TW202030777A - Composite substrate and manufacturing method thereof - Google Patents

Composite substrate and manufacturing method thereof Download PDF

Info

Publication number
TW202030777A
TW202030777A TW108131160A TW108131160A TW202030777A TW 202030777 A TW202030777 A TW 202030777A TW 108131160 A TW108131160 A TW 108131160A TW 108131160 A TW108131160 A TW 108131160A TW 202030777 A TW202030777 A TW 202030777A
Authority
TW
Taiwan
Prior art keywords
aluminum nitride
nitride layer
composite substrate
substrate
nano
Prior art date
Application number
TW108131160A
Other languages
Chinese (zh)
Other versions
TWI736962B (en
Inventor
黃嘉彥
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to CN201910961971.5A priority Critical patent/CN111509095B/en
Priority to US16/745,292 priority patent/US11220743B2/en
Publication of TW202030777A publication Critical patent/TW202030777A/en
Priority to US17/006,891 priority patent/US11688825B2/en
Application granted granted Critical
Publication of TWI736962B publication Critical patent/TWI736962B/en

Links

Images

Landscapes

  • Led Devices (AREA)
  • Radiation Pyrometers (AREA)

Abstract

A composite substrate including a substrate and an aluminum nitride layer is provided. A top surface of the substrate includes a plurality of nano-patterned recesses which are separated from each other. The aluminum nitride is disposed on the top surface of the substrate. The film thickness of the aluminum nitride layer is less than 3.5 microns, and the defect density of the aluminum nitride layer is less than or equal to 5×109 /cm2 . A manufacturing method of a composite substrate is also provided.

Description

複合式基板及其製造方法Composite substrate and manufacturing method thereof

本發明是有關於一種基板,且特別是有關於一種複合式基板。The present invention relates to a substrate, and particularly relates to a composite substrate.

在發光二極體的磊晶製程中,若欲在基板上成長N型及P型三五族半導體層以及量子井層等半導體層,則需要解決基板(例如藍寶石基板(sapphire substrate))與上述半導體層之晶格常數有差異的問題。晶格常數的差異會導致磊晶缺陷,進而影響了發光二極體的發光效率。為了解決上述晶格常數差異的問題,一般會在成長上述半導體層之前,先形成晶格常數差異較小的緩衝層。In the epitaxy process of light-emitting diodes, if you want to grow N-type and P-type III-V semiconductor layers and quantum well layers and other semiconductor layers on the substrate, you need to solve the problems of the substrate (such as sapphire substrate) and the above There is a difference in the lattice constant of the semiconductor layer. The difference in lattice constants will cause epitaxial defects, which in turn affects the luminous efficiency of the light-emitting diode. In order to solve the above-mentioned difference in lattice constants, a buffer layer with a smaller difference in lattice constants is generally formed before the semiconductor layer is grown.

另一方面,為了提升發光二極體的量子效率圖案化藍寶石基板(patterned sapphire substrate, PSS)被發層出來,以藉由基板上的凸出圖案的光散射來提升光取出率。此時,若採用氮化鋁層來作為緩衝層,則由於鋁原子的活性高及且表面遷移率(surface mobility)低,導致氮化鋁層的差排密度高、縫合厚度高、表面粗糙或龜裂等問題。On the other hand, in order to improve the quantum efficiency of the light-emitting diode, a patterned sapphire substrate (PSS) is layered out to increase the light extraction rate by light scattering of the convex pattern on the substrate. At this time, if the aluminum nitride layer is used as the buffer layer, the high activity of aluminum atoms and the low surface mobility result in high row density, high stitching thickness, and rough surface of the aluminum nitride layer. Problems such as cracks.

本發明的一實施例提出一種複合式基板,包括一基板及一氮化鋁層。基板的上表面包括多個奈米圖案化凹陷,這些奈米圖案化凹陷彼此分離。氮化鋁層配置於基板的上表面上,其中氮化鋁層的膜厚小於3.5微米,且氮化鋁層的缺陷密度小於或等於5×109 /cm2An embodiment of the present invention provides a composite substrate including a substrate and an aluminum nitride layer. The upper surface of the substrate includes a plurality of nano-patterned depressions, and these nano-patterned depressions are separated from each other. The aluminum nitride layer is disposed on the upper surface of the substrate, wherein the film thickness of the aluminum nitride layer is less than 3.5 microns, and the defect density of the aluminum nitride layer is less than or equal to 5×10 9 /cm 2 .

本發明的一實施例提出一種複合式基板的製造方法,包括:製備一基板,基板的上表面包括多個奈米圖案化凹陷,這些奈米圖案化凹陷彼此分離;在基板的上表面上形成一第一氮化鋁層;在第一氮化鋁層上形成一平坦化層;逐漸移除平坦化層的材料,其中當逐漸移除平坦化層的材料至平坦化層的底部時,亦會同時逐漸移除了部分的第一氮化鋁層,以使第一氮化鋁層平坦化;以及在已平坦化的第一氮化鋁層上形成一第二氮化鋁層,其中第二氮化鋁層之背對基板的上表面的方均根粗糙度小於3奈米。An embodiment of the present invention provides a method for manufacturing a composite substrate, including: preparing a substrate, the upper surface of the substrate includes a plurality of nano-patterned recesses, the nano-patterned recesses are separated from each other; forming on the upper surface of the substrate A first aluminum nitride layer; forming a planarization layer on the first aluminum nitride layer; gradually remove the material of the planarization layer, wherein when the material of the planarization layer is gradually removed to the bottom of the planarization layer, At the same time, part of the first aluminum nitride layer is gradually removed to planarize the first aluminum nitride layer; and a second aluminum nitride layer is formed on the planarized first aluminum nitride layer. The root mean square roughness of the upper surface of the aluminum nitride layer opposite to the substrate is less than 3 nm.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

圖1A及圖2至圖5為本發明的一實施例的複合式基板的製作流程的剖面示意圖,而圖1B為圖1A中的基板的上視示意圖。本實施例的複合式基板的製造方法包括下列步驟。首先,參照圖1A與圖1B,製備一基板110,基板110的上表面112包括多個奈米圖案化凹陷114,這些奈米圖案化凹陷114彼此分離。在本實施例中,基板110例如為藍寶石基板,這些奈米圖案化凹陷114的深度H是落在150奈米至1.5微米的範圍內,較佳是100奈米至1微米,更佳是200奈米至500奈米。且這些奈米圖案化凹陷的寬度W是落在200奈米至1.5微米的範圍內,較佳是300奈米至800奈米,更佳是400奈米至600奈米。在本實施例中,這些奈米圖案化凹陷114的形成方法例如是將尚未加工的藍寶石基板的上表面以溼蝕刻的方式製作出這些奈米圖案化凹陷114,因此蝕刻液會順著多個不同的晶面蝕刻藍寶石基板,並在相鄰兩晶面之間產生晶面的交界線113。在本實施例中,奈米圖案化凹陷114的多個晶面呈現倒角錐形(例如是三個晶面呈現倒三角錐形),而多條(例如至少三條,本實施例中是以三條為例)交界線113交會於倒三角錐形的最底部的頂點。在本實施例中,奈米圖案化凹陷114的側壁呈倒角錐形,且奈米圖案化凹陷114的底部呈尖端狀。然而,在其他實施例中,這些奈米圖案化凹陷114的形成方法亦可以是乾式蝕刻,則此方法所形成的奈米圖案化凹陷114就沒有上述的交界線113。1A and FIGS. 2 to 5 are schematic cross-sectional views of the manufacturing process of a composite substrate according to an embodiment of the present invention, and FIG. 1B is a schematic top view of the substrate in FIG. 1A. The manufacturing method of the composite substrate of this embodiment includes the following steps. First, referring to FIGS. 1A and 1B, a substrate 110 is prepared. The upper surface 112 of the substrate 110 includes a plurality of nano-patterned recesses 114, and the nano-patterned recesses 114 are separated from each other. In this embodiment, the substrate 110 is, for example, a sapphire substrate, and the depth H of the nano-patterned recesses 114 is in the range of 150 nanometers to 1.5 micrometers, preferably 100 nanometers to 1 micrometer, more preferably 200 nanometers. From nanometers to 500 nanometers. And the width W of these nano-patterned recesses falls within the range of 200 nanometers to 1.5 micrometers, preferably 300 nanometers to 800 nanometers, more preferably 400 nanometers to 600 nanometers. In this embodiment, the method for forming these nano-patterned recesses 114 is, for example, to wet-etch the upper surface of the unprocessed sapphire substrate to form these nano-patterned recesses 114, so the etching solution will follow multiple Different crystal planes etch the sapphire substrate, and a boundary line 113 of crystal planes is generated between two adjacent crystal planes. In this embodiment, a plurality of crystal faces of the nano-patterned recess 114 are in a chamfered cone shape (for example, three crystal faces are in an inverted triangular cone shape), and a plurality of crystal faces (for example, at least three, in this embodiment are three For example) The boundary line 113 meets at the bottom vertex of the inverted triangular pyramid. In this embodiment, the sidewalls of the nano-patterned recess 114 have a chamfered cone shape, and the bottom of the nano-patterned recess 114 has a pointed shape. However, in other embodiments, the method for forming these nano-patterned recesses 114 can also be dry etching, and the nano-patterned recesses 114 formed by this method do not have the aforementioned boundary line 113.

在本實施例中,這些奈米圖案化凹陷114在基板110的上表面112上呈週期性排列。然而,在其他實施例中,這些奈米圖案化凹陷114也可以呈不規則排列。In this embodiment, these nano-patterned recesses 114 are periodically arranged on the upper surface 112 of the substrate 110. However, in other embodiments, the nano-patterned recesses 114 may also be arranged irregularly.

接著,參照圖2,在基板110的上表面112上形成一第一氮化鋁層120。第一氮化鋁層120的形成方法可以是金屬有機化學氣相沉積法(metal organic chemical vapor deposition, MOCVD)、濺鍍(sputtering)或氫化物氣相磊晶法(hydride vapor phase epitaxy, HVPE)。在本實施例中,第一氮化鋁層120的膜厚T1大於奈米圖案化凹陷114的深度H。Next, referring to FIG. 2, a first aluminum nitride layer 120 is formed on the upper surface 112 of the substrate 110. The method for forming the first aluminum nitride layer 120 may be metal organic chemical vapor deposition (MOCVD), sputtering, or hydride vapor phase epitaxy (HVPE) . In this embodiment, the film thickness T1 of the first aluminum nitride layer 120 is greater than the depth H of the nano-patterned recess 114.

然後,再參照圖3,在第一氮化鋁層120上形成一平坦化層130,平坦化層130在覆蓋第一氮化鋁層120後,平坦化層130的上表面會較第一氮化鋁層120的上表面平坦。在本實施例中,平坦化層130的材料例如是旋塗式玻璃。然而,在其他實施例中,平坦化層130的材料亦可以是聚合物。Then, referring to FIG. 3 again, a planarization layer 130 is formed on the first aluminum nitride layer 120. After the planarization layer 130 covers the first aluminum nitride layer 120, the upper surface of the planarization layer 130 will be lower than the first nitride layer. The upper surface of the aluminum oxide layer 120 is flat. In this embodiment, the material of the planarization layer 130 is spin-on glass, for example. However, in other embodiments, the material of the planarization layer 130 may also be a polymer.

之後,參照圖4,逐漸移除平坦化層130的材料,其中當逐漸移除平坦化層130的材料至平坦化層130的底部時,亦會同時逐漸移除了部分的第一氮化鋁層120,以使第一氮化鋁層120平坦化,而形成上表面較為平坦的第一氮化鋁層121。在本實施例中,逐漸移除平坦化層130的材料的方法為乾蝕刻,例如是感應耦合電漿(inductively coupled plasma, ICP)蝕刻法,而蝕刻條件可以經選擇,而使對平坦化層130的蝕刻速率實質上相同於對第一氮化鋁層121的蝕刻速率,如此當將所有的平坦化層130的材料蝕刻完畢後,此時部分的第一氮化鋁層120便會被蝕刻到,以使平坦化層130的上表面形貌轉移至第一氮化鋁層121的上表面,而形成較為平坦的第一氮化鋁層121。然而,在其他實施例中,逐漸移除平坦化層130的材料的方法也可以是機械研磨(mechanical polishing)。Afterwards, referring to FIG. 4, the material of the planarization layer 130 is gradually removed. When the material of the planarization layer 130 is gradually removed to the bottom of the planarization layer 130, part of the first aluminum nitride is also gradually removed. The first aluminum nitride layer 120 is flattened to form a first aluminum nitride layer 121 with a relatively flat upper surface. In this embodiment, the method of gradually removing the material of the planarization layer 130 is dry etching, for example, an inductively coupled plasma (ICP) etching method, and the etching conditions can be selected so that the planarization layer The etching rate of 130 is substantially the same as the etching rate of the first aluminum nitride layer 121, so when all the materials of the planarization layer 130 are etched, part of the first aluminum nitride layer 120 will be etched at this time Then, the top surface topography of the planarization layer 130 is transferred to the top surface of the first aluminum nitride layer 121 to form a relatively flat first aluminum nitride layer 121. However, in other embodiments, the method of gradually removing the material of the planarization layer 130 may also be mechanical polishing (mechanical polishing).

此外,在逐漸移除平坦化層130的材料之後,可對已平坦化的第一氮化鋁層121作退火(annealing)處理,例如是進行1500°C以上的高溫退火處理。高溫退火處理可引發第一氮化鋁層121的再結晶,大幅降低第一氮化鋁層121膜內的差排密度。In addition, after the material of the planarization layer 130 is gradually removed, the planarized first aluminum nitride layer 121 may be annealed, for example, a high-temperature annealing process above 1500°C may be performed. The high temperature annealing treatment can initiate the recrystallization of the first aluminum nitride layer 121 and greatly reduce the displacement density in the film of the first aluminum nitride layer 121.

此後,請參照圖5,在已平坦化的第一氮化鋁層121上形成一第二氮化鋁層140,例如是利用金屬有機氣相沉積法來形成第二氮化鋁層140。由於第二氮化鋁層140是在已平坦化的第一氮化鋁層121上形成,因此第二氮化鋁層140之背對基板110的上表面142的方均根粗糙度(root mean square roughness)小於3奈米。由於第二氮化鋁層140是在上表面較為平坦的第一氮化鋁層121上形成,因此第二氮化鋁層140的縫合厚度可以較小。在本實施例中,第一氮化鋁層121加上第二氮化鋁層140所形成的氮化鋁層150的膜厚T2小於3.5微米。此外,由於第二氮化鋁層140是在上表面較為平坦的第一氮化鋁層121上形成,所以氮化鋁層150中可以不具有孔洞或較小的孔洞,且氮化鋁層150的缺陷密度小於或等於5×109 /cm2 ,而具有良好的結晶品質。氮化鋁層150中具有較小的孔洞是指氮化鋁層150內部具有多個孔洞,而每一孔洞在平行於基板110的橫向與垂直於基板110的縱向的至少一方向上的尺寸小於50奈米。After that, referring to FIG. 5, a second aluminum nitride layer 140 is formed on the planarized first aluminum nitride layer 121, for example, the second aluminum nitride layer 140 is formed by metal organic vapor deposition. Since the second aluminum nitride layer 140 is formed on the planarized first aluminum nitride layer 121, the root mean square roughness of the second aluminum nitride layer 140 opposite to the upper surface 142 of the substrate 110 ) Less than 3nm. Since the second aluminum nitride layer 140 is formed on the first aluminum nitride layer 121 with a relatively flat upper surface, the stitching thickness of the second aluminum nitride layer 140 can be smaller. In this embodiment, the film thickness T2 of the aluminum nitride layer 150 formed by the first aluminum nitride layer 121 and the second aluminum nitride layer 140 is less than 3.5 microns. In addition, since the second aluminum nitride layer 140 is formed on the first aluminum nitride layer 121 with a relatively flat upper surface, the aluminum nitride layer 150 may not have holes or smaller holes, and the aluminum nitride layer 150 The defect density is less than or equal to 5×10 9 /cm 2 , and it has good crystal quality. Smaller holes in the aluminum nitride layer 150 means that the aluminum nitride layer 150 has multiple holes inside, and the size of each hole in at least one direction parallel to the lateral direction of the substrate 110 and perpendicular to the longitudinal direction of the substrate 110 is less than 50 Nano.

在本實施例中,於圖5之步驟後所形成的氮化鋁層150配置於基板110的上表面112上,氮化鋁層150之背對基板110的上表面(也就是第二氮化鋁層140的上表面142)的方均根粗糙度小於3奈米。如此一來,即形成包含基板110與氮化鋁層150的複合式基板100。複合式基板100可供發光二極體的N型半導體層、量子井層及P型半導體層形成於其上,且有助於提升N型半導體層、量子井層及P型半導體層的結晶品質。In this embodiment, the aluminum nitride layer 150 formed after the step of FIG. 5 is disposed on the upper surface 112 of the substrate 110, and the aluminum nitride layer 150 faces the upper surface of the substrate 110 (that is, the second nitride layer). The root mean square roughness of the upper surface 142) of the aluminum layer 140 is less than 3 nanometers. In this way, the composite substrate 100 including the substrate 110 and the aluminum nitride layer 150 is formed. The composite substrate 100 can be formed on the N-type semiconductor layer, the quantum well layer and the P-type semiconductor layer of the light emitting diode, and helps to improve the crystal quality of the N-type semiconductor layer, the quantum well layer and the P-type semiconductor layer .

在本實施例中,在第一氮化鋁層121上形成第二氮化鋁層140時,可在第二氮化鋁層140中摻雜矽,以調控殘餘應力。在本實施例中,第二氮化鋁層140中的矽的摻雜濃度大於2×1017 cm-3 並且小於5×1019 cm-3In this embodiment, when the second aluminum nitride layer 140 is formed on the first aluminum nitride layer 121, silicon may be doped in the second aluminum nitride layer 140 to control the residual stress. In this embodiment, the doping concentration of silicon in the second aluminum nitride layer 140 is greater than 2×10 17 cm −3 and less than 5×10 19 cm −3 .

在本實施例的複合式基板100及其製造方法中,由於在基板110的上表面112採用了彼此分離的多個奈米圖案化凹陷114,也就是採用了具有下凹式奈米圖案的奈米圖案化基板來取代傳統具有上凸式奈米圖案的圖案化基板,因此可大幅降低氮化鋁磊晶的先天晶粒縫合難度。此外,在本實施例中,形成奈米圖案化凹陷114的方法可以是溼蝕刻法,如此有助於提升氮化鋁直接於其上的磊晶品質。再者,藉由形成平坦化層130後再逐漸移除平坦化層130的材料的方法以使第一氮化鋁層121的表面平坦化,以及藉由對已平坦化的第一氮化鋁層121作退火處理,可進一步提升氮化鋁層150的晶體品質、降低縫合難度,並擴展複合式基板100的設計空間。In the composite substrate 100 and the manufacturing method thereof of the present embodiment, since a plurality of nano-patterned recesses 114 separated from each other are used on the upper surface 112 of the substrate 110, a nano-patterned recess 114 with a recessed nano-pattern is used. Rice patterned substrates replace the traditional patterned substrates with raised nano-patterns, which can greatly reduce the difficulty of innate grain stitching of aluminum nitride epitaxy. In addition, in this embodiment, the method of forming the nano-patterned recess 114 may be a wet etching method, which helps to improve the epitaxial quality of aluminum nitride directly on it. Furthermore, by forming the planarization layer 130 and then gradually removing the material of the planarization layer 130, the surface of the first aluminum nitride layer 121 is planarized, and the planarized first aluminum nitride Annealing the layer 121 can further improve the crystal quality of the aluminum nitride layer 150, reduce the difficulty of stitching, and expand the design space of the composite substrate 100.

圖6A是關於圖5的複合式基板的三種不同樣品在第二氮化鋁層成長後的(002) X射線回擺曲線圖(X-ray rocking curve),而圖6B是關於圖5的複合式基板的三種不同樣品在第二氮化鋁層成長後的(102) X射線回擺曲線圖。請參照圖4、圖5、圖6A與圖6B,此處採用了樣品A、樣品B及樣品C來驗證本實施例的結晶品質。樣品A是指在基板110上形成第一氮化鋁層121,但第一氮化鋁層121沒有經過退火處理,且第一氮化鋁層121的膜厚T3為300奈米的樣品。樣品B是指在基板110上形成第一氮化鋁層121,且第一氮化鋁層121有經過退火處理,且第一氮化鋁層121的膜厚T3為300奈米的樣品。樣品C是指在基板110上形成第一氮化鋁層121,且第一氮化鋁層121有經過退火處理,且第一氮化鋁層121的膜厚T3為600奈米的樣品。當樣品A、樣品B及樣品C上尚未形成第二氮化鋁層140時,其(002) X射線回擺曲線的半高寬分別是50角秒(arcsec)、30角秒及70角秒,而其(102) X射線回擺曲線的半高寬分別是大於2000角秒、392角秒及371角秒。於樣品A、樣品B及樣品C上形成第二氮化鋁層140後的(002) X射線回擺曲線及(102) X射線回擺曲線則分別如圖6A與圖6B所繪示。樣品A、樣品B及樣品C形成第二氮化鋁層140後,其(002) X射線回擺曲線的半高寬分別是420角秒(arcsec)、216角秒及144角秒,而其(102) X射線回擺曲線的半高寬分別是560角秒、400角秒及280角秒。在本實施例中,氮化鋁層150的(002) X射線回擺曲線的半高寬小於150角秒,且氮化鋁層150的(102) X射線回擺曲線的半高寬小於350角秒。由以上實驗數據可驗證,退火處理可在成長第二氮化鋁層140之前,有效提升第一氮化鋁層121的晶體品質,足夠的第一氮化鋁層121的厚度有助於進一步提升第二氮化鋁層140的晶體品質。在本實施例中,最終複合式基板100的氮化鋁層150的(102) X射線回擺曲線的半高寬可達260角秒,換算差排密度約4×108 cm-2Fig. 6A is a (002) X-ray rocking curve of three different samples of the composite substrate of Fig. 5 after the second aluminum nitride layer is grown, and Fig. 6B is a composite of Fig. 5 (102) X-ray swing curves of three different samples of the type substrate after the second aluminum nitride layer is grown. Please refer to FIG. 4, FIG. 5, FIG. 6A and FIG. 6B, where sample A, sample B, and sample C are used to verify the crystal quality of this embodiment. Sample A refers to a sample in which the first aluminum nitride layer 121 is formed on the substrate 110, but the first aluminum nitride layer 121 has not been annealed, and the film thickness T3 of the first aluminum nitride layer 121 is 300 nm. Sample B refers to a sample in which the first aluminum nitride layer 121 is formed on the substrate 110, the first aluminum nitride layer 121 has been annealed, and the film thickness T3 of the first aluminum nitride layer 121 is 300 nm. Sample C refers to a sample in which the first aluminum nitride layer 121 is formed on the substrate 110, the first aluminum nitride layer 121 has been annealed, and the film thickness T3 of the first aluminum nitride layer 121 is 600 nm. When the second aluminum nitride layer 140 has not been formed on Sample A, Sample B, and Sample C, the full width at half maximum of the (002) X-ray swing curve is 50 arcsec, 30 arcsec, and 70 arcsec. , And the FWHM of (102) X-ray swing curve is greater than 2000 arc seconds, 392 arc seconds and 371 arc seconds, respectively. The (002) X-ray swing curve and the (102) X-ray swing curve after forming the second aluminum nitride layer 140 on the sample A, the sample B and the sample C are respectively shown in FIG. 6A and FIG. 6B. After sample A, sample B, and sample C form the second aluminum nitride layer 140, the half-height widths of the (002) X-ray swing curve are 420 arcsec, 216 arcsec, and 144 arcsec, respectively. (102) The full width at half maximum of the X-ray swing curve is 560 arcsec, 400 arcsec and 280 arcsec. In this embodiment, the FWHM of the (002) X-ray swing curve of the aluminum nitride layer 150 is less than 150 arcsec, and the FWHM of the (102) X-ray swing curve of the aluminum nitride layer 150 is less than 350 Arc seconds. It can be verified from the above experimental data that the annealing treatment can effectively improve the crystal quality of the first aluminum nitride layer 121 before the second aluminum nitride layer 140 is grown, and a sufficient thickness of the first aluminum nitride layer 121 is helpful for further improvement. The crystal quality of the second aluminum nitride layer 140. In this embodiment, the final full width at half maximum of the (102) X-ray swing curve of the aluminum nitride layer 150 of the composite substrate 100 can reach 260 arcsec, and the converted row density is about 4×10 8 cm -2 .

圖7是三種不同樣品在第二氮化鋁層140成長後的拉曼光譜圖。請參照圖4、圖5與圖7,圖7中的樣品X是指在基板110上形成第一氮化鋁層121,但第一氮化鋁層121沒有經過退火處理,於第一氮化鋁層121上成長沒有摻雜矽的第二氮化鋁層140,樣品Y是指在基板110上形成第一氮化鋁層121,但第一氮化鋁層121有經過退火處理,於第一氮化鋁層121上成長沒有摻雜矽的第二氮化鋁層140,樣品Z是指在基板110上形成第一氮化鋁層121,但第一氮化鋁層121有經過退火處理,於第一氮化鋁層121上成長有摻雜矽的第二氮化鋁層140。圖7中的樣品X、Y及Z的氮化鋁層150的厚度分別為2.11微米、2.12微米及2.13微米,圖7中的樣品X、Y及Z的翹曲度(warpage)分別是20.3微米、60.8微米及46.4微米,而圖7中的樣品X、Y及Z的拉曼光譜的E2高模態(E2 high mode)的頻移分別為658.9 cm-1 、661.7 cm-1 及659.6 cm-1 。由拉曼光譜的頻移,可根據文獻對應得知圖7中的樣品X、Y及Z的應力分別為-1 GPa、-1.96 GPa及-1.24 GPa,而根據翹曲度可藉由史東納方程式(Stoney equation)分別計算出圖7中的樣品X、Y及Z的應力分別為-0.54 GPa、-1.61 GPa及-1.22 GPa。FIG. 7 is the Raman spectra of three different samples after the second aluminum nitride layer 140 is grown. Please refer to FIGS. 4, 5, and 7, the sample X in FIG. 7 refers to the formation of the first aluminum nitride layer 121 on the substrate 110, but the first aluminum nitride layer 121 has not undergone annealing treatment. A second aluminum nitride layer 140 that is not doped with silicon is grown on the aluminum layer 121. Sample Y means that the first aluminum nitride layer 121 is formed on the substrate 110. However, the first aluminum nitride layer 121 has been annealed. A second aluminum nitride layer 140 that is not doped with silicon is grown on an aluminum nitride layer 121. Sample Z means that the first aluminum nitride layer 121 is formed on the substrate 110, but the first aluminum nitride layer 121 has been annealed , A second silicon-doped aluminum nitride layer 140 is grown on the first aluminum nitride layer 121. The thickness of the aluminum nitride layer 150 of samples X, Y, and Z in Figure 7 are 2.11 microns, 2.12 microns, and 2.13 microns, respectively, and the warpages of samples X, Y, and Z in Figure 7 are 20.3 microns, respectively , 60.8 microns and 46.4 microns, and the E2 high mode (E2 high mode) frequency shifts of the Raman spectra of samples X, Y and Z in Fig. 7 are 658.9 cm -1 , 661.7 cm -1 and 659.6 cm -respectively 1 . From the frequency shift of the Raman spectrum, it can be known from the literature that the stresses of the samples X, Y, and Z in Figure 7 are -1 GPa, -1.96 GPa, and -1.24 GPa, respectively. According to the degree of warpage, Shi Dong The Stoney equation calculates that the stresses of samples X, Y, and Z in Figure 7 are -0.54 GPa, -1.61 GPa, and -1.22 GPa, respectively.

圖8是關於圖7的複合式基板的三種不同樣品X、Y及Z在第二氮化鋁層140成長後的(102) X射線回擺曲線半高寬對翹曲度圖。圖8中的樣品X、Y及Z的翹曲度(warpage)分別是20.3微米、60.8微米及46.4微米。樣品X、樣品Y及樣品Z形成第二氮化鋁層140後,其(102) X射線回擺曲線的半高寬分別是521角秒、259角秒及254角秒。由上述實驗數據可知,高溫退火處理有效的提升結晶品質,但殘餘的熱壓縮應變造成在第二氮化鋁層140成長後的大的晶圓翹曲,而採用在第二氮化鋁層140摻雜矽的方法可以平衝此應變,同時保持良好的結晶品質。FIG. 8 is a graph of (102) X-ray swing curve half-height versus warpage of three different samples X, Y, and Z of the composite substrate of FIG. 7 after the second aluminum nitride layer 140 is grown. The warpages of samples X, Y, and Z in Figure 8 are 20.3 microns, 60.8 microns, and 46.4 microns, respectively. After the sample X, the sample Y, and the sample Z form the second aluminum nitride layer 140, the full width at half maximum of the (102) X-ray swing curve is 521 arcsec, 259 arcsec, and 254 arcsec, respectively. It can be seen from the above experimental data that the high-temperature annealing treatment effectively improves the crystal quality, but the residual thermal compression strain causes large wafer warpage after the second aluminum nitride layer 140 is grown, and the second aluminum nitride layer 140 The method of doping silicon can counteract this strain while maintaining good crystalline quality.

圖9是本發明的另一實施例的複合式基板的剖面示意圖。請參照圖9,本實施例的複合式基板100a與圖5的複合式基板100類似,但兩者的主要差異如下所述。本實施例的複合式基板100a的基板110a的上表面112a為一平坦表面,而不具有如圖5之奈米圖案化凹陷114。此外,本實施例的複合式基板100a的製造方法是直接在基板110a的上表面112a上形成氮化鋁層150,且氮化鋁層150中摻雜有矽,以有效調控殘餘應力。本實施例的基板110a的材質相同於圖5之基板110的材質,而本實施例的氮化鋁層150的形成方法可以是金屬有機化學氣相沉積法。9 is a schematic cross-sectional view of a composite substrate according to another embodiment of the present invention. Please refer to FIG. 9, the composite substrate 100 a of this embodiment is similar to the composite substrate 100 of FIG. 5, but the main differences between the two are as follows. The upper surface 112a of the substrate 110a of the composite substrate 100a of this embodiment is a flat surface without the nano-patterned recess 114 as shown in FIG. 5. In addition, the method for manufacturing the composite substrate 100a of this embodiment is to directly form an aluminum nitride layer 150 on the upper surface 112a of the substrate 110a, and the aluminum nitride layer 150 is doped with silicon to effectively control the residual stress. The material of the substrate 110a of this embodiment is the same as that of the substrate 110 of FIG. 5, and the method of forming the aluminum nitride layer 150 of this embodiment may be a metal organic chemical vapor deposition method.

綜上所述,在本發明的實施例的複合式基板及其製造方法中,由於在基板的上表面採用了彼此分離的多個奈米圖案化凹陷,也就是採用了具有下凹式奈米圖案的奈米圖案化基板來取代傳統具有上凸式奈米圖案的圖案化基板,因此可大幅降低氮化鋁磊晶的先天晶粒縫合難度。此外,在本發明的實施例中,形成奈米圖案化凹陷的方法可以是溼蝕刻法,如此有助於提升氮化鋁直接於其上的磊晶品質。再者,在本發明的實施例中,藉由形成平坦化層後再逐漸移除平坦化層的材料的方法以使第一氮化鋁層的表面平坦化,以及藉由對已平坦化的第一氮化鋁層作退火處理,可進一步提升氮化鋁層的晶體品質、降低縫合難度,並擴展複合式基板的設計空間。In summary, in the composite substrate and the manufacturing method of the embodiment of the present invention, since a plurality of nano-patterned recesses separated from each other are used on the upper surface of the substrate, that is, a recessed nano-patterned recess is used. Patterned nano-patterned substrates replace the traditional patterned substrates with raised nano-patterns, which can greatly reduce the difficulty of innate grain stitching of aluminum nitride epitaxy. In addition, in the embodiment of the present invention, the method for forming the nano-patterned recesses may be a wet etching method, which helps to improve the epitaxial quality of aluminum nitride directly on it. Furthermore, in the embodiment of the present invention, the surface of the first aluminum nitride layer is planarized by a method of gradually removing the material of the planarization layer after the planarization layer is formed, and Annealing the first aluminum nitride layer can further improve the crystal quality of the aluminum nitride layer, reduce the difficulty of stitching, and expand the design space of the composite substrate.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be determined by the scope of the attached patent application.

100、100a:複合式基板 110、110a:基板 112、112a、142:上表面 113:交界線 114:奈米圖案化凹陷 120、121:第一氮化鋁層 130:平坦化層 140:第二氮化鋁層 150:氮化鋁層 H:深度 T1、T2、T3:膜厚 W:寬度100, 100a: composite substrate 110, 110a: substrate 112, 112a, 142: upper surface 113: Borderline 114: Nano patterned depression 120, 121: the first aluminum nitride layer 130: Planarization layer 140: The second aluminum nitride layer 150: aluminum nitride layer H: depth T1, T2, T3: film thickness W: width

圖1A及圖2至圖5為本發明的一實施例的複合式基板的製作流程的剖面示意圖。 圖1B為圖1A中的基板的上視示意圖。 圖6A是關於圖5的複合式基板的三種不同樣品在第二氮化鋁層成長後的(002) X射線回擺曲線圖。 圖6B是關於圖5的複合式基板的三種不同樣品在第二氮化鋁層成長後的(102) X射線回擺曲線圖。 圖7是關於複合式基板的三種不同樣品在第二氮化鋁層成長後的拉曼光譜圖。 圖8是關於圖7的複合式基板的三種不同樣品在第二氮化鋁層成長後的(102) X射線回擺曲線半高寬對翹曲度圖。 圖9是本發明的另一實施例的複合式基板的剖面示意圖。1A and FIGS. 2 to 5 are cross-sectional schematic diagrams of the manufacturing process of a composite substrate according to an embodiment of the present invention. FIG. 1B is a schematic top view of the substrate in FIG. 1A. 6A is a (002) X-ray swing curve diagram of three different samples of the composite substrate of FIG. 5 after the second aluminum nitride layer has grown. 6B is a (102) X-ray swing curve diagram of three different samples of the composite substrate of FIG. 5 after the second aluminum nitride layer has grown. FIG. 7 is the Raman spectra of three different samples of the composite substrate after the second aluminum nitride layer is grown. Fig. 8 is a graph of (102) X-ray swing curve half-height versus warpage of three different samples of the composite substrate of Fig. 7 after the second aluminum nitride layer is grown. 9 is a schematic cross-sectional view of a composite substrate according to another embodiment of the present invention.

100:複合式基板 100: Composite substrate

110:基板 110: substrate

112、142:上表面 112, 142: upper surface

114:奈米圖案化凹陷 114: Nano patterned depression

121:第一氮化鋁層 121: The first aluminum nitride layer

140:第二氮化鋁層 140: The second aluminum nitride layer

150:氮化鋁層 150: aluminum nitride layer

T2:膜厚 T2: Film thickness

Claims (20)

一種複合式基板,包括: 一基板,其上表面包括多個奈米圖案化凹陷,該些奈米圖案化凹陷彼此分離;以及 一氮化鋁層,配置於該基板的該上表面上,其中該氮化鋁層的膜厚小於3.5微米,且該氮化鋁層的缺陷密度小於或等於5×109 /cm2A composite substrate includes: a substrate, the upper surface of which includes a plurality of nano-patterned recesses, the nano-patterned recesses are separated from each other; and an aluminum nitride layer is disposed on the upper surface of the substrate, wherein The film thickness of the aluminum nitride layer is less than 3.5 microns, and the defect density of the aluminum nitride layer is less than or equal to 5×10 9 /cm 2 . 如申請專利範圍第1項所述的複合式基板,其中該氮化鋁層之背對該基板的上表面的方均根粗糙度小於3奈米。According to the composite substrate described in item 1 of the scope of patent application, the root-mean-square roughness of the upper surface of the aluminum nitride layer behind the substrate is less than 3 nanometers. 如申請專利範圍第1項所述的複合式基板,其中該氮化鋁層的(002) X射線回擺曲線的半高寬小於150角秒。The composite substrate described in the first item of the scope of patent application, wherein the half-height width of the (002) X-ray swing curve of the aluminum nitride layer is less than 150 arcsec. 如申請專利範圍第1項所述的複合式基板,其中且該氮化鋁層的(102) X射線回擺曲線的半高寬小於350角秒。The composite substrate as described in item 1 of the scope of patent application, wherein the full width at half maximum of the (102) X-ray swing curve of the aluminum nitride layer is less than 350 arcsec. 如申請專利範圍第1項所述的複合式基板,其中該些奈米圖案化凹陷的深度是落在150奈米至1.5微米的範圍內。According to the composite substrate described in item 1 of the scope of patent application, the depth of the nano-patterned recesses falls within the range of 150 nanometers to 1.5 micrometers. 如申請專利範圍第1項所述的複合式基板,其中該些奈米圖案化凹陷的寬度是落在200奈米至1.5微米的範圍內。According to the composite substrate described in item 1 of the scope of patent application, the width of the nano-patterned recesses falls within the range of 200 nanometers to 1.5 micrometers. 如申請專利範圍第1項所述的複合式基板,其中該些奈米圖案化凹陷在該基板的該上表面上呈週期性排列。According to the composite substrate described in claim 1, wherein the nano patterned recesses are periodically arranged on the upper surface of the substrate. 如申請專利範圍第1項所述的複合式基板,其中該氮化鋁層中具有多個孔洞,每一孔洞在平行於該基板的橫向與垂直於該基板的縱向的至少一方向上的尺寸小於50奈米。The composite substrate according to claim 1, wherein the aluminum nitride layer has a plurality of holes, and the size of each hole in at least one direction parallel to the substrate and perpendicular to the longitudinal direction of the substrate is smaller than 50nm. 如申請專利範圍第1項所述的複合式基板,其中該氮化鋁層包括一第一氮化鋁層以及位於該第一氮化鋁層上的一第二氮化鋁層,且該第二氮化鋁層中摻雜有矽。According to the composite substrate described in claim 1, wherein the aluminum nitride layer includes a first aluminum nitride layer and a second aluminum nitride layer on the first aluminum nitride layer, and the first aluminum nitride layer The aluminum nitride layer is doped with silicon. 如申請專利範圍第9項所述的複合式基板,其中該第二氮化鋁層中的矽的摻雜濃度大於2×1017 cm-3 並且小於5×1019 cm-3According to the composite substrate described in item 9 of the scope of patent application, the doping concentration of silicon in the second aluminum nitride layer is greater than 2×10 17 cm −3 and less than 5×10 19 cm −3 . 如申請專利範圍第1項所述的複合式基板,其中該些奈米圖案化凹陷的側壁呈倒角錐形。According to the composite substrate described in claim 1, wherein the sidewalls of the nano-patterned recesses are chamfered cones. 如申請專利範圍第11項所述的複合式基板,其中至少三條交界線交會於該倒角錐形的最底部的頂點。As for the composite substrate described in item 11 of the scope of patent application, at least three boundary lines intersect at the bottom apex of the chamfered cone. 一種複合式基板的製造方法,包括: 製備一基板,該基板的上表面包括多個奈米圖案化凹陷,該些奈米圖案化凹陷彼此分離; 在該基板的該上表面上形成一第一氮化鋁層; 在該第一氮化鋁層上形成一平坦化層; 逐漸移除該平坦化層的材料,其中當逐漸移除該平坦化層的材料至該平坦化層的底部時,亦會同時逐漸移除了部分的該第一氮化鋁層,以使該第一氮化鋁層平坦化;以及 在已平坦化的該第一氮化鋁層上形成一第二氮化鋁層,其中該第二氮化鋁層之背對該基板的上表面的方均根粗糙度小於3奈米。A method for manufacturing a composite substrate includes: Preparing a substrate, the upper surface of the substrate includes a plurality of nano-patterned recesses, and the nano-patterned recesses are separated from each other; Forming a first aluminum nitride layer on the upper surface of the substrate; Forming a planarization layer on the first aluminum nitride layer; The material of the planarization layer is gradually removed. When the material of the planarization layer is gradually removed to the bottom of the planarization layer, part of the first aluminum nitride layer is gradually removed at the same time, so that the Planarization of the first aluminum nitride layer; and A second aluminum nitride layer is formed on the planarized first aluminum nitride layer, wherein the root mean square roughness of the upper surface of the second aluminum nitride layer opposite to the substrate is less than 3 nm. 如申請專利範圍第13項所述的複合式基板的製造方法,更包括: 在逐漸移除該平坦化層的材料之後,對已平坦化的該第一氮鋁層作退火處理。The manufacturing method of the composite substrate as described in item 13 of the scope of patent application further includes: After gradually removing the material of the planarization layer, annealing is performed on the planarized first aluminum nitride layer. 如申請專利範圍第13項所述的複合式基板的製造方法,其中該平坦化層的材料包括聚合物或旋塗式玻璃。According to the method for manufacturing a composite substrate described in item 13 of the scope of patent application, the material of the planarization layer includes polymer or spin-on glass. 如申請專利範圍第13項所述的複合式基板的製造方法,其中逐漸移除該平坦化層的材料的方法為乾蝕刻或機械研磨。According to the method for manufacturing a composite substrate as described in claim 13, wherein the method of gradually removing the material of the planarization layer is dry etching or mechanical polishing. 如申請專利範圍第13項所述的複合式基板的製造方法,其中該第二氮化鋁層中摻雜有矽,且該第二氮化鋁層中的矽的摻雜濃度大於2×1017 cm-3 並且小於5×1019 cm-3According to the manufacturing method of the composite substrate described in claim 13, wherein the second aluminum nitride layer is doped with silicon, and the doping concentration of silicon in the second aluminum nitride layer is greater than 2×10 17 cm -3 and less than 5×10 19 cm -3 . 如申請專利範圍第13項所述的複合式基板的製造方法,其中該些奈米圖案化凹陷是藉由溼蝕刻所形成。According to the manufacturing method of the composite substrate described in the scope of the patent application, the nano-patterned recesses are formed by wet etching. 如申請專利範圍第13項所述的複合式基板的製造方法,其中該第一氮化鋁層加上該第二氮化鋁層整體的膜厚小於3.5微米。According to the manufacturing method of the composite substrate described in the scope of patent application, the film thickness of the first aluminum nitride layer plus the second aluminum nitride layer is less than 3.5 microns. 如申請專利範圍第13項所述的複合式基板的製造方法,其中該些奈米圖案化凹陷的深度是落在150奈米至1.5微米的範圍內,且該些奈米圖案化凹陷的寬度是落在200奈米至1.5微米的範圍內。The method for manufacturing a composite substrate as described in claim 13, wherein the depth of the nano-patterned recesses is in the range of 150 nanometers to 1.5 microns, and the width of the nano-patterned recesses It falls within the range of 200 nanometers to 1.5 microns.
TW108131160A 2019-01-31 2019-08-30 Composite substrate and manufacturing method thereof TWI736962B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910961971.5A CN111509095B (en) 2019-01-31 2019-10-11 Composite substrate and manufacturing method thereof
US16/745,292 US11220743B2 (en) 2019-01-31 2020-01-16 Composite substrate and manufacturing method thereof
US17/006,891 US11688825B2 (en) 2019-01-31 2020-08-31 Composite substrate and light-emitting diode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962799717P 2019-01-31 2019-01-31
US62/799,717 2019-01-31

Publications (2)

Publication Number Publication Date
TW202030777A true TW202030777A (en) 2020-08-16
TWI736962B TWI736962B (en) 2021-08-21

Family

ID=73002842

Family Applications (2)

Application Number Title Priority Date Filing Date
TW108131160A TWI736962B (en) 2019-01-31 2019-08-30 Composite substrate and manufacturing method thereof
TW108136115A TWI717048B (en) 2019-01-31 2019-10-04 Thermal image sensing system and thermal image sensing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW108136115A TWI717048B (en) 2019-01-31 2019-10-04 Thermal image sensing system and thermal image sensing method

Country Status (1)

Country Link
TW (2) TWI736962B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733574B (en) * 2020-08-31 2021-07-11 財團法人工業技術研究院 Composite substrate and light-emitting diode
US11688825B2 (en) 2019-01-31 2023-06-27 Industrial Technology Research Institute Composite substrate and light-emitting diode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI768709B (en) * 2021-01-19 2022-06-21 福邦科技國際股份有限公司 Dual image fusion method and device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7501023B2 (en) * 2001-07-06 2009-03-10 Technologies And Devices, International, Inc. Method and apparatus for fabricating crack-free Group III nitride semiconductor materials
TWM309294U (en) * 2006-05-18 2007-04-01 Jr-Peng Jang Image compensation device of thermal image sensor
KR20110105261A (en) * 2010-03-18 2011-09-26 삼성전자주식회사 Electrical device and thermal image sensor embedding at least one quantum
CN109716508B (en) * 2016-06-24 2023-08-15 克罗米斯有限公司 Polycrystalline ceramic substrate and method for manufacturing the same
TWM569679U (en) * 2018-07-13 2018-11-11 昇雷科技股份有限公司 Physiological signal detection robot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11688825B2 (en) 2019-01-31 2023-06-27 Industrial Technology Research Institute Composite substrate and light-emitting diode
TWI733574B (en) * 2020-08-31 2021-07-11 財團法人工業技術研究院 Composite substrate and light-emitting diode

Also Published As

Publication number Publication date
TWI717048B (en) 2021-01-21
TWI736962B (en) 2021-08-21
TW202030877A (en) 2020-08-16

Similar Documents

Publication Publication Date Title
US10879065B2 (en) III-V compound semiconductors in isolation regions and method forming same
TWI736962B (en) Composite substrate and manufacturing method thereof
KR100797180B1 (en) Semiconductor light Emitting device having improved luminance and method thereof
JP6060348B2 (en) Method for producing single crystal substrate with crystalline film, and device production method
JP2012142545A (en) Template, manufacturing method thereof, and manufacturing method of vertical-type nitride semiconductor light-emitting element using template
JP5097291B2 (en) Epitaxial substrate having fine uneven surface and method of manufacturing
WO2006108359A1 (en) METHOD OF FABRICATING InGaAlN FILM AND LIGHT-EMITTING DEVICE ON A SILICON SUBSTRATE
US20120187445A1 (en) Template, method for manufacturing the template, and method for manufacturing vertical type nitride-based semiconductor light emitting device using the template
WO2017067333A1 (en) Patterned substrate, preparation method, and a light-emitting diode
JP2013118384A (en) Silicon substrate, epitaxial structure adopting silicon substrate, and manufacturing method of silicon substrate
JP2014509781A (en) Semiconductor device and manufacturing method
JP2013214686A (en) Group iii nitride semiconductor layer and group iii nitride semiconductor layer manufacturing method
CN111509095B (en) Composite substrate and manufacturing method thereof
US9041165B2 (en) Relaxation and transfer of strained material layers
TW202039945A (en) Method for preparing optoelectronic semiconductor chip and bonding wafer used therein
JP5174052B2 (en) Method for producing epitaxial structure with low defect density
JP2015097265A (en) Episubstrates for selective area growth of group iii-v material and method for fabricating group iii-v material on silicon substrate
TWI733574B (en) Composite substrate and light-emitting diode
JP5946333B2 (en) Group III nitride semiconductor device and manufacturing method thereof
TWI823603B (en) Masking layers in led structures
TW201327810A (en) Nitride semiconductor structure and fabricating method thereof
CN104201259A (en) Luminous device and manufacturing method thereof
TW201834153A (en) Silicon carbide substrate for epitaxy and semiconductor wafer
KR20100020936A (en) Method for obtaining high-quality boundary for semiconductor devices fabricated on a partitioned substrate
TWI457985B (en) Semiconductor structure with stress absorbing buffer layer and manufacturing method thereof