TWI732239B - Semiconductor structure and method for forming the same - Google Patents

Semiconductor structure and method for forming the same Download PDF

Info

Publication number
TWI732239B
TWI732239B TW108123510A TW108123510A TWI732239B TW I732239 B TWI732239 B TW I732239B TW 108123510 A TW108123510 A TW 108123510A TW 108123510 A TW108123510 A TW 108123510A TW I732239 B TWI732239 B TW I732239B
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor structure
forming
substrate
trenches
Prior art date
Application number
TW108123510A
Other languages
Chinese (zh)
Other versions
TW202103317A (en
Inventor
陳志諺
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW108123510A priority Critical patent/TWI732239B/en
Publication of TW202103317A publication Critical patent/TW202103317A/en
Application granted granted Critical
Publication of TWI732239B publication Critical patent/TWI732239B/en

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A semiconductor structure includes a substrate structure having a plurality of first trenches extending in a first direction, a nucleation layer disposed on the substrate structure, a compound semiconductor layer disposed on the nucleation layer, a gate disposed on the compound semiconductor layer, and a source and a drain disposed on the compound semiconductor layer and at the opposite sides of the gate.

Description

半導體結構及其形成方法Semiconductor structure and its forming method

本發明是關於一種半導體技術,特別是關於具有化合物半導體層之半導體結構及其形成方法。The present invention relates to a semiconductor technology, in particular to a semiconductor structure having a compound semiconductor layer and a method of forming the same.

氮化鎵系(GaN-based)半導體材料具有許多優秀的材料特性,例如高抗熱性、寬能隙(band-gap)、高電子飽和速率。因此,氮化鎵系半導體材料適合應用於高速與高溫的操作環境。近年來,氮化鎵系半導體材料已廣泛地應用於發光二極體(light emitting diode,LED)元件、高頻率元件,例如具有異質界面結構的高電子遷移率電晶體(high electron mobility transistor,HEMT)。GaN-based semiconductor materials have many excellent material properties, such as high heat resistance, wide band-gap, and high electron saturation rate. Therefore, GaN-based semiconductor materials are suitable for high-speed and high-temperature operating environments. In recent years, GaN-based semiconductor materials have been widely used in light emitting diode (LED) devices and high-frequency devices, such as high electron mobility transistors (HEMTs) with heterogeneous interface structures. ).

然而,在薄型化的高電子遷移率電晶體(HEMT)元件的運作中,若施加高電壓,容易使得空乏區擴張而藉由磊晶層下方的矽基板導通,進而造成基板擊穿(substrate breakdown)。在現有技術中,高電子遷移率電晶體元件的薄型化與崩潰電壓(break down)之間難以取得良好的平衡。However, in the operation of a thinned high electron mobility transistor (HEMT) device, if a high voltage is applied, the depletion region is easily expanded and the silicon substrate under the epitaxial layer is turned on, which will cause substrate breakdown (substrate breakdown). ). In the prior art, it is difficult to achieve a good balance between the thinning of the high electron mobility transistor element and the break down voltage.

隨著氮化鎵系半導體材料的發展,這些使用氮化鎵系半導體材料的半導體裝置應用於更嚴苛工作環境中,例如更高頻、更高溫或更高電壓。因此,具有氮化鎵系半導體材料的半導體裝置仍需進一步改善來克服所面臨的挑戰。With the development of gallium nitride-based semiconductor materials, these semiconductor devices using gallium nitride-based semiconductor materials are used in more severe working environments, such as higher frequency, higher temperature, or higher voltage. Therefore, semiconductor devices with gallium nitride-based semiconductor materials still need to be further improved to overcome the challenges they face.

本發明的一些實施例提供一種半導體結構,包含:具有沿著一第一方向延伸的複數個第一溝槽的基板結構、位於此基板結構上的成核層、位於此成核層上的化合物半導體層、位於此化合物半導體層上的閘極、以及位於此化合物半導體層上且位於此閘極之兩側的源極及汲極。Some embodiments of the present invention provide a semiconductor structure including: a substrate structure having a plurality of first trenches extending along a first direction, a nucleation layer on the substrate structure, and a compound on the nucleation layer The semiconductor layer, the gate located on the compound semiconductor layer, and the source and drain located on the compound semiconductor layer and on both sides of the gate.

本發明的一些實施例提供一種半導體結構之形成方法,包含:提供基板結構;執行蝕刻步驟以形成沿著第一方向延伸的複數個第一溝槽於此基板結構中;順應形成成核層於此基板結構上;形成化合物半導體層於此成核層上;以及形成閘極、源極及汲極於此化合物半導體層上,其中此源極及此汲極位於此閘極之兩側。Some embodiments of the present invention provide a method for forming a semiconductor structure, including: providing a substrate structure; performing an etching step to form a plurality of first trenches extending along a first direction in the substrate structure; On the substrate structure; forming a compound semiconductor layer on the nucleation layer; and forming a gate, a source and a drain on the compound semiconductor layer, wherein the source and the drain are located on both sides of the gate.

以下提供了各種不同的實施例或範例,用於實施所提供的半導體結構之不同元件。敘述中若提及第一部件形成於第二部件之上,可能包含形成第一和第二部件直接接觸的實施例,也可能包含額外的部件形成於第一和第二部件之間,使得第一和第二部件不直接接觸的實施例。另外,本發明實施例可能在許多範例中使用重複的元件符號。這些重複僅是為了簡化和清楚的目的,而非代表所討論各種實施例及/或配置之間有特定的關係。Various embodiments or examples are provided below for implementing different elements of the provided semiconductor structure. If it is mentioned in the description that the first part is formed on the second part, it may include an embodiment in which the first and second parts are in direct contact, or may include additional parts formed between the first and second parts, so that the first An embodiment in which the second component is not in direct contact. In addition, the embodiments of the present invention may use repeated component symbols in many examples. These repetitions are only for the purpose of simplification and clarity, and do not represent a specific relationship between the various embodiments and/or configurations discussed.

再者,空間上的相關用語,例如「上方的」、「下方的」、「在……上方」、「在……下方」及類似的用詞,除了包含圖式繪示的方位外,也包含使用或操作中的裝置的不同方位。當裝置被轉向至其他方位時(旋轉90度或其他方位),則在此所使用的空間相對描述可同樣依旋轉後的方位來解讀。Furthermore, related terms in space, such as "above", "below", "above...", "below..." and similar terms, in addition to the orientation shown in the diagram, also Contains the different orientations of the device in use or operation. When the device is turned to other orientations (rotated by 90 degrees or other orientations), the relative description of the space used here can also be interpreted according to the rotated orientation.

在此,「約」、「大約」、「大抵」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」、「大約」、「大抵」的情況下,仍可隱含「約」、「大約」、「大抵」之含義。Here, the terms "about", "approximately", and "approximately" usually mean within 20% of a given value or range, preferably within 10%, and more preferably within 5%, or 3 Within %, or within 2%, or within 1%, or within 0.5%. It should be noted that the quantity provided in the manual is an approximate quantity, that is, without specifying "about", "approximately", "approximately", "about", "approximately" and "approximately" can still be implied. The meaning of "probably".

雖然所述的一些實施例中的部件以特定順序描述,這些描述方式亦可以其他合邏輯的順序進行。本發明實施例中的半導體結構可加入其他的部件。在不同實施例中,可替換或省略一些部件。Although the components in some of the described embodiments are described in a specific order, these descriptions can also be performed in other logical orders. Other components can be added to the semiconductor structure in the embodiment of the present invention. In different embodiments, some components may be replaced or omitted.

本發明實施例所提供的半導體結構包含了形成在化合物半導體層下方之基板結構中沿著特定方向延伸的複數個溝槽。藉由上述溝槽的配置,可在半導體結構之主動區中空間電荷(space charge)垂直擴張(vertical expansion)延伸至基板結構中的導電層(例如矽層)時形成斷面(hiatus),使基板橫向不導通以避免基板擊穿(substrate breakdown),進而提升崩潰電壓(breakdown voltage),以允許薄型化的半導體結構應用於高電壓操作。The semiconductor structure provided by the embodiment of the present invention includes a plurality of trenches extending along a specific direction in the substrate structure formed under the compound semiconductor layer. With the above-mentioned trench configuration, a hiatus can be formed when the space charge in the active region of the semiconductor structure extends vertically to the conductive layer (such as the silicon layer) in the substrate structure, so that The substrate does not conduct in the lateral direction to avoid substrate breakdown, thereby increasing the breakdown voltage, so as to allow the thinner semiconductor structure to be applied to high-voltage operation.

第1至7圖是根據本發明的一些實施例,說明形成第7圖所示之半導體結構100在各個階段的剖面示意圖。參照第1圖,提供基板結構110。在一些實施例中,基板結構110為絕緣體上覆矽(silicon on insulator,SOI)基板,其包含基底111、形成在基底111上的絕緣層112、以及形成在絕緣層112上的矽層113。在其他實施例中,基板結構110也可為塊體矽基板(bulk silicon substrate)(未繪示)。在一些實施例中,基板結構110也可為QSTTM 基板;在此,QSTTM 基板是指美國Qromis Technology, Inc.所生產的基板。FIGS. 1-7 are schematic cross-sectional views illustrating various stages of forming the semiconductor structure 100 shown in FIG. 7 according to some embodiments of the present invention. Referring to Figure 1, a substrate structure 110 is provided. In some embodiments, the substrate structure 110 is a silicon on insulator (SOI) substrate, which includes a substrate 111, an insulating layer 112 formed on the substrate 111, and a silicon layer 113 formed on the insulating layer 112. In other embodiments, the substrate structure 110 may also be a bulk silicon substrate (not shown). In some embodiments, the substrate structure 110 may also be a QST TM substrate; here, the QST TM substrate refers to a substrate produced by Qromis Technology, Inc. in the United States.

在一些實施例中,基底111可為摻雜的(例如以p型或n型摻雜物進行摻雜)或未摻雜的半導體基底,例如矽基底、矽鍺基底、砷化鎵基底或類似的半導體基底。在其他實施例中,基底111可為陶瓷基底,例如氮化鋁(AlN)基底、碳化矽(SiC)基底、氧化鋁基底(Al2 O3 )(或稱為藍寶石(Sapphire)基底)或其他類似的基底。在一些實施例中,基底111的厚度可在約300微米至約1200微米的範圍,例如約750微米。In some embodiments, the substrate 111 can be a doped (for example, doped with p-type or n-type dopants) or an undoped semiconductor substrate, such as a silicon substrate, a silicon germanium substrate, a gallium arsenide substrate, or the like The semiconductor substrate. In other embodiments, the substrate 111 may be a ceramic substrate, such as an aluminum nitride (AlN) substrate, a silicon carbide (SiC) substrate, an aluminum oxide substrate (Al 2 O 3 ) (or called a sapphire (Sapphire) substrate) or others. Similar base. In some embodiments, the thickness of the substrate 111 may range from about 300 microns to about 1200 microns, for example, about 750 microns.

設置於基底111上之絕緣層112是在高溫具有良好熱穩定性高品質的膜層。在一些實施例,絕緣層112是例如由四乙氧基矽烷(tetraethoxysilane,TEOS)所製得的高品質氧化矽絕緣層。在其他實施例中,絕緣層112是藉由電漿增強化學氣相沉積(plasma-enhanced chemical vapor deposition,PECVD)所形成的介電層,例如氧化矽、氮化矽、氮氧化矽、碳化矽、其他類似材料或前述之組合。根據本發明一些實施例,絕緣層112可提供較高品質的表面以利於後續將半導體結構的其他膜層形成在其表面上。在一些實施例中,絕緣層112的厚度可在約0.5微米至約3微米的範圍,例如約2微米。The insulating layer 112 disposed on the substrate 111 is a high-quality film with good thermal stability at high temperatures. In some embodiments, the insulating layer 112 is a high-quality silicon oxide insulating layer made of, for example, tetraethoxysilane (TEOS). In other embodiments, the insulating layer 112 is a dielectric layer formed by plasma-enhanced chemical vapor deposition (PECVD), such as silicon oxide, silicon nitride, silicon oxynitride, silicon carbide , Other similar materials or a combination of the foregoing. According to some embodiments of the present invention, the insulating layer 112 can provide a higher-quality surface to facilitate subsequent formation of other layers of the semiconductor structure on the surface. In some embodiments, the thickness of the insulating layer 112 may range from about 0.5 microns to about 3 microns, for example, about 2 microns.

根據本發明一些實施例,設置於絕緣層112上之矽層113之頂表面包含(111)矽晶面或(110)矽晶面。具體而言,本發明所屬技術領域中具有通常知識者可理解的是,晶體半導體材料(例如矽)包含以三維結構排列的多個原子,且這樣的三維結構包含多個面,且每一面具有各自以米勒指數(Miller index)表示的晶體取向。另一方面,在基板結構110為塊體矽基板的實施例中,基板結構110之頂面包含(111)矽晶面或(110)矽晶面。According to some embodiments of the present invention, the top surface of the silicon layer 113 disposed on the insulating layer 112 includes a (111) silicon crystal plane or a (110) silicon crystal plane. Specifically, those skilled in the art to which the present invention pertains can understand that a crystalline semiconductor material (such as silicon) includes a plurality of atoms arranged in a three-dimensional structure, and such a three-dimensional structure includes a plurality of faces, and each face has Each crystal orientation expressed by Miller index. On the other hand, in the embodiment where the substrate structure 110 is a bulk silicon substrate, the top surface of the substrate structure 110 includes a (111) silicon crystal plane or a (110) silicon crystal plane.

接著,參照第2圖,執行圖案化製程以形成複數個溝槽114於基板結構110(例如矽層113)中,其中圖案化製程可包含光微影(photolithography)製程與蝕刻製程。在一些實施例中,可藉由調整蝕刻製程的條件(例如:蝕刻時間、蝕刻速率、蝕刻化學品之濃度等)來控制溝槽114的深度。光微影製程可包含例如:光阻塗佈(例如旋轉塗佈(spin-coating))、軟烤(soft baking)、曝光圖案、曝光後烘烤(post-exposure baking)、光阻顯影、清洗及乾燥(例如硬烤(hard baking))、其他適合的製程、或上述之組合。上述蝕刻製程可為濕式蝕刻製程、乾式蝕刻製程、其他適當的蝕刻製程(例如反應式離子蝕刻(reactive ion etching,RIE))或上述之組合。在一些實施例中,藉由光微影製程在基板結構110上形成圖案化光阻層(未繪示),通過圖案化光阻層的複數個開口(未繪示)對基板結構110執行蝕刻步驟以形成複數個溝槽114於基板結構110中。Next, referring to FIG. 2, a patterning process is performed to form a plurality of trenches 114 in the substrate structure 110 (such as the silicon layer 113). The patterning process may include a photolithography process and an etching process. In some embodiments, the depth of the trench 114 can be controlled by adjusting the conditions of the etching process (for example, etching time, etching rate, concentration of etching chemicals, etc.). The photolithography process can include, for example, photoresist coating (such as spin-coating), soft baking, exposure pattern, post-exposure baking, photoresist development, and cleaning. And drying (such as hard baking), other suitable manufacturing processes, or a combination of the above. The above-mentioned etching process may be a wet etching process, a dry etching process, other suitable etching processes (such as reactive ion etching (RIE)), or a combination of the foregoing. In some embodiments, a patterned photoresist layer (not shown) is formed on the substrate structure 110 by a photolithography process, and the substrate structure 110 is etched through a plurality of openings (not shown) of the patterned photoresist layer The step is to form a plurality of trenches 114 in the substrate structure 110.

繼續參照第2圖並搭配參照第9A圖所繪示之例示性半導體結構的上視圖。在一些實施例中。繪示於第2圖中的半導體結構100可對應於在第9A圖中所繪示之剖面A-A’。值得注意的是,為了簡明地描述本發明之實施例並突顯其特徵,並未將半導體結構100的所有結構繪示於第9A圖中。在一些實施例中,如第9A圖所示,經由上述圖案化製程所形成於基板結構110中的複數個溝槽114是沿著第一方向延伸。換句話說,在上視圖中,複數個溝槽114之長軸平行於上述之第一方向。根據本發明一些實施例,上述第一方向可為藉由柴式長晶法(Czochralski process)或浮融長晶法(floating zone process)所形成之晶圓在製程中用於辨識晶體取向之刻痕(notch)的指向。根據本發明另一些實施例,上述第一方向可為矽層113之>1-10>晶體取向,並且刻痕901之指向可與矽層113之>1-10>晶體取向平行,但本發明實施例所提供之溝槽114的延伸方向並不以此為限。Continue to refer to FIG. 2 in conjunction with the top view of the exemplary semiconductor structure depicted in FIG. 9A. In some embodiments. The semiconductor structure 100 shown in FIG. 2 may correspond to the cross-section A-A' shown in FIG. 9A. It should be noted that, in order to briefly describe the embodiment of the present invention and highlight its features, not all the structures of the semiconductor structure 100 are shown in FIG. 9A. In some embodiments, as shown in FIG. 9A, the plurality of trenches 114 formed in the substrate structure 110 through the patterning process described above extend along the first direction. In other words, in the top view, the long axes of the plurality of grooves 114 are parallel to the above-mentioned first direction. According to some embodiments of the present invention, the above-mentioned first direction may be the process used to identify the crystal orientation of a wafer formed by the Czochralski process or the floating zone process. The direction of the notch. According to other embodiments of the present invention, the above-mentioned first direction may be the >1-10> crystal orientation of the silicon layer 113, and the direction of the notch 901 may be parallel to the >1-10> crystal orientation of the silicon layer 113, but the present invention The extending direction of the trench 114 provided by the embodiment is not limited thereto.

藉由上述在化合物半導體層下方之基板結構中沿著特定方向(例如刻痕指向及/或矽層113之>1-10>晶體取向)延伸的複數個溝槽,可在半導體結構之主動區中空間電荷垂直擴張延伸至基板結構中的導電層(例如矽層)時形成斷面,使基板結構橫向不導通以避免基板擊穿。Through the above-mentioned multiple trenches extending in a specific direction (such as the direction of the score and/or the >1-10> crystal orientation of the silicon layer 113) in the substrate structure under the compound semiconductor layer, the active area of the semiconductor structure can be When the space charge vertically expands and extends to the conductive layer (such as the silicon layer) in the substrate structure, a cross-section is formed, so that the substrate structure is laterally non-conductive to avoid substrate breakdown.

繼續參照第2圖並搭配參照第9B圖所繪示之例示性半導體結構的上視圖。值得注意的是,為了簡明地描述本發明之實施例並突顯其特徵,並未將半導體結構100的所有結構繪示於第9B圖中。在一些實施例中,上述圖案化製程可同時形成沿著第一方向延伸的複數個溝槽114以及沿著不同於第一方向之第二方向延伸的複數個溝槽914。如第9B圖所示,溝槽114之延伸方向(即第一方向)垂直於溝槽914之延伸方向(即第二方向)。然而,本發明實施例並不以此為限,第一方向與第二方向之夾角可根據產品設計進行調整,例如可為30度、45度、80度(未繪示)、或其他角度。Continue to refer to FIG. 2 in conjunction with the top view of the exemplary semiconductor structure depicted in FIG. 9B. It should be noted that, in order to briefly describe the embodiment of the present invention and highlight its features, not all the structures of the semiconductor structure 100 are shown in FIG. 9B. In some embodiments, the patterning process described above can simultaneously form a plurality of trenches 114 extending along a first direction and a plurality of trenches 914 extending along a second direction different from the first direction. As shown in FIG. 9B, the extending direction of the trench 114 (ie, the first direction) is perpendicular to the extending direction of the trench 914 (ie, the second direction). However, the embodiment of the present invention is not limited to this. The angle between the first direction and the second direction can be adjusted according to the product design, for example, it can be 30 degrees, 45 degrees, 80 degrees (not shown), or other angles.

藉由同時形成沿著第一方向延伸的複數個第一溝槽114與沿著第二方向延伸的複數個第二溝槽914,可更加有效阻擋在半導體結構之主動區中空間電荷的垂直擴張而延伸至基板結構中的導電層而導通,以避免造成基板擊穿,並提升釋放應力的效果。By simultaneously forming a plurality of first trenches 114 extending along the first direction and a plurality of second trenches 914 extending along the second direction, the vertical expansion of space charges in the active region of the semiconductor structure can be more effectively blocked And it extends to the conductive layer in the substrate structure to conduct conduction, so as to avoid the breakdown of the substrate and improve the effect of stress relief.

接著,參照第3圖,順應形成成核層120於基板結構110(例如矽層113)上。在一些實施例中,成核層120的材料可為氮化鋁(AlN)。在其他實施例中,成核層120可由其他半導體材料例如摻雜碳化矽(silicon carbide)(例如在碳化矽中摻雜氮或磷可以形成n型半導體,而摻雜鋁、硼、鎵或鈹形成p型半導體)、三五族(III-V)化合物半導體材料、或其他類似的材料來形成。在一些實施例中,成核層120可由磊晶成長製程形成,例如金屬有機化學氣相沉積(metal organic chemical vapor deposition,MOCVD)、氫化物氣相磊晶法(hydride vapor phase epitaxy,HVPE)、分子束磊晶法(molecular beam epitaxy,MBE)、前述之組合或類似方法順應形成於基板結構110上。Next, referring to FIG. 3, a nucleation layer 120 is conformably formed on the substrate structure 110 (for example, the silicon layer 113). In some embodiments, the material of the nucleation layer 120 may be aluminum nitride (AlN). In other embodiments, the nucleation layer 120 can be made of other semiconductor materials such as doped silicon carbide (for example, doping silicon carbide with nitrogen or phosphorus can form an n-type semiconductor, and doping with aluminum, boron, gallium or beryllium) P-type semiconductor), III-V (III-V) compound semiconductor materials, or other similar materials. In some embodiments, the nucleation layer 120 may be formed by an epitaxial growth process, such as metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), Molecular beam epitaxy (MBE), a combination of the foregoing, or similar methods are compliantly formed on the substrate structure 110.

值得注意的是,雖然第3圖僅繪示出形成於基板結構110之頂面上的成核層120,在一些實施例中,順應形成於基板結構110上的成核層120亦可同時形成於溝槽114之側壁表面(未繪示),但成核層120形成在溝槽114之側壁表面的厚度並不足以將溝槽填滿,而能大致上維持溝槽114內的空隙體積。It is worth noting that although FIG. 3 only shows the nucleation layer 120 formed on the top surface of the substrate structure 110, in some embodiments, the nucleation layer 120 formed on the substrate structure 110 can also be formed at the same time. On the sidewall surface of the trench 114 (not shown), the thickness of the nucleation layer 120 formed on the sidewall surface of the trench 114 is not sufficient to fill the trench 114 and can substantially maintain the void volume in the trench 114.

第4至第6圖是將化合物半導體層130形成於成核層120上之各個階段的剖面示意圖。在一些實施例中,化合物半導體層130可包含形成於成核層120上的緩衝層131、形成於緩衝層131上的通道層132、形成於通道層132上的阻障層133、以及形成於阻障層133上的蓋層134。4 to 6 are schematic cross-sectional views of various stages of forming the compound semiconductor layer 130 on the nucleation layer 120. In some embodiments, the compound semiconductor layer 130 may include a buffer layer 131 formed on the nucleation layer 120, a channel layer 132 formed on the buffer layer 131, a barrier layer 133 formed on the channel layer 132, and a barrier layer 133 formed on the channel layer 132. The cap layer 134 on the barrier layer 133.

緩衝層131可減緩後續形成於緩衝層131上方的通道層132的應變(strain),以防止缺陷形成於上方的通道層132中。應變是由通道層132與基板結構110不匹配造成。在一些實施例中,緩衝層131的材料可以是AlN、GaN、Alx Ga1-x N(其中0>x>1)、前述之組合、或其他類似的材料。緩衝層131可由磊晶成長製程形成,例如金屬有機化學氣相沉積(MOCVD)、氫化物氣相磊晶法(HVPE)、分子束磊晶法(MBE)、前述之組合、或類似方法。根據本發明一些實施例,在剖面示意圖中,經由磊晶成長製程所形成之緩衝層131包含了依序堆疊於成核層120上的不連續膜層(例如第一緩衝層131A)以及連續膜層(例如第二緩衝層131B)。The buffer layer 131 can slow down the strain of the channel layer 132 subsequently formed above the buffer layer 131 to prevent defects from being formed in the channel layer 132 above. The strain is caused by the mismatch between the channel layer 132 and the substrate structure 110. In some embodiments, the material of the buffer layer 131 may be AlN, GaN, Al x Ga 1-x N (where 0>x>1), a combination of the foregoing, or other similar materials. The buffer layer 131 may be formed by an epitaxial growth process, such as metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE), a combination of the foregoing, or the like. According to some embodiments of the present invention, in the schematic cross-sectional view, the buffer layer 131 formed by the epitaxial growth process includes a discontinuous film layer (such as the first buffer layer 131A) and a continuous film sequentially stacked on the nucleation layer 120 Layer (for example, the second buffer layer 131B).

參照第4、5圖,其繪示出將第一緩衝層131A與第二緩衝層131B磊晶成長於成核層120上的剖面示意圖。在第4、5圖中,第一緩衝層131A具有位於複數個溝槽114上方的複數個開口OP而形成不連續膜層,其中開口OP之寬度小於溝槽114之寬度,以利於接續形成之第二緩衝層131B在第一緩衝層131A上接合形成平整且連續的膜層。Referring to FIGS. 4 and 5, which illustrate cross-sectional schematic diagrams of epitaxial growth of the first buffer layer 131A and the second buffer layer 131B on the nucleation layer 120. In Figures 4 and 5, the first buffer layer 131A has a plurality of openings OP located above the plurality of trenches 114 to form a discontinuous film layer, wherein the width of the opening OP is smaller than the width of the trench 114 to facilitate continuous formation. The second buffer layer 131B is bonded on the first buffer layer 131A to form a smooth and continuous film layer.

值得注意的是,在上述溝槽114之延伸方向(即第一方向)平行於矽層113之>1-10>晶體取向的實施例中,由於緩衝層131與基板結構110之晶格結構的特性,緩衝層131並無法磊晶成長於溝槽114之側壁上,使得溝槽114內的空隙體積能夠大抵維持原有的尺寸。然而,緩衝層131會在成核層120之頂面上進行側向與向上成長,因而形成了逐漸密合但仍留有複數個開口OP之不連續的第一緩衝層131A,以及完全接合而形成平整且連續第二緩衝層131B。在其他實施例中,緩衝層131會快速側向生長,而使不連續的第一緩衝層131A不存在,亦即不存在開口OP(如後續第8A、8B、8C、8D圖所繪示之緩衝層131)。It is worth noting that in the embodiment where the extending direction of the trench 114 (ie, the first direction) is parallel to the >1-10> crystal orientation of the silicon layer 113, the lattice structure of the buffer layer 131 and the substrate structure 110 is different. Due to the characteristics, the buffer layer 131 cannot be epitaxially grown on the sidewall of the trench 114, so that the void volume in the trench 114 can be substantially maintained at the original size. However, the buffer layer 131 grows laterally and upwardly on the top surface of the nucleation layer 120, thereby forming a discontinuous first buffer layer 131A that gradually adheres but still leaves a plurality of openings OP, and is completely bonded. A flat and continuous second buffer layer 131B is formed. In other embodiments, the buffer layer 131 will rapidly grow laterally, so that the discontinuous first buffer layer 131A does not exist, that is, there is no opening OP (as shown in the subsequent figures 8A, 8B, 8C, and 8D) Buffer layer 131).

在其他實施例中,則可藉由將介電材料沉積於溝槽114及/或溝槽914中並接續執行平坦化步驟,才進行磊晶成長緩衝層131的步驟,以避免緩衝層131的材料磊晶成長於溝槽114及/或溝槽914中。在一些實施例中,介電材料可包含例如氧化矽、氮化矽、氮氧化矽、四乙氧基矽烷(tetraethoxysilane,TEOS)、磷矽玻璃(phosphosilicate glass,PSG)、硼磷矽酸鹽玻璃(borophosphosilicate glass,BPSG)、低介電常數介電材料、及/或其他適合的介電材料。舉例而言,可使用旋轉塗佈製程(spin coating)、化學氣相沉積(CVD)、物理氣相沉積(physical vapor deposition, PVD)、原子層沉積(atomic layer deposition,ALD)、高密度電漿化學氣相沉積(high density plasma CVD, HDPCVD)、其他合適的方法或前述之組合,將上述介電材料沉積於溝槽114及/或溝槽914中。In other embodiments, the step of epitaxially growing the buffer layer 131 can be performed by depositing a dielectric material in the trench 114 and/or the trench 914 and then performing a planarization step to prevent the buffer layer 131 from being deposited. The material is epitaxially grown in trench 114 and/or trench 914. In some embodiments, the dielectric material may include, for example, silicon oxide, silicon nitride, silicon oxynitride, tetraethoxysilane (TEOS), phosphosilicate glass (PSG), borophosphosilicate glass (borophosphosilicate glass, BPSG), low-k dielectric materials, and/or other suitable dielectric materials. For example, spin coating, chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), high-density plasma Chemical vapor deposition (high density plasma CVD, HDPCVD), other suitable methods, or a combination of the foregoing, deposit the above-mentioned dielectric material in the trench 114 and/or the trench 914.

根據上述實施例,利用設計溝槽的延伸方向平行於矽層113之>1-10>晶體取向,或者在溝槽的延伸方向不平行於矽層113之>1-10>晶體取向的情況下於溝槽中填入介電材料,使得後續在形成化合物半導體層130的同時,可大抵維持溝槽內的空隙體積,而能有效阻擋在半導體結構100之主動區中空間電荷的垂直擴張,避免空間電荷延伸至基板結構110或基板結構110中的導電層(例如矽層113)而導通所造成的基板擊穿。According to the above embodiment, the extending direction of the trench is designed to be parallel to the >1-10> crystal orientation of the silicon layer 113, or when the extending direction of the trench is not parallel to the >1-10> crystal orientation of the silicon layer 113 Filling the trench with a dielectric material enables the subsequent formation of the compound semiconductor layer 130 while substantially maintaining the void volume in the trench, which can effectively block the vertical expansion of space charges in the active region of the semiconductor structure 100 and avoid The space charge extends to the substrate structure 110 or the conductive layer (such as the silicon layer 113) in the substrate structure 110 and conducts the substrate breakdown caused by the conduction.

接著,請參照第6圖,在一些實施例中,通道層132可為氮化鎵(GaN)層,而形成於通道層132上之阻障層133可為氮化鎵鋁(AlGaN)層,其中氮化鎵層與氮化鎵鋁層可具有摻雜物(例如n型摻雜物或p型摻雜物)或不具有摻雜物。形成於阻障層133之上的蓋層134可為三五族(III-V)化合物半導體材料,用來鈍化材料表面,以顯著抑制電流崩潰效應並減小表面漏電流。通道層132、阻障層133、以及蓋層134皆可由磊晶成長製程形成,例如金屬有機化學氣相沉積(MOCVD)、氫化物氣相磊晶法(HVPE)、分子束磊晶法(MBE)、前述之組合或其他類似的方法。在一些實施例中,所形成之通道層132的厚度可在約10奈米至約1微米的範圍,例如約0.4微米。阻障層133的厚度可在約5奈米至約30奈米的範圍,例如約25奈米。蓋層134的厚度可在約0.5奈米至約10奈米的範圍,例如約2奈米。Next, referring to FIG. 6, in some embodiments, the channel layer 132 may be a gallium nitride (GaN) layer, and the barrier layer 133 formed on the channel layer 132 may be an aluminum gallium nitride (AlGaN) layer. The gallium nitride layer and the gallium aluminum nitride layer may have dopants (for example, n-type dopants or p-type dopants) or no dopants. The cap layer 134 formed on the barrier layer 133 may be a III-V compound semiconductor material, which is used to passivate the surface of the material, so as to significantly suppress the current collapse effect and reduce the surface leakage current. The channel layer 132, the barrier layer 133, and the cap layer 134 can be formed by an epitaxial growth process, such as metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE) ), the aforementioned combination or other similar methods. In some embodiments, the thickness of the formed channel layer 132 may range from about 10 nanometers to about 1 micrometer, for example, about 0.4 micrometers. The thickness of the barrier layer 133 may range from about 5 nanometers to about 30 nanometers, for example, about 25 nanometers. The thickness of the cap layer 134 may range from about 0.5 nanometers to about 10 nanometers, for example, about 2 nanometers.

根據本發明一些實施例,二維電子氣(two-dimensional electron gas,2DEG)形成於通道層132與阻障層133之間的異質界面上,如後續第7圖所示之半導體結構100即是利用二維電子氣(2DEG)(或稱為載子通道701)作為導電載子的高電子遷移率電晶體(high electron mobility transistor,HEMT)。According to some embodiments of the present invention, two-dimensional electron gas (2DEG) is formed on the hetero interface between the channel layer 132 and the barrier layer 133. The semiconductor structure 100 shown in the subsequent FIG. 7 is A high electron mobility transistor (HEMT) that uses a two-dimensional electron gas (2DEG) (or carrier channel 701) as a conductive carrier.

接著,參照第7圖,將閘極150形成於化合物半導體層130(例如蓋層134)上,並將源極160與汲極170在閘極150之兩側,以形成半導體結構100。根據本發明一些實施例,半導體結構100為高電子遷移率電晶體(HEMT)。在一些實施例中,閘極150與蓋層134之間可包含可選的(optional)摻雜化合物半導體層140,其細節將在後續進一步描述。Next, referring to FIG. 7, the gate electrode 150 is formed on the compound semiconductor layer 130 (for example, the cap layer 134 ), and the source electrode 160 and the drain electrode 170 are on both sides of the gate electrode 150 to form the semiconductor structure 100. According to some embodiments of the present invention, the semiconductor structure 100 is a high electron mobility transistor (HEMT). In some embodiments, an optional doped compound semiconductor layer 140 may be included between the gate 150 and the cap layer 134, the details of which will be further described later.

在一些實施例中,閘極150、源極160、以及汲極170的材料可為導電材料,例如金屬、金屬氮化物或半導體材料。在一些實施例中,金屬可為金(Au)、鎳(Ni)、鉑(Pt)、鈀(Pd)、銥(Ir)、鈦(Ti)、鉻(Cr)、鎢(W)、鋁(Al)、銅(Cu)、類似材料、前述之組合或前述之多層結構。半導體材料可為多晶矽或多晶鍺。上述的導電材料可藉由例如化學氣相沉積法(chemical vapor deposition,CVD)、濺鍍(sputtering)、電阻加熱蒸鍍法、電子束蒸鍍法、或其它合適的沉積方式形成於蓋層134上,再經由圖案化製程來形成閘極150、源極160、以及汲極170。In some embodiments, the materials of the gate 150, the source 160, and the drain 170 may be conductive materials, such as metals, metal nitrides, or semiconductor materials. In some embodiments, the metal may be gold (Au), nickel (Ni), platinum (Pt), palladium (Pd), iridium (Ir), titanium (Ti), chromium (Cr), tungsten (W), aluminum (Al), copper (Cu), similar materials, the aforementioned combination or the aforementioned multilayer structure. The semiconductor material can be polycrystalline silicon or polycrystalline germanium. The aforementioned conductive material can be formed on the cap layer 134 by, for example, chemical vapor deposition (CVD), sputtering, resistance heating evaporation, electron beam evaporation, or other suitable deposition methods. Above, the gate electrode 150, the source electrode 160, and the drain electrode 170 are formed through a patterning process.

根據本發明之一些實施例,在形成閘極150之前,可先形成摻雜化合物半導體層140於蓋層134上,才接續將閘極150形成在摻雜化合物半導體層140上。藉由設置摻雜化合物半導體層140於閘極150與蓋層134之間可抑制閘極150下方的二維電子氣(2DEG)之產生,以達成半導體裝置100之常關狀態。在一些實施例中,摻雜的化合物半導體層140的材料可以是以p型摻雜或n型摻雜的氮化鎵(GaN)。形成摻雜化合物半導體區140的步驟可包含藉由磊晶成長製程在蓋層134上沉積摻雜化合物半導體層(未繪示)並對其執行圖案化製程,以形成摻雜化合物半導體層140對應於預定形成閘極150的位置。According to some embodiments of the present invention, before forming the gate 150, the doped compound semiconductor layer 140 may be formed on the cap layer 134 first, and then the gate 150 may be formed on the doped compound semiconductor layer 140. By disposing the doped compound semiconductor layer 140 between the gate 150 and the cap layer 134, the generation of two-dimensional electron gas (2DEG) under the gate 150 can be suppressed, so as to achieve the normally-off state of the semiconductor device 100. In some embodiments, the material of the doped compound semiconductor layer 140 may be p-type doped or n-type doped gallium nitride (GaN). The step of forming the doped compound semiconductor region 140 may include depositing a doped compound semiconductor layer (not shown) on the cap layer 134 by an epitaxial growth process and performing a patterning process on the doped compound semiconductor layer 140 to form a corresponding doped compound semiconductor layer 140 At the position where the gate 150 is scheduled to be formed.

值得注意的是,本發明實施例所提供之半導體結構100之閘極結構的態樣並不以此為限,舉例來說,金屬絕緣層半導體閘極(metal-insulator-semiconductor gate,MIS-gate)、凹陷閘極(recess gate)、或藉由摻雜氟離子於閘極150下方的阻障層133所形成的氟閘極(fluorine-gate)等閘極態樣皆可根據不同的產品設計而應用於本發明實施例所提供之半導體結構100。It should be noted that the aspect of the gate structure of the semiconductor structure 100 provided by the embodiment of the present invention is not limited to this. For example, a metal-insulator-semiconductor gate (MIS-gate) ), recess gate, or fluorine-gate formed by doping fluorine ions in the barrier layer 133 under the gate 150, etc., can be designed according to different products It is applied to the semiconductor structure 100 provided by the embodiment of the present invention.

繼續參照第7圖,根據本發明一些實施例,溝槽114之垂直側壁具有法線方向A,其中法線方向A平行於在通道層132與阻障層133之間的異質界面上之載子通道701之載子流通方向。另一方面,在上述溝槽114之延伸方向(即第一方向)平行於矽層113之>1-10>晶體取向的實施例中,溝槽114之垂直側壁的法線方向平行於矽層113之>001>晶體取向。在此實施例中,載子通道701之載子流通方向亦平行於矽層113之>001>晶體取向。Continuing to refer to FIG. 7, according to some embodiments of the present invention, the vertical sidewalls of the trench 114 have a normal direction A, wherein the normal direction A is parallel to the carriers on the hetero interface between the channel layer 132 and the barrier layer 133 The direction of carrier flow in channel 701. On the other hand, in the embodiment where the extending direction (ie, the first direction) of the trench 114 is parallel to the >1-10> crystal orientation of the silicon layer 113, the normal direction of the vertical sidewalls of the trench 114 is parallel to the silicon layer 113 113 of >001> crystal orientation. In this embodiment, the carrier flow direction of the carrier channel 701 is also parallel to the >001> crystal orientation of the silicon layer 113.

綜上所述,藉由上述溝槽114與載子通道701之相對位置的配置,形成於基板結構110中的溝槽114可有效阻擋在半導體結構100之主動區中空間電荷SC的垂直擴張,避免空間電荷SC延伸至基板結構110中而導通所造成的基板擊穿,進而提升崩潰電壓,並允許薄型化的半導體結構應用於高電壓操作。In summary, through the above-mentioned arrangement of the relative positions of the trench 114 and the carrier channel 701, the trench 114 formed in the substrate structure 110 can effectively block the vertical expansion of the space charge SC in the active region of the semiconductor structure 100. It avoids the substrate breakdown caused by the space charge SC extending into the substrate structure 110 and is turned on, thereby increasing the breakdown voltage, and allowing the thinner semiconductor structure to be applied to high voltage operation.

第8A、8B、8C、8D圖是根據本發明的一些實施例,分別繪示出例示性半導體結構100A、100B、100C、100D的剖面示意圖。如第8A、8B、8C、8D圖所示,半導體結構100A、100B、100C、100D之結構大抵相似於第7圖所繪示之半導體結構100,其間的差異在於基板結構110中具有藉由調整上述蝕刻步驟的條件(例如:蝕刻時間、蝕刻速率、蝕刻化學品之濃度等)所分別形成之不同深度的溝槽114A、114B、114C、114D。值得注意的是,為了簡明地描述本發明之實施例並突顯其特徵,在第8A、8B、8C、8D圖中僅繪示出單一膜層的緩衝層131。分別繪示於第8A、8B、8C、8D圖中的半導體結構100A、100B、100C、100D皆可選擇性地包含填充於溝槽中的介電材料801。8A, 8B, 8C, and 8D are schematic cross-sectional views of exemplary semiconductor structures 100A, 100B, 100C, and 100D, respectively, according to some embodiments of the present invention. As shown in FIGS. 8A, 8B, 8C, and 8D, the structure of the semiconductor structure 100A, 100B, 100C, and 100D is substantially similar to the semiconductor structure 100 shown in FIG. The trenches 114A, 114B, 114C, and 114D of different depths are formed by the conditions of the above-mentioned etching step (for example, etching time, etching rate, concentration of etching chemicals, etc.). It is worth noting that, in order to briefly describe the embodiment of the present invention and highlight its features, only the buffer layer 131 of a single film layer is shown in FIGS. 8A, 8B, 8C, and 8D. The semiconductor structures 100A, 100B, 100C, and 100D shown in FIGS. 8A, 8B, 8C, and 8D, respectively, may optionally include a dielectric material 801 filled in the trench.

參照第8A圖,半導體結構100A之基板結構110中的溝槽114A部分穿過基板結構110中的矽層113。在一些實施例中,溝槽114A具有深度D1,其中深度D1在約0.05微米至約0.2微米的範圍,例如0.1微米。溝槽114A具有寬度W,其中寬度W在約0.2微米至約6微米的範圍,例如2微米。複數個溝槽114A之間的間距S約0.5微米至約10微米的範圍,例如5微米。Referring to FIG. 8A, the trench 114A in the substrate structure 110 of the semiconductor structure 100A partially penetrates the silicon layer 113 in the substrate structure 110. In some embodiments, the trench 114A has a depth D1, where the depth D1 is in the range of about 0.05 micrometers to about 0.2 micrometers, such as 0.1 micrometers. The trench 114A has a width W, where the width W is in the range of about 0.2 micrometers to about 6 micrometers, for example, 2 micrometers. The spacing S between the plurality of trenches 114A ranges from about 0.5 microns to about 10 microns, for example, 5 microns.

參照第8B圖,半導體結構100B之基板結構110中的溝槽114B完全穿過矽層113,因此溝槽114B之底面與基板結構110中的矽層113之底面大抵共平面。在一些實施例中,溝槽114B具有深度D2,其中深度D2在約0.05微米至約0.4微米的範圍,例如0.2微米。參照第8C圖,半導體結構100C之基板結構110中的溝槽114C貫穿矽層113,並穿過部分位於矽層113下方的絕緣層112。換句話說,溝槽114C之底面低於基板結構110中的矽層113的底面,而位於矽層113下方之絕緣層112中。在一些實施例中,溝槽114C具有深度D3,其中深度D3在約0.05微米至約2微米的範圍,例如1微米。參照第8D圖,半導體結構100D之基板結構110中的溝槽114D貫穿矽層113與絕緣層112,並穿過部分位於絕緣層112基底111。換句話說,溝槽114D之底面低於基板結構110中的絕緣層112的底面,而位於絕緣層112下方之基底111中。在一些實施例中,溝槽114D具有深度D4,其中深度D4在約0.05微米至約8微米的範圍,例如4微米。值得注意的是,本發明實施例所提供之溝槽的深度、寬度、以及溝槽間的間距僅為例示性的,本發明並不以此為限。Referring to FIG. 8B, the trench 114B in the substrate structure 110 of the semiconductor structure 100B completely penetrates the silicon layer 113, so the bottom surface of the trench 114B and the bottom surface of the silicon layer 113 in the substrate structure 110 are substantially coplanar. In some embodiments, the trench 114B has a depth D2, where the depth D2 ranges from about 0.05 microns to about 0.4 microns, such as 0.2 microns. Referring to FIG. 8C, the trench 114C in the substrate structure 110 of the semiconductor structure 100C penetrates the silicon layer 113 and penetrates a part of the insulating layer 112 under the silicon layer 113. In other words, the bottom surface of the trench 114C is lower than the bottom surface of the silicon layer 113 in the substrate structure 110, and is located in the insulating layer 112 under the silicon layer 113. In some embodiments, the trench 114C has a depth D3, where the depth D3 is in the range of about 0.05 micrometers to about 2 micrometers, for example, 1 micrometer. Referring to FIG. 8D, the trench 114D in the substrate structure 110 of the semiconductor structure 100D penetrates the silicon layer 113 and the insulating layer 112, and passes through a part of the base 111 of the insulating layer 112. In other words, the bottom surface of the trench 114D is lower than the bottom surface of the insulating layer 112 in the substrate structure 110, and is located in the base 111 below the insulating layer 112. In some embodiments, the trench 114D has a depth D4, where the depth D4 is in the range of about 0.05 microns to about 8 microns, for example, 4 microns. It should be noted that the depth, width, and pitch of the trenches provided by the embodiments of the present invention are only exemplary, and the present invention is not limited thereto.

根據本發明一些實施例,藉由調整上述蝕刻步驟的條件而形成之不同深度(例如深寬比在約0.01至約50的範圍,例如為10)的溝槽,當基板結構110中之溝槽的深度越深,釋放應力的效果也越好,但也相對地可能增加蝕刻製程成本。本發明實施例所包含之形成在化合物半導體層下方之基板結構中沿著特定方向延伸的複數個溝槽的深度、寬度、以及間距可依據產品設計來調整,以取得釋放應力之效果與製程成本之間的平衡。According to some embodiments of the present invention, trenches with different depths (for example, an aspect ratio ranging from about 0.01 to about 50, such as 10) formed by adjusting the conditions of the above-mentioned etching step, when the trenches in the substrate structure 110 The deeper the depth, the better the effect of stress relief, but it may also increase the cost of the etching process relatively. The depth, width, and pitch of the plurality of trenches extending in a specific direction in the substrate structure formed under the compound semiconductor layer included in the embodiment of the present invention can be adjusted according to the product design to achieve the effect of stress relief and process cost Balance between.

綜上所述,本發明實施例所提供的半導體結構藉由形成在化合物半導體層下方之基板結構中沿著特定方向(例如矽層之>1-10>晶體取向)延伸的複數個的溝槽與載子通道相對位置的配置,可有效阻擋在半導體結構之主動區中空間電荷的垂直擴張,避免空間電荷延伸至基板結構中的導電層(例如矽層)而導通所造成的基板擊穿,進而提升崩潰電壓,以允許薄型化的半導體結構應用於高電壓操作。In summary, the semiconductor structure provided by the embodiments of the present invention is formed by forming a plurality of trenches extending along a specific direction (for example, >1-10> crystal orientation of the silicon layer) in the substrate structure under the compound semiconductor layer. The arrangement of the position opposite to the carrier channel can effectively block the vertical expansion of space charge in the active region of the semiconductor structure, and avoid the substrate breakdown caused by the conduction of the space charge extending to the conductive layer (such as the silicon layer) in the substrate structure. In turn, the breakdown voltage is increased to allow thinner semiconductor structures to be used in high-voltage operations.

以上概述數個實施例,以便在本發明所屬技術領域中具有通常知識者可以更理解本發明實施例的觀點。在本發明所屬技術領域中具有通常知識者應該理解,他們能以本發明實施例為基礎,設計或修改其他製程和結構,以達到與在此介紹的實施例相同之目的及/或優勢。在本發明所屬技術領域中具有通常知識者也應該理解到,此類等效的製程和結構並無悖離本發明的精神與範圍,且他們能在不違背本發明之精神和範圍之下,做各式各樣的改變、取代和替換。Several embodiments are summarized above so that those with ordinary knowledge in the technical field of the present invention can better understand the viewpoints of the embodiments of the present invention. Those with ordinary knowledge in the technical field of the present invention should understand that they can design or modify other manufacturing processes and structures based on the embodiments of the present invention to achieve the same purposes and/or advantages as the embodiments described herein. Those with ordinary knowledge in the technical field of the present invention should also understand that such equivalent manufacturing processes and structures do not depart from the spirit and scope of the present invention, and they can do so without departing from the spirit and scope of the present invention. Make all kinds of changes, substitutions and replacements.

100、100A、100B、100C、100D:半導體結構 110:基板結構 111:基底 112:絕緣層 113:矽層 114、114A、114B、114C、114D、914:溝槽 120:成核層 130:化合物半導體層 131:緩衝層 131A:第一緩衝層 131B:第二緩衝層 132 ~通道層 133:阻障層 134:蓋層 140 ~摻雜化合物半導體層 150:閘極 160:源極 170:汲極 701:載子通道 801:介電材料 901:刻痕 A-A’:剖面 A:方向 D1、D2、D3、D4:深度 OP:開口 S:間距 SC:空間電荷 W:寬度100, 100A, 100B, 100C, 100D: semiconductor structure 110: Substrate structure 111: Base 112: Insulation layer 113: Silicon layer 114, 114A, 114B, 114C, 114D, 914: groove 120: Nucleation layer 130: compound semiconductor layer 131: Buffer layer 131A: the first buffer layer 131B: second buffer layer 132 ~ Channel layer 133: Barrier Layer 134: cap layer 140 ~ Doped compound semiconductor layer 150: gate 160: Source 170: Dip pole 701: carrier channel 801: Dielectric material 901: nick A-A’: Section A: Direction D1, D2, D3, D4: depth OP: opening S: Spacing SC: Space charge W: width

以下將配合所附圖式詳述本發明實施例。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製且僅用以說明例示。事實上,可能任意地放大或縮小元件的尺寸,以清楚地表現出本發明實施例的特徵。 第1至7圖是根據本發明的一些實施例,繪示出形成半導體結構在各個階段的剖面示意圖。 第8A圖是根據本發明的一些實施例,繪示出例示性半導體結構的剖面示意圖。 第8B圖是根據本發明的其他實施例,繪示出例示性半導體結構的剖面示意圖。 第8C圖是根據本發明的其他實施例,繪示出例示性半導體結構的剖面示意圖。 第8D圖是根據本發明的其他實施例,繪示出例示性半導體結構的剖面示意圖。 第9A圖是根據本發明的一些實施例,繪示出例示性半導體結構的上視圖。 第9B圖是根據本發明的其他實施例,繪示出例示性半導體結構的上視圖。The embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings. It should be noted that, according to standard practices in the industry, various features are not drawn to scale and are only used for illustration and illustration. In fact, the size of the element may be arbitrarily enlarged or reduced to clearly show the characteristics of the embodiment of the present invention. FIGS. 1 to 7 are schematic cross-sectional views illustrating various stages of forming a semiconductor structure according to some embodiments of the present invention. FIG. 8A is a schematic cross-sectional view of an exemplary semiconductor structure according to some embodiments of the present invention. FIG. 8B is a schematic cross-sectional view of an exemplary semiconductor structure according to another embodiment of the present invention. FIG. 8C is a schematic cross-sectional view of an exemplary semiconductor structure according to another embodiment of the present invention. FIG. 8D is a schematic cross-sectional view of an exemplary semiconductor structure according to another embodiment of the present invention. FIG. 9A is a top view of an exemplary semiconductor structure according to some embodiments of the present invention. FIG. 9B is a top view of an exemplary semiconductor structure according to other embodiments of the present invention.

100:半導體結構 100: semiconductor structure

110:基板結構 110: Substrate structure

111:基底 111: Base

112:絕緣層 112: Insulation layer

113:矽層 113: Silicon layer

114:溝槽 114: groove

120:成核層 120: Nucleation layer

130:化合物半導體層 130: compound semiconductor layer

131:緩衝層 131: Buffer layer

131A:第一緩衝層 131A: the first buffer layer

131B:第二緩衝層 131B: second buffer layer

132:通道層 132: Channel layer

133:阻障層 133: Barrier Layer

134:蓋層 134: cap layer

140:摻雜化合物半導體層 140: doped compound semiconductor layer

150:閘極 150: gate

160:源極 160: Source

170:汲極 170: Dip pole

701:載子通道 701: carrier channel

A:方向 A: Direction

A-A’:剖面 A-A’: Section

OP:開口 OP: opening

SC:空間電荷 SC: Space charge

Claims (23)

一種半導體結構,包括:一基板結構,其中該基板結構包括沿著一第一方向延伸的複數個第一溝槽,該基板結構具有一上表面及一下表面,且該些第一溝槽並未露出於該下表面;一成核層,位於該基板結構的該上表面上;一化合物半導體層,位於該成核層上;一閘極,位於該化合物半導體層上;以及一源極及一汲極,位於該化合物半導體層上且位於該閘極之兩側。 A semiconductor structure includes: a substrate structure, wherein the substrate structure includes a plurality of first trenches extending along a first direction, the substrate structure has an upper surface and a lower surface, and the first trenches are not Exposed on the lower surface; a nucleation layer located on the upper surface of the substrate structure; a compound semiconductor layer located on the nucleation layer; a gate electrode located on the compound semiconductor layer; and a source and a The drain is located on the compound semiconductor layer and on both sides of the gate. 如申請專利範圍第1項所述之半導體結構,其中該基板結構更包括:一基底;一絕緣層,位於該基底上;以及一矽層,位於該絕緣層上,其中該些第一溝槽位於該矽層中。 The semiconductor structure described in claim 1, wherein the substrate structure further includes: a base; an insulating layer on the base; and a silicon layer on the insulating layer, wherein the first trenches Located in the silicon layer. 如申請專利範圍第2項所述之半導體結構,其中該基底為矽基底。 The semiconductor structure described in item 2 of the scope of patent application, wherein the substrate is a silicon substrate. 如申請專利範圍第2項所述之半導體結構,其中該基底為氮化鋁基底、碳化矽基底、或氧化鋁基底。 The semiconductor structure described in item 2 of the scope of patent application, wherein the substrate is an aluminum nitride substrate, a silicon carbide substrate, or an aluminum oxide substrate. 如申請專利範圍第2項所述之半導體結構,其中該矽層之一頂表面包括一(111)矽晶面或一(110)矽晶面。 In the semiconductor structure described in item 2 of the scope of patent application, a top surface of the silicon layer includes a (111) silicon crystal plane or a (110) silicon crystal plane. 如申請專利範圍第1項所述之半導體結構,更包括一介電材料填充於該些第一溝槽之中。 The semiconductor structure described in claim 1 further includes a dielectric material filled in the first trenches. 如申請專利範圍第2項所述之半導體結構,其中該半導體結構為一高電子遷移率電晶體,並且該化合物半導體層包括:一第一緩衝層,位於該成核層上,其中在剖面圖中,該第一緩衝層為一不連續膜層;一第二緩衝層,位於該第一緩衝層上,其中在剖面圖中,該第二緩衝層為一連續膜層;一通道層,位於該第二緩衝層上;以及一阻障層,位於該通道層上,其中該通道層與該阻障層之間包括複數個載子通道。 The semiconductor structure described in item 2 of the scope of patent application, wherein the semiconductor structure is a high electron mobility transistor, and the compound semiconductor layer includes: a first buffer layer located on the nucleation layer, wherein the cross-sectional view Wherein, the first buffer layer is a discontinuous film layer; a second buffer layer is located on the first buffer layer, wherein in the cross-sectional view, the second buffer layer is a continuous film layer; a channel layer is located On the second buffer layer; and a barrier layer on the channel layer, wherein a plurality of carrier channels are included between the channel layer and the barrier layer. 如申請專利範圍第7項所述之半導體結構,更包括一摻雜化合物半導體層,該摻雜化合物半導體層位於該閘極與該阻障層之間。 The semiconductor structure described in item 7 of the scope of the patent application further includes a doped compound semiconductor layer, and the doped compound semiconductor layer is located between the gate and the barrier layer. 如申請專利範圍第1項所述之半導體結構,其中該基板結構更包括沿著不同於該第一方向之一第二方向延伸的複數個第二溝槽。 According to the semiconductor structure described in claim 1, wherein the substrate structure further includes a plurality of second trenches extending along a second direction different from the first direction. 如申請專利範圍第2項所述之半導體結構,其中該第一方向為該矽層之一<1-10>晶體取向。 The semiconductor structure described in item 2 of the scope of patent application, wherein the first direction is a <1-10> crystal orientation of the silicon layer. 如申請專利範圍第7項所述之半導體結構,其中該些第一溝槽之側壁之一法線方向平行於該矽層之一<001>晶體取向。 In the semiconductor structure described in claim 7, wherein a normal direction of the sidewalls of the first trenches is parallel to a <001> crystal orientation of the silicon layer. 如申請專利範圍第11項所述之半導體結構,其中該些載子通道平行於該些第一溝槽之側壁之法線方向。 The semiconductor structure described in claim 11, wherein the carrier channels are parallel to the normal direction of the sidewalls of the first trenches. 一種半導體結構之形成方法,包括:提供一基板結構;執行一蝕刻步驟以形成沿著一第一方向延伸的複數個第一溝槽 於該基板結構中;順應形成一成核層於該基板結構上;形成一化合物半導體層於該成核層上;以及形成一閘極、一源極及一汲極於該化合物半導體層上,其中該源極及該汲極位於該閘極之兩側。 A method for forming a semiconductor structure includes: providing a substrate structure; performing an etching step to form a plurality of first trenches extending along a first direction In the substrate structure; conformally forming a nucleation layer on the substrate structure; forming a compound semiconductor layer on the nucleation layer; and forming a gate, a source and a drain on the compound semiconductor layer, The source and the drain are located on both sides of the gate. 如申請專利範圍第13項所述之半導體結構之形成方法,其中該基板結構包括:一基底;一絕緣層,形成於該基底上;以及一矽層,形成於該絕緣層上,其中該蝕刻步驟所形成之該些第一溝槽位於該矽層中。 The method for forming a semiconductor structure as described in claim 13, wherein the substrate structure includes: a base; an insulating layer formed on the base; and a silicon layer formed on the insulating layer, wherein the etching The first trenches formed by the step are located in the silicon layer. 如申請專利範圍第14項所述之半導體結構之形成方法,其中該蝕刻步驟所形成之該些第一溝槽貫穿該矽層。 According to the method for forming a semiconductor structure described in claim 14, wherein the first trenches formed by the etching step penetrate the silicon layer. 如申請專利範圍第14項所述之半導體結構之形成方法,其中該矽層之一頂表面包括一(111)矽晶面或一(110)矽晶面。 According to the method for forming a semiconductor structure described in claim 14, wherein a top surface of the silicon layer includes a (111) silicon crystal plane or a (110) silicon crystal plane. 如申請專利範圍第13項所述之半導體結構之形成方法,其中該蝕刻步驟更包括形成沿著不同於該第一方向之一第二方向延伸的複數個第二溝槽於該基板結構中。 According to the method for forming a semiconductor structure described in claim 13, wherein the etching step further includes forming a plurality of second trenches in the substrate structure extending along a second direction different from the first direction. 如申請專利範圍第17項所述之半導體結構之形成方法,更包括:沉積一介電材料於至少該些第一溝槽與該些第二溝槽之其中一者中。 According to the method for forming the semiconductor structure described in the scope of the patent application, the method further includes: depositing a dielectric material in at least one of the first trenches and the second trenches. 如申請專利範圍第18項所述之半導體結構之形成方法,更包括: 在沉積該介電材料於至少該些第一溝槽與該些第二溝槽之其中一者中的步驟之後,執行一平坦化步驟。 The method of forming a semiconductor structure as described in item 18 of the scope of patent application further includes: After the step of depositing the dielectric material in at least one of the first trenches and the second trenches, a planarization step is performed. 如申請專利範圍第14項所述之半導體結構之形成方法,其中該半導體結構為一高電子遷移率電晶體,並且形成該化合物半導體層於該成核層上的步驟包括:形成一第一緩衝層於該成核層上,其中在剖面圖中,該第一緩衝層為一不連續膜層;形成一第二緩衝層於該第一緩衝層上,其中在剖面圖中,該第二緩衝層接合為一連續膜層;形成一通道層於該第二緩衝層上;以及形成一阻障層於該通道層上,其中該通道層與該阻障層之間包括複數個載子通道。 The method for forming a semiconductor structure as described in claim 14, wherein the semiconductor structure is a high electron mobility transistor, and the step of forming the compound semiconductor layer on the nucleation layer includes: forming a first buffer Layer on the nucleation layer, wherein in the cross-sectional view, the first buffer layer is a discontinuous film layer; forming a second buffer layer on the first buffer layer, wherein in the cross-sectional view, the second buffer layer The layers are joined as a continuous film layer; a channel layer is formed on the second buffer layer; and a barrier layer is formed on the channel layer, wherein a plurality of carrier channels are included between the channel layer and the barrier layer. 如申請專利範圍第20項所述之半導體結構之形成方法,更包括形成一摻雜化合物半導體層於該閘極與該阻障層之間。 According to the method for forming the semiconductor structure described in item 20 of the scope of the patent application, it further includes forming a doped compound semiconductor layer between the gate and the barrier layer. 如申請專利範圍第20項所述之半導體結構之形成方法,其中該第一方向為該矽層之一<1-10>晶體取向。 According to the method for forming a semiconductor structure described in claim 20, wherein the first direction is a <1-10> crystal orientation of the silicon layer. 如申請專利範圍第22項所述之半導體結構之形成方法,其中該些第一溝槽之側壁之一法線方向平行於該矽層之一<001>晶體取向,並且該些載子通道平行於該法線方向。 According to the method for forming a semiconductor structure as described in claim 22, wherein a normal direction of the sidewalls of the first trenches is parallel to a <001> crystal orientation of the silicon layer, and the carrier channels are parallel In the direction of the normal.
TW108123510A 2019-07-04 2019-07-04 Semiconductor structure and method for forming the same TWI732239B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108123510A TWI732239B (en) 2019-07-04 2019-07-04 Semiconductor structure and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108123510A TWI732239B (en) 2019-07-04 2019-07-04 Semiconductor structure and method for forming the same

Publications (2)

Publication Number Publication Date
TW202103317A TW202103317A (en) 2021-01-16
TWI732239B true TWI732239B (en) 2021-07-01

Family

ID=75234800

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108123510A TWI732239B (en) 2019-07-04 2019-07-04 Semiconductor structure and method for forming the same

Country Status (1)

Country Link
TW (1) TWI732239B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI803845B (en) * 2021-03-24 2023-06-01 新唐科技股份有限公司 Semiconductor structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI605552B (en) * 2016-12-08 2017-11-11 新唐科技股份有限公司 Semiconductor device, semiconductor substrate and method of forming the same
TWI610436B (en) * 2012-09-28 2018-01-01 英特爾股份有限公司 Epitaxial buffer layers for group iii-n transistors on silicon substrates
TWI645452B (en) * 2010-09-14 2018-12-21 台灣積體電路製造股份有限公司 SILICON SUBSTRATE WITH GaN-BASED DEVICE AND SI-BASED DEVICE THEREON

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI645452B (en) * 2010-09-14 2018-12-21 台灣積體電路製造股份有限公司 SILICON SUBSTRATE WITH GaN-BASED DEVICE AND SI-BASED DEVICE THEREON
TWI610436B (en) * 2012-09-28 2018-01-01 英特爾股份有限公司 Epitaxial buffer layers for group iii-n transistors on silicon substrates
TWI605552B (en) * 2016-12-08 2017-11-11 新唐科技股份有限公司 Semiconductor device, semiconductor substrate and method of forming the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Applied Physics Express 7, 034103, 2014.
Applied Physics Express 7, 034103, 2014. IEEE Electron Device Letters, 34, 3, 2013. Applied Physics Letters, Sep., 2004. *
Applied Physics Letters, Sep., 2004.
IEEE Electron Device Letters, 34, 3, 2013.

Also Published As

Publication number Publication date
TW202103317A (en) 2021-01-16

Similar Documents

Publication Publication Date Title
US7679104B2 (en) Vertical type semiconductor device and manufacturing method of the device
US9536967B2 (en) Recessed ohmic contacts in a III-N device
US10734486B2 (en) Lateral high electron mobility transistor with integrated clamp diode
US20180175172A1 (en) FinFET Structures and Methods of Forming the Same
TWI533453B (en) Gallium nitride power semiconductor device having a vertical structure
US11127847B2 (en) Semiconductor devices having a gate field plate including an extension portion and methods for fabricating the semiconductor device
CN103493206A (en) III-N device structures and methods
US10707322B2 (en) Semiconductor devices and methods for fabricating the same
US20150349064A1 (en) Nucleation and buffer layers for group iii-nitride based semiconductor devices
TWI692868B (en) Semiconductor structure
US20220359730A1 (en) FinFET Structures and Methods of Forming the Same
US20170092777A1 (en) Semiconductor Device and Method
US9570570B2 (en) Enhanced gate dielectric for a field effect device with a trenched gate
TWI797814B (en) Semiconductor structure and manufacturing method thereof
TWI732239B (en) Semiconductor structure and method for forming the same
TW202122649A (en) Semiconductor layer structure, hemt based on the samiconductor layer structure, and producing methods therefor
US11127848B2 (en) Semiconductor structure and method for forming the same
TWI693716B (en) Semiconductor devices and methods for fabricating the same
TWI673868B (en) Semiconductor devices and methods for fabricating the same
CN112242442B (en) Semiconductor structure and forming method thereof
US11677002B2 (en) Semiconductor structure
TWI670855B (en) Hemt-compatible lateral rectifier structure
US10644128B1 (en) Semiconductor devices with reduced channel resistance and methods for fabricating the same
CN112242442A (en) Semiconductor structure and forming method thereof
KR102091516B1 (en) Nitride semiconductor and method thereof