer 106 is a single-layer structure, in other embodiments, the buffer layer 106 may also be a multi-layer structure.

接著,在緩衝層106上磊晶形成通道層108。在一些 實施例中,通道層108包括未摻雜的III-V族半導體材料。舉例而言,通道層108可以是由未摻雜的氮化鎵(GaN)所形成,但本發明並非以此為限。在一些其他的實施例中,通道層108包括氮化鋁鎵(AlGaN)、氮化鋁(AlN)、砷化鎵(GaAs)、磷化銦鎵(GaInP)、砷化鋁鎵(AlGaAs)、磷化銦(InP)、砷化銦鋁(InAlAs)、砷化銦鎵(InGaAs)、其他適當的III-V族材料或上述之組合。在一些實施例中,可使用分子束磊晶法(MBE)、氫化物氣相磊晶法(HVPE)、有機金屬化學氣相沉積法(MOCVD)、其他適當之方法或上述方法之組合,而形成通道層108。 Next, a channel layer 108 is epitaxially formed on the buffer layer 106 . in some In an embodiment, the channel layer 108 includes an undoped III-V semiconductor material. For example, the channel layer 108 may be formed of undoped gallium nitride (GaN), but the invention is not limited thereto. In some other embodiments, the channel layer 108 includes aluminum gallium nitride (AlGaN), aluminum nitride (AlN), gallium arsenide (GaAs), gallium indium phosphide (GaInP), aluminum gallium arsenide (AlGaAs), Indium phosphide (InP), indium aluminum arsenide (InAlAs), indium gallium arsenide (InGaAs), other suitable III-V materials, or combinations thereof. In some embodiments, molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE), metal-organic chemical vapor deposition (MOCVD), other suitable methods, or a combination thereof may be used, while A channel layer 108 is formed.

之後,在通道層108上磊晶形成障壁層110。在一些實施例中,障壁層110包括未摻雜的III-V族半導體材料。舉例而言,障壁層110是由未摻雜的氮化鎵鋁(AlxGa1-xN,其中0<x<1)所形成,但本發明並不以此為限。在一些其他的實施例中,障壁層110亦可包括氮化鋁鎵(GaN)、氮化鋁(AlN)、砷化鎵(GaAs)、磷化銦鎵(GaInP)、砷化鋁鎵(AlGaAs)、磷化銦(InP)、砷化銦鋁(InAlAs)、砷化銦鎵(InGaAs)、其他適當的III-V族材料或上述之組合。舉例而言,可使用分子束磊晶法、有機金屬化學氣相沉積法、氫化物氣相磊晶法、其他適當之方法或上述方法之組合形成障壁層110於通道層108之上。 After that, a barrier layer 110 is epitaxially formed on the channel layer 108 . In some embodiments, barrier layer 110 includes undoped III-V semiconductor material. For example, the barrier layer 110 is formed of undoped aluminum gallium nitride (AlxGa1-xN, where 0<x<1), but the invention is not limited thereto. In some other embodiments, the barrier layer 110 may also include aluminum gallium nitride (GaN), aluminum nitride (AlN), gallium arsenide (GaAs), gallium indium phosphide (GaInP), aluminum gallium arsenide (AlGaAs) ), indium phosphide (InP), indium aluminum arsenide (InAlAs), indium gallium arsenide (InGaAs), other suitable III-V materials, or combinations thereof. For example, the barrier layer 110 may be formed over the channel layer 108 using molecular beam epitaxy, metal organic chemical vapor deposition, hydride vapor phase epitaxy, other suitable methods, or a combination thereof.

在一些實施例中,通道層108與障壁層110包括相異的材料,以於通道層108與障壁層110之間形成一異質界面。藉由異質材料的能隙差(band gap),可使二維電子氣(two-dimensional electron gas,2DEG)(未顯示)形成於此異質界面上。根據一些實施例所形成的半導體結構,例如高電子遷移率電晶體(HEMT),可利用二維電子氣作為導電載子。 In some embodiments, the channel layer 108 and the barrier layer 110 comprise dissimilar materials to form a heterogeneous interface between the channel layer 108 and the barrier layer 110 . A two-dimensional electron gas (2DEG) (not shown) can be formed on the hetero interface through the band gap of the hetero materials. Semiconductor structures formed in accordance with some embodiments, such as high electron mobility transistors (HEMTs), may utilize a two-dimensional electron gas as conductive carriers.

雖然如上述實施例,磊晶層111為含氮化鎵之複合層, 但本揭露並不以此為限。除了緩衝層106、通道層108以及障壁層110,磊晶層111亦可包含其他層膜;例如一些其他實施例中,在緩衝層106和通道層108之間還可形成一碳摻雜層(carbon-doped layer),以提升半導體結構的崩潰電壓。 Although as in the above-mentioned embodiment, the epitaxial layer 111 is a composite layer containing gallium nitride, However, this disclosure is not limited to this. In addition to the buffer layer 106 , the channel layer 108 and the barrier layer 110 , the epitaxial layer 111 may also include other layers; for example, in some other embodiments, a carbon doped layer ( carbon-doped layer) to increase the breakdown voltage of the semiconductor structure.

接著,參照第1B圖,在一些實施例中,形成貫穿磊晶層111並接觸基板100的頂面的溝槽112h。如第1B圖所示,溝槽112h穿過障壁層110、通道層108、緩衝層106以及晶種層104,並接觸基底101上的絕緣層102。於此示例中,以絕緣層102的頂面102a為基板100的頂面。再者,於一些實施例中,自基板100的上方視之,溝槽112h為相連之封閉槽(closed trench)的一部分,封閉槽可區隔出基板100的第一區域100A和第二區域100B。 Next, referring to FIG. 1B , in some embodiments, a trench 112 h is formed that penetrates the epitaxial layer 111 and contacts the top surface of the substrate 100 . As shown in FIG. 1B , the trenches 112 h pass through the barrier layer 110 , the channel layer 108 , the buffer layer 106 and the seed layer 104 and contact the insulating layer 102 on the substrate 101 . In this example, the top surface 102 a of the insulating layer 102 is used as the top surface of the substrate 100 . Furthermore, in some embodiments, when viewed from above the substrate 100 , the trench 112 h is a part of a connected closed trench, and the closed trench can separate the first area 100A and the second area 100B of the substrate 100 .

溝槽112h的形成方法可包含在障壁層110上形成遮罩層(未繪示)。然後,藉由實施圖案化製程將遮罩層圖案化以形成圖案化的遮罩(未繪示)。圖案化製程包含微影製程和蝕刻製程。微影製程包含光阻塗佈(例如旋轉塗佈)、軟烤、遮罩對準、曝光、曝光後烘烤、光阻顯影、洗滌和烘乾(例如硬烤)。蝕刻製程包含乾式蝕刻或濕式蝕刻。結果,圖案化的遮罩暴露出障壁層110的一部分。然後,使用圖案化的遮罩為遮罩,實施乾式蝕刻製程、濕式蝕刻製程、或使用乾式和濕式兩種製程的搭配,以形成溝槽112h。 A method of forming the trench 112h may include forming a mask layer (not shown) on the barrier layer 110 . Then, the mask layer is patterned by performing a patterning process to form a patterned mask (not shown). The patterning process includes a lithography process and an etching process. The lithography process includes photoresist coating (eg spin coating), soft bake, mask alignment, exposure, post exposure bake, photoresist development, washing and drying (eg hard bake). The etching process includes dry etching or wet etching. As a result, the patterned mask exposes a portion of the barrier layer 110 . Then, using the patterned mask as a mask, a dry etching process, a wet etching process, or a combination of both dry and wet processes is used to form the trench 112h.

然後,參照第1C圖,於一些實施例中,在溝槽112h內填入一或多種絕緣材料以形成隔離結構112,以及在第一區域100A中的磊晶層111上(例如障壁層110上)形成第一閘極113。 Then, referring to FIG. 1C, in some embodiments, one or more insulating materials are filled in the trench 112h to form the isolation structure 112, and on the epitaxial layer 111 (eg, on the barrier layer 110) in the first region 100A ) to form the first gate electrode 113 .

一些實施例中,在溝槽112h內填入的絕緣材料例如包含氮化物、氧化物、或前述之組合,以形成隔離結構112。隔離結 構112的材料可由原子層沉積(atomic layer deposition,ALD)、化學氣相沉積、旋塗式玻璃(spin-on glass,SOG)、流動式化學氣相沉積(flowable chemical vapor deposition,FCVD)、高密度電漿化學氣相沉積或類似製程,而形成隔離結構112。一些其他的實施例中,隔離結構112可包括襯層(liner)於溝槽112h的側壁。所使用的襯層材料視製程、元件的需求,包括了金屬及/或介電質材料。 In some embodiments, the insulating material filled in the trench 112 h includes, for example, a nitride, an oxide, or a combination thereof to form the isolation structure 112 . isolation junction The material of the structure 112 can be selected from atomic layer deposition (ALD), chemical vapor deposition, spin-on glass (SOG), flowable chemical vapor deposition (FCVD), high The isolation structure 112 is formed by density plasma chemical vapor deposition or a similar process. In some other embodiments, the isolation structure 112 may include a liner on the sidewalls of the trench 112h. The liner material used depends on the requirements of the process and components, including metal and/or dielectric materials.

再者,於一些實施例中,自基板100的上方視之,隔離結構112為相連之封閉結構(closed structure)的一部分,所構成的封閉結構可區隔出基板100的第一區域100A和第二區域100B。例如第1C圖所示,最左邊的隔離結構112與中間的隔離結構112分別是圍繞第一區域100A之封閉結構的左側壁和右側壁的一部分,而位於中間的隔離結構112與最右邊的隔離結構112分別是圍繞第二區域100B之封閉結構的左側壁和右側壁的一部分。一些實施例中,封閉結構的上視形狀為方形、長方形、或其他適合的形狀。本揭露對於封閉結構的上視形狀及其圍繞而成的區域面積(即第一區域100A和第二區域100B的大小)並不特別限制,可視實際應用的半導體結構的配置需求而任意的變化和調整。 Furthermore, in some embodiments, when viewed from above the substrate 100 , the isolation structure 112 is a part of a connected closed structure, and the closed structure formed can separate the first region 100A and the second region of the substrate 100 . The second area 100B. For example, as shown in FIG. 1C, the leftmost isolation structure 112 and the middle isolation structure 112 are respectively a part of the left and right side walls of the closed structure surrounding the first region 100A, and the middle isolation structure 112 is isolated from the rightmost one The structures 112 are part of the left and right side walls, respectively, of the enclosed structure surrounding the second region 100B. In some embodiments, the top-view shape of the closed structure is square, rectangular, or other suitable shapes. The present disclosure does not specifically limit the top-view shape of the closed structure and the area of the surrounding area (ie, the size of the first area 100A and the second area 100B), which may be arbitrarily changed according to the configuration requirements of the semiconductor structure in practical applications. Adjustment.

然後,再參照第1C圖,於一些實施例中,在第一區域100A中的障壁層110上形成第一閘極113,並且在障壁層110上形成第一介電層114。第一介電層114順應性地(conformally)覆蓋隔離結構112和第一閘極113。如第1C圖所示,第一閘極113直接接觸障壁層110。 Then, referring to FIG. 1C again, in some embodiments, a first gate 113 is formed on the barrier layer 110 in the first region 100A, and a first dielectric layer 114 is formed on the barrier layer 110 . The first dielectric layer 114 conformally covers the isolation structure 112 and the first gate electrode 113 . As shown in FIG. 1C , the first gate electrode 113 directly contacts the barrier layer 110 .

在一些實施例中,第一閘極113可由P型摻雜之氮化鎵(p-GaN)製成。一些其他的實施例中,第一閘極113可包含P型摻雜 之氮化鋁鎵(AlGaN)、氮化鎵(GaN)、氮化鋁(AlN)、砷化鎵(GaAs)、磷化銦鎵(GaInP)、砷化鋁鎵(AlGaAs)、磷化銦(InP)、砷化銦鋁(InAlAs)、砷化銦鎵(InGaAs)、其他合適的III-V族材料或前述之組合。此外,第一閘極113的形成方法可包含前述之沉積或磊晶製程,以及離子植入(ion implantation)或原位(in-situ)摻雜製程。 In some embodiments, the first gate 113 may be made of p-type doped gallium nitride (p-GaN). In some other embodiments, the first gate 113 may include P-type doping aluminum gallium nitride (AlGaN), gallium nitride (GaN), aluminum nitride (AlN), gallium arsenide (GaAs), gallium indium phosphide (GaInP), aluminum gallium arsenide (AlGaAs), indium phosphide ( InP), indium aluminum arsenide (InAlAs), indium gallium arsenide (InGaAs), other suitable III-V materials, or a combination of the foregoing. In addition, the method for forming the first gate 113 may include the aforementioned deposition or epitaxial process, and ion implantation or in-situ doping process.

在一些實施例中,第一介電層114可由氧化矽、氮化矽、氮氧化矽、氧化鋁或其他合適的介電材料製成,其中第一介電層114厚度為約1埃(Å)~約1000埃(Å)。再者,第一介電層114可藉由化學氣相沉積製程(CVD)、物理氣相沉積(PVD)製程、原子層沉積製程(ALD)、高密度電漿化學氣相沉積(HDPCVD)製程或前述之組合以形成。 In some embodiments, the first dielectric layer 114 may be made of silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, or other suitable dielectric materials, wherein the thickness of the first dielectric layer 114 is about 1 Angstrom (Å). ) ~ about 1000 angstroms (Å). Furthermore, the first dielectric layer 114 can be formed by chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), and high-density plasma chemical vapor deposition (HDPCVD) processes or a combination of the foregoing.

之後,參照第1D圖,於一些實施例中,在第二區域100B中的第一介電層114上形成第二閘極115,並且在第一介電層114上形成第二介電層116。其中,第二閘極115直接接觸第一介電層114。第二介電層116則順應性地(conformally)覆蓋隔離結構112和第二閘極115。 Then, referring to FIG. 1D , in some embodiments, a second gate 115 is formed on the first dielectric layer 114 in the second region 100B, and a second dielectric layer 116 is formed on the first dielectric layer 114 . The second gate electrode 115 directly contacts the first dielectric layer 114 . The second dielectric layer 116 conformally covers the isolation structure 112 and the second gate electrode 115 .

在一些實施例中,第二閘極115可包括金屬材料、金屬矽化物、多晶矽、其他適當之導電材料或上述之組合。金屬材料例如鎳(Ni)、金(Au)、鉑(Pt)、鈀(Pd)、銥(Ir)、鈦(Ti)、鉻(Cr)、鎢(W)、鋁(Al)、銅(Cu)前述之組合或其他合適的材料。一些實施例中,第二閘極115可由原子層沉積、化學氣相沉積、物理氣相沉積(如濺鍍)或類似製程形成。另外,在一些實施例中,第二介電層116的製程和材料可相似或相同於第一介電層114的製程和材料,在此便不重複敘述。 In some embodiments, the second gate 115 may include metal materials, metal silicides, polysilicon, other suitable conductive materials, or combinations thereof. Metal materials such as nickel (Ni), gold (Au), platinum (Pt), palladium (Pd), iridium (Ir), titanium (Ti), chromium (Cr), tungsten (W), aluminum (Al), copper ( Cu) a combination of the foregoing or other suitable materials. In some embodiments, the second gate 115 may be formed by atomic layer deposition, chemical vapor deposition, physical vapor deposition (eg, sputtering), or a similar process. In addition, in some embodiments, the process and materials of the second dielectric layer 116 may be similar or the same as those of the first dielectric layer 114 , which will not be repeated here.

在一些實施例中,第一閘極113為一p-GaN閘極,且第一閘極113與後續在第一閘極113兩側形成的第一源極電極121以及第一汲極電極123(第1F圖)可構成一增強型(enhanced mode,E-mode)元件。而第二閘極115為一金屬閘極,且第二閘極115與後續在第二閘極115兩側形成的第二源極電極125以及第二汲極電極127(第1F圖)可構成一空乏型(depletion mode,D-mode)元件。 In some embodiments, the first gate 113 is a p-GaN gate, and the first gate 113 and the first source electrode 121 and the first drain electrode 123 subsequently formed on both sides of the first gate 113 (FIG. 1F) can constitute an enhanced mode (E-mode) device. The second gate electrode 115 is a metal gate electrode, and the second gate electrode 115 and the second source electrode 125 and the second drain electrode 127 (FIG. 1F) formed subsequently on both sides of the second gate electrode 115 can be formed A depletion mode (D-mode) device.

接著,如第1E圖所示,在一些實施例中,對前述包含第二介電層116、第一介電層114以及障壁層110等材料層進行圖案化步驟,以在第一區域100A中形成開口121h和123h以及在第二區域100B中形成開口125h和127h。 Next, as shown in FIG. 1E , in some embodiments, a patterning step is performed on the aforementioned material layers including the second dielectric layer 116 , the first dielectric layer 114 , and the barrier layer 110 , so that in the first region 100A, a patterning step is performed. Openings 121h and 123h are formed and openings 125h and 127h are formed in the second region 100B.

於此示例,第一區域100A中的開口121h和123h分別位於第一閘極113的相對兩側,以於後續形成第一元件DE1的源極和汲極。於此示例,第二區域100B中的開口125h和127h分別位於第二閘極115的相對兩側,以於後續形成第二元件DE2的源極和汲極。一些實施例中,開口121h、123h、125h和127h延伸至障壁層110中並暴露出通道層108。 In this example, the openings 121h and 123h in the first region 100A are located on opposite sides of the first gate electrode 113, respectively, so as to form the source electrode and the drain electrode of the first element DE1 later. In this example, the openings 125h and 127h in the second region 100B are located on opposite sides of the second gate 115, respectively, so as to form the source and drain of the second element DE 2 later. In some embodiments, openings 121h , 123h , 125h and 127h extend into barrier layer 110 and expose channel layer 108 .

一些實施例中,可通過一遮罩層(未顯示)以及蝕刻製程,同時形成開口121h、123h、125h和127h。蝕刻製程例如乾式蝕刻製程,例如反應性離子蝕刻(reactive ion etch,RIE)、電子迴旋共振式(electron cyclotron resonance,ERC)蝕刻、感應耦合式電漿(inductively-coupled plasma,ICP)蝕刻或類似乾式蝕刻製程。 In some embodiments, openings 121h, 123h, 125h, and 127h may be formed simultaneously through a mask layer (not shown) and an etching process. Etching process such as dry etching process, such as reactive ion etching (RIE), electron cyclotron resonance (ERC) etching, inductively-coupled plasma (ICP) etching or similar dry etching etching process.

在一些實施例中,可使用包含蝕刻腔室的蝕刻設備提供蝕刻製程所使用之蝕刻劑的供氣系統、可施加偏壓功率至蝕刻腔室的偏壓功率產生源(bias power generator)、晶圓載台、可均勻地分 散蝕刻劑的噴灑頭以及可在蝕刻製程中即時監控所希望移除的材料層之蝕刻訊號的蝕刻終點偵測器。進行蝕刻製程時,蝕刻劑在蝕刻腔室中受到偏壓電場的加速,且朝著晶圓載台的方向,對於第二介電層116、第一介電層114以及障壁層110進行非等向性(anisotropic)蝕刻。 In some embodiments, an etching apparatus including an etching chamber can be used to provide a gas supply system for an etchant used in the etching process, a bias power generator that can apply bias power to the etching chamber, a crystal Round stage, can be divided evenly A spray head for dispersing etchant and an etch endpoint detector that can monitor the etch signal of the material layer desired to be removed in real time during the etch process. During the etching process, the etchant is accelerated by the bias electric field in the etching chamber, and the second dielectric layer 116 , the first dielectric layer 114 , and the barrier layer 110 are subjected to non-equalization in the direction of the wafer stage. Anisotropic etching.

形成開口121h、123h、125h和127h之後,可實施灰化製程,以移除遮罩層。 After the openings 121h, 123h, 125h and 127h are formed, an ashing process may be performed to remove the mask layer.

接著,如第1F圖所示,在一些實施例中,在開口121h、123h、125h和127h中沉積適當導電材料,並搭配圖案化步驟,以分別形成第一元件和第二元件的源極電極以及汲極電極。 Next, as shown in FIG. 1F, in some embodiments, appropriate conductive materials are deposited in openings 121h, 123h, 125h, and 127h, in conjunction with a patterning step, to form the source electrodes of the first and second elements, respectively and the drain electrode.

在一些實施例中,沉積的導電材料例如是金(Au)、鎳(Ni)、鉑(Pt)、靶(Pd)、銥(Ir)、鈦(Ti)、鉻(Cr)、鎢(W)、鋁(Al)、銅(Cu)、氮化鉭(TaN)、氮化鈦(TiN)、矽化鎢(WSi2)、前述之組合或類似材料,以在第一區域100A的開口121h、123h處分別形成第一源極電極121以及第一汲極電極123,並且在第二區域100B的開口125h、127h處分別形成第二源極電極125以及第二汲極電極127。 In some embodiments, the deposited conductive material is, for example, gold (Au), nickel (Ni), platinum (Pt), target (Pd), iridium (Ir), titanium (Ti), chromium (Cr), tungsten (W ), aluminum (Al), copper (Cu), tantalum nitride (TaN), titanium nitride (TiN), tungsten silicide (WSi 2 ), a combination of the foregoing, or similar materials, to be used in the openings 121h of the first region 100A, The first source electrode 121 and the first drain electrode 123 are respectively formed at 123h, and the second source electrode 125 and the second drain electrode 127 are respectively formed at the openings 125h and 127h of the second region 100B.

如第1F圖所示,在一些實施例中,第一區域100A中的第一源極電極121以及第一汲極電極123位於通道層108上且與通道層108電性接觸;第二區域100B中的第二源極電極125以及第二汲極電極127位於通道層108上且與通道層108電性接觸。 As shown in FIG. 1F, in some embodiments, the first source electrode 121 and the first drain electrode 123 in the first region 100A are located on the channel layer 108 and are in electrical contact with the channel layer 108; the second region 100B The second source electrode 125 and the second drain electrode 127 are located on the channel layer 108 and are in electrical contact with the channel layer 108 .

一些實施例中,可由原子層沉積(ALD)、化學氣相沉積(CVD)、物理氣相沉積(physical vapor deposition,PVD)、電子束蒸鍍(electron beam evaporation)、濺鍍或類似製程進行導電材料的沉積。在一些實施例中,沉積形成源極電極/汲極電極的材料層後,更包含進行高溫熱製程例如快速熱退火(rapid thermal annealing)製 程,以形成源極汲極歐姆接觸。 In some embodiments, conduction may be performed by atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), electron beam evaporation, sputtering, or the like deposition of materials. In some embodiments, after depositing the material layers for forming the source/drain electrodes, a high temperature thermal process such as rapid thermal annealing is further included. process to form source-drain ohmic contacts.

如第1F圖所示,形成於第一區域100A的第一元件DE1例如包含第一閘極113、第一源極電極121以及第一汲極電極123,而形成於第二區域100B的第二元件DE2例如包含第二閘極115、第二源極電極125以及第二汲極電極127。根據一些實施例,第一元件DE1是增強型(E-mode,即normally-off)高電子遷移率電晶體,第二元件DE2是空乏型(D-mode)高電子遷移率電晶體。 As shown in FIG. 1F , the first element DE 1 formed in the first region 100A includes, for example, a first gate electrode 113 , a first source electrode 121 and a first drain electrode 123 , and the first element DE 1 formed in the second region 100B The two-element DE 2 includes, for example, a second gate electrode 115 , a second source electrode 125 and a second drain electrode 127 . According to some embodiments, the first element DE 1 is an enhancement type (E-mode, normally-off) high electron mobility transistor, and the second element DE 2 is a depletion type (D-mode) high electron mobility transistor.

值得注意的是,根據本揭露的一些實施例,第一元件DE1的第一汲極電極123(第一區域100A中)與第二元件DE2的第二源極電極125(第二區域100B中)電性連接。在一些實施例中,如第1F圖所示,在開口121h、123h、125h和127h中沉積導電材料後,經過適當的圖案化步驟,可使第一區域100A中的第一汲極電極123與第二區域100B中的第二源極電極125經由連接部124完成電性連接。在一些實施例中,連接部124、第一汲極電極123和第二源極電極125具有相同的導電材料。 It should be noted that, according to some embodiments of the present disclosure, the first drain electrode 123 of the first element DE 1 (in the first region 100A) and the second source electrode 125 of the second element DE 2 (in the second region 100B) in) electrical connection. In some embodiments, as shown in FIG. 1F, after the conductive material is deposited in the openings 121h, 123h, 125h, and 127h, after an appropriate patterning step, the first drain electrode 123 in the first region 100A can be connected to the The second source electrode 125 in the second region 100B is electrically connected through the connecting portion 124 . In some embodiments, the connection portion 124 , the first drain electrode 123 and the second source electrode 125 have the same conductive material.

之後,參照第1G圖,於一些實施例中,在第二介電層116上形成第三介電層118。如第1G圖所示,第三介電層118順應性地覆蓋第一元件DE1和第二元件DE2。第一介電層114、第二介電層116和第三介電層118可構成磊晶層111上方的一層間介電層(ILD)。在一些實施例中,第三介電層118的製程和材料可相似或相同於第二介電層116和第一介電層114的製程和材料,在此便不重複敘述。 Afterwards, referring to FIG. 1G , in some embodiments, a third dielectric layer 118 is formed on the second dielectric layer 116 . As shown in FIG. 1G, the third dielectric layer 118 compliantly covers the first element DE1 and the second element DE2. The first dielectric layer 114 , the second dielectric layer 116 and the third dielectric layer 118 may constitute an interlayer dielectric layer (ILD) over the epitaxial layer 111 . In some embodiments, the process and materials of the third dielectric layer 118 may be similar or the same as those of the second dielectric layer 116 and the first dielectric layer 114 , which will not be repeated here.

接著,如第1G圖所示,於一些實施例中,在第一元件DE1的第一源極電極121和第一閘極113上分別形成導孔121V和113V,以及在第二元件DE2的第二閘極115和第二汲極電極127上分 別形成導孔115V和127V,其中第二元件DE2的第二閘極115與第一元件DE1的第一源極電極121經由連接部129完成電性連接。值得注意的是,雖然第1G圖示出連接部129,但連接部129並未與第一閘極113上方的導孔113V電性接觸。導孔121V、113V、115V、127V以及連接部129的製程和材料可相似或相同於前述源極電極和汲極電極(填充於開口121h、123h、125h和127h處)以及連接部124,在此便不重複敘述。 Next, as shown in FIG. 1G, in some embodiments, via holes 121V and 113V are formed on the first source electrode 121 and the first gate electrode 113 of the first element DE 1 , respectively, and via holes 121V and 113V are formed on the second element DE 2 Conductive holes 115V and 127V are formed on the second gate electrode 115 and the second drain electrode 127 respectively, wherein the second gate electrode 115 of the second element DE 2 and the first source electrode 121 of the first element DE 1 are connected via the connecting part 129 Complete the electrical connection. It is worth noting that although FIG. 1G shows the connection portion 129 , the connection portion 129 is not in electrical contact with the via hole 113V above the first gate electrode 113 . The process and materials of the via holes 121V, 113V, 115V, 127V and the connecting portion 129 may be similar or the same as the aforementioned source and drain electrodes (filled at the openings 121h, 123h, 125h and 127h) and the connecting portion 124, here The description will not be repeated.

根據本揭露的一些實施例,第二區域100B中第二元件DE2的第二閘極115電性連接至第一區域100A中第一元件DE1的第一源極電極121。如第1G圖所示,第二閘極115與第一源極電極121經由連接部129完成電性連接。在一些實施例中,導孔121V、113V、115V、127V以及連接部129具有相同的導電材料。 According to some embodiments of the present disclosure, the second gate electrode 115 of the second device DE 2 in the second region 100B is electrically connected to the first source electrode 121 of the first device DE 1 in the first region 100A. As shown in FIG. 1G , the second gate electrode 115 and the first source electrode 121 are electrically connected through the connection portion 129 . In some embodiments, the vias 121V, 113V, 115V, 127V and the connection portion 129 have the same conductive material.

根據一些實施例,上述提出的半導體結構係透過串接(cascade)的方式將多個元件相互連接,以實現高壓應用的可能性。在一些實施例中,在第一區域100A中形成的元件例如是增強型電晶體(例如第一元件DE1為增強型高電子遷移率電晶體),在第二區域100B中形成的元件例如是空乏型電晶體(例如第二元件DE2為空乏型高電子遷移率電晶體),且第一區域100A的第一汲極電極123電性連接至第二區域100B的第二源極電極125。再者,一些實施例中,第二區域100B中元件的第二閘極115電性連接至第一區域100A中元件的第一源極電極121。操作如第1G圖所示之半導體結構10時,分別於端點S、G、D施加電壓,例如,在一些實施例中,於端點S施加一源極電壓經由導孔121V而至第一源極電極121,於端點G施加一閘極電壓經由導孔113V而至第一閘極113,以及於端點D施加一汲極電壓經由導孔127V 而至第二汲極電極127。如第1G圖所示之半導體結構10,第一元件DE1作為半導體結構10的開關元件,透過第一元件DE1可關閉(Vgs小於0)第二元件DE2According to some embodiments, the above proposed semiconductor structure connects multiple elements to each other in a cascade manner to realize the possibility of high voltage applications. In some embodiments, the elements formed in the first region 100A are, for example, enhancement mode transistors (eg, the first element DE 1 is an enhancement mode high electron mobility transistor), and the elements formed in the second region 100B are, for example, A depletion type transistor (eg, the second element DE 2 is a depletion type high electron mobility transistor), and the first drain electrode 123 of the first region 100A is electrically connected to the second source electrode 125 of the second region 100B. Furthermore, in some embodiments, the second gate electrodes 115 of the elements in the second region 100B are electrically connected to the first source electrodes 121 of the elements in the first region 100A. When operating the semiconductor structure 10 shown in FIG. 1G, voltages are applied to the terminals S, G, and D, respectively. For example, in some embodiments, a source voltage is applied to the terminal S through the via 121V to the first The source electrode 121 applies a gate voltage at the terminal G to the first gate 113 via the via hole 113V, and applies a drain voltage to the terminal D via the via hole 127V to the second drain electrode 127 . As shown in the semiconductor structure 10 shown in FIG. 1G , the first element DE 1 is used as a switching element of the semiconductor structure 10 , and the second element DE 2 can be turned off (Vgs is less than 0) through the first element DE 1 .

根據上述本揭露的一些實施例,透過如上述第1G圖的半導體結構10所示的串接方式,磊晶層111只需具有承受約650V的能力,且可以在相同的基板上製作出可承受約650V的第一元件DE1和可承受約650V的第二元件DE2,即可實現1200V的高壓應用。另外,當分別施加0V和1200V於第一源極電極121和第二汲極電極127時,電性連接的第一汲極電極123和第二源極電極125則分別為600V。 According to some embodiments of the present disclosure, the epitaxial layer 111 only needs to have the ability to withstand about 650V through the series connection method as shown in the semiconductor structure 10 in FIG. 1G, and can be fabricated on the same substrate to withstand The first element DE 1 of about 650V and the second element DE 2 that can withstand about 650V can realize a high voltage application of 1200V. In addition, when 0V and 1200V are respectively applied to the first source electrode 121 and the second drain electrode 127, the electrically connected first drain electrode 123 and the second source electrode 125 are respectively 600V.

因此,根據上述本揭露的一些實施例所提出的半導體結構10的串接方式,無須形成很厚的磊晶層111也能使半導體結構10實現高壓元件或超高壓元件的應用。例如,一個第一元件DE1串接一個第二元件DE2可以使厚度原本需要約5~10微米(μm)的磊晶層111降低至約1~5微米(μm)。而厚度下降的磊晶層111,不但減少磊晶製程的時間,也大幅減輕了基板100所承受的磊晶層111的重量,並降低磊晶層111對基板產生的應力,以避免磊晶層111自基板上剝離。因此,本揭露一些實施例所提出半導體結構的製程可降低製造成本和提高產品可靠性(reliability)。 Therefore, according to the series connection method of the semiconductor structures 10 proposed by some embodiments of the present disclosure, the semiconductor structure 10 can be applied to a high-voltage device or an ultra-high-voltage device without forming a very thick epitaxial layer 111 . For example, connecting a first element DE 1 in series with a second element DE 2 can reduce the thickness of the epitaxial layer 111 originally required to be about 5-10 micrometers (μm) to about 1-5 micrometers (μm). The reduced thickness of the epitaxial layer 111 not only reduces the time of the epitaxial process, but also greatly reduces the weight of the epitaxial layer 111 on the substrate 100 and reduces the stress on the substrate caused by the epitaxial layer 111 to avoid the epitaxial layer. 111 is peeled off from the substrate. Therefore, the fabrication process of the semiconductor structure proposed by some embodiments of the present disclosure can reduce manufacturing cost and improve product reliability.

再者,本揭露一些實施例提出一種容易實現且製造成本低的系統單晶片(SoC)的半導體結構之製程。如上述第1A-1G圖所示之半導體結構的製造方法,在相同的基板100上製作第一元件DE1和第二元件DE2,且利用隔離結構112以及基底上的絕緣層102使對應不同元件的磊晶層相互隔絕,並利用連接部(例如金屬導線)124、129以前述連接方式而串接不同區域中的元件。再者,相較於傳統製法中 分別製作出元件再利用打線方式達成電性連接(即,系統單封裝,SiP),本揭露一些實施例所提出的半導體結構可避免傳統使用打線連接不同元件(例如電晶體元件)所產生的寄生電感和寄生電容所造成的雜訊,進而減少高電流變化率(di/dt)所造成的峰值電流(spike of current)。峰值電流的上下擺幅越小,元件越不容易受損。因此,本揭露一些實施例所提出的半導體結構具有改善的電子特性和良好的可靠度。 Furthermore, some embodiments of the present disclosure provide a system-on-a-chip (SoC) semiconductor structure process that is easy to implement and has a low manufacturing cost. As shown in the above-mentioned manufacturing method of the semiconductor structure shown in FIGS. 1A-1G , the first element DE 1 and the second element DE 2 are fabricated on the same substrate 100 , and the isolation structure 112 and the insulating layer 102 on the substrate are used to make the corresponding different The epitaxial layers of the elements are isolated from each other, and the elements in different regions are connected in series by connecting parts (eg, metal wires) 124 and 129 in the aforementioned connection manner. Furthermore, compared with the traditional method of fabricating components separately and then using wire bonding to achieve electrical connection (ie, system-in-package, SiP), the semiconductor structures proposed in some embodiments of the present disclosure can avoid the traditional use of wire bonding to connect different components ( For example, the parasitic inductance and parasitic capacitance generated by the transistor) reduce the peak current (spike of current) caused by the high current rate of change (di/dt). The smaller the peak current swing, the less likely the component will be damaged. Therefore, the semiconductor structures proposed by some embodiments of the present disclosure have improved electronic properties and good reliability.

根據本揭露一些實施例,可以在第二區域100B中串接多個空乏型(D-mode)電晶體,使串接後形成的半導體結構可以實現高壓或超高壓之操作。 According to some embodiments of the present disclosure, a plurality of depletion-mode (D-mode) transistors can be connected in series in the second region 100B, so that the semiconductor structure formed after the serial connection can realize high voltage or ultra-high voltage operation.

第2圖為根據本揭露一些實施例之半導體結構的剖面示意圖。第2圖的半導體結構20與上述第1G圖的半導體結構10的差異在於,半導體結構20的第二區域100B中串接了兩個空乏型電晶體,可降低各顆電晶體需承受的電壓、或是提高半導體結構20可應用的電壓。第2圖中相同於前述第1A-1G圖的部件係使用相同或類似的標號並省略其說明。 FIG. 2 is a schematic cross-sectional view of a semiconductor structure according to some embodiments of the present disclosure. The difference between the semiconductor structure 20 in FIG. 2 and the semiconductor structure 10 in FIG. 1G is that two depletion transistors are connected in series in the second region 100B of the semiconductor structure 20 , which can reduce the voltage that each transistor needs to withstand, Alternatively, the applicable voltage of the semiconductor structure 20 may be increased. Components in Fig. 2 that are the same as those in Figs. 1A-1G described above are assigned the same or similar reference numerals and their descriptions are omitted.

如第2圖所示,一些實施例中,半導體結構20包含一個增強型(E-mode)電晶體例如第一元件DE1設置於第一區域100A,以及兩個空乏型(D-mode)電晶體例如第二元件DE2和第三元件DE3設置於第二區域100B。且半導體結構20更包含另一隔離結構112於基板100上,且此隔離結構112使對應於第二元件DE2和第三元件DE3的磊晶層111彼此隔絕。在一些實施例中,第一元件DE1為增強型高電子遷移率電晶體(E-mode HEMT),第二元件DE2和第三元件DE3為空乏型高電子遷移率電晶體(D-mode HEMT)。 As shown in FIG. 2 , in some embodiments, the semiconductor structure 20 includes an enhancement mode (E-mode) transistor such as the first element DE1 disposed in the first region 100A, and two depletion mode (D-mode) transistors. Crystals such as the second element DE 2 and the third element DE 3 are disposed in the second region 100B. And the semiconductor structure 20 further includes another isolation structure 112 on the substrate 100, and the isolation structure 112 isolates the epitaxial layers 111 corresponding to the second element DE 2 and the third element DE 3 from each other. In some embodiments, the first element DE 1 is an enhancement-mode high electron mobility transistor (E-mode HEMT), and the second element DE 2 and the third element DE 3 are depletion-type high electron mobility transistors (D- mode HEMT).

一些實施例中,第三元件DE3包含第三閘極115-2、 第三源極電極125-2以及第三汲極電極127-2。其中第三閘極115-2位於第一介電層114上,第三源極電極125-2以及第三汲極電極127-2則位於第三閘極115-2的相對兩側且延伸至障壁層110中並接觸通道層108。第三元件DE3所包含的部件、使用的材料以及相關製程與前述第二元件DE2所包含的部件、使用的材料以及相關製程相同或相似,在此不再贅述。 In some embodiments, the third element DE 3 includes a third gate electrode 115-2, a third source electrode 125-2, and a third drain electrode 127-2. The third gate electrode 115-2 is located on the first dielectric layer 114, and the third source electrode 125-2 and the third drain electrode 127-2 are located on opposite sides of the third gate electrode 115-2 and extend to in barrier layer 110 and in contact with channel layer 108 . The components included in the third element DE 3 , the materials used and the related processes are the same as or similar to those included in the second element DE 2 , and the details are not repeated here.

再者,三個元件之間的串接相似於上述示例的串接方式。例如,在一些實施例中,第一元件DE1的第一汲極電極123電性連接第二元件DE2的第二源極電極125,第二元件DE2的第二汲極電極127電性連接第三元件DE3的第三源極電極125-2。 Furthermore, the concatenation of the three elements is similar to the concatenation of the above examples. For example, in some embodiments, the first drain electrode 123 of the first element DE 1 is electrically connected to the second source electrode 125 of the second element DE 2 , and the second drain electrode 127 of the second element DE 2 is electrically connected The third source electrode 125-2 of the third element DE3 is connected.

再者,位於基板100的第二區域100B上的元件(例如空乏型電晶體),其閘極電性連接下一顆電晶體的源極電極。例如,在一些實施例中,第二元件DE2的第二閘極115電性連接至第一元件DE1的第一源極電極121,第三元件DE3的第三閘極115-2電性連接至第二元件DE2的第二源極電極125。操作如第2圖所示之半導體結構20時,分別於端點S施加一源極電壓至第一源極電極121,於端點G施加一閘極電壓至第一閘極113,以及於端點D施加一汲極電壓至第三汲極電極127-2。如第2圖所示之半導體結構20,第一元件DE1作為半導體結構20的開關元件,透過第一元件DE1可關閉第二元件DE2和第三元件DE3Furthermore, the gate electrode of the element (eg, a depletion transistor) located on the second region 100B of the substrate 100 is electrically connected to the source electrode of the next transistor. For example, in some embodiments, the second gate 115 of the second element DE 2 is electrically connected to the first source electrode 121 of the first element DE 1 , and the third gate 115-2 of the third element DE 3 is electrically connected is electrically connected to the second source electrode 125 of the second element DE2. When operating the semiconductor structure 20 shown in FIG. 2, a source voltage is applied to the first source electrode 121 at the terminal S, a gate voltage is applied to the first gate 113 at the terminal G, and the terminal S is respectively applied to the first source electrode 121. The point D applies a drain voltage to the third drain electrode 127-2. As shown in the semiconductor structure 20 in FIG. 2 , the first element DE 1 is used as a switching element of the semiconductor structure 20 , and the second element DE 2 and the third element DE 3 can be turned off through the first element DE 1 .

根據第2圖的半導體結構20,透過如上述第2圖所示之串接方式,若需要實現1200V的高壓應用時,則磊晶層111只需具有承受約450V的能力,且可以在相同的基板上製作出可承受約450V的第一元件DE1、可承受約450V的第二元件DE2和可承受約450V的第 三元件DE3,即可實現1200V的高壓應用。另外,當分別施加0V和1200V於第一源極電極121和第三汲極電極127-2時,電性連接的第一汲極電極123和第二源極電極125分別為800V,電性連接的第二汲極電極127和第三源極電極125-2則分別為400V。 According to the semiconductor structure 20 of FIG. 2, through the series connection method as shown in the above-mentioned FIG. 2, if a high voltage application of 1200V needs to be realized, the epitaxial layer 111 only needs to have the ability to withstand about 450V, and the same A first element DE 1 capable of withstanding about 450V, a second element DE 2 capable of withstanding about 450V, and a third element DE 3 capable of withstanding about 450V are fabricated on the substrate, and a high voltage application of 1200V can be realized. In addition, when 0V and 1200V are respectively applied to the first source electrode 121 and the third drain electrode 127-2, the first drain electrode 123 and the second source electrode 125 which are electrically connected are respectively 800V and are electrically connected The second drain electrode 127 and the third source electrode 125-2 are respectively 400V.

再者,於一些實施例的半導體結構中,係串接n個空乏型(D-mode)電晶體於第二區域100B中,n為大於等於3之正整數。第3圖為根據本揭露一些實施例之半導體結構的剖面示意圖。第3圖中相同於前述實施例之第1A-1G圖和第2圖的部件係使用相同或類似的標號,並省略其說明。 Furthermore, in the semiconductor structure of some embodiments, n depletion-mode (D-mode) transistors are connected in series in the second region 100B, and n is a positive integer greater than or equal to 3. FIG. 3 is a schematic cross-sectional view of a semiconductor structure according to some embodiments of the present disclosure. The components in Fig. 3 that are the same as those in Figs. 1A-1G and Fig. 2 of the previous embodiment are designated by the same or similar reference numerals, and the description thereof is omitted.

如第3圖所示,一些實施例中,半導體結構30包含一個增強型電晶體例如第一元件DE1設置於第一區域100A,以及n個空乏型電晶體例如第二元件DE2、第三元件DE3、...和第(n+1)元件DE(n+1)設置於第二區域100B,其中n為大於等於3之正整數。且半導體結構30包含多個隔離結構112,以將對應於該些元件的磊晶層111彼此隔絕。在一些實施例中,第一元件DE1例如是增強型高電子遷移率電晶體(E-mode HEMT),第二元件DE2、第三元件DE3、...和第(n+1)元件DE(n+1)例如是空乏型高電子遷移率電晶體(D-mode HEMT)。 As shown in FIG. 3 , in some embodiments, the semiconductor structure 30 includes an enhancement transistor such as a first element DE 1 disposed in the first region 100A, and n depletion transistors such as a second element DE 2 , a third The elements DE 3 , . . . and the (n+1)th element DE (n+1) are disposed in the second region 100B, where n is a positive integer greater than or equal to 3. And the semiconductor structure 30 includes a plurality of isolation structures 112 to isolate the epitaxial layers 111 corresponding to the elements from each other. In some embodiments, the first element DE 1 is, for example, an enhancement-mode high electron mobility transistor (E-mode HEMT), the second element DE 2 , the third element DE 3 , . . . and the (n+1)th element The element DE (n+1) is, for example, a depletion type high electron mobility transistor (D-mode HEMT).

再者,一些實施例中,設置於第二區域100B的多個元件具有相似的部件與配置。例如,第(n+1)元件DE(n+1)包含第(n+1)閘極115-n、第(n+1)源極電極125-n以及第(n+1)汲極電極127-n。其中第(n+1)閘極115-n位於第一介電層114上,第(n+1)源極電極125-n以及第(n+1)汲極電極127-n則位於第(n+1)閘極115-n的相對兩側且延伸至障壁層110中並接觸通道層108。設置於第二區域100B的結構、使用的材料以及相關製程與前述實施例之第二元件DE2的部件、使用 的材料以及相關製程相同或相似,在此不再贅述。 Furthermore, in some embodiments, the plurality of elements disposed in the second region 100B have similar components and configurations. For example, the (n+1)th element DE (n+1) includes the (n+1)th gate electrode 115-n, the (n+1th)th source electrode 125-n, and the (n+1th)th drain electrode 127-n. The (n+1)th gate electrode 115-n is located on the first dielectric layer 114, the (n+1)th source electrode 125-n and the (n+1)th drain electrode 127-n are located on the (n+1)th gate electrode 125-n n+1) Opposite sides of gate 115 - n and extend into barrier layer 110 and contact channel layer 108 . The structures disposed in the second region 100B, the materials used, and the related processes are the same as or similar to the components, materials, and related processes of the second device DE 2 in the foregoing embodiment, and will not be repeated here.

再者,三個元件之間的串接相似於上述示例的串接方式。例如,在一些實施例中,第一元件DE1的第一汲極電極123電性連接第二元件DE2的第二源極電極125,第二元件DE2的第二汲極電極127電性連接第三元件DE3的第三源極電極125-2,第n元件DEn的第n汲極電極127-(n-1)電性連接第(n+1)元件DE(n+1)的第(n+1)源極電極125-n,以此類推。 Furthermore, the concatenation of the three elements is similar to the concatenation of the above examples. For example, in some embodiments, the first drain electrode 123 of the first element DE 1 is electrically connected to the second source electrode 125 of the second element DE 2 , and the second drain electrode 127 of the second element DE 2 is electrically connected The third source electrode 125-2 of the third element DE3 is connected, and the nth drain electrode 127-(n-1) of the nth element DEn is electrically connected to the (n+1)th element DE( n +1) of the (n+1)th source electrode 125-n, and so on.

再者,位於基板100的第二區域100B上的元件(例如空乏型電晶體),其閘極電性連接下一顆電晶體的源極電極。例如,在一些實施例中,第二元件DE2的第二閘極115電性連接至第一元件DE1的第一源極電極121,第三元件DE3的第三閘極115-2電性連接至第二元件DE2的第二源極電極125,第(n+1)元件DE(n+1)的第(n+1)閘極115-n電性連接至第n元件DEn的第n源極電極125-(n-1),以此類推。 Furthermore, the gate electrode of the element (eg, a depletion transistor) located on the second region 100B of the substrate 100 is electrically connected to the source electrode of the next transistor. For example, in some embodiments, the second gate 115 of the second element DE 2 is electrically connected to the first source electrode 121 of the first element DE 1 , and the third gate 115-2 of the third element DE 3 is electrically connected is electrically connected to the second source electrode 125 of the second element DE2, and the (n+1)th gate 115-n of the (n+1)th element DE (n+1) is electrically connected to the nth element DEn The nth source electrode 125-(n-1), and so on.

操作如第3圖所示之半導體結構30時,分別於端點S施加一源極電壓至第一源極電極121,於端點G施加一閘極電壓至第一閘極113,以及於端點D施加一汲極電壓至第(n+1)汲極電極127-n。如第3圖所示之半導體結構30,第一元件DE1作為半導體結構20的開關元件,透過第一元件DE1可關閉第二區域100B上的第二元件DE2、第三元件DE3、...和第(n+1)元件DE(n+1)When operating the semiconductor structure 30 shown in FIG. 3, a source voltage is applied to the first source electrode 121 at the terminal S, a gate voltage is applied to the first gate 113 at the terminal G, and The point D applies a drain voltage to the (n+1)th drain electrode 127-n. As shown in the semiconductor structure 30 shown in FIG. 3 , the first element DE 1 is used as the switching element of the semiconductor structure 20 , and the second element DE 2 , the third element DE 3 , the third element DE 3 , the second element DE 2 , the third element DE 3 , the ...and the (n+1)th element DE (n+1) .

根據第3圖的半導體結構30,透過如上述第3圖所示之串接方式,若需要實現1200V的高壓應用時,則磊晶層111只需具有承受略大於(1200/(n+1))V的能力。例如,當n=4時,基板上共1個增強型和4個空乏型電晶體,則磊晶層111只需具有承受例如約280V~300V(1200/5=240V)的能力,即可穩定操作半導體結構30。 並且可以在相同的基板上製作出可承受約280V~300V的第一元件DE1~第五元件DE5,串接後即可實現1200V的高壓應用。 According to the semiconductor structure 30 of FIG. 3, through the series connection method as shown in the above-mentioned FIG. 3, if a high voltage application of 1200V needs to be realized, the epitaxial layer 111 only needs to have a resistance slightly greater than (1200/(n+1) ) V's ability. For example, when n=4, and there are 1 enhancement type transistor and 4 depletion type transistors on the substrate, the epitaxial layer 111 only needs to have the ability to withstand, for example, about 280V~300V (1200/5=240V) to be stable The semiconductor structure 30 is operated. In addition, the first element DE 1 to the fifth element DE 5 which can withstand about 280V-300V can be fabricated on the same substrate, and a high-voltage application of 1200V can be realized after being connected in series.

第4圖為根據本揭露的一些實施例之半導體結構40的等效電路圖,其中半導體結構40是串接1個增強型電晶體(第一區域100A)和5個空乏型電晶體(第二區域100B)。半導體結構40的各部件的結構請參照上述實施例如第1G、2、3圖所示的第一元件DE1、第二元件DE2和第三元件DE34 is an equivalent circuit diagram of a semiconductor structure 40 according to some embodiments of the present disclosure, wherein the semiconductor structure 40 is connected in series with one enhancement mode transistor (the first region 100A) and five depletion mode transistors (the second region). 100B). For the structure of each component of the semiconductor structure 40, please refer to the first element DE 1 , the second element DE 2 , and the third element DE 3 shown in FIGS. 1G , 2 and 3 in the above-mentioned embodiments.

另外,在基板100上串接越多的元件雖然可以降低磊晶層111的厚度,各元件所需承受的電壓也越低。但是也增加了基板100的面積。因此,實際應用時可以考量磊晶層對應增加的元件數目而減少的厚度、增加的基板的面積大小以及應用產品尺寸等多項因素而進行損益取捨(trade-off),而決定基板上欲串接的元件數目。 In addition, although the thickness of the epitaxial layer 111 can be reduced, the more elements connected in series on the substrate 100, the lower the voltage required for each element is. However, the area of the substrate 100 is also increased. Therefore, in practical applications, the thickness of the epitaxial layer can be reduced due to the increased number of components, the increased area of the substrate, the size of the applied product, and other factors to make a trade-off to decide whether to connect the substrates in series. the number of components.

另外,本揭露並不僅限於上述實施例所提出的半導體結構。在一些其他的實施例中,半導體結構可能包含其他的部件,以進一步提高半導體結構的電性表現。 In addition, the present disclosure is not limited to the semiconductor structures proposed in the above embodiments. In some other embodiments, the semiconductor structure may include other components to further improve the electrical performance of the semiconductor structure.

例如,磊晶層111下方的晶種層104可能因電漿蝕刻製程而產生且累積在晶種層104中的寄生電荷。累積在晶種層104中的寄生電荷會造成動態導通電阻(dynamic R-on)上升,導致電流(I-on)下降,進而使電路失效,影響半導體結構的電性。以下係提出一些其他實施例的半導體結構,以解決累積在晶種層104中的寄生電荷的問題。 For example, the seed layer 104 under the epitaxial layer 111 may generate parasitic charges accumulated in the seed layer 104 due to the plasma etching process. The parasitic charges accumulated in the seed layer 104 will increase the dynamic on-resistance (dynamic R-on) and cause the current (I-on) to decrease, thereby causing circuit failure and affecting the electrical properties of the semiconductor structure. The semiconductor structures of some other embodiments are proposed below to solve the problem of parasitic charges accumulated in the seed layer 104 .

第5圖為根據本揭露一些其他的實施例之半導體結構的剖面示意圖。第5圖中相同於前述第1G圖的部件係使用相同或類似的標號,其相關結構、材料、製程與元件之間的串接方式請參照上述 實施例之說明,在此不再重複贅述。 FIG. 5 is a schematic cross-sectional view of a semiconductor structure according to some other embodiments of the present disclosure. The components in Fig. 5 that are the same as those in Fig. 1G above are marked with the same or similar symbols. Please refer to the above for the related structures, materials, processes, and connection between components. The description of the embodiment will not be repeated here.

第5圖的半導體結構50與上述第1G圖的半導體結構10的差異在於,半導體結構50的各元件的源極電極包含相互電性連接的兩個導電部,且其中一個導電部透過額外形成的貫孔而與晶種層104電性連接,以釋放例如因電漿蝕刻製程而產生且累積在晶種層104中的寄生電荷。 The difference between the semiconductor structure 50 in FIG. 5 and the semiconductor structure 10 in FIG. 1G is that the source electrodes of each element of the semiconductor structure 50 include two conductive parts that are electrically connected to each other, and one of the conductive parts passes through an additionally formed conductive part. The through-hole is electrically connected to the seed layer 104 to discharge parasitic charges accumulated in the seed layer 104 , which are generated due to the plasma etching process, for example.

如第5圖所示,一些實施例中,第一元件DE1的第一源極電極121包含相互電性連接的第一導電部1211和第二導電部1212,且第一導電部1211及/或第二導電部1212穿過磊晶層111並接觸晶種層104。 As shown in FIG. 5, in some embodiments, the first source electrode 121 of the first element DE 1 includes a first conductive portion 1211 and a second conductive portion 1212 that are electrically connected to each other, and the first conductive portion 1211 and/ Or the second conductive portion 1212 passes through the epitaxial layer 111 and contacts the seed layer 104 .

同樣的,一些實施例中,第二元件DE2的的第二源極電極125包含相互電性連接的兩個第三導電部1251和第四導電部1252,且第三導電部1251及/或第四導電部1252穿過磊晶層111並接觸晶種層104。在此示例中,第三導電部1251穿過磊晶層111並接觸晶種層104,以釋放累積在晶種層104中的寄生電荷。 Similarly, in some embodiments, the second source electrode 125 of the second element DE 2 includes two third conductive parts 1251 and a fourth conductive part 1252 that are electrically connected to each other, and the third conductive part 1251 and/or The fourth conductive portion 1252 passes through the epitaxial layer 111 and contacts the seed layer 104 . In this example, the third conductive portion 1251 passes through the epitaxial layer 111 and contacts the seed layer 104 to discharge parasitic charges accumulated in the seed layer 104 .

在高壓操作(例如操作電壓在600V以上)如第5圖的半導體結構50時,由於磊晶層111的貫孔151、152中填充的導電材料提供了累積在晶種層104中的寄生電荷的釋放路徑,因此可進一步解決寄生電荷在高壓下隨意移動而影響半導體結構的電性表現的問題。 When operating at high voltage (eg, the operating voltage is above 600V) such as the semiconductor structure 50 in FIG. 5 , the conductive material filled in the through holes 151 and 152 of the epitaxial layer 111 provides a reduction in parasitic charges accumulated in the seed layer 104 . Therefore, the problem that parasitic charges move freely under high voltage and affect the electrical performance of the semiconductor structure can be further solved.

於一些其他的實施例的半導體結構中,可於第二區域100B中串接2個或2個以上的空乏型電晶體。第6圖為根據本揭露一些其他的實施例之半導體結構的剖面示意圖。第6圖中相同於前述實施例之第3圖和第5圖的部件係使用相同或類似的標號,並省略其說明。 In the semiconductor structures of some other embodiments, two or more depletion transistors may be connected in series in the second region 100B. FIG. 6 is a schematic cross-sectional view of a semiconductor structure according to some other embodiments of the present disclosure. The components in Fig. 6 that are the same as those in Fig. 3 and Fig. 5 of the previous embodiment are designated by the same or similar reference numerals, and the description thereof is omitted.

如第6圖所示,可於半導體結構60的第二區域100B 中串接n個空乏型電晶體,n例如是大於等於3之正整數。再者,一些實施例中,半導體結構60的各個元件的源極電極包含相互電性連接的兩個導電部(例如第一導電部1211和第二導電部1212、第三導電部1251和第四導電部1252、導電部125-21和125-22、...、導電部125-n1和125-n2)。且各個源極電極的其中一個導電部可利用穿過磊晶層111的貫孔(例如151、152、152-2、...、152-n)而與晶種層104電性連接。 As shown in FIG. 6, the second region 100B of the semiconductor structure 60 can be n depletion-type transistors are connected in series, and n is, for example, a positive integer greater than or equal to 3. Furthermore, in some embodiments, the source electrode of each element of the semiconductor structure 60 includes two conductive parts (for example, the first conductive part 1211 and the second conductive part 1212 , the third conductive part 1251 and the fourth conductive part 1251 and the fourth conductive part 1251 and the fourth conductive part conductive part 1252, conductive parts 125-21 and 125-22, ..., conductive parts 125-n1 and 125-n2). And one of the conductive parts of each source electrode can be electrically connected to the seed layer 104 through the through holes (eg, 151 , 152 , 152 - 2 , . . . , 152 - n ) passing through the epitaxial layer 111 .

因此,在高壓操作(例如操作電壓在600V以上)如第6圖的半導體結構60時,不但具有可以減少磊晶層的厚度、降低各元件所需承受的電壓、以及可在相同一基板上進行元件製作等前述優點,實現高壓或超高壓之應用,各元件的貫孔中填充的導電材料更提供了累積在晶種層104中的寄生電荷的釋放路徑,因此高壓操作如第6圖所示的半導體結構60時,可以避免寄生電荷在高壓下隨意移動,進一步提升半導體結構的電性表現。 Therefore, when operating at high voltage (for example, the operating voltage is above 600V) such as the semiconductor structure 60 shown in FIG. 6, the thickness of the epitaxial layer can be reduced, the voltage required by each element can be reduced, and the process can be performed on the same substrate. The aforementioned advantages such as component fabrication enable high-voltage or ultra-high-voltage applications. The conductive material filled in the through-holes of each component provides a release path for parasitic charges accumulated in the seed layer 104. Therefore, the high-voltage operation is shown in FIG. 6 When the semiconductor structure 60 is formed, the random movement of parasitic charges under high voltage can be avoided, and the electrical performance of the semiconductor structure can be further improved.

綜合而言,本揭露一些實施例提出的半導體結構,具有複數個串接的電晶體元件。根據一些實施例所提出的元件串接方式,無須形成很厚的磊晶層也能使半導體結構實現高壓元件或超高壓元件的應用。而厚度下降的磊晶層不但減少了磊晶製程的時間,也大幅減輕了基板所承受的磊晶層的重量,降低了磊晶層對基板產生的應力。再者,一些實施例所提出的半導體結構的各元件可以是承受較低電壓的元件,透過上述實施例之串接方式而實現高壓應用。另外,一些實施例所提出的半導體結構之製程是一種容易實現且製造成本低的系統單晶片(SoC)的製程。在相同的基板上製作多個元件,例如一個增強型電晶體和一或多個空乏型電晶體相互串接,且利用隔離結構以及基底上的絕緣層使對應不同元件的磊晶層相互隔絕。透過如上述實施例 的元件的串接方式,可以避免傳統使用打線連接不同元件(例如電晶體元件)所產生的寄生電感和寄生電容所造成的雜訊,進而減少高電流變化率(di/dt)所造成的峰值電流(spike of current)。峰值電流的上下擺幅越小,元件越不容易受損。另外,根據一些其他的實施例所提出的半導體結構,可更包含其他的部件,例如在貫孔中連接各元件的源極電極的導電部,以提供累積在晶種層中的寄生電荷的釋放路徑,以進一步提高半導體結構的電性表現。因此,本揭露一些實施例所提出的半導體結構及其製造方法具有改善的電子特性和良好的可靠度。 To sum up, the semiconductor structures proposed by some embodiments of the present disclosure have a plurality of transistor elements connected in series. According to the device series connection method proposed in some embodiments, the semiconductor structure can be applied to a high-voltage device or an ultra-high-voltage device without forming a very thick epitaxial layer. The epitaxial layer with reduced thickness not only reduces the time of the epitaxial process, but also greatly reduces the weight of the epitaxial layer on the substrate and reduces the stress on the substrate caused by the epitaxial layer. Furthermore, each element of the semiconductor structure proposed in some embodiments may be an element that withstands a lower voltage, and a high-voltage application can be realized through the series connection method of the above-mentioned embodiments. In addition, the process of the semiconductor structure proposed in some embodiments is a system-on-chip (SoC) process that is easy to implement and has low manufacturing cost. Multiple components are fabricated on the same substrate, for example, an enhancement transistor and one or more depletion transistors are connected in series, and the epitaxial layers corresponding to different components are isolated from each other by an isolation structure and an insulating layer on the substrate. Through the above-mentioned embodiment The series connection of the components can avoid the noise caused by the parasitic inductance and parasitic capacitance generated by the traditional use of bonding wires to connect different components (such as transistor components), thereby reducing the peak value caused by the high current change rate (di/dt). current (spike of current). The smaller the peak current swing, the less likely the component will be damaged. In addition, according to some other embodiments, the proposed semiconductor structure may further include other components, such as conductive parts connecting the source electrodes of each element in the through holes, so as to provide the release of parasitic charges accumulated in the seed layer. path to further improve the electrical performance of the semiconductor structure. Therefore, some embodiments of the present disclosure provide semiconductor structures and fabrication methods thereof with improved electronic properties and good reliability.

雖然本揭露的實施例及其優點已揭露如上,但應該瞭解的是,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作更動、替代與潤飾。此外,本揭露之保護範圍並未侷限於說明書內所述特定實施例中的製程、機器、製造、物質組成、裝置、方法及步驟,任何所屬技術領域中具有通常知識者可從本揭露一些實施例之揭示內容中理解現行或未來所發展出的製程、機器、製造、物質組成、裝置、方法及步驟,只要可以在此處所述實施例中實施大抵相同功能或獲得大抵相同結果皆可根據本揭露一些實施例使用。因此,本揭露之保護範圍包括上述製程、機器、製造、物質組成、裝置、方法及步驟。另外,每一申請專利範圍構成個別的實施例,且本揭露之保護範圍也包括各個申請專利範圍及實施例的組合。 Although the embodiments of the present disclosure and their advantages have been disclosed above, it should be understood that those skilled in the art can make changes, substitutions and modifications without departing from the spirit and scope of the present disclosure. In addition, the protection scope of the present disclosure is not limited to the process, machine, manufacture, material composition, device, method and steps in the specific embodiments described in the specification. Anyone with ordinary knowledge in the technical field can learn some implementations from the present disclosure. In the disclosure of the examples, it is understood that processes, machines, manufactures, compositions of matter, devices, methods and steps developed in the present or in the future, as long as substantially the same functions can be implemented or substantially the same results can be obtained in the embodiments described herein. Some embodiments of the present disclosure are used. Therefore, the protection scope of the present disclosure includes the above-mentioned processes, machines, manufactures, compositions of matter, devices, methods and steps. In addition, each claimed scope constitutes a separate embodiment, and the protection scope of the present disclosure also includes the combination of each claimed scope and the embodiments.

10:半導體結構 10: Semiconductor structure

100A:第一區域 100A: The first area

100B:第二區域 100B: Second area

DE1:第一元件 DE 1 : first element

DE2:第二元件 DE 2 : Second element

100:基板 100: Substrate

101:基底 101: Substrate

102:絕緣層 102: Insulation layer

102a:頂面 102a: Top surface

104:晶種層 104: seed layer

106:緩衝層 106: Buffer layer

108:通道層 108: Channel Layer

110:障壁層 110: Barrier layer

111:磊晶層 111: epitaxial layer

112:隔離結構 112: Isolation Structure

113:第一閘極 113: The first gate

114:第一介電層 114: first dielectric layer

115:第二閘極 115: The second gate

116:第二介電層 116: Second Dielectric Layer

118:第三介電層 118: The third dielectric layer

121:第一源極電極 121: first source electrode

123:第一汲極電極 123: first drain electrode

124、129:連接部 124, 129: connecting part

125:第二源極電極 125: Second source electrode

127:第二汲極電極 127: Second drain electrode

113V、115V、121V、127V:導孔 113V, 115V, 121V, 127V: Via

S、G、D:端點 S, G, D: endpoints

Claims (11)

一種半導體結構,包括:一基板,包括一第一區域和一第二區域;一磊晶層,位於該基板之上方;一第一元件,設置於該基板的該第一區域上,該第一元件包含:一第一閘極,位於該磊晶層上,且一介電層形成於該磊晶層上並覆蓋該第一閘極,且該介電層不包括III-V半導體材料;一第一源極電極和一第一汲極電極分別位於該第一閘極的相對兩側;一第二元件,設置於該基板的該第二區域上,該第二元件包含:一第二閘極,位於該介電層上;一第二源極電極和一第二汲極電極分別位於該第二閘極的相對兩側,其中該第二元件的該第二源極電極與該第一元件的該第一汲極電極電性連接,且該第二元件的該第二閘極電性連接該第一元件的該第一源極電極,其中該第二汲極電極、該第一源極電極以及該第一閘極係分別施加一汲極電壓、一源極電壓以及一閘極電壓,該第一閘極包含p型摻雜之氮化鎵,該第二閘極包含金屬或多晶矽;以及一隔離結構,設置於該基板上,且該第一區域與該第二區域中的該磊晶層藉由該隔離結構而彼此隔絕開來。 A semiconductor structure, comprising: a substrate including a first region and a second region; an epitaxial layer located above the substrate; a first element disposed on the first region of the substrate, the first The device comprises: a first gate electrode located on the epitaxial layer, and a dielectric layer formed on the epitaxial layer and covering the first gate electrode, and the dielectric layer does not include III-V semiconductor material; a A first source electrode and a first drain electrode are respectively located on opposite sides of the first gate electrode; a second element is disposed on the second region of the substrate, and the second element comprises: a second gate electrode, located on the dielectric layer; a second source electrode and a second drain electrode are respectively located on opposite sides of the second gate electrode, wherein the second source electrode of the second element and the first The first drain electrode of the element is electrically connected, and the second gate of the second element is electrically connected to the first source electrode of the first element, wherein the second drain electrode, the first source The electrode and the first gate are respectively applied with a drain voltage, a source voltage and a gate voltage, the first gate comprises p-type doped gallium nitride, the second gate comprises metal or polysilicon ; and an isolation structure disposed on the substrate, and the epitaxial layers in the first region and the second region are isolated from each other by the isolation structure. 如申請專利範圍第1項所述之半導體結構,其中該隔離結構貫穿該磊晶層並接觸該基板。 The semiconductor structure of claim 1, wherein the isolation structure penetrates the epitaxial layer and contacts the substrate. 如申請專利範圍第1項所述之半導體結構,其中該基板 包含一基底、設置於該基底上的一絕緣層以及設置於該絕緣層上之一晶種層,且該磊晶層位於該晶種層之上方。 The semiconductor structure as described in claim 1, wherein the substrate It comprises a substrate, an insulating layer arranged on the substrate, and a seed crystal layer arranged on the insulating layer, and the epitaxial layer is located above the seed layer. 如申請專利範圍第3項所述之半導體結構,其中該隔離結構貫穿該磊晶層與該晶種層接觸。 The semiconductor structure of claim 3, wherein the isolation structure penetrates the epitaxial layer and contacts the seed layer. 如申請專利範圍第3項所述之半導體結構,其中該第一源極電極包含相互電性連接的兩個第一導電部,該第一元件更包含一第一貫孔與前述兩個第一導電部其中一者電性連接,且該第一貫孔穿過該磊晶層並接觸該晶種層。 The semiconductor structure of claim 3, wherein the first source electrode includes two first conductive parts that are electrically connected to each other, the first element further includes a first through hole and the aforementioned two first conductive parts One of the conductive parts is electrically connected, and the first through hole passes through the epitaxial layer and contacts the seed layer. 如申請專利範圍第1項所述之半導體結構,其中該介電層包括氧化矽、氮化矽、氮氧化矽、氧化鋁或上述之結合。 The semiconductor structure of claim 1, wherein the dielectric layer comprises silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, or a combination thereof. 如申請專利範圍第1項所述之半導體結構,更包括一層間介電層,位於該磊晶層上且覆蓋該第一元件以及該第二元件,其中該層間介電層包含覆蓋該第一閘極的該介電層以及覆蓋該第二閘極的另一介電層。 The semiconductor structure described in item 1 of the claimed scope further comprises an interlayer dielectric layer located on the epitaxial layer and covering the first element and the second element, wherein the interlayer dielectric layer comprises covering the first element The dielectric layer of the gate and another dielectric layer covering the second gate. 如申請專利範圍第1項所述之半導體結構,更包括:一第三元件,設置於該基板的該第二區域上,該第三元件包含:一第三閘極,位於該介電層上;一第三源極電極和一第三汲極電極分別位於該第三閘極的相對兩側;其中,該第三元件的該第三源極電極與該第二元件的該第二汲極電極電性連接。 The semiconductor structure described in claim 1 of the claimed scope further comprises: a third element disposed on the second region of the substrate, the third element comprising: a third gate located on the dielectric layer ; A third source electrode and a third drain electrode are respectively located on opposite sides of the third gate; wherein, the third source electrode of the third element and the second drain of the second element Electrodes are electrically connected. 如申請專利範圍第8項所述之半導體結構,其中該第三元件的該第三閘極電性連接該第二元件的該第二源極電極,且該第三元件的該第三汲極電極、該第一元件的該第一源極電極以及該第一閘 極係分別施加該汲極電壓、該源極電壓以及該閘極電壓。 The semiconductor structure of claim 8, wherein the third gate of the third element is electrically connected to the second source electrode of the second element, and the third drain of the third element electrode, the first source electrode of the first element, and the first gate The drain voltage, the source voltage and the gate voltage are respectively applied to the electrodes. 如申請專利範圍第8項所述之半導體結構,其中該隔離結構貫穿該磊晶層並接觸該基板,且該半導體結構更包括:另一隔離結構,設置於該基板上,使對應於該第二元件和該第三元件的該磊晶層彼此隔絕。 The semiconductor structure described in claim 8, wherein the isolation structure penetrates the epitaxial layer and contacts the substrate, and the semiconductor structure further comprises: another isolation structure disposed on the substrate so as to correspond to the first isolation structure. The epitaxial layers of the second element and the third element are isolated from each other. 如申請專利範圍第8項所述之半導體結構,其中該第一元件是增強型高壓電晶體,該第二元件和該第三元件是空乏型高壓電晶體。 The semiconductor structure of claim 8, wherein the first element is an enhancement type high voltage transistor, and the second element and the third element are depletion type high voltage transistors.
TW108146872A 2019-12-20 2019-12-20 Semiconductor structure TWI775027B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108146872A TWI775027B (en) 2019-12-20 2019-12-20 Semiconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108146872A TWI775027B (en) 2019-12-20 2019-12-20 Semiconductor structure

Publications (2)

Publication Number Publication Date
TW202125829A TW202125829A (en) 2021-07-01
TWI775027B true TWI775027B (en) 2022-08-21

Family

ID=77908791

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108146872A TWI775027B (en) 2019-12-20 2019-12-20 Semiconductor structure

Country Status (1)

Country Link
TW (1) TWI775027B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI777389B (en) * 2021-01-27 2022-09-11 鴻鎵科技股份有限公司 Package structure of dual transistors
TWI820955B (en) * 2022-10-07 2023-11-01 創世電股份有限公司 Normally-off gan-based semiconductor device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080230784A1 (en) * 2007-03-20 2008-09-25 Velox Semiconductor Cascode circuit employing a depletion-mode, GaN-based fet
US20080296618A1 (en) * 2007-06-01 2008-12-04 The Regents Of The University Of California P-GaN/AlGaN/AlN/GaN ENHANCEMENT-MODE FIELD EFFECT TRANSISTOR
US20100019279A1 (en) * 2008-04-02 2010-01-28 The Hong Kong University Of Science And Technology Integrated HEMT and Lateral Field-Effect Rectifier Combinations, Methods, and Systems
US20130146893A1 (en) * 2010-09-14 2013-06-13 Taiwan Semiconductor Manufacturing Company, Ltd. Sic crystalline on si substrates to allow integration of gan and si electronics
US20140239346A1 (en) * 2013-02-26 2014-08-28 Freescale Semiconductor, Inc. Mishfet and schottky device integration
US20140264449A1 (en) * 2013-03-15 2014-09-18 Semiconductor Components Industries, Llc Method of forming hemt semiconductor devices and structure therefor
US20170033210A1 (en) * 2015-07-31 2017-02-02 Infineon Technologies Austria Ag Breakdown Resistant HEMT Substrate and Device
US20170069617A1 (en) * 2012-03-13 2017-03-09 Taiwan Semiconductor Manufacturing Co., Ltd. Plasma protection diode for a hemt device
TW201810535A (en) * 2013-09-27 2018-03-16 英特爾股份有限公司 Semiconductor structure and system-on-chip (SoC) integrated circuit, and fabricating method thereof
TW201944594A (en) * 2018-04-11 2019-11-16 世界先進積體電路股份有限公司 Semiconductor structures and method for fabricating the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080230784A1 (en) * 2007-03-20 2008-09-25 Velox Semiconductor Cascode circuit employing a depletion-mode, GaN-based fet
US20080296618A1 (en) * 2007-06-01 2008-12-04 The Regents Of The University Of California P-GaN/AlGaN/AlN/GaN ENHANCEMENT-MODE FIELD EFFECT TRANSISTOR
US20100019279A1 (en) * 2008-04-02 2010-01-28 The Hong Kong University Of Science And Technology Integrated HEMT and Lateral Field-Effect Rectifier Combinations, Methods, and Systems
US20130146893A1 (en) * 2010-09-14 2013-06-13 Taiwan Semiconductor Manufacturing Company, Ltd. Sic crystalline on si substrates to allow integration of gan and si electronics
US20170069617A1 (en) * 2012-03-13 2017-03-09 Taiwan Semiconductor Manufacturing Co., Ltd. Plasma protection diode for a hemt device
US20140239346A1 (en) * 2013-02-26 2014-08-28 Freescale Semiconductor, Inc. Mishfet and schottky device integration
US20140264449A1 (en) * 2013-03-15 2014-09-18 Semiconductor Components Industries, Llc Method of forming hemt semiconductor devices and structure therefor
TW201810535A (en) * 2013-09-27 2018-03-16 英特爾股份有限公司 Semiconductor structure and system-on-chip (SoC) integrated circuit, and fabricating method thereof
US20170033210A1 (en) * 2015-07-31 2017-02-02 Infineon Technologies Austria Ag Breakdown Resistant HEMT Substrate and Device
TW201944594A (en) * 2018-04-11 2019-11-16 世界先進積體電路股份有限公司 Semiconductor structures and method for fabricating the same

Also Published As

Publication number Publication date
TW202125829A (en) 2021-07-01

Similar Documents

Publication Publication Date Title
US11374107B2 (en) Semiconductor device
JP6362248B2 (en) Integration of MISHFET and Schottky devices
CN107452625B (en) High power and high frequency heterojunction field effect transistor
US11127847B2 (en) Semiconductor devices having a gate field plate including an extension portion and methods for fabricating the semiconductor device
US10002956B1 (en) High electron mobility transistor
KR20160038011A (en) GaN TRANSISTORS WITH POLYSILICON LAYERS FOR CREATING ADDITIONAL COMPONENTS
US20140273366A1 (en) Semiconductor Devices and Methods of Manufacture Thereof
TWI735938B (en) Semiconductor device and method of manufacturing the same
TWI775027B (en) Semiconductor structure
CN114127955B (en) Semiconductor device and method for manufacturing the same
US11152364B1 (en) Semiconductor structure and methods for manufacturing the same
US20210167165A1 (en) Semiconductor devices and methods of manufacturing the same
US11211331B2 (en) Semiconductor structure having a via and methods of manufacturing the same
US20240047451A1 (en) Nitride-based semiconductor ic chip and method for manufacturing the same
TWI716890B (en) Semiconductor device and methods for manufacturing the same
US11049799B1 (en) Semiconductor structure and method for forming the same
TWI768270B (en) Semiconductor structures and the method for forming the same
CN114026699A (en) Semiconductor device and method for manufacturing the same
CN110875385B (en) Semiconductor device structure and method for manufacturing the same
US20210013331A1 (en) High electron mobility transistor devices and methods for forming the same
CN113078098A (en) Semiconductor structure and manufacturing method thereof
CN112652660A (en) Semiconductor structure and manufacturing method thereof
CN112117328A (en) Semiconductor device and method for manufacturing the same
TWI732155B (en) Semiconductor devices and methods for forming the same
TWI670775B (en) Semiconductor device structures and methods for manufacturing the same

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent