TW202030877A - Thermal image sensing system and thermal image sensing method - Google Patents

Thermal image sensing system and thermal image sensing method Download PDF

Info

Publication number
TW202030877A
TW202030877A TW108136115A TW108136115A TW202030877A TW 202030877 A TW202030877 A TW 202030877A TW 108136115 A TW108136115 A TW 108136115A TW 108136115 A TW108136115 A TW 108136115A TW 202030877 A TW202030877 A TW 202030877A
Authority
TW
Taiwan
Prior art keywords
light
visible light
thermal
polarized light
sensor
Prior art date
Application number
TW108136115A
Other languages
Chinese (zh)
Other versions
TWI717048B (en
Inventor
傅瀚葵
張學智
溫士逸
胡鴻烈
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to CN202010041604.6A priority Critical patent/CN111504475A/en
Priority to US16/748,724 priority patent/US11290663B2/en
Publication of TW202030877A publication Critical patent/TW202030877A/en
Application granted granted Critical
Publication of TWI717048B publication Critical patent/TWI717048B/en

Links

Images

Abstract

A thermal image sensing system including at least one thermal sensor, at least one light sensor, an image identification module, a storage module and a computing module is provided. The at least one thermal sensor senses thermal radiation emitted by an object and generates a thermal radiation image signal correspondingly. The at least one light sensor senses visible light reflected by the object and generates at least one visible image signal correspondingly. The image identification module receives the at least one visible image signal generated by the at least one light sensor and determines a material of the object according to the at least one visible image signal. The storage module stores a radiation coefficient of the material of the object. The computing module calculates a surface temperature of the object according to the radiation coefficient of the material of the object and the thermal radiation emitted by the object. A thermal image sensing method is also provided.

Description

熱影像感測系統及熱影像感測方法Thermal image sensing system and thermal image sensing method

本揭露是有關於一種影像感測系統及影像感測方法,且特別是有關於一種熱影像感測系統及熱影像感測方法。The present disclosure relates to an image sensing system and an image sensing method, and particularly relates to a thermal image sensing system and a thermal image sensing method.

傳統的熱影像感測系統主要透過熱感測器來感測物體所輻射出來的能量。物體所輻射出來的能量是溫度和放射率的函數。由於大部分的非金屬物質的放射率大於大部分的金屬物質的放射率,因此在熱影像感測系統所拍攝出來的熱影像中,如果沒有對金屬物質的放射率進行校正,金屬物質的表面溫度會被低估很多。Traditional thermal image sensing systems mainly use thermal sensors to sense the energy radiated by objects. The energy radiated by an object is a function of temperature and emissivity. Since the emissivity of most non-metallic substances is greater than that of most metallic substances, in the thermal image captured by the thermal imaging sensor system, if the emissivity of the metallic substance is not corrected, the surface of the metallic substance The temperature will be much underestimated.

本揭露的實施例提供一種熱影像感測系統及熱影像感測方法,其可校正金屬物質的表面溫度。The disclosed embodiments provide a thermal image sensing system and a thermal image sensing method, which can calibrate the surface temperature of a metal substance.

本揭露的實施例的一種熱影像感測系統包括至少一熱感測器、至少一光感測器、影像辨識模組、儲存模組以及運算模組。所述至少一熱感測器感測物體所放射的熱輻射並對應產生熱輻射影像信號。所述至少一光感測器感測物體所反射的可見光並對應產生至少一可見光影像信號。影像辨識模組接收所述至少一光感測器所產生的所述至少一可見光影像信號,並依據所述至少一可見光影像信號判斷物體的材料。儲存模組儲存物體的材料的放射率。運算模組依據物體的材料的放射率以及物體所放射的熱輻射計算物體的表面溫度。A thermal image sensing system according to an embodiment of the disclosure includes at least one thermal sensor, at least one optical sensor, an image recognition module, a storage module, and a computing module. The at least one thermal sensor senses the thermal radiation emitted by the object and correspondingly generates a thermal radiation image signal. The at least one light sensor senses the visible light reflected by the object and correspondingly generates at least one visible light image signal. The image recognition module receives the at least one visible light image signal generated by the at least one light sensor, and determines the material of the object according to the at least one visible light image signal. The storage module stores the emissivity of the material of the object. The computing module calculates the surface temperature of the object according to the emissivity of the material of the object and the heat radiation emitted by the object.

本揭露的實施例的一種熱影像感測方法包括以下步驟:感測物體所放射的熱輻射並對應產生熱輻射影像信號;感測物體所反射的可見光並對應產生至少一可見光影像信號;依據所述至少一可見光影像信號判斷物體的材料;依據物體的材料判斷物體的材料的放射率;以及依據物體的材料的放射率以及物體所放射的熱輻射計算物體的表面溫度。A thermal image sensing method according to an embodiment of the disclosure includes the following steps: sensing thermal radiation emitted by an object and correspondingly generating thermal radiation image signals; sensing visible light reflected by the object and correspondingly generating at least one visible light image signal; The at least one visible light image signal judges the material of the object; judges the emissivity of the material of the object according to the material of the object; and calculates the surface temperature of the object according to the emissivity of the material of the object and the heat radiation emitted by the object.

為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present disclosure more obvious and understandable, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

實施方式中所提到的方向用語,例如:「上」、「下」、「前」、「後」、「左」、「右」等,僅是參考附圖的方向。因此,使用的方向用語是用來說明,而並非用來限制本揭露。The directional terms mentioned in the embodiments, such as "up", "down", "front", "rear", "left", "right", etc., are only directions with reference to the drawings. Therefore, the directional terms used are used to illustrate, but not to limit the disclosure.

在附圖中,各圖式繪示的是特定示範實施例中所使用的方法、結構及/或材料的通常性特徵。然而,這些圖式不應被解釋為界定或限制由這些示範實施例所涵蓋的範圍或性質。舉例來說,為了清楚起見,各膜層、區域及/或結構的相對尺寸、厚度及位置可能縮小或放大。In the drawings, each drawing depicts the general features of methods, structures, and/or materials used in specific exemplary embodiments. However, these drawings should not be interpreted as defining or limiting the scope or nature covered by these exemplary embodiments. For example, for the sake of clarity, the relative size, thickness, and position of each layer, region, and/or structure may be reduced or enlarged.

在實施方式中,相同或相似的元件將採用相同或相似的標號,且將省略其贅述。此外,不同示範實施例中的特徵在沒有衝突的情況下可相互組合,且依本說明書或申請專利範圍所作之簡單的等效變化與修飾,皆仍屬本專利涵蓋之範圍內。In the embodiments, the same or similar elements will use the same or similar reference numerals, and the redundant description will be omitted. In addition, the features in different exemplary embodiments can be combined without conflict, and simple equivalent changes and modifications made in accordance with this specification or the scope of the patent application still fall within the scope of this patent.

本說明書或申請專利範圍中提及的「第一」、「第二」等用語僅用以命名分立(discrete)的元件或區別不同實施例或範圍,而並非用來限制元件數量上的上限或下限,也並非用以限定元件的製造順序或設置順序。再者,一元件/膜層設置在另一元件/膜層上(或上方)可包括兩個元件/膜層之間存在或不存在額外元件/膜層的情況,換句話說,所述元件/膜層可直接或間接設置在所述另一元件/膜層上(或上方)。另一方面,一元件/膜層直接設置在另一元件/膜層上(或上方)表示兩個元件/膜層彼此接觸,且兩個元件/膜層之間不存在額外元件/膜層。The terms "first" and "second" mentioned in this specification or the scope of the patent application are only used to name discrete components or to distinguish different embodiments or ranges, and are not used to limit the upper limit or the number of components. The lower limit is not used to limit the manufacturing order or the arrangement order of the components. Furthermore, the arrangement of one element/film layer on (or above) another element/film layer may include the presence or absence of additional elements/film layers between the two elements/film layers, in other words, the element The film layer can be directly or indirectly arranged on (or above) the other element/film layer. On the other hand, a device/film layer directly disposed on (or above) another device/film layer means that two devices/film layers are in contact with each other, and there is no additional device/film layer between the two devices/film layers.

在本文中,熱影像感測系統適於獲取物體(也可稱作待測物)的熱影像。熱影像表示的是物體表面所放射的熱輻射的圖像。根據黑體輻射定律,溫度高於絕對零度的所有物體都會發射熱輻射(如紅外輻射),且物體輻射出的能量隨溫度增加而增加。因此,根據物體的熱影像可知曉物體的表面溫度。In this context, the thermal image sensing system is suitable for acquiring thermal images of objects (also referred to as objects to be measured). The thermal image represents the image of the thermal radiation emitted by the surface of the object. According to the law of black body radiation, all objects whose temperature is higher than absolute zero emit thermal radiation (such as infrared radiation), and the energy radiated by the object increases with the increase in temperature. Therefore, the surface temperature of the object can be known from the thermal image of the object.

根據斯特凡-波茲曼定律(Stefan-Boltzmann law),如式1所示,一個物體的表面單位面積在單位時間內輻射出的總能量E是絕對溫度T和放射率

Figure 02_image001
(黑體的輻射係數)的函數,其中
Figure 02_image003
是斯特凡-波茲曼常數。
Figure 02_image005
式1According to Stefan-Boltzmann law (Stefan-Boltzmann law), as shown in Equation 1, the total energy E radiated by the surface unit area of an object per unit time is the absolute temperature T and the emissivity
Figure 02_image001
(The emissivity coefficient of a black body), where
Figure 02_image003
Is the Stefan-Bozman constant.
Figure 02_image005
Formula 1

表一示意性列舉出多種常見的非金屬物質及金屬物質的放射率。根據表一,大部分的非金屬物質的放射率大於0.9,而大部分的金屬物質的放射率小於0.3。因此,在熱影像感測系統所拍攝出來的熱影像中,如果沒有針對物體(特別是金屬物質)的放射率進行校正,金屬物質的表面溫度會被低估很多。 表一 非金屬物質 放射率 金屬物質 放射率 石棉 0.95 鋁(未氧化) 0.02-0.1 陶瓷 0.95 鋁(已氧化) 0.02-0.4 0.95 鉛(磨光) 0.05-0.1 玻璃(平板) 0.85 鉛(粗糙) 0.4 油漆(無酒精) 0.9-0.95 鉛(已氧化) 0.2-0.6 紙(任何顏色) 0.95 黃銅(磨光) 0.01-0.05 塑膠(不透光) 0.95 黃銅(已氧化) 0.5 橡膠 0.95 鋅(磨光) 0.03 木材(天然的) 0.9-0.95 鋅(已氧化) 0.1 Table 1 schematically lists the emissivity of many common non-metallic substances and metallic substances. According to Table 1, the emissivity of most non-metallic substances is greater than 0.9, and the emissivity of most metallic substances is less than 0.3. Therefore, in the thermal image captured by the thermal image sensing system, if the emissivity of the object (especially metal substance) is not corrected, the surface temperature of the metal substance will be much underestimated. Table I Non-metallic substance Emissivity Metallic substance Emissivity asbestos 0.95 Aluminum (unoxidized) 0.02-0.1 ceramics 0.95 Aluminum (oxidized) 0.02-0.4 cloth 0.95 Lead (polished) 0.05-0.1 Glass (flat) 0.85 Lead (rough) 0.4 Paint (no alcohol) 0.9-0.95 Lead (oxidized) 0.2-0.6 Paper (any color) 0.95 Brass (polished) 0.01-0.05 Plastic (opaque) 0.95 Brass (oxidized) 0.5 rubber 0.95 Zinc (polished) 0.03 Wood (natural) 0.9-0.95 Zinc (oxidized) 0.1

為了改善金屬物質的表面溫度被低估的問題,本揭露的實施例提出熱影像感測系統及熱影像感測方法,其可藉由校正金屬物質的放射率,來計算金屬物質的表面溫度。詳細方法容後說明。In order to solve the problem of underestimation of the surface temperature of the metal substance, the embodiments of the present disclosure provide a thermal image sensing system and a thermal image sensing method, which can calculate the surface temperature of the metal substance by calibrating the emissivity of the metal substance. The detailed method will be explained later.

圖1是本揭露的第一實施例的熱影像感測系統1的示意圖。請參照圖1,熱影像感測系統1包括至少一熱感測器(如熱感測器10)、至少一光感測器(如光感測器11)、影像辨識模組12、儲存模組13以及運算模組14。在本實施例中,如圖1所示,熱影像感測系統1所包括的熱感測器的數量以及光感測器的數量可皆為一,但熱感測器的數量以及光感測器的數量可依需求改變,而不以圖1所顯示的為限。FIG. 1 is a schematic diagram of the thermal image sensing system 1 of the first embodiment of the disclosure. 1, the thermal image sensing system 1 includes at least one thermal sensor (such as the thermal sensor 10), at least one light sensor (such as the light sensor 11), an image recognition module 12, and a storage module Group 13 and operation module 14. In this embodiment, as shown in FIG. 1, the number of thermal sensors and the number of light sensors included in the thermal image sensing system 1 may both be one, but the number of thermal sensors and the number of light sensors The number of devices can be changed according to requirements, and is not limited to that shown in Figure 1.

所述至少一熱感測器(如熱感測器10)適於感測物體OBJ所放射的熱輻射R。舉例來說,熱感測器10可以是紅外光感測器,且熱感測器10適於感測來自物體OBJ的紅外光,並對應產生熱輻射影像信號RS,但熱感測器10的類型不以此為限。The at least one thermal sensor (such as the thermal sensor 10) is adapted to sense the thermal radiation R emitted by the object OBJ. For example, the thermal sensor 10 may be an infrared light sensor, and the thermal sensor 10 is adapted to sense infrared light from the object OBJ and correspondingly generate a thermal radiation image signal RS, but the thermal sensor 10 The type is not limited to this.

所述至少一光感測器(如光感測器11)適於感測物體OBJ所反射的可見光L、接收可見光L,並對應產生至少一可見光影像信號SS。舉例來說,光感測器11可以是光二極體(photodiode)、電荷耦合元件(Charge Coupled Device,CCD)或互補式金氧半導體(Complementary Metal Oxide Semiconductor,CMOS)元件,但不以此為限。The at least one light sensor (such as the light sensor 11) is suitable for sensing the visible light L reflected by the object OBJ, receiving the visible light L, and correspondingly generating at least one visible light image signal SS. For example, the light sensor 11 can be a photodiode (photodiode), a charge coupled device (Charge Coupled Device, CCD), or a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) device, but it is not limited to this. .

在本實施例中,如圖1所示,光感測器11利用環境光B來進行物體OBJ的可見光影像感測。具體地,光感測器11感測物體OBJ在環境光源2所發出的環境光B的照射下所反射的可見光L。所述環境光源2可以是太陽、戶外照明或室內照明等。然而,在另一實施例中,熱影像感測系統1可進一步包括用於可見光影像感測的至少一光源(如可見光光源)。如此,光感測器11在昏暗的環境中也可運作。In this embodiment, as shown in FIG. 1, the light sensor 11 uses ambient light B to perform visible light image sensing of the object OBJ. Specifically, the light sensor 11 senses the visible light L reflected by the object OBJ under the illumination of the ambient light B emitted by the ambient light source 2. The environmental light source 2 may be the sun, outdoor lighting, indoor lighting, or the like. However, in another embodiment, the thermal image sensing system 1 may further include at least one light source (such as a visible light source) for visible light image sensing. In this way, the light sensor 11 can also operate in a dark environment.

在本實施例中,如圖1所示,熱感測器10以及光感測器11可組成雙鏡頭模組M,但本揭露不以此為限。在另一實施例中,熱感測器10以及光感測器11可獨立設置/架設。In this embodiment, as shown in FIG. 1, the thermal sensor 10 and the light sensor 11 can form a dual-lens module M, but the disclosure is not limited to this. In another embodiment, the thermal sensor 10 and the light sensor 11 can be independently installed/erected.

影像辨識模組12適於接收所述至少一光感測器(如光感測器11)所產生的所述至少一可見光影像信號SS,並依據所述至少一可見光影像信號SS判斷物體OBJ的材料。舉例來說,影像辨識模組12可利用人工智慧(Artificial Intelligence,AI)或演算法針對物體OBJ的表面形貌及/或顏色等參數進行分析,藉此判斷物體OBJ的材料。The image recognition module 12 is adapted to receive the at least one visible light image signal SS generated by the at least one light sensor (such as the light sensor 11), and determine the object OBJ according to the at least one visible light image signal SS material. For example, the image recognition module 12 can use artificial intelligence (AI) or algorithms to analyze the surface topography and/or color of the object OBJ to determine the material of the object OBJ.

影像辨識模組12可實作為軟體模組、韌體模組或硬體電路。舉例來說,影像辨識模組12可包括至少一圖形處理器(GPU)或類似的處理晶片,以執行機器視覺的影像辨識。或者,在一實施例中,影像辨識模組12為可載入至儲存模組13且可由運算模組14或處理器執行的程式碼。此外,影像辨識模組12可具有機器學習等人工智慧架構並可經由訓練而持續改善其影像辨識性能。The image recognition module 12 can be implemented as a software module, a firmware module, or a hardware circuit. For example, the image recognition module 12 may include at least one graphics processing unit (GPU) or similar processing chip to perform machine vision image recognition. Alternatively, in one embodiment, the image recognition module 12 is a program code that can be loaded into the storage module 13 and can be executed by the computing module 14 or the processor. In addition, the image recognition module 12 may have an artificial intelligence architecture such as machine learning and can continuously improve its image recognition performance through training.

儲存模組13儲存物體OBJ的材料的放射率,但不以此為限。在一實施例中,儲存模組13可儲存有多種材料/物質的放射率及其他所需的資料。舉例來說,儲存模組13可以是電子裝置中的揮發式儲存媒體或非揮發式儲存媒體。揮發式儲存媒體可以是隨機存取記憶體(RAM),而非揮發性儲存媒體可以是唯讀記憶體(ROM)、固態硬碟(SSD)或傳統硬碟(HDD)等。在一實施例中,儲存模組13也可以是儲存於雲端的資料庫。The storage module 13 stores the emissivity of the material of the object OBJ, but is not limited to this. In one embodiment, the storage module 13 can store the emissivity of various materials/substances and other required data. For example, the storage module 13 may be a volatile storage medium or a non-volatile storage medium in an electronic device. The volatile storage medium can be random access memory (RAM), and the non-volatile storage medium can be read only memory (ROM), solid state drive (SSD), or traditional hard drive (HDD). In an embodiment, the storage module 13 may also be a database stored in the cloud.

運算模組14依據物體OBJ的材料的放射率以及物體OBJ所放射的熱輻射R計算物體OBJ的表面溫度。舉例來說,運算模組14可包括中央處理器(Central Processing Unit,CPU)或是其他可程式化之一般用途或特殊用途的微處理器、數位訊號處理器(Digital Signal Processor,DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuits,ASIC)、可程式化邏輯裝置(Programmable Logic Device,PLD)或其他類似裝置或這些裝置的組合。The calculation module 14 calculates the surface temperature of the object OBJ according to the emissivity of the material of the object OBJ and the heat radiation R emitted by the object OBJ. For example, the computing module 14 may include a central processing unit (Central Processing Unit, CPU) or other programmable general-purpose or special-purpose microprocessors, digital signal processors (DSP), and Programmable controller, Application Specific Integrated Circuits (ASIC), Programmable Logic Device (PLD) or other similar devices or combinations of these devices.

圖2是本揭露的一實施例的熱影像感測方法20的示意圖。請參照圖2,熱影像感測方法20包括以下步驟:感測物體所放射的熱輻射並產生一熱輻射影像信號(步驟200);感測物體所反射的可見光並產生至少一可見光影像信號(步驟202);依據所述至少一可見光影像信號判斷物體的材料(步驟204);依據物體的材料判斷物體的材料的放射率(步驟206);以及依據物體的材料的放射率以及物體所放射的熱輻射計算物體的表面溫度(步驟208)。FIG. 2 is a schematic diagram of a thermal image sensing method 20 according to an embodiment of the disclosure. 2, the thermal image sensing method 20 includes the following steps: sensing thermal radiation emitted by an object and generating a thermal radiation image signal (step 200); sensing visible light reflected by the object and generating at least one visible light image signal ( Step 202); Determine the material of the object based on the at least one visible light image signal (Step 204); Determine the emissivity of the material of the object based on the material of the object (Step 206); and Determine the emissivity of the material of the object and the emissivity of the object The heat radiation calculates the surface temperature of the object (step 208).

在步驟200中,可利用熱感測器來感測物體所放射的熱輻射,藉此獲得物體的熱影像。在步驟202中,可利用光感測器來感測物體所反射的可見光,藉此獲得物體的可見光影像。在步驟204中,影像辨識模組可依據可見光影像判斷物體的材料。舉例來說,可依據可見光影像中物體的表面形貌及/或顏色等參數進行分析。例如,可根據可見光影像中物體所呈現的金屬光澤判斷物體的材料,但不以此為限。在步驟206中,影像辨識模組可從儲存模組所儲存的放射率資料查找物體的材料的放射率。在步驟208中,運算模組可依據查到的放射率以及物體所放射的熱輻射計算(例如套入式1)物體的表面溫度,並依此優化/修正步驟200中所獲得的熱影像。In step 200, a thermal sensor can be used to sense the thermal radiation emitted by the object, thereby obtaining a thermal image of the object. In step 202, a light sensor can be used to sense the visible light reflected by the object, thereby obtaining a visible light image of the object. In step 204, the image recognition module can determine the material of the object according to the visible light image. For example, the analysis can be performed based on parameters such as the surface topography and/or color of the object in the visible light image. For example, the material of the object can be determined based on the metallic luster of the object in the visible light image, but it is not limited to this. In step 206, the image recognition module can search for the emissivity of the material of the object from the emissivity data stored in the storage module. In step 208, the arithmetic module can calculate the surface temperature of the object according to the found emissivity and the heat radiation emitted by the object (for example, nesting in formula 1), and optimize/correct the thermal image obtained in step 200 accordingly.

舉例來說,可藉由將熱感測器所獲得的熱影像與光感測器所獲得的可見光影像進行特徵匹配(如位置、物體尺寸的匹配),並利用影像辨識模組識別可見光影像中的物體以及判別物體的材料並查找出物體的材料的放射率。然後利用運算模組優化步驟200的熱影像中金屬物質所在區域的溫度,使得優化後的熱影像所顯示的物體的表面溫度與物體實際的表面溫度相符。如此,相較於僅使用熱感測器來獲得物體的熱影像,藉由熱感測器搭配光感測器來獲得物體的熱影像可有效避免低估金屬物質的表面溫度,並且所述熱影像所顯示的物體的表面溫度與物體實際的表面溫度較為一致。For example, the thermal image obtained by the thermal sensor can be matched with the visible light image obtained by the light sensor for feature matching (such as matching of position and object size), and the image recognition module can be used to identify the visible light image The object and distinguish the material of the object and find the emissivity of the material of the object. The computing module is then used to optimize the temperature of the area where the metal substance is located in the thermal image of step 200, so that the surface temperature of the object shown in the optimized thermal image matches the actual surface temperature of the object. In this way, compared with only using a thermal sensor to obtain a thermal image of an object, the thermal image of the object can be obtained by combining a thermal sensor with a light sensor to effectively avoid underestimating the surface temperature of the metal substance, and the thermal image The surface temperature of the displayed object is more consistent with the actual surface temperature of the object.

圖3是本揭露的第二實施例的熱影像感測系統1A的示意圖。請參照圖3,熱影像感測系統1A與圖1中的熱影像感測系統1的主要差異在於熱影像感測系統1A還包括至少一偏振片(如偏振片15)。在本實施例中,如圖3所示,熱影像感測系統1A所包括的偏振片的數量為一,且偏振片15設置在物體OBJ與所述至少一光感測器(如光感測器11)之間。然而,熱影像感測系統1A所包括的偏振片的數量可依需求改變,且偏振片15也可設置於所述至少一光感測器(如光感測器11)中。FIG. 3 is a schematic diagram of the thermal image sensing system 1A of the second embodiment of the disclosure. 3, the main difference between the thermal image sensing system 1A and the thermal image sensing system 1 in FIG. 1 is that the thermal image sensing system 1A further includes at least one polarizer (such as the polarizer 15). In this embodiment, as shown in FIG. 3, the number of polarizers included in the thermal image sensing system 1A is one, and the polarizer 15 is disposed on the object OBJ and the at least one light sensor (such as the light sensor).器11) Between. However, the number of polarizers included in the thermal image sensing system 1A can be changed according to requirements, and the polarizer 15 can also be disposed in the at least one light sensor (such as the light sensor 11).

偏振片15適於過濾可見光L中具有特定偏振方向的光。舉例來說,s偏振光在金屬表面具有較強的反射率,其容易在可見光影像中產生白畫面(高反光區域)。白畫面若遮蔽物體影像會增加材料識別的難度或導致材料識別的準確率降低。因此,偏振片15可以是過濾可見光L中的s偏振光LS且讓可見光L中的p偏振光LP通過的偏振片。利用偏振片15過濾可見光L中的s偏振光LS且讓可見光L中的p偏振光LP通過,有助於消除高反光區域,而獲得較清晰/完整的物體影像(可見光影像),提升材料識別的準確率。The polarizer 15 is suitable for filtering light having a specific polarization direction in the visible light L. For example, s-polarized light has a strong reflectivity on a metal surface, which easily produces a white image (highly reflective area) in a visible light image. If the white screen obscures the object image, it will increase the difficulty of material recognition or reduce the accuracy of material recognition. Therefore, the polarizing plate 15 may be a polarizing plate that filters the s-polarized light LS in the visible light L and allows the p-polarized light LP in the visible light L to pass. The polarizer 15 is used to filter the s-polarized light LS in the visible light L and let the p-polarized light LP in the visible light L pass, which helps to eliminate the highly reflective area, and obtain a clearer/complete object image (visible light image) to improve material recognition The accuracy rate.

在設置有偏振片15的架構下,在圖2的步驟202中,感測物體所反射的可見光並產生所述至少一可見光影像信號可包括以下步驟:利用偏振片15過濾物體OBJ所反射的可見光L中的s偏振光LS;以及感測物體OBJ所反射的可見光L中的p偏振光LP並產生第一光信號(如p偏振光LP所產生的可見光影像,圖3中以SS1表示第一光信號)。此外,在圖2的步驟204中,依據所述至少一可見光影像信號判斷物體的材料可包括:依據第一光信號SS1判斷物體OBJ的材料。由於p偏振光LP所產生的可見光影像可具有清晰/完整的物體影像,因此有助於提升材料識別的準確率。In the structure provided with the polarizer 15, in step 202 of FIG. 2, sensing the visible light reflected by the object and generating the at least one visible light image signal may include the following steps: using the polarizer 15 to filter the visible light reflected by the object OBJ The s-polarized light LS in L; and the p-polarized light LP in the visible light L reflected by the object OBJ is sensed and the first optical signal (such as the visible light image generated by the p-polarized light LP is generated. In Figure 3, the first Light signal). In addition, in step 204 of FIG. 2, determining the material of the object according to the at least one visible light image signal may include: determining the material of the object OBJ according to the first light signal SS1. Since the visible light image generated by the p-polarized light LP can have a clear/complete object image, it helps to improve the accuracy of material recognition.

圖4是金屬物質所反射的可見光的入射角度-反射率的關係圖。由於不同偏振方向的光對於金屬物質的反射率不同,因此可利用不同偏振方向的光對於金屬物質的反射率來進行材料識別。在圖4中,曲線C1表示的是銀(Ag)對於s偏振光的反射率。曲線C2表示的是銀對於p偏振光的反射率。曲線C3表示的是銅(Cu)對於s偏振光的反射率。曲線C4表示的是銅對於p偏振光的反射率。從圖4可知,對於同一金屬物質,當s偏振光及p偏振光斜向入射金屬物質時,s偏振光及p偏振光具有不同的反射率。此外,對於不同的金屬物質,斜向入射金屬物質的p偏振光(或s偏振光)具有不同的反射率。因此,可利用p偏振光及/或s偏振光的反射率來協助材料識別,藉此提升材料識別的準確度。Fig. 4 is a graph showing the relationship between the incident angle of visible light reflected by the metal substance and the reflectivity. Since light with different polarization directions has different reflectivity to metal materials, the reflectivity of light with different polarization directions to metal materials can be used for material identification. In FIG. 4, the curve C1 represents the reflectance of silver (Ag) to s-polarized light. Curve C2 represents the reflectance of silver to p-polarized light. The curve C3 represents the reflectivity of copper (Cu) to s-polarized light. Curve C4 represents the reflectivity of copper for p-polarized light. It can be seen from FIG. 4 that for the same metal substance, when s-polarized light and p-polarized light are incident on the metal substance obliquely, the s-polarized light and p-polarized light have different reflectivities. In addition, for different metal substances, p-polarized light (or s-polarized light) that is obliquely incident on the metal substance has different reflectivity. Therefore, the reflectivity of p-polarized light and/or s-polarized light can be used to assist material identification, thereby improving the accuracy of material identification.

圖5及圖6分別是圖3中偏振片的另外兩種正視示意圖。請參照圖5,偏振片15A與圖3的偏振片15的主要差異如下所述。在圖3中,偏振片15是單一種偏振片,其適於讓p偏振光通過且過濾s偏振光。在圖5中,偏振片15A是由兩種偏振片組合而成。具體地,偏振片15A包括多個第一部分P以及多個第二部分S,所述多個第一部分P適於讓p偏振光通過且過濾s偏振光。所述多個第二部分S適於讓s偏振光通過且過濾p偏振光。所述多個第一部分P以及所述多個第二部分S可排列呈陣列且可設置於所述至少一光感測器(如圖3的光感測器11)中並對應光感測器11的畫素設置。Figures 5 and 6 are schematic diagrams of the other two front views of the polarizer in Figure 3, respectively. 5, the main differences between the polarizing plate 15A and the polarizing plate 15 of FIG. 3 are as follows. In FIG. 3, the polarizer 15 is a single type of polarizer, which is suitable for passing p-polarized light and filtering s-polarized light. In FIG. 5, the polarizing plate 15A is a combination of two polarizing plates. Specifically, the polarizer 15A includes a plurality of first parts P and a plurality of second parts S, and the plurality of first parts P are adapted to pass p-polarized light and filter s-polarized light. The plurality of second parts S are adapted to pass s-polarized light and filter p-polarized light. The plurality of first parts P and the plurality of second parts S may be arranged in an array and may be disposed in the at least one light sensor (such as the light sensor 11 in FIG. 3) and correspond to the light sensor 11 pixel settings.

請參照圖6,偏振片15B與圖5的偏振片15A的主要差異如下所述。在圖6中,偏振片15B是由三種偏振片組合而成。具體地,除了所述多個第一部分P以及所述多個第二部分S之外,偏振片15B還包括多個第三部分P+S。所述多個第三部分P+S適於讓p偏振光以及s偏振光通過,或者所述多個第三部分P+S適於過濾p偏振光以及s偏振光。此外,所述多個第一部分P、所述多個第二部分S以及所述多個第三部分P+S可排列呈陣列且可設置於所述至少一光感測器(如圖3的光感測器11)中並對應光感測器11的畫素設置。Referring to FIG. 6, the main differences between the polarizing plate 15B and the polarizing plate 15A of FIG. 5 are as follows. In FIG. 6, the polarizing plate 15B is a combination of three kinds of polarizing plates. Specifically, in addition to the plurality of first parts P and the plurality of second parts S, the polarizing plate 15B further includes a plurality of third parts P+S. The plurality of third parts P+S are suitable for passing p-polarized light and s-polarized light, or the plurality of third parts P+S are suitable for filtering p-polarized light and s-polarized light. In addition, the plurality of first portions P, the plurality of second portions S, and the plurality of third portions P+S can be arranged in an array and can be disposed on the at least one light sensor (as shown in FIG. 3 The photo sensor 11) corresponds to the pixel setting of the photo sensor 11.

在設置有偏振片15A或偏振片15B的架構下,可利用單一光感測器(如圖3的光感測器11)所擷取的可見光影像進行材料識別。具體地,如圖4所示,對於同一金屬物質,當s偏振光及p偏振光以大於或等於10度且小於或等於90度的入射角入射金屬物質時,s偏振光及p偏振光具有不同的反射率。因此,在設置有偏振片15A或偏振片15B的架構下,可將環境光源2設置在物體OBJ的斜上方,使環境光B以大於或等於10度且小於或等於90度的入射角入射金屬物質,並對應設置光感測器11,以感測物體OBJ所反射的可見光L。藉由比對s偏振光及p偏振光的對比差異,來協助判斷金屬材質。In the structure provided with the polarizer 15A or the polarizer 15B, the visible light image captured by a single light sensor (such as the light sensor 11 in FIG. 3) can be used for material identification. Specifically, as shown in Figure 4, for the same metal substance, when s-polarized light and p-polarized light are incident on the metal substance at an incident angle greater than or equal to 10 degrees and less than or equal to 90 degrees, the s-polarized light and p-polarized light have Different reflectivity. Therefore, under the structure provided with the polarizer 15A or the polarizer 15B, the ambient light source 2 can be placed obliquely above the object OBJ, so that the ambient light B enters the metal at an incident angle greater than or equal to 10 degrees and less than or equal to 90 degrees. The light sensor 11 is correspondingly arranged to sense the visible light L reflected by the object OBJ. By comparing the contrast difference between s-polarized light and p-polarized light, it helps to judge the metal material.

圖7至圖9分別是本揭露的第三實施例至第五實施例的熱影像感測系統1B至熱影像感測系統1D的示意圖。請參照圖7,熱影像感測系統1B與圖3的熱影像感測系統1A的主要差異在於熱影像感測系統1B包括多個光感測器。具體地,熱影像感測系統1B包括第一光感測器(如光感測器11)以及第二光感測器16。所述至少一偏振片(如偏振片15)設置在朝第一光感測器(如光感測器11)傳遞的可見光L的路徑上,且所述至少一偏振片適於讓p偏振光通過且過濾s偏振光,或者所述至少一偏振片適於讓s偏振光通過且過濾p偏振光。7 to 9 are schematic diagrams of the thermal image sensing system 1B to the thermal image sensing system 1D of the third embodiment to the fifth embodiment of the disclosure, respectively. Please refer to FIG. 7, the main difference between the thermal image sensing system 1B and the thermal image sensing system 1A of FIG. 3 is that the thermal image sensing system 1B includes a plurality of light sensors. Specifically, the thermal image sensing system 1B includes a first light sensor (such as the light sensor 11) and a second light sensor 16. The at least one polarizer (such as the polarizer 15) is arranged on the path of the visible light L transmitted toward the first light sensor (such as the light sensor 11), and the at least one polarizer is suitable for p-polarized light Pass and filter s-polarized light, or the at least one polarizer is adapted to pass s-polarized light and filter p-polarized light.

在本實施例中,偏振片15適於讓p偏振光通過且過濾s偏振光。在圖2的步驟202中,感測物體所反射的可見光並產生所述至少一可見光影像信號可包括以下步驟:利用偏振片15過濾物體OBJ所反射的可見光中的s偏振光LS;利用第一光感測器(如光感測器11)感測物體OBJ所反射的可見光L中的p偏振光LP並產生第一光信號SS1;以及利用第二光感測器16感測物體OBJ所反射的可見光L中的p偏振光LP及s偏振光LS並產生第二光信號SS2。此外,在圖2的步驟204中,依據所述至少一可見光影像信號判斷物體的材料可包括:依據第一光信號SS1以及第二光信號SS2判斷物體OBJ的材料。具體地,可利用包括p偏振光LP及s偏振光LS的第二光信號SS2扣掉包括p偏振光LP的第一光信號SS1獲得僅有s偏振光LS的光信號,並利用p偏振光LP及s偏振光LS的反射率進行材料識別。In this embodiment, the polarizer 15 is suitable for passing p-polarized light and filtering s-polarized light. In step 202 of FIG. 2, sensing the visible light reflected by the object and generating the at least one visible light image signal may include the following steps: using a polarizer 15 to filter the s-polarized light LS in the visible light reflected by the object OBJ; The light sensor (such as the light sensor 11) senses the p-polarized light LP in the visible light L reflected by the object OBJ and generates the first light signal SS1; and the second light sensor 16 is used to sense the reflection of the object OBJ The p-polarized light LP and the s-polarized light LS in the visible light L generate the second optical signal SS2. In addition, in step 204 of FIG. 2, determining the material of the object according to the at least one visible light image signal may include: determining the material of the object OBJ according to the first light signal SS1 and the second light signal SS2. Specifically, the second optical signal SS2 including p-polarized light LP and s-polarized light LS can be used to subtract the first optical signal SS1 including p-polarized light LP to obtain an optical signal with only s-polarized light LS, and use p-polarized light The reflectivity of LP and s-polarized light LS performs material identification.

請參照圖8,熱影像感測系統1C與圖3的熱影像感測系統1A的主要差異如下所述。在圖8中,熱感測器10與光感測器11是獨立設置/架設。此外,熱影像感測系統1C還包括分光元件17。分光元件17適於將紅外光(熱輻射R)以及可見光L的其中一個反射,且讓紅外光(熱輻射R)以及可見光L的其中另一個穿透,且所述至少一偏振片(如偏振片15)設置在從分光元件17朝所述至少一光感測器(如光感測器11)傳遞的可見光L的路徑上。Please refer to FIG. 8, the main differences between the thermal image sensing system 1C and the thermal image sensing system 1A of FIG. 3 are as follows. In FIG. 8, the thermal sensor 10 and the light sensor 11 are independently installed/installed. In addition, the thermal image sensing system 1C further includes a light splitting element 17. The spectroscopic element 17 is adapted to reflect one of infrared light (thermal radiation R) and visible light L, and allow the other of the infrared light (thermal radiation R) and visible light L to pass through, and the at least one polarizer (such as polarizer) The sheet 15) is arranged on the path of the visible light L transmitted from the light splitting element 17 to the at least one light sensor (such as the light sensor 11).

在本實施例中,分光元件17適於將紅外光(熱輻射R)反射且讓可見光L穿透,且偏振片15設置在分光元件17與光感測器11之間。然而,在另一實施例中,偏振片15也可設置於光感測器11中。另外,分光元件17也可將可見光L反射且讓紅外光(熱輻射R)穿透;對應地,熱感測器10以及光感測器11的位置互換,且偏振片15設置在分光元件17與光感測器11之間或設置於光感測器11中。In this embodiment, the light splitting element 17 is suitable for reflecting infrared light (heat radiation R) and allowing visible light L to pass through, and the polarizing plate 15 is disposed between the light splitting element 17 and the light sensor 11. However, in another embodiment, the polarizing plate 15 may also be provided in the light sensor 11. In addition, the light splitting element 17 can also reflect visible light L and allow infrared light (thermal radiation R) to penetrate; correspondingly, the positions of the thermal sensor 10 and the light sensor 11 are interchanged, and the polarizing plate 15 is arranged on the light splitting element 17 Between the light sensor 11 or in the light sensor 11.

依據不同的需求,熱影像感測系統1C可包括其他元件。舉例來說,熱影像感測系統1C可進一步包括聚光元件18。聚光元件18可提供匯聚光線的效果,且聚光元件18適於讓紅外光(熱輻射R)及可見光L通過。舉例來說,聚光元件18可包括至少一透鏡。According to different requirements, the thermal image sensing system 1C may include other components. For example, the thermal image sensing system 1C may further include a light concentrating element 18. The condensing element 18 can provide the effect of converging light, and the concentrating element 18 is suitable for passing infrared light (heat radiation R) and visible light L. For example, the condensing element 18 may include at least one lens.

在圖8中,偏振片15可以是過濾可見光L中的s偏振光LS且讓可見光L中的p偏振光LP通過的偏振片。利用偏振片15過濾可見光L中的s偏振光LS且讓可見光L中的p偏振光LP通過,有助於消除高反射區域,而獲得較清晰/完整的物體影像(可見光影像),提升材料識別的準確率。替代地,偏振片15可以是替換成圖5的偏振片15A或圖6的偏振片15B。In FIG. 8, the polarizing plate 15 may be a polarizing plate that filters the s-polarized light LS in the visible light L and allows the p-polarized light LP in the visible light L to pass. The polarizer 15 is used to filter the s-polarized light LS in the visible light L and let the p-polarized light LP in the visible light L pass, which helps to eliminate the high reflection area, and obtain a clearer/complete object image (visible light image), which improves material recognition The accuracy rate. Alternatively, the polarizing plate 15 may be replaced with the polarizing plate 15A of FIG. 5 or the polarizing plate 15B of FIG. 6.

請參照圖9,熱影像感測系統1D與圖8的熱影像感測系統1C的主要差異如下所述。在圖9中,熱影像感測系統1D包括多個光感測器。具體地,熱影像感測系統1D可包括第一光感測器(如光感測器11)以及第二光感測器16。所述至少一偏振片(如偏振片15D)設置在分光元件17與第一光感測器(如光感測器11)之間以及分光元件17與第二光感測器16之間。偏振片15D適於將可見光L中的s偏振光LS反射且讓可見光L中的p偏振光LP穿透。第一光感測器(如光感測器11)接收穿過偏振片15D的p偏振光LP,且第二光感測器16接收被偏振片15D反射的s偏振光LS。Please refer to FIG. 9, the main differences between the thermal image sensing system 1D and the thermal image sensing system 1C of FIG. 8 are as follows. In FIG. 9, the thermal image sensing system ID includes a plurality of light sensors. Specifically, the thermal image sensing system 1D may include a first light sensor (such as the light sensor 11) and a second light sensor 16. The at least one polarizer (such as the polarizer 15D) is disposed between the light splitting element 17 and the first light sensor (such as the light sensor 11) and between the light splitting element 17 and the second light sensor 16. The polarizer 15D is suitable for reflecting the s-polarized light LS in the visible light L and allowing the p-polarized light LP in the visible light L to penetrate. The first light sensor (such as the light sensor 11) receives the p-polarized light LP passing through the polarizing plate 15D, and the second light sensor 16 receives the s-polarized light LS reflected by the polarizing plate 15D.

利用兩個光感測器擷取不同偏振光影像也可進行材料識別。在圖9的架構下,在圖2的步驟202中,感測物體所反射的可見光並產生所述至少一可見光影像信號可包括以下步驟:利用偏振片15D將物體OBJ所反射的可見光L中的s偏振光LS與p偏振光LP分離;利用第一光感測器(如光感測器11)感測物體OBJ所反射的可見光L中的p偏振光LP並產生第一光信號SS1;以及利用第二光感測器16感測物體OBJ所反射的可見光L中的s偏振光LS並產生第三光信號SS3。此外,在圖2的步驟204中,依據所述至少一可見光影像信號判斷物體的材料可包括:依據第一光信號SS1以及第三光信號SS3判斷物體OBJ的材料。Using two light sensors to capture images of different polarizations can also be used for material identification. Under the architecture of FIG. 9, in step 202 of FIG. 2, sensing the visible light reflected by the object and generating the at least one visible light image signal may include the following steps: using a polarizer 15D to convert the visible light L reflected by the object OBJ The s-polarized light LS is separated from the p-polarized light LP; the first light sensor (such as the light sensor 11) is used to sense the p-polarized light LP in the visible light L reflected by the object OBJ and generate the first optical signal SS1; and The second light sensor 16 is used to sense the s-polarized light LS in the visible light L reflected by the object OBJ and generate a third light signal SS3. In addition, in step 204 of FIG. 2, determining the material of the object according to the at least one visible light image signal may include: determining the material of the object OBJ according to the first light signal SS1 and the third light signal SS3.

圖10是可應用於本揭露的熱影像感測系統的感測模組MA的正視示意圖。請參照圖10,熱影像感測系統可包括多個熱感測器10以及多個光感測器11A,且所述多個熱感測器10以及所述多個光感測器11A可排列成陣列,以形成圖10所示的感測模組MA。在感測模組MA中,每一個光感測器11A可包括多個子畫素,如紅色子畫素、綠色子畫素及藍色子畫素,但不以此為限。此外,每一個光感測器11A可選擇性地設置有一個偏振片(未繪示),且所述多個光感測器11A的多個偏振片可以採用圖3中的偏振片15設計(過濾s偏振光或過濾p偏振光)、圖5中的偏振片15A設計(多個第一部分P以及多個第二部分S的陣列排列)或圖6中的偏振片15B設計(多個第一部分P、多個第二部分S以及多個第三部分P+S的陣列排列)。FIG. 10 is a schematic front view of a sensing module MA applicable to the thermal image sensing system of the present disclosure. 10, the thermal image sensing system may include a plurality of thermal sensors 10 and a plurality of light sensors 11A, and the plurality of thermal sensors 10 and the plurality of light sensors 11A may be arranged Arrayed to form the sensing module MA shown in FIG. 10. In the sensing module MA, each light sensor 11A may include a plurality of sub-pixels, such as red sub-pixels, green sub-pixels, and blue sub-pixels, but not limited to this. In addition, each photo sensor 11A can be optionally provided with a polarizer (not shown), and the multiple polarizers of the photo sensors 11A can adopt the design of the polarizer 15 in FIG. 3 ( Filter s-polarized light or filter p-polarized light), the polarizer 15A design in FIG. 5 (array arrangement of multiple first parts P and multiple second parts S) or the polarizer 15B design in FIG. 6 (multiple first parts P, a plurality of second parts S and a plurality of third parts P+S array arrangement).

綜上所述,本揭露的熱影像感測系統及熱影像感測方法可利用可見光影像判別物體的材質,並藉此校正金屬物質的表面溫度,使校正/優化後的熱影像所顯示的物體的表面溫度與物體實際的表面溫度相符。在一實施例中,可藉由至少一偏振片的設置來消除高反光區域,而獲得較清晰/完整的物體影像(可見光影像),提升材料識別的準確率。在一實施例中,可藉由多種偏振片的組合設計來協助判斷金屬物質的材料。在一實施例中,可藉由多個光感測器以及單一偏振片的設置來協助判斷金屬物質的材料。在一實施例中,熱影像感測系統可包括由多個熱感測器以及多個光感測器排列成陣列所形成的感測模組。In summary, the thermal image sensing system and thermal image sensing method of the present disclosure can use visible light images to determine the material of an object, and thereby correct the surface temperature of the metal substance, so that the corrected/optimized thermal image shows the object The surface temperature matches the actual surface temperature of the object. In one embodiment, the highly reflective area can be eliminated by the arrangement of at least one polarizer, and a clearer/complete object image (visible light image) can be obtained, and the accuracy of material identification can be improved. In one embodiment, a combination of multiple polarizers can be used to help determine the material of the metal substance. In one embodiment, the arrangement of multiple light sensors and a single polarizer can assist in determining the material of the metal substance. In one embodiment, the thermal image sensing system may include a sensing module formed by arranging a plurality of thermal sensors and a plurality of light sensors in an array.

雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本揭露的保護範圍當視後附的申請專利範圍所界定者為準。Although this disclosure has been disclosed in the above embodiments, it is not intended to limit the disclosure. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of this disclosure. Therefore, The scope of protection of this disclosure shall be subject to those defined by the attached patent scope.

1、1A、1B、1C、1D:熱影像感測系統 2:環境光源 10:熱感測器 11、11A:光感測器 12:影像辨識模組 13:儲存模組 14:運算模組 15、15A、15B、15D:偏振片 16:第二光感測器 17:分光元件 18:聚光元件 20:熱影像感測方法 200、202、204、206、208:步驟 B:環境光 C1、C2、C3、C4:曲線 L:可見光 LP:p偏振光 LS:s偏振光 M:雙鏡頭模組 MA:感測模組 OBJ:物體 P:第一部分 P+S:第三部分 R:熱輻射 RS:熱輻射影像信號 S:第二部分 SS:可見光影像信號 SS1:第一光信號 SS2:第二光信號 SS3:第三光信號1. 1A, 1B, 1C, 1D: thermal image sensing system 2: Ambient light source 10: Thermal sensor 11.11A: Light sensor 12: Image recognition module 13: Storage module 14: Computing module 15, 15A, 15B, 15D: Polarizer 16: second light sensor 17: Spectroscopic element 18: Condensing element 20: Thermal image sensing method 200, 202, 204, 206, 208: steps B: ambient light C1, C2, C3, C4: Curve L: Visible light LP: p-polarized light LS: s polarized light M: Dual lens module MA: Sensing module OBJ: Object P: Part One P+S: Part Three R: Thermal radiation RS: Thermal radiation image signal S: part two SS: Visible light image signal SS1: First optical signal SS2: second optical signal SS3: third optical signal

圖1是本揭露的第一實施例的熱影像感測系統的示意圖。 圖2是本揭露的一實施例的熱影像感測方法的示意圖。 圖3是本揭露的第二實施例的熱影像感測系統的示意圖。 圖4是金屬物質所反射的可見光的入射角度-反射率的關係圖。 圖5及圖6分別是圖3中偏振片的另外兩種正視示意圖。 圖7至圖9分別是本揭露的第三實施例至第五實施例的熱影像感測系統的示意圖。 圖10是可應用於本揭露的熱影像感測系統的感測模組的正視示意圖。FIG. 1 is a schematic diagram of the thermal image sensing system of the first embodiment of the disclosure. FIG. 2 is a schematic diagram of a thermal image sensing method according to an embodiment of the disclosure. FIG. 3 is a schematic diagram of the thermal image sensing system of the second embodiment of the disclosure. Fig. 4 is a graph showing the relationship between the incident angle of visible light reflected by the metal substance and the reflectivity. Figures 5 and 6 are schematic diagrams of the other two front views of the polarizer in Figure 3, respectively. 7 to 9 are schematic diagrams of the thermal image sensing system of the third embodiment to the fifth embodiment of the disclosure, respectively. FIG. 10 is a schematic front view of a sensing module applicable to the thermal image sensing system of the present disclosure.

1:熱影像感測系統 1: Thermal image sensing system

2:環境光源 2: Ambient light source

10:熱感測器 10: Thermal sensor

11:光感測器 11: Light sensor

12:影像辨識模組 12: Image recognition module

13:儲存模組 13: Storage module

14:運算模組 14: Computing module

B:環境光 B: ambient light

L:可見光 L: Visible light

M:雙鏡頭模組 M: Dual lens module

OBJ:物體 OBJ: Object

R:熱輻射 R: Thermal radiation

RS:熱輻射影像信號 RS: Thermal radiation image signal

SS:信號 SS: Signal

Claims (13)

一種熱影像感測系統,包括: 至少一熱感測器,感測一物體所放射的一熱輻射並對應產生一熱輻射影像信號; 至少一光感測器,感測該物體所反射的一可見光並對應產生至少一可見光影像信號; 一影像辨識模組,接收該至少一光感測器所產生的該至少一可見光影像信號,並依據該至少一可見光影像信號判斷該物體的材料; 一儲存模組,儲存該物體的材料的放射率;以及 一運算模組,依據該物體的材料的放射率以及該物體所放射的該熱輻射計算該物體的表面溫度。A thermal image sensing system, including: At least one thermal sensor, which senses a thermal radiation emitted by an object and correspondingly generates a thermal radiation image signal; At least one light sensor for sensing a visible light reflected by the object and correspondingly generating at least one visible light image signal; An image recognition module, receiving the at least one visible light image signal generated by the at least one light sensor, and determining the material of the object according to the at least one visible light image signal; A storage module to store the emissivity of the material of the object; and An arithmetic module calculates the surface temperature of the object according to the emissivity of the material of the object and the heat radiation emitted by the object. 如申請專利範圍第1項所述的熱影像感測系統,更包括: 至少一偏振片,設置在該物體與該至少一光感測器之間或設置於該至少一光感測器中。The thermal image sensing system as described in item 1 of the scope of patent application further includes: At least one polarizer is arranged between the object and the at least one light sensor or in the at least one light sensor. 如申請專利範圍第2項所述的熱影像感測系統,其中該至少一偏振片讓p偏振光通過且過濾s偏振光。According to the thermal image sensing system described in claim 2, wherein the at least one polarizer passes p-polarized light and filters s-polarized light. 如申請專利範圍第2項所述的熱影像感測系統,其中該至少一偏振片包括多個第一部分以及多個第二部分,該些第一部分讓p偏振光通過且過濾s偏振光,該些第二部分讓s偏振光通過且過濾p偏振光。According to the thermal image sensing system described in claim 2, wherein the at least one polarizer includes a plurality of first parts and a plurality of second parts, the first parts allow p-polarized light to pass through and filter s-polarized light, the These second parts let s-polarized light pass and filter p-polarized light. 如申請專利範圍第4項所述的熱影像感測系統,其中該至少一偏振片更包括多個第三部分,該些第三部分讓p偏振光以及s偏振光通過,或者該些第三部分過濾p偏振光以及s偏振光。According to the thermal image sensing system described in claim 4, wherein the at least one polarizer further includes a plurality of third parts, the third parts allow p-polarized light and s-polarized light to pass through, or the third parts Partially filters p-polarized light and s-polarized light. 如申請專利範圍第2項所述的熱影像感測系統,其中該至少一光感測器包括一第一光感測器以及一第二光感測器,該至少一偏振片設置在朝該第一光感測器傳遞的該可見光的路徑上,該至少一偏振片讓p偏振光通過且過濾s偏振光,或者該至少一偏振片讓s偏振光通過且過濾p偏振光。According to the thermal image sensing system described in claim 2, wherein the at least one light sensor includes a first light sensor and a second light sensor, and the at least one polarizer is arranged facing the On the path of the visible light transmitted by the first light sensor, the at least one polarizer allows p-polarized light to pass and filters s-polarized light, or the at least one polarizer allows s-polarized light to pass and filters p-polarized light. 如申請專利範圍第2項所述的熱影像感測系統,其中該熱感測器是一紅外光感測器,且該紅外光感測器感測來自該物體的一紅外光,該熱影像感測系統更包括: 一分光元件,將該紅外光以及該可見光的其中一個反射,且讓該紅外光以及該可見光的其中另一個穿透,且該至少一偏振片設置在從該分光元件朝該至少一光感測器傳遞的該可見光的路徑上。The thermal image sensing system according to the second item of the scope of patent application, wherein the thermal sensor is an infrared light sensor, and the infrared light sensor senses an infrared light from the object, and the thermal image The sensing system further includes: A light splitting element reflects one of the infrared light and the visible light, and allows the other of the infrared light and the visible light to pass through, and the at least one polarizer is disposed from the light splitting element toward the at least one light sensor The path of the visible light transmitted by the device. 如申請專利範圍第7項所述的熱影像感測系統,其中該至少一光感測器包括一第一光感測器以及一第二光感測器,該至少一偏振片設置在該分光元件與該第一光感測器之間以及該分光元件與該第二光感測器之間,該至少一偏振片將該可見光中的s偏振光反射且讓該可見光中的p偏振光穿透,該第一光感測器接收穿過該至少一偏振片的p偏振光,且該第二光感測器接收被該至少一偏振片反射的s偏振光。The thermal image sensing system according to claim 7, wherein the at least one light sensor includes a first light sensor and a second light sensor, and the at least one polarizer is disposed on the beam splitter Between the element and the first light sensor and between the light splitting element and the second light sensor, the at least one polarizer reflects the s-polarized light in the visible light and allows the p-polarized light in the visible light to pass through Transparent, the first light sensor receives p-polarized light passing through the at least one polarizer, and the second light sensor receives s-polarized light reflected by the at least one polarizer. 如申請專利範圍第1項所述的熱影像感測系統,其中該熱影像感測系統包括多個熱感測器以及多個光感測器,且該些熱感測器以及該些光感測器排列成陣列。The thermal image sensing system according to claim 1, wherein the thermal image sensing system includes a plurality of thermal sensors and a plurality of light sensors, and the thermal sensors and the light sensors The detectors are arranged in an array. 一種熱影像感測方法,包括: 感測一物體所放射的一熱輻射並對應產生一熱輻射影像信號; 感測該物體所反射的一可見光並對應產生至少一可見光影像信號; 依據該至少一可見光影像信號判斷該物體的材料; 依據該物體的材料判斷該物體的材料的放射率;以及 依據該物體的材料的放射率以及該物體所放射的該熱輻射計算該物體的表面溫度。A thermal image sensing method, including: Sensing a thermal radiation emitted by an object and correspondingly generating a thermal radiation image signal; Sensing a visible light reflected by the object and correspondingly generating at least one visible light image signal; Judging the material of the object according to the at least one visible light image signal; Determine the emissivity of the material of the object based on the material of the object; and The surface temperature of the object is calculated based on the emissivity of the material of the object and the heat radiation emitted by the object. 如申請專利範圍第10項所述的熱影像感測方法,其中感測該物體所反射的該可見光並對應產生該至少一可見光影像信號包括: 過濾該物體所反射的該可見光中的s偏振光;以及 感測該物體所反射的該可見光中的p偏振光並產生一第一光信號, 其中依據該至少一可見光影像信號判斷該物體的材料包括: 依據該第一光信號判斷該物體的材料。The thermal image sensing method according to claim 10, wherein sensing the visible light reflected by the object and correspondingly generating the at least one visible light image signal includes: Filtering the s-polarized light in the visible light reflected by the object; and Sensing the p-polarized light in the visible light reflected by the object and generating a first optical signal, The material for judging the object based on the at least one visible light image signal includes: The material of the object is determined according to the first light signal. 如申請專利範圍第10項所述的熱影像感測方法,其中感測該物體所反射的該可見光並對應產生該至少一可見光影像信號包括: 過濾該物體所反射的該可見光中的s偏振光; 感測該物體所反射的該可見光中的p偏振光並產生一第一光信號;以及 感測該物體所反射的該可見光中的p偏振光以及s偏振光並產生一第二光信號, 其中依據該至少一可見光影像信號判斷該物體的材料包括: 依據該第一光信號以及該第二光信號判斷該物體的材料。The thermal image sensing method of claim 10, wherein sensing the visible light reflected by the object and correspondingly generating the at least one visible light image signal includes: Filtering the s-polarized light in the visible light reflected by the object; Sensing the p-polarized light in the visible light reflected by the object and generating a first optical signal; and Sensing the p-polarized light and s-polarized light in the visible light reflected by the object and generating a second optical signal, The material for judging the object based on the at least one visible light image signal includes: The material of the object is determined according to the first light signal and the second light signal. 如申請專利範圍第10項所述的熱影像感測方法,其中感測該物體所反射的該可見光並對應產生該至少一可見光影像信號包括: 將該物體所反射的該可見光中的s偏振光與p偏振光分離; 感測該物體所反射的該可見光中的p偏振光並產生一第一光信號;以及 感測該物體所反射的該可見光中的s偏振光並產生一第三光信號, 其中依據該至少一可見光影像信號判斷該物體的材料包括: 依據該第一光信號以及該第三光信號判斷該物體的材料。The thermal image sensing method of claim 10, wherein sensing the visible light reflected by the object and correspondingly generating the at least one visible light image signal includes: Separating the s-polarized light and p-polarized light in the visible light reflected by the object; Sensing the p-polarized light in the visible light reflected by the object and generating a first optical signal; and Sensing the s-polarized light in the visible light reflected by the object and generating a third optical signal, The material for judging the object based on the at least one visible light image signal includes: The material of the object is determined according to the first light signal and the third light signal.
TW108136115A 2019-01-31 2019-10-04 Thermal image sensing system and thermal image sensing method TWI717048B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010041604.6A CN111504475A (en) 2019-01-31 2020-01-15 Thermal image sensing system and thermal image sensing method
US16/748,724 US11290663B2 (en) 2019-01-31 2020-01-21 Thermal image sensing system and thermal image sensing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962799717P 2019-01-31 2019-01-31
US62/799,717 2019-01-31

Publications (2)

Publication Number Publication Date
TW202030877A true TW202030877A (en) 2020-08-16
TWI717048B TWI717048B (en) 2021-01-21

Family

ID=73002842

Family Applications (2)

Application Number Title Priority Date Filing Date
TW108131160A TWI736962B (en) 2019-01-31 2019-08-30 Composite substrate and manufacturing method thereof
TW108136115A TWI717048B (en) 2019-01-31 2019-10-04 Thermal image sensing system and thermal image sensing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW108131160A TWI736962B (en) 2019-01-31 2019-08-30 Composite substrate and manufacturing method thereof

Country Status (1)

Country Link
TW (2) TWI736962B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI768709B (en) * 2021-01-19 2022-06-21 福邦科技國際股份有限公司 Dual image fusion method and device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11688825B2 (en) 2019-01-31 2023-06-27 Industrial Technology Research Institute Composite substrate and light-emitting diode
TWI733574B (en) * 2020-08-31 2021-07-11 財團法人工業技術研究院 Composite substrate and light-emitting diode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7501023B2 (en) * 2001-07-06 2009-03-10 Technologies And Devices, International, Inc. Method and apparatus for fabricating crack-free Group III nitride semiconductor materials
TWM309294U (en) * 2006-05-18 2007-04-01 Jr-Peng Jang Image compensation device of thermal image sensor
KR20110105261A (en) * 2010-03-18 2011-09-26 삼성전자주식회사 Electrical device and thermal image sensor embedding at least one quantum
US10134589B2 (en) * 2016-06-24 2018-11-20 QROMIS, Inc. Polycrystalline ceramic substrate and method of manufacture
TWM569679U (en) * 2018-07-13 2018-11-11 昇雷科技股份有限公司 Physiological signal detection robot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI768709B (en) * 2021-01-19 2022-06-21 福邦科技國際股份有限公司 Dual image fusion method and device

Also Published As

Publication number Publication date
TWI717048B (en) 2021-01-21
TWI736962B (en) 2021-08-21
TW202030777A (en) 2020-08-16

Similar Documents

Publication Publication Date Title
JP7281681B2 (en) Imaging system
TWI717048B (en) Thermal image sensing system and thermal image sensing method
JP4144389B2 (en) Optical film measuring device
KR100777428B1 (en) Image processing device and method
WO2017118031A1 (en) Optical fingerprint sensor module
US20150016711A1 (en) Devices, systems, and methods for classifying materials based on a bidirectional reflectance distribution function
CN110345864A (en) Three-dimensional sensing module
Atkinson et al. High-sensitivity analysis of polarization by surface reflection
US8982101B2 (en) Optical touch system and optical touch-position detection method
WO2017118030A1 (en) Optical fingerprint sensor module
TWI409678B (en) Optical touch system
US11573428B2 (en) Imaging method and apparatus using circularly polarized light
TW202021339A (en) Infrared pre-flash for camera
US8339615B2 (en) Edge detection method for transparent substrate by detecting non-light-emitting region of transparent substrate
US20050285946A1 (en) Orientation sensor and associated methods
US6943363B2 (en) Apparatus for detecting light-transmissive sheet-like body
CN115753629A (en) Method for restoring polarized video in low-visibility weather
JP2019132916A (en) Signage device
WO2020227986A1 (en) Image collection apparatus and method, and electronic device
JPS62223634A (en) Color deciding device
JP2006329897A (en) Method of measuring distance using double image reflected in transparent plate
Ding et al. Real-time robust direct and indirect photon separation with polarization imaging
US11290663B2 (en) Thermal image sensing system and thermal image sensing method
CN213933562U (en) Bottle bottom shooting device and bottle bottom detection equipment
KR101564287B1 (en) Apparatus and method for inspecting wafer using light