TWI733574B - Composite substrate and light-emitting diode - Google Patents

Composite substrate and light-emitting diode Download PDF

Info

Publication number
TWI733574B
TWI733574B TW109129701A TW109129701A TWI733574B TW I733574 B TWI733574 B TW I733574B TW 109129701 A TW109129701 A TW 109129701A TW 109129701 A TW109129701 A TW 109129701A TW I733574 B TWI733574 B TW I733574B
Authority
TW
Taiwan
Prior art keywords
layer
substrate
strain relief
light
aluminum nitride
Prior art date
Application number
TW109129701A
Other languages
Chinese (zh)
Other versions
TW202211501A (en
Inventor
黃嘉彥
蔡長達
Original Assignee
財團法人工業技術研究院
光磊科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院, 光磊科技股份有限公司 filed Critical 財團法人工業技術研究院
Priority to TW109129701A priority Critical patent/TWI733574B/en
Application granted granted Critical
Publication of TWI733574B publication Critical patent/TWI733574B/en
Publication of TW202211501A publication Critical patent/TW202211501A/en

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

A composite substrate including a substrate, a buffer layer, and a strain release layer. The buffer layer is disposed on the substrate. The strain release layer is disposed on the buffer layer, wherein the buffer layer is between the substrate and the strain release layer. A material of the strain release layer includes Al 1-xGa xN, where 0≦x<0.15. The strain release layer is doped with silicon to release a compressive strain due to the buffer layer. A concentration of silicon doped in the strain release layer is greater than 10 19cm -3. A defect density of the strain release layer is less than or equal to 5×10 9/cm 2. A light-emitting diode is also provided.

Description

複合式基板及發光二極體Composite substrate and light emitting diode

本技術領域是有關於一種複合式基板及發光二極體(light-emitting diode, LED)。The technical field relates to a composite substrate and a light-emitting diode (LED).

在發光二極體的磊晶製程中,若欲在基板上成長N型及P型三五族半導體層以及量子井層等半導體層,則需要解決基板(例如藍寶石基板(sapphire substrate))與上述半導體層之晶格常數有差異的問題。晶格常數的差異會導致磊晶缺陷,進而影響了發光二極體的發光效率。為了解決上述晶格常數差異的問題,一般會在成長上述半導體層之前,先形成晶格常數差異較小的緩衝層。In the epitaxial process of light-emitting diodes, if you want to grow N-type and P-type III-V semiconductor layers and quantum well layers and other semiconductor layers on the substrate, it is necessary to solve the problems of the substrate (such as sapphire substrate) and the above There is a difference in the lattice constant of the semiconductor layer. The difference in lattice constants will cause epitaxial defects, which in turn affects the luminous efficiency of the light-emitting diode. In order to solve the above-mentioned difference in lattice constants, a buffer layer with a smaller difference in lattice constants is generally formed before the semiconductor layer is grown.

另一方面,為了提升發光二極體的量子效率而使得圖案化藍寶石基板(patterned sapphire substrate, PSS)被發展出來,以藉由基板上的凸出圖案進行光散射來提升光取出率。此時,若採用氮化鋁層作為緩衝層,則由於鋁原子的活性高且表面遷移率(surface mobility)低,導致氮化鋁層的差排密度高、縫合厚度高、表面粗糙或龜裂等問題。On the other hand, in order to improve the quantum efficiency of light-emitting diodes, patterned sapphire substrates (PSS) have been developed to increase the light extraction rate through light scattering by the convex patterns on the substrate. At this time, if the aluminum nitride layer is used as the buffer layer, the high activity of aluminum atoms and the low surface mobility result in high dislocation density, high stitch thickness, rough surface or cracks in the aluminum nitride layer. And other issues.

本揭露的一實施例提出一種複合式基板,包括一基板及一氮化鋁層。氮化鋁層配置於基板的上表面上。矽摻雜於氮化鋁層中以調節殘餘應力,氮化鋁層的膜厚小於3.5微米,氮化鋁層的缺陷密度小於或等於5×10 9/cm 2,且氮化鋁層之背對該基板的上表面的方均根粗糙度小於3奈米(nanometer, nm)。 An embodiment of the disclosure provides a composite substrate including a substrate and an aluminum nitride layer. The aluminum nitride layer is disposed on the upper surface of the substrate. Silicon is doped in the aluminum nitride layer to adjust the residual stress. The film thickness of the aluminum nitride layer is less than 3.5 microns, the defect density of the aluminum nitride layer is less than or equal to 5×10 9 /cm 2 , and the back of the aluminum nitride layer The root mean square roughness of the upper surface of the substrate is less than 3 nanometers (nm).

本揭露的一實施例提出一種複合式基板的製造方法,包括:製備一基板及在基板的上表面上形成一氮化鋁層。矽摻雜於氮化鋁層中以調節殘餘應力,氮化鋁層的膜厚小於3.5微米,氮化鋁層的缺陷密度小於或等於5×10 9/cm 2,且氮化鋁層之背對該基板的上表面的方均根粗糙度小於3奈米。 An embodiment of the present disclosure provides a method for manufacturing a composite substrate, including: preparing a substrate and forming an aluminum nitride layer on the upper surface of the substrate. Silicon is doped in the aluminum nitride layer to adjust the residual stress. The film thickness of the aluminum nitride layer is less than 3.5 microns, the defect density of the aluminum nitride layer is less than or equal to 5×10 9 /cm 2 , and the back of the aluminum nitride layer The root mean square roughness of the upper surface of the substrate is less than 3 nm.

本揭露的一實施例提出一種複合式基板,包括一基板、一緩衝層及一應變釋放層。緩衝層配置於基板上。應變釋放層配置於緩衝層上,其中緩衝層位於基板與應變釋放層之間。應變釋放層的材料包括Al 1-xGa xN,其中0≦x<0.15。應變釋放層中摻雜有矽,以釋放緩衝層所引起的壓應變。應變釋放層中摻雜的矽濃度大於10 19cm -3。應變釋放層的缺陷密度小於或等於5×10 9/cm 2An embodiment of the disclosure provides a composite substrate including a substrate, a buffer layer and a strain relief layer. The buffer layer is disposed on the substrate. The strain relief layer is disposed on the buffer layer, wherein the buffer layer is located between the substrate and the strain relief layer. The material of the strain relief layer includes Al 1-x Ga x N, where 0≦x<0.15. The strain release layer is doped with silicon to release the compressive strain caused by the buffer layer. The concentration of silicon doped in the strain relief layer is greater than 10 19 cm -3 . The defect density of the strain relief layer is less than or equal to 5×10 9 /cm 2 .

本揭露的一實施例提出一種發光二極體,包括一基板、一緩衝層、一應變釋放層、一N型半導體層、一發光層、一P型半導體層及一電極接觸層。緩衝層配置於基板上。應變釋放層配置於緩衝層上,其中緩衝層位於基板與應變釋放層之間。應變釋放層的材料包括Al 1-xGa xN,其中0≦x<0.15。應變釋放層中摻雜有矽,以釋放緩衝層所引起的壓應變。應變釋放層中摻雜的矽濃度大於10 19cm -3。應變釋放層的缺陷密度小於或等於5×10 9/cm 2。N型半導體層配置於應變釋放層上。N型半導體層的材料包括Al 1-zGa zN,其中z>x+0.15。發光層配置於N型半導體層上。P型半導體層配置於發光層上。電極接觸層配置於P型半導體層上。 An embodiment of the present disclosure provides a light emitting diode including a substrate, a buffer layer, a strain relief layer, an N-type semiconductor layer, a light-emitting layer, a P-type semiconductor layer, and an electrode contact layer. The buffer layer is disposed on the substrate. The strain relief layer is disposed on the buffer layer, wherein the buffer layer is located between the substrate and the strain relief layer. The material of the strain relief layer includes Al 1-x Ga x N, where 0≦x<0.15. The strain release layer is doped with silicon to release the compressive strain caused by the buffer layer. The concentration of silicon doped in the strain relief layer is greater than 10 19 cm -3 . The defect density of the strain relief layer is less than or equal to 5×10 9 /cm 2 . The N-type semiconductor layer is arranged on the strain relief layer. The material of the N-type semiconductor layer includes Al 1-z Ga z N, where z>x+0.15. The light-emitting layer is disposed on the N-type semiconductor layer. The P-type semiconductor layer is disposed on the light-emitting layer. The electrode contact layer is configured on the P-type semiconductor layer.

為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present disclosure more obvious and understandable, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

圖1A及圖2至圖5為本揭露的一實施例的複合式基板的製作流程的剖面示意圖,而圖1B為圖1A中的基板的上視示意圖。本實施例的複合式基板的製造方法包括下列步驟。首先,參照圖1A與圖1B,製備一基板110,基板110的上表面112包括多個奈米圖案化凹陷114,這些奈米圖案化凹陷114彼此分離。在本實施例中,基板110例如為藍寶石基板,這些奈米圖案化凹陷114的深度H是落在150奈米至1.5微米的範圍內,較佳是100奈米至1微米,更佳是200奈米至500奈米。且這些奈米圖案化凹陷的寬度W是落在200奈米至1.5微米的範圍內,較佳是300奈米至800奈米,更佳是400奈米至600奈米。在本實施例中,這些奈米圖案化凹陷114的形成方法例如是將尚未加工的藍寶石基板的上表面以溼蝕刻的方式製作出這些奈米圖案化凹陷114,因此蝕刻液會順著多個不同的晶面蝕刻藍寶石基板,並在相鄰兩晶面之間產生晶面的交界線113。在本實施例中,奈米圖案化凹陷114的多個晶面呈現倒角錐形(例如是三個晶面呈現倒三角錐形),而多條(例如至少三條,本實施例中是以三條為例)交界線113交會於倒三角錐形的最底部的頂點。在本實施例中,奈米圖案化凹陷114的側壁呈倒角錐形,且奈米圖案化凹陷114的底部呈尖端狀。然而,在其他實施例中,這些奈米圖案化凹陷114的形成方法亦可以是乾式蝕刻,則此方法所形成的奈米圖案化凹陷114就沒有上述的交界線113。1A and FIGS. 2 to 5 are cross-sectional schematic diagrams of the manufacturing process of the composite substrate according to an embodiment of the disclosure, and FIG. 1B is a schematic top view of the substrate in FIG. 1A. The manufacturing method of the composite substrate of this embodiment includes the following steps. First, referring to FIGS. 1A and 1B, a substrate 110 is prepared. The upper surface 112 of the substrate 110 includes a plurality of nano-patterned recesses 114, and the nano-patterned recesses 114 are separated from each other. In this embodiment, the substrate 110 is, for example, a sapphire substrate, and the depth H of the nano-patterned recesses 114 is in the range of 150 nanometers to 1.5 micrometers, preferably 100 nanometers to 1 micrometer, more preferably 200 nanometers. From nanometers to 500 nanometers. And the width W of these nano-patterned recesses is in the range of 200 nanometers to 1.5 micrometers, preferably 300 nanometers to 800 nanometers, more preferably 400 nanometers to 600 nanometers. In this embodiment, the method for forming these nano-patterned recesses 114 is, for example, to wet-etch the upper surface of the unprocessed sapphire substrate to form these nano-patterned recesses 114, so the etching solution will follow a plurality of Different crystal planes etch the sapphire substrate, and a boundary line 113 of crystal planes is generated between two adjacent crystal planes. In this embodiment, a plurality of crystal faces of the nano-patterned recess 114 are in a chamfered cone shape (for example, three crystal faces are in an inverted triangular cone shape), and a plurality of crystal faces (for example, at least three, in this embodiment are three For example) The boundary line 113 intersects at the bottom vertex of the inverted triangular pyramid. In this embodiment, the sidewalls of the nano-patterned recess 114 have a chamfered cone shape, and the bottom of the nano-patterned recess 114 has a pointed shape. However, in other embodiments, the method for forming these nano-patterned recesses 114 can also be dry etching, and the nano-patterned recesses 114 formed by this method do not have the aforementioned boundary line 113.

在本實施例中,這些奈米圖案化凹陷114在基板110的上表面112上呈週期性排列。然而,在其他實施例中,這些奈米圖案化凹陷114也可以呈不規則排列。In this embodiment, these nano-patterned recesses 114 are periodically arranged on the upper surface 112 of the substrate 110. However, in other embodiments, the nano-patterned recesses 114 may also be arranged irregularly.

接著,參照圖2,在基板110的上表面112上形成一第一氮化鋁層120。第一氮化鋁層120的形成方法可以是金屬有機化學氣相沉積法(metal organic chemical vapor deposition, MOCVD)、濺鍍(sputtering)或氫化物氣相磊晶法(hydride vapor phase epitaxy, HVPE)。在本實施例中,第一氮化鋁層120的膜厚T1大於奈米圖案化凹陷114的深度H。Next, referring to FIG. 2, a first aluminum nitride layer 120 is formed on the upper surface 112 of the substrate 110. The method for forming the first aluminum nitride layer 120 may be metal organic chemical vapor deposition (MOCVD), sputtering, or hydride vapor phase epitaxy (HVPE). . In this embodiment, the film thickness T1 of the first aluminum nitride layer 120 is greater than the depth H of the nano-patterned recess 114.

然後,再參照圖3,在第一氮化鋁層120上形成一平坦化層130,平坦化層130在覆蓋第一氮化鋁層120後,平坦化層130的上表面會較第一氮化鋁層120的上表面平坦。在本實施例中,平坦化層130的材料例如是旋塗式玻璃。然而,在其他實施例中,平坦化層130的材料亦可以是聚合物。Then, referring to FIG. 3 again, a planarization layer 130 is formed on the first aluminum nitride layer 120. After the planarization layer 130 covers the first aluminum nitride layer 120, the upper surface of the planarization layer 130 is lower than that of the first aluminum nitride layer 120. The upper surface of the aluminum oxide layer 120 is flat. In this embodiment, the material of the planarization layer 130 is spin-on glass, for example. However, in other embodiments, the material of the planarization layer 130 may also be a polymer.

之後,參照圖4,逐漸移除平坦化層130的材料,其中當逐漸移除平坦化層130的材料至平坦化層130的底部時,亦會同時逐漸移除了部分的第一氮化鋁層120,以使第一氮化鋁層120平坦化,而形成上表面較為平坦的第一氮化鋁層121。在本實施例中,逐漸移除平坦化層130的材料的方法為乾蝕刻,例如是感應耦合電漿(inductively coupled plasma, ICP)蝕刻法,而蝕刻條件可以經選擇,而使對平坦化層130的蝕刻速率實質上相同於對第一氮化鋁層121的蝕刻速率,如此當將所有的平坦化層130的材料蝕刻完畢後,此時部分的第一氮化鋁層120便會被蝕刻到,以使平坦化層130的上表面形貌轉移至第一氮化鋁層121的上表面,而形成較為平坦的第一氮化鋁層121。然而,在其他實施例中,逐漸移除平坦化層130的材料的方法也可以是機械研磨(mechanical polishing)。Afterwards, referring to FIG. 4, the material of the planarization layer 130 is gradually removed. When the material of the planarization layer 130 is gradually removed to the bottom of the planarization layer 130, part of the first aluminum nitride is also gradually removed at the same time. The first aluminum nitride layer 120 is flattened to form a first aluminum nitride layer 121 with a relatively flat upper surface. In this embodiment, the method of gradually removing the material of the planarization layer 130 is dry etching, such as an inductively coupled plasma (ICP) etching method, and the etching conditions can be selected so that the planarization layer The etching rate of 130 is substantially the same as the etching rate of the first aluminum nitride layer 121, so when all the materials of the planarization layer 130 are etched, part of the first aluminum nitride layer 120 will be etched at this time Then, the top surface topography of the planarization layer 130 is transferred to the top surface of the first aluminum nitride layer 121 to form a relatively flat first aluminum nitride layer 121. However, in other embodiments, the method of gradually removing the material of the planarization layer 130 may also be mechanical polishing.

此外,在逐漸移除平坦化層130的材料之後,可對已平坦化的第一氮化鋁層121作退火(annealing)處理,例如是進行1500°C以上的高溫退火處理。高溫退火處理可引發第一氮化鋁層121的再結晶,大幅降低第一氮化鋁層121膜內的差排密度。In addition, after the material of the planarization layer 130 is gradually removed, the planarized first aluminum nitride layer 121 may be annealed, for example, a high-temperature annealing process above 1500° C. may be performed. The high-temperature annealing treatment can initiate the recrystallization of the first aluminum nitride layer 121 and greatly reduce the dislocation density in the film of the first aluminum nitride layer 121.

此後,請參照圖5,在已平坦化的第一氮化鋁層121上形成一第二氮化鋁層140,例如是利用金屬有機氣相沉積法來形成第二氮化鋁層140。由於第二氮化鋁層140是在已平坦化的第一氮化鋁層121上形成,因此第二氮化鋁層140之背對基板110的上表面142的方均根粗糙度(root mean square roughness)小於3奈米。由於第二氮化鋁層140是在上表面較為平坦的第一氮化鋁層121上形成,因此第二氮化鋁層140的縫合厚度可以較小。在本實施例中,第一氮化鋁層121加上第二氮化鋁層140所形成的氮化鋁層150的膜厚T2小於3.5微米。此外,由於第二氮化鋁層140是在上表面較為平坦的第一氮化鋁層121上形成,所以氮化鋁層150中可以不具有孔洞或較小的孔洞,且氮化鋁層150的缺陷密度小於或等於5×10 9/cm 2,而具有良好的結晶品質。氮化鋁層150中具有較小的孔洞是指氮化鋁層150內部具有多個孔洞,而每一孔洞在平行於基板110的橫向與垂直於基板110的縱向的至少一方向上的尺寸小於50奈米。在本實施例中,第二氮化鋁層140的厚度(其等於膜厚T2減去第一氮化鋁層121的膜厚T3)小於600奈米。 Thereafter, referring to FIG. 5, a second aluminum nitride layer 140 is formed on the planarized first aluminum nitride layer 121, for example, the second aluminum nitride layer 140 is formed by metal organic vapor deposition. Since the second aluminum nitride layer 140 is formed on the planarized first aluminum nitride layer 121, the root mean square roughness of the second aluminum nitride layer 140 opposite to the upper surface 142 of the substrate 110 ) Less than 3nm. Since the second aluminum nitride layer 140 is formed on the first aluminum nitride layer 121 with a relatively flat upper surface, the stitching thickness of the second aluminum nitride layer 140 can be smaller. In this embodiment, the film thickness T2 of the aluminum nitride layer 150 formed by the first aluminum nitride layer 121 and the second aluminum nitride layer 140 is less than 3.5 microns. In addition, since the second aluminum nitride layer 140 is formed on the first aluminum nitride layer 121 with a relatively flat upper surface, the aluminum nitride layer 150 may not have holes or smaller holes, and the aluminum nitride layer 150 The defect density is less than or equal to 5×10 9 /cm 2 , and it has good crystal quality. Smaller holes in the aluminum nitride layer 150 means that the aluminum nitride layer 150 has multiple holes inside, and the size of each hole in at least one direction parallel to the lateral direction of the substrate 110 and perpendicular to the longitudinal direction of the substrate 110 is less than 50 Nano. In this embodiment, the thickness of the second aluminum nitride layer 140 (which is equal to the film thickness T2 minus the film thickness T3 of the first aluminum nitride layer 121) is less than 600 nm.

在本實施例中,於圖5之步驟後所形成的氮化鋁層150配置於基板110的上表面112上,氮化鋁層150之背對基板110的上表面(也就是第二氮化鋁層140的上表面142)的方均根粗糙度小於3奈米。如此一來,即形成包含基板110與氮化鋁層150的複合式基板100。複合式基板100可供發光二極體的N型半導體層、量子井層及P型半導體層形成於其上,且有助於提升N型半導體層、量子井層及P型半導體層的結晶品質。In this embodiment, the aluminum nitride layer 150 formed after the step of FIG. 5 is disposed on the upper surface 112 of the substrate 110, and the aluminum nitride layer 150 faces the upper surface of the substrate 110 (that is, the second nitride layer). The root mean square roughness of the upper surface 142) of the aluminum layer 140 is less than 3 nm. In this way, the composite substrate 100 including the substrate 110 and the aluminum nitride layer 150 is formed. The composite substrate 100 can be formed on the N-type semiconductor layer, the quantum well layer and the P-type semiconductor layer of the light emitting diode, and helps to improve the crystal quality of the N-type semiconductor layer, the quantum well layer and the P-type semiconductor layer .

在本實施例中,在第一氮化鋁層121上形成第二氮化鋁層140時,可在第二氮化鋁層140中摻雜矽,以調控殘餘應力。在本實施例中,第二氮化鋁層140中的矽的摻雜濃度大於2×10 17cm -3並且小於1×10 20cm -3。在一較佳實施例中,第二氮化鋁層140中的矽的摻雜濃度大於2×10 18cm -3並且小於5×10 19cm -3。在本實施例中,由於第二氮化鋁層140中的矽摻雜,第二氮化鋁層140的面內晶格常數(in-plane lattice constant)大於第一氮化鋁層121的面內晶格常數。此外,在本實施例中,氮化鋁層150在鄰近基板110的一側(即圖中的下側)的矽濃度小於氮化鋁層150在遠離基板110的一側(即圖中的上側)的矽濃度。在本實施例中,氮化鋁層中最高矽濃度的位置(即位於第二氮化鋁層140的下側的位置)至基板110的上表面在垂直於基板110的鉛直方向上的距離大於600奈米。 In this embodiment, when the second aluminum nitride layer 140 is formed on the first aluminum nitride layer 121, silicon may be doped in the second aluminum nitride layer 140 to control the residual stress. In this embodiment, the doping concentration of silicon in the second aluminum nitride layer 140 is greater than 2×10 17 cm −3 and less than 1×10 20 cm −3 . In a preferred embodiment, the doping concentration of silicon in the second aluminum nitride layer 140 is greater than 2×10 18 cm −3 and less than 5×10 19 cm −3 . In this embodiment, due to the silicon doping in the second aluminum nitride layer 140, the in-plane lattice constant of the second aluminum nitride layer 140 is greater than that of the first aluminum nitride layer 121. Inner lattice constant. In addition, in this embodiment, the silicon concentration of the aluminum nitride layer 150 on the side adjacent to the substrate 110 (ie, the lower side in the figure) is less than that of the aluminum nitride layer 150 on the side away from the substrate 110 (ie, the upper side in the figure). ) The silicon concentration. In this embodiment, the distance from the position of the highest silicon concentration in the aluminum nitride layer (that is, the position on the lower side of the second aluminum nitride layer 140) to the upper surface of the substrate 110 in the vertical direction perpendicular to the substrate 110 is greater than 600nm.

在本實施例的複合式基板100及其製造方法中,由於在基板110的上表面112採用了彼此分離的多個奈米圖案化凹陷114,也就是採用了具有下凹式奈米圖案的奈米圖案化基板來取代傳統具有上凸式奈米圖案的圖案化基板,因此可大幅降低氮化鋁磊晶的先天晶粒縫合難度。此外,在本實施例中,形成奈米圖案化凹陷114的方法可以是溼蝕刻法,如此有助於提升氮化鋁直接於其上的磊晶品質。再者,藉由形成平坦化層130後再逐漸移除平坦化層130的材料的方法以使第一氮化鋁層121的表面平坦化,以及藉由對已平坦化的第一氮化鋁層121作退火處理,可進一步提升氮化鋁層150的晶體品質、降低縫合難度,並擴展複合式基板100的設計空間。In the composite substrate 100 and its manufacturing method of this embodiment, since a plurality of nano-patterned recesses 114 separated from each other are used on the upper surface 112 of the substrate 110, a nano-patterned recess 114 with a recessed nano-pattern is used. Rice patterned substrates replace traditional patterned substrates with raised nano-patterns, which can greatly reduce the difficulty of innate grain stitching of aluminum nitride epitaxy. In addition, in this embodiment, the method for forming the nano-patterned recess 114 may be a wet etching method, which helps to improve the epitaxial quality of aluminum nitride directly on it. Furthermore, by forming the planarization layer 130 and then gradually removing the material of the planarization layer 130, the surface of the first aluminum nitride layer 121 is planarized, and the first aluminum nitride layer 121 is planarized. Annealing the layer 121 can further improve the crystal quality of the aluminum nitride layer 150, reduce the difficulty of stitching, and expand the design space of the composite substrate 100.

圖6A是關於圖5的複合式基板的三種不同樣品在第二氮化鋁層成長後的(002) X射線回擺曲線圖(X-ray rocking curve),而圖6B是關於圖5的複合式基板的三種不同樣品在第二氮化鋁層成長後的(102) X射線回擺曲線圖。此處採用了樣品A、樣品B及樣品C來驗證圖4、圖5、圖6A與圖6B中的本實施例的結晶品質。樣品A是指在基板110上形成第一氮化鋁層121,但第一氮化鋁層121沒有經過退火處理,且第一氮化鋁層121的膜厚T3為300奈米的樣品。樣品B是指在基板110上形成第一氮化鋁層121,且第一氮化鋁層121有經過退火處理,且第一氮化鋁層121的膜厚T3為300奈米的樣品。樣品C是指在基板110上形成第一氮化鋁層121,且第一氮化鋁層121有經過退火處理,且第一氮化鋁層121的膜厚T3為600奈米的樣品。當樣品A、樣品B及樣品C上尚未形成第二氮化鋁層140時,其(002) X射線回擺曲線的半高寬分別是50角秒(arcsec)、30角秒及70角秒,而其(102) X射線回擺曲線的半高寬分別是大於2000角秒、392角秒及371角秒。於樣品A、樣品B及樣品C上形成第二氮化鋁層140後的(002) X射線回擺曲線及(102) X射線回擺曲線則分別如圖6A與圖6B所繪示。樣品A、樣品B及樣品C形成第二氮化鋁層140後,其(002) X射線回擺曲線的半高寬分別是420角秒(arcsec)、216角秒及144角秒,而其(102) X射線回擺曲線的半高寬分別是560角秒、400角秒及280角秒。在本實施例中,氮化鋁層150的(002) X射線回擺曲線的半高寬小於或等於216角秒(例如小於150角秒),且氮化鋁層150的(102) X射線回擺曲線的半高寬小於或等於400角秒(例如小於350角秒)。由以上實驗數據可驗證,退火處理可在成長第二氮化鋁層140之前,有效提升第一氮化鋁層121的晶體品質,足夠的第一氮化鋁層121的厚度有助於進一步提升第二氮化鋁層140的晶體品質。在本實施例中,最後,複合式基板100的氮化鋁層150的(102) X射線回擺曲線的半高寬可達260角秒,換算差排密度約4×10 8cm -2Fig. 6A is a (002) X-ray rocking curve of three different samples of the composite substrate of Fig. 5 after the second aluminum nitride layer is grown, and Fig. 6B is a composite of Fig. 5 (102) X-ray swing curves of three different samples of the substrate after the growth of the second aluminum nitride layer. Here, sample A, sample B, and sample C are used to verify the crystal quality of this embodiment in FIGS. 4, 5, 6A, and 6B. Sample A refers to a sample in which the first aluminum nitride layer 121 is formed on the substrate 110, but the first aluminum nitride layer 121 has not been annealed, and the film thickness T3 of the first aluminum nitride layer 121 is 300 nm. Sample B refers to a sample in which the first aluminum nitride layer 121 is formed on the substrate 110, the first aluminum nitride layer 121 has been annealed, and the film thickness T3 of the first aluminum nitride layer 121 is 300 nm. Sample C refers to a sample in which the first aluminum nitride layer 121 is formed on the substrate 110, the first aluminum nitride layer 121 has been annealed, and the film thickness T3 of the first aluminum nitride layer 121 is 600 nm. When the second aluminum nitride layer 140 has not been formed on Sample A, Sample B, and Sample C, the full width at half maximum of the (002) X-ray swing curve is 50 arcsec, 30 arcsec, and 70 arcsec. , And the half-height width of its (102) X-ray swing curve is greater than 2000 arc seconds, 392 arc seconds and 371 arc seconds, respectively. The (002) X-ray swing curve and the (102) X-ray swing curve after forming the second aluminum nitride layer 140 on the sample A, the sample B, and the sample C are respectively shown in FIG. 6A and FIG. 6B. After sample A, sample B, and sample C form the second aluminum nitride layer 140, the full width at half maximum of the (002) X-ray swing curve is 420 arcsec, 216 arcsec, and 144 arcsec, respectively. (102) The full width at half maximum of the X-ray swing curve is 560 arcsec, 400 arcsec and 280 arcsec, respectively. In this embodiment, the FWHM of the (002) X-ray swing curve of the aluminum nitride layer 150 is less than or equal to 216 arcsec (for example, less than 150 arcsec), and the (102) X-ray of the aluminum nitride layer 150 The full width at half maximum of the swing curve is less than or equal to 400 arcsec (for example, less than 350 arcsec). It can be verified from the above experimental data that the annealing treatment can effectively improve the crystal quality of the first aluminum nitride layer 121 before the second aluminum nitride layer 140 is grown, and a sufficient thickness of the first aluminum nitride layer 121 is helpful for further improvement. The crystal quality of the second aluminum nitride layer 140. In this embodiment, finally, the full width at half maximum of the (102) X-ray swing curve of the aluminum nitride layer 150 of the composite substrate 100 can reach 260 arcsec, and the converted row density is about 4×10 8 cm -2 .

圖7是三種不同樣品在第二氮化鋁層140成長後的拉曼光譜圖。圖7中的樣品X是指在基板110上形成第一氮化鋁層121,但第一氮化鋁層121沒有經過退火處理,於第一氮化鋁層121上成長沒有摻雜矽的第二氮化鋁層140,樣品Y是指在基板110上形成第一氮化鋁層121,但第一氮化鋁層121有經過退火處理,於第一氮化鋁層121上成長沒有摻雜矽的第二氮化鋁層140,樣品Z是指在基板110上形成第一氮化鋁層121,但第一氮化鋁層121有經過退火處理,於第一氮化鋁層121上成長有摻雜矽的第二氮化鋁層140。圖7中的樣品X、Y及Z的氮化鋁層150的厚度分別為2.11微米、2.12微米及2.13微米,圖7中的樣品X、Y及Z的翹曲度(warpage)分別是20.3微米、60.8微米及46.4微米,而圖7中的樣品X、Y及Z的拉曼光譜的E2高模態(E2 high mode)的頻移分別為658.9 cm -1、661.7 cm -1及659.6 cm -1。在本實施例中,複合式基板100的拉曼光譜的E2高模態的頻移小於或等於659.6 cm -1。由拉曼光譜的頻移,可根據文獻對應得知圖7中的樣品X、Y及Z的應力值分別為-1 GPa、-1.96 GPa及-1.24 GPa,而根據翹曲度可藉由史東納方程式(Stoney equation)分別計算出圖7中的樣品X、Y及Z的應力值分別為-0.54 GPa、-1.61 GPa及-1.22 GPa。負的應力值是表示壓應力,以區別於具有正應力值的張應力。負的應力值的絕對值越大,表示壓應力越大。在本實施例中,複合式基板100的殘餘應力的值大於或等於-1.24 GPa。 FIG. 7 is the Raman spectra of three different samples after the second aluminum nitride layer 140 is grown. The sample X in FIG. 7 means that the first aluminum nitride layer 121 is formed on the substrate 110, but the first aluminum nitride layer 121 has not undergone annealing treatment, and the first aluminum nitride layer 121 is grown on the first aluminum nitride layer 121 without doping silicon. The aluminum nitride layer 140, the sample Y refers to the formation of the first aluminum nitride layer 121 on the substrate 110, but the first aluminum nitride layer 121 has been annealed and grown on the first aluminum nitride layer 121 without doping The second aluminum nitride layer 140 of silicon. Sample Z refers to the formation of the first aluminum nitride layer 121 on the substrate 110, but the first aluminum nitride layer 121 has been annealed and grown on the first aluminum nitride layer 121 The second aluminum nitride layer 140 is doped with silicon. The thickness of the aluminum nitride layer 150 of samples X, Y, and Z in FIG. 7 are 2.11 micrometers, 2.12 micrometers, and 2.13 micrometers, respectively, and the warpages of samples X, Y, and Z in FIG. 7 are 20.3 micrometers, respectively , 60.8 microns and 46.4 microns, and the E2 high mode (E2 high mode) frequency shifts of the Raman spectra of samples X, Y, and Z in Figure 7 are 658.9 cm -1 , 661.7 cm -1 and 659.6 cm -respectively 1 . In this embodiment, the frequency shift of the E2 high mode of the Raman spectrum of the composite substrate 100 is less than or equal to 659.6 cm -1 . From the frequency shift of the Raman spectrum, it can be known from the literature that the stress values of the samples X, Y, and Z in Figure 7 are -1 GPa, -1.96 GPa, and -1.24 GPa, respectively. According to the warpage, the history can be found The Stoney equation calculated the stress values of samples X, Y, and Z in Figure 7 to be -0.54 GPa, -1.61 GPa, and -1.22 GPa, respectively. Negative stress value means compressive stress to distinguish it from tensile stress with positive stress value. The greater the absolute value of the negative stress value, the greater the compressive stress. In this embodiment, the value of the residual stress of the composite substrate 100 is greater than or equal to -1.24 GPa.

圖8是關於圖7的複合式基板的三種不同樣品X、Y及Z在第二氮化鋁層140成長後的(102) X射線回擺曲線半高寬對翹曲度圖。圖8中的樣品X、Y及Z的翹曲度(warpage)分別是20.3微米、60.8微米及46.4微米。樣品X、樣品Y及樣品Z形成第二氮化鋁層140後,其(102) X射線回擺曲線的半高寬分別是521角秒、259角秒及254角秒。由上述實驗數據可知,高溫退火處理有效的提升結晶品質,但殘餘的熱壓縮應變造成在第二氮化鋁層140成長後的大的晶圓翹曲,而採用在第二氮化鋁層140摻雜矽的方法可以平衝此應變,同時保持良好的結晶品質。FIG. 8 is a graph of (102) X-ray swing curve half-height versus warpage of three different samples X, Y, and Z of the composite substrate of FIG. 7 after the second aluminum nitride layer 140 is grown. The warpages of samples X, Y, and Z in Fig. 8 are 20.3 microns, 60.8 microns, and 46.4 microns, respectively. After sample X, sample Y, and sample Z form the second aluminum nitride layer 140, the full width at half maximum of the (102) X-ray swing curve is 521 arcsec, 259 arcsec, and 254 arcsec, respectively. From the above experimental data, it can be seen that the high-temperature annealing treatment effectively improves the crystal quality, but the residual thermal compression strain causes large wafer warpage after the second aluminum nitride layer 140 is grown, and the second aluminum nitride layer 140 The method of doping silicon can counteract this strain while maintaining good crystalline quality.

圖9是本揭露的另一實施例的複合式基板的剖面示意圖。請參照圖9,本實施例的複合式基板100a與圖5的複合式基板100類似,但兩者的主要差異如下所述。本實施例的複合式基板100a的基板110a的上表面112a為一平坦表面,而不具有如圖5之奈米圖案化凹陷114。此外,本實施例的複合式基板100a的製造方法是直接在基板110a的上表面112a上形成氮化鋁層150,且氮化鋁層150中摻雜有矽,以有效調控殘餘應力。本實施例的基板110a的材質相同於圖5之基板110的材質,而本實施例的氮化鋁層150的形成方法可以是金屬有機化學氣相沉積法。FIG. 9 is a schematic cross-sectional view of a composite substrate according to another embodiment of the disclosure. Please refer to FIG. 9, the composite substrate 100 a of this embodiment is similar to the composite substrate 100 of FIG. 5, but the main differences between the two are as follows. The upper surface 112a of the substrate 110a of the composite substrate 100a of this embodiment is a flat surface without the nano-patterned recess 114 as shown in FIG. 5. In addition, the method for manufacturing the composite substrate 100a of this embodiment is to directly form an aluminum nitride layer 150 on the upper surface 112a of the substrate 110a, and the aluminum nitride layer 150 is doped with silicon to effectively control the residual stress. The material of the substrate 110a of this embodiment is the same as that of the substrate 110 of FIG. 5, and the method of forming the aluminum nitride layer 150 of this embodiment may be a metal organic chemical vapor deposition method.

圖10為本揭露的一實施例的發光二極體的剖面示意圖。請參照圖10,本實施例的發光二極體200包括一基板110a、一緩衝層121b、一應變釋放層140b、一N型半導體層220、一發光層230、一P型半導體層240及一電極接觸層250。基板110a、緩衝層121b及應變釋放層140b形成一複合式基板100b。本實施例的複合式基板100b類似於圖9的複合式基板100a,而兩者的主要差異如下所述。緩衝層121b配置於基板110a上,而應變釋放層140b配置於緩衝層121b上,其中緩衝層121b位於基板110a與應變釋放層140b之間。緩衝層121b的材料相同於前述第一氮化鋁層121的材料,且如同前述第一氮化鋁層121,緩衝層121b是已經過退火的膜層。在本實施例中,緩衝層121b的(102) X射線回擺曲線的半高寬小於350角秒,且緩衝層的線差排密度(threading dislocation density)小於2×10 9cm -2,其代表緩衝層121b具有良好的磊晶品質。 FIG. 10 is a schematic cross-sectional view of a light-emitting diode according to an embodiment of the disclosure. 10, the light-emitting diode 200 of this embodiment includes a substrate 110a, a buffer layer 121b, a strain relief layer 140b, an N-type semiconductor layer 220, a light-emitting layer 230, a P-type semiconductor layer 240, and a The electrode contact layer 250. The substrate 110a, the buffer layer 121b and the strain relief layer 140b form a composite substrate 100b. The composite substrate 100b of this embodiment is similar to the composite substrate 100a of FIG. 9, and the main differences between the two are as follows. The buffer layer 121b is disposed on the substrate 110a, and the strain relief layer 140b is disposed on the buffer layer 121b, wherein the buffer layer 121b is located between the substrate 110a and the strain relief layer 140b. The material of the buffer layer 121b is the same as the material of the aforementioned first aluminum nitride layer 121, and like the aforementioned first aluminum nitride layer 121, the buffer layer 121b is an annealed film layer. In this embodiment, the half-height width of the (102) X-ray swing curve of the buffer layer 121b is less than 350 arc seconds, and the threading dislocation density of the buffer layer is less than 2×10 9 cm -2 . It means that the buffer layer 121b has good epitaxial quality.

應變釋放層140b的材料包括Al 1-xGa xN,其中0≦x<0.15。舉例而言,應變釋放層140b為一Al 1-xGa xN層,且當x等於零時,應變釋放層140b為一氮化鋁層。 The material of the strain relief layer 140b includes Al 1-x Ga x N, where 0≦x<0.15. For example, the strain relief layer 140b is an Al 1-x Ga x N layer, and when x is equal to zero, the strain relief layer 140b is an aluminum nitride layer.

應變釋放層140b中摻雜有矽,以釋放緩衝層121b所引起的壓應變。應變釋放層140b中摻雜的矽濃度大於10 19cm -3。由於緩衝層121b經退火而為壓應變的,當一不摻雜矽的氮化鋁層形成於緩衝層121b上時,會具有大的壓應變。雖然不摻雜矽的氮化鋁層可具有良好的磊晶品質,前述壓應變加上由氮化鋁層與AlGaN層(即N型半導體層)之間的晶格常數不匹配所引起的另一壓應變可使得AlGaN層的應變難以被管控,其降低了AlGaN層與其上方的多個膜層的磊晶品質。在本實施例中,應變釋放層140b摻雜有高濃度的矽,而矽會產生許多空缺(vacancy)而逐漸釋放晶體的壓應變。因此,應變釋放層140b能夠具有小的缺陷密度與良好的磊晶品質,且良好的磊晶品質可被應變釋放層140b上方的這些膜層所繼承。在本實施例中,應變釋放層140b的缺陷密度小於或等於5×10 9/cm 2。此外,在本實施例中,應變釋放層140b的下表面142b與基板110a的上表面112b之間的距離T4小於600奈米,且應變釋放層140b的下表面142b與基板110a的上表面112b互相面對。 The strain release layer 140b is doped with silicon to release the compressive strain caused by the buffer layer 121b. The concentration of silicon doped in the strain relief layer 140b is greater than 10 19 cm -3 . Since the buffer layer 121b is annealed and is compressively strained, when an aluminum nitride layer that is not doped with silicon is formed on the buffer layer 121b, it will have a large compressive strain. Although the undoped silicon aluminum nitride layer can have good epitaxial quality, the aforementioned compressive strain plus the other caused by the lattice constant mismatch between the aluminum nitride layer and the AlGaN layer (ie, the N-type semiconductor layer) A compressive strain can make it difficult to control the strain of the AlGaN layer, which reduces the epitaxial quality of the AlGaN layer and multiple film layers above it. In this embodiment, the strain relief layer 140b is doped with high-concentration silicon, and the silicon generates many vacancy and gradually releases the compressive strain of the crystal. Therefore, the strain relief layer 140b can have a small defect density and good epitaxial quality, and the good epitaxial quality can be inherited by these film layers above the strain relief layer 140b. In this embodiment, the defect density of the strain relief layer 140b is less than or equal to 5×10 9 /cm 2 . In addition, in this embodiment, the distance T4 between the lower surface 142b of the strain relief layer 140b and the upper surface 112b of the substrate 110a is less than 600 nm, and the lower surface 142b of the strain relief layer 140b and the upper surface 112b of the substrate 110a are mutually face.

N型半導體層220配置於應變釋放層140b上。N型半導體層220的材料包括Al 1-zGa zN,其中z>x+0.15。發光層230配置於N型半導體層220上。P型半導體層240配置於發光層230上。電極接觸層250配置於P型半導體層240上。在本實施例中,由於應變釋放層140b具有小的缺陷密度、良好的磊晶品質及較小的壓應變,因此N型半導體層220、發光層230及P型半導體層240能夠具有較佳的磊晶品質。 The N-type semiconductor layer 220 is disposed on the strain relief layer 140b. The material of the N-type semiconductor layer 220 includes Al 1-z Ga z N, where z>x+0.15. The light-emitting layer 230 is disposed on the N-type semiconductor layer 220. The P-type semiconductor layer 240 is disposed on the light-emitting layer 230. The electrode contact layer 250 is disposed on the P-type semiconductor layer 240. In this embodiment, since the strain relief layer 140b has a small defect density, good epitaxial quality and small compressive strain, the N-type semiconductor layer 220, the light-emitting layer 230, and the P-type semiconductor layer 240 can have better Epitaxy quality.

在本實施例中,發光二極體200更包括一鋁漸變層210,配置於應變釋放層140b與N型半導體層220之間,其中鋁漸變層210的材料包括Al 1-yGa yN,其中x≦y≦z。在本實施例中,鋁漸變層210為一氮化鋁鎵層。沿著應變釋放層140b至N型半導體層220的方向D1,鋁漸變層210的鋁濃度從接近應變釋放層140b的鋁濃度逐漸變化至接近N型半導體層220的鋁濃度。 In this embodiment, the light emitting diode 200 further includes an aluminum graded layer 210 disposed between the strain relief layer 140b and the N-type semiconductor layer 220. The material of the aluminum graded layer 210 includes Al 1-y Ga y N, Where x≦y≦z. In this embodiment, the aluminum graded layer 210 is an aluminum gallium nitride layer. Along the direction D1 from the strain relief layer 140b to the N-type semiconductor layer 220, the aluminum concentration of the aluminum graded layer 210 gradually changes from the aluminum concentration close to the strain relief layer 140b to the aluminum concentration close to the N-type semiconductor layer 220.

在本實施例中,電極接觸層250具有超晶格結構,此超晶格結構包括交替堆疊的多個Al 1-wGa wN層252與多個Al 1-vGa vN層254,其中w不等於v。此超晶格結構的週期P1可小於4奈米。此超晶格結構可降低電極接觸層250對發光層230所發出的光的吸光度,進而提升發光二極體200的光取出效率(light extraction efficiency)。在本實施例中,電極接觸層250對發光層230所發出的光的吸光度小於10%。然而,在其他實施例中,電極接觸層250可以是不具有超晶格結構的單一的AlGaN層。 In this embodiment, the electrode contact layer 250 has a superlattice structure. The superlattice structure includes a plurality of Al 1-w Ga w N layers 252 and a plurality of Al 1-v Ga v N layers 254 alternately stacked, wherein w is not equal to v. The period P1 of this superlattice structure can be less than 4 nm. This superlattice structure can reduce the absorbance of the light emitted by the light-emitting layer 230 by the electrode contact layer 250, thereby improving the light extraction efficiency of the light-emitting diode 200. In this embodiment, the absorbance of the light emitted by the light-emitting layer 230 by the electrode contact layer 250 is less than 10%. However, in other embodiments, the electrode contact layer 250 may be a single AlGaN layer without a superlattice structure.

在本實施例中,發光層230可具有多重量子井層,此多重量子井層具有交替堆疊的多個能障層(barrier layer)232與多個能井層(well layer)234。能障層232與能井層234可以是氮化鋁鎵層,其中能障層232的鋁的莫耳分率不同於能井層234的鋁的莫耳分率。能井層234的鋁濃度小於能障層232的鋁濃度。In this embodiment, the light-emitting layer 230 may have multiple quantum well layers, and the multiple quantum well layers have multiple barrier layers 232 and multiple well layers 234 alternately stacked. The energy barrier layer 232 and the energy well layer 234 may be aluminum gallium nitride layers, wherein the mole fraction of aluminum of the energy barrier layer 232 is different from the mole fraction of aluminum of the energy well layer 234. The aluminum concentration of the energy well layer 234 is less than the aluminum concentration of the energy barrier layer 232.

此外,電極260與電極270可分別配置於N型半導體層220與電極接觸層250上。藉由施加一順向電壓於電極270與電極260之間,發光層230可發光,例如發出紫外光C(UVC)。在其他實施例中,發光層230可發光,例如發出紫外光B(UVB)。在本實施例中,電極260與電極270可以是金屬電極。In addition, the electrode 260 and the electrode 270 may be respectively disposed on the N-type semiconductor layer 220 and the electrode contact layer 250. By applying a forward voltage between the electrode 270 and the electrode 260, the light-emitting layer 230 can emit light, such as ultraviolet light C (UVC). In other embodiments, the light-emitting layer 230 may emit light, for example, ultraviolet light B (UVB). In this embodiment, the electrode 260 and the electrode 270 may be metal electrodes.

圖11顯示不具有矽摻雜的一氮化鋁層的X射線ω-2θ掃描(標示為「無摻雜MOCVD氮化鋁模板」)及圖10中的緩衝層與應變釋放層的X射線ω-2θ掃描(標示為「具有壓應力的氮化鋁緩衝層與摻雜矽的氮化鋁」)。圖11中的單位「a.u.」是指「任意單位」。請參照圖10與圖11,從圖11可知,當矽摻雜於應變釋放層140b中時,包含緩衝層121b與應變釋放層140b的氮化鋁層的X射線ω-2θ掃描的波峰(peak)變寬或分裂為兩個波峰(即圖11中所顯示的121b的波峰與140b的波峰),其表示應變釋放層140b中的應變被釋放了。Figure 11 shows the X-ray ω-2θ scan of an aluminum nitride layer without silicon doping (labeled as "undoped MOCVD aluminum nitride template") and the X-ray ω of the buffer layer and the strain relief layer in Figure 10 -2θ scan (labeled as "aluminum nitride buffer layer with compressive stress and silicon-doped aluminum nitride"). The unit "a.u." in Figure 11 refers to the "arbitrary unit". 10 and FIG. 11, it can be seen from FIG. 11 that when silicon is doped in the strain relief layer 140b, the peak of the X-ray ω-2θ scan of the aluminum nitride layer including the buffer layer 121b and the strain relief layer 140b ) Broadens or splits into two crests (ie, the crest of 121b and the crest of 140b shown in FIG. 11), which means that the strain in the strain relief layer 140b is released.

圖12為利用二次離子質譜儀(secondary ion mass spectrometer, SIMS)測量圖10的發光二極體所得的成分分佈圖。在圖12中,單位「c/s」是指每秒的計數。請參照圖10與圖12,從圖12可知,摻雜於應變釋放層140b中的矽的濃度大於10 19cm -3,且鋁漸變層210的鋁濃度從接近於應變釋放層140b的鋁濃度逐漸變化至接近於N型半導體層220的鋁濃度。 FIG. 12 is a composition distribution diagram obtained by measuring the light-emitting diode of FIG. 10 with a secondary ion mass spectrometer (SIMS). In Fig. 12, the unit "c/s" refers to counts per second. 10 and 12, it can be seen from FIG. 12 that the concentration of silicon doped in the strain relief layer 140b is greater than 10 19 cm -3 , and the aluminum concentration of the aluminum graded layer 210 is from close to that of the strain relief layer 140b The concentration of aluminum gradually changes to be close to that of the N-type semiconductor layer 220.

圖13為圖10中的發光二極體的下部的掃描穿透電子顯微術(scanning transmission electron microscopy, STEM)的影像。圖14為圖10中的發光二極體的上部的掃描穿透電子顯微術的影像。請參照圖10與圖13,在本實施例中,在應變釋放層140b中的差排(dislocation)143b相對於基板的法線傾斜一傾斜角θ,且傾斜角θ是落在從10度至30度的範圍內。圖13顯示三種傾斜角θ例如分別約為13度、26度及15度。如果應變釋放層140b被不摻雜矽的氮化鋁層取代,此層中的差排將會不規則或彎曲。相較之下,應變釋放層140b具有較規則的傾斜差排,其代表應變釋放層140b具有較佳的磊晶品質。從圖14可知,位於應變釋放層140b上方的多個膜層亦具有良好的磊晶品質。FIG. 13 is a scanning transmission electron microscopy (STEM) image of the lower part of the light-emitting diode in FIG. 10. Fig. 14 is a scanning transmission electron microscopy image of the upper part of the light-emitting diode in Fig. 10. 10 and FIG. 13, in this embodiment, the dislocation 143b in the strain relief layer 140b is inclined at an inclination angle θ with respect to the normal of the substrate, and the inclination angle θ falls from 10 degrees to Within 30 degrees. FIG. 13 shows that the three tilt angles θ are approximately 13 degrees, 26 degrees, and 15 degrees, for example. If the strain relief layer 140b is replaced by an aluminum nitride layer that is not doped with silicon, the rows in this layer will be irregular or curved. In contrast, the strain relief layer 140b has a relatively regular inclination, which represents that the strain relief layer 140b has better epitaxial quality. It can be seen from FIG. 14 that the multiple film layers above the strain relief layer 140b also have good epitaxial quality.

圖15顯示二種電極接觸層的吸光度光譜及圖10中的發光層的電致發光(electroluminescence, EL)光譜。標示為「p-SPSL 12.5Å/12.5Å」的曲線為圖10中的電極接觸層250的吸光度光譜曲線,其中這些Al 1-wGa wN層252的每一者具有12.5Å的厚度,且這些Al 1-vGa vN層254的每一者具有12.5Å的厚度。再者,舉例而言,這些Al 1-wGa wN層252(圖14中的多個黑線)的w可為0.6,且這些Al 1-vGa vN層254(圖14的多個亮線)的v可為0.36。標示為「p-GaN接觸層」的曲線為電極接觸層的吸光度光譜曲線,其中此電極接觸層為不具有超晶格結構的單一P型氮化鎵層。標示為「EL」的曲線為發光層230的電致發光光譜。藉由比較此三曲線可知,圖10中具有超晶格結構的電極接觸層250對來自發光層230的光吸收較少,因此發光二極體200具有較佳的光取出效率。 FIG. 15 shows the absorbance spectra of the two electrode contact layers and the electroluminescence (EL) spectra of the light-emitting layer in FIG. 10. The curve labeled "p-SPSL 12.5Å/12.5Å" is the absorbance spectrum curve of the electrode contact layer 250 in FIG. 10, wherein each of the Al 1-w Ga w N layers 252 has a thickness of 12.5 Å, and Each of these Al 1-v Ga v N layers 254 has a thickness of 12.5 Å. Furthermore, for example, w of these Al 1-w Ga w N layers 252 (a plurality of black lines in FIG. 14) may be 0.6, and these Al 1-v Ga v N layers 254 (a plurality of black lines in FIG. 14) (Bright line) v can be 0.36. The curve labeled "p-GaN contact layer" is the absorbance spectrum curve of the electrode contact layer, where the electrode contact layer is a single p-type gallium nitride layer without a superlattice structure. The curve labeled "EL" is the electroluminescence spectrum of the light-emitting layer 230. By comparing the three curves, it can be seen that the electrode contact layer 250 with the superlattice structure in FIG. 10 absorbs less light from the light emitting layer 230, so the light emitting diode 200 has better light extraction efficiency.

圖16為本揭露的另一實施例的發光二極體的剖面示意圖。請參照圖16,本實施例的發光二極體200c類似於圖10的發光二極體200,而兩者的主要差異為複合式基板100c採用如圖1A所繪示的具有多個奈米圖案化凹陷的基板110(即奈米圖案化藍寶石基板(nano-patterned sapphire substrate)),且形成於基板110上的緩衝層為圖5中的第一氮化鋁層121。第一氮化鋁層121的製造方法已於前述實施例描述,在此將不再重述。FIG. 16 is a schematic cross-sectional view of a light-emitting diode according to another embodiment of the disclosure. Please refer to FIG. 16, the light-emitting diode 200c of this embodiment is similar to the light-emitting diode 200 of FIG. 10, and the main difference between the two is that the composite substrate 100c has multiple nano patterns as shown in FIG. 1A. The recessed substrate 110 (ie, nano-patterned sapphire substrate), and the buffer layer formed on the substrate 110 is the first aluminum nitride layer 121 in FIG. 5. The manufacturing method of the first aluminum nitride layer 121 has been described in the foregoing embodiment, and will not be repeated here.

在本實施例中,應變釋放層140b不具有可被觀察到的孔洞,其表示應變釋放層中的孔洞在平行於基板110的一水平方向與垂直於基板110的鉛直方向中的至少一方向上的尺寸小於50奈米,其中孔洞可由基板110的奈米圖案化凹陷所引起。In this embodiment, the strain relief layer 140b does not have any observable holes, which means that the holes in the strain relief layer are oriented in at least one of a horizontal direction parallel to the substrate 110 and a vertical direction perpendicular to the substrate 110. The size is less than 50 nanometers, and the holes can be caused by the nano-patterned depressions of the substrate 110.

圖17顯示圖10與圖16的多個發光二極體的電致發光強度。請參照圖17,標示為「FSS上的UVC LED」的數據點是指圖10的發光二極體200的電致發光強度,標示為「NPSS上的UVC LED」的數據點是指圖16中的發光二極體200c的電致發光強度。圖17的橫軸是指可有效發光的不同的多個發光二極體晶圓的測試序號。序號23以下為不採用應變釋放層140b及具有超晶格結構的電極接觸層250的發光二極體,而序號24以上為採用應變釋放層140b與具有超晶格結構的電極接觸層250的發光二極體200或200c。從圖17可知,藉由採用應變釋放層140b與具有超晶格結構的電極接觸層250,發光二極體200的電致發光強度至少提升了約50%。FIG. 17 shows the electroluminescence intensity of the multiple light-emitting diodes of FIG. 10 and FIG. 16. Please refer to Figure 17, the data point labeled "UVC LED on FSS" refers to the electroluminescence intensity of the light-emitting diode 200 in Figure 10, and the data point labeled "UVC LED on NPSS" refers to Figure 16 The electroluminescence intensity of the light-emitting diode 200c. The horizontal axis of FIG. 17 refers to the test serial numbers of a plurality of different light-emitting diode wafers that can effectively emit light. The numbers below 23 are light emitting diodes that do not use the strain relief layer 140b and the electrode contact layer 250 with a superlattice structure, and the numbers 24 and above are light emitting diodes that use the strain relief layer 140b and the electrode contact layer 250 with a superlattice structure. Diode 200 or 200c. It can be seen from FIG. 17 that by using the strain relief layer 140b and the electrode contact layer 250 with a superlattice structure, the electroluminescence intensity of the light emitting diode 200 is increased by at least about 50%.

綜上所述,在本揭露的實施例的複合式基板及其製造方法中,由於在基板的上表面採用了彼此分離的多個奈米圖案化凹陷,也就是採用了具有下凹式奈米圖案的奈米圖案化基板來取代傳統具有上凸式奈米圖案的圖案化基板,因此可大幅降低氮化鋁磊晶的先天晶粒縫合難度。此外,在本揭露的實施例中,形成奈米圖案化凹陷的方法可以是溼蝕刻法,如此有助於提升氮化鋁直接於其上的磊晶品質。再者,在本揭露的實施例中,藉由形成平坦化層後再逐漸移除平坦化層的材料的方法以使第一氮化鋁層的表面平坦化,以及藉由對已平坦化的第一氮化鋁層作退火處理,可進一步提升氮化鋁層的晶體品質、降低縫合難度,並擴展複合式基板的設計空間。在本揭露的實施例的複合式基板與發光二極體中,採用了摻雜高濃度矽的應變釋放層,而矽會產生許多空缺而逐漸釋放晶體中的壓應變。因此應變釋放層能夠具有小的缺陷密度與良好的磊晶品質,且良好的磊晶品質可被應變釋放層上方的多個膜層所繼承。In summary, in the composite substrate and the manufacturing method thereof of the disclosed embodiments, since a plurality of nano-patterned recesses separated from each other are used on the upper surface of the substrate, a nano-patterned recess with a recess is used. Patterned nano-patterned substrates replace the traditional patterned substrates with raised nano-patterns, thus greatly reducing the difficulty of innate grain stitching of aluminum nitride epitaxy. In addition, in the embodiment of the present disclosure, the method for forming the nano-patterned recesses may be a wet etching method, which helps to improve the epitaxial quality of aluminum nitride directly on it. Furthermore, in the embodiment of the present disclosure, the surface of the first aluminum nitride layer is flattened by forming the flattening layer and then gradually removing the material of the flattening layer. Annealing the first aluminum nitride layer can further improve the crystal quality of the aluminum nitride layer, reduce the difficulty of stitching, and expand the design space of the composite substrate. In the composite substrate and light emitting diode of the embodiment of the disclosure, a strain relief layer doped with high concentration silicon is used, and the silicon will generate many vacancies and gradually release the compressive strain in the crystal. Therefore, the strain relief layer can have a small defect density and good epitaxial quality, and the good epitaxial quality can be inherited by multiple film layers above the strain relief layer.

雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本揭露的保護範圍當視後附的申請專利範圍所界定者為準。Although the present disclosure has been disclosed in the above embodiments, it is not intended to limit the present disclosure. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of this disclosure. Therefore, The scope of protection of this disclosure shall be subject to those defined by the attached patent scope.

100、100a、100b、100c:複合式基板 110、110a:基板 112、112a、112b、142:上表面 113:交界線 114:奈米圖案化凹陷 120、121:第一氮化鋁層 121b:緩衝層 130:平坦化層 140:第二氮化鋁層 140b:應變釋放層 142b:下表面 143b:差排 150:氮化鋁層 200、200c:發光二極體 210:鋁漸變層 220:N型半導體層 230:發光層 232:能障層 234:能井層 240:P型半導體層 250:電極接觸層 252:Al 1-wGa wN層 254:Al 1-vGa vN層 260、270:電極 D1:方向 H:深度 P1:週期 T1、T2、T3、T4:膜厚 W:寬度 θ:傾斜角100, 100a, 100b, 100c: composite substrate 110, 110a: substrate 112, 112a, 112b, 142: upper surface 113: boundary line 114: nano-patterned recess 120, 121: first aluminum nitride layer 121b: buffer Layer 130: planarization layer 140: second aluminum nitride layer 140b: strain relief layer 142b: lower surface 143b: differential row 150: aluminum nitride layer 200, 200c: light-emitting diode 210: aluminum gradient layer 220: N-type Semiconductor layer 230: Light emitting layer 232: Energy barrier layer 234: Energy well layer 240: P-type semiconductor layer 250: Electrode contact layer 252: Al 1-w Ga w N layer 254: Al 1-v Ga v N layer 260, 270 : Electrode D1: direction H: depth P1: period T1, T2, T3, T4: film thickness W: width θ: tilt angle

圖1A及圖2至圖5為本揭露的一實施例的複合式基板的製作流程的剖面示意圖。 圖1B為圖1A中的基板的上視示意圖。 圖6A是關於圖5的複合式基板的三種不同樣品在第二氮化鋁層成長後的(002) X射線回擺曲線圖。 圖6B是關於圖5的複合式基板的三種不同樣品在第二氮化鋁層成長後的(102) X射線回擺曲線圖。 圖7是關於複合式基板的三種不同樣品在第二氮化鋁層成長後的拉曼光譜圖。 圖8是關於圖7的複合式基板的三種不同樣品在第二氮化鋁層成長後的(102) X射線回擺曲線半高寬對翹曲度圖。 圖9是本揭露的另一實施例的複合式基板的剖面示意圖。 圖10為本揭露的一實施例的發光二極體的剖面示意圖。 圖11顯示不具有矽摻雜的一氮化鋁層的X射線ω-2θ掃描及圖10中的緩衝層與應變釋放層的X射線ω-2θ掃描。 圖12為利用二次離子質譜儀測量圖10的發光二極體所得的成分分佈圖。 圖13為圖10中的發光二極體的下部的掃描穿透電子顯微術的影像。 圖14為圖10中的發光二極體的上部的掃描穿透電子顯微術的影像。 圖15顯示二種電極接觸層的吸光度光譜及圖10中的發光層的電致發光光譜。 圖16為本揭露的另一實施例的發光二極體的剖面示意圖。 圖17顯示圖10與圖16的多個發光二極體的電致發光強度。 1A and FIGS. 2 to 5 are schematic cross-sectional views of the manufacturing process of the composite substrate according to an embodiment of the disclosure. FIG. 1B is a schematic top view of the substrate in FIG. 1A. FIG. 6A is a (002) X-ray swing curve diagram of three different samples of the composite substrate of FIG. 5 after the second aluminum nitride layer has grown. 6B is a (102) X-ray swing curve diagram of three different samples of the composite substrate of FIG. 5 after the second aluminum nitride layer has grown. FIG. 7 is the Raman spectra of three different samples of the composite substrate after the second aluminum nitride layer is grown. FIG. 8 is a graph of (102) X-ray swing curve half-height versus warpage of three different samples of the composite substrate of FIG. 7 after the second aluminum nitride layer is grown. FIG. 9 is a schematic cross-sectional view of a composite substrate according to another embodiment of the disclosure. FIG. 10 is a schematic cross-sectional view of a light-emitting diode according to an embodiment of the disclosure. FIG. 11 shows the X-ray ω-2θ scan of an aluminum nitride layer without silicon doping and the X-ray ω-2θ scan of the buffer layer and the strain relief layer in FIG. 10. Fig. 12 is a composition distribution diagram obtained by measuring the light-emitting diode of Fig. 10 with a secondary ion mass spectrometer. Fig. 13 is a scanning transmission electron microscopy image of the lower part of the light-emitting diode in Fig. 10. Fig. 14 is a scanning transmission electron microscopy image of the upper part of the light-emitting diode in Fig. 10. FIG. 15 shows the absorbance spectra of the two electrode contact layers and the electroluminescence spectra of the light-emitting layer in FIG. 10. FIG. 16 is a schematic cross-sectional view of a light-emitting diode according to another embodiment of the disclosure. FIG. 17 shows the electroluminescence intensity of the multiple light-emitting diodes of FIG. 10 and FIG. 16.

100b:複合式基板 100b: Composite substrate

110a:基板 110a: substrate

112b:上表面 112b: upper surface

121b:緩衝層 121b: buffer layer

140b:應變釋放層 140b: strain relief layer

142b:下表面 142b: lower surface

200:發光二極體 200: LED

210:鋁漸變層 210: Aluminum gradient layer

220:N型半導體層 220: N-type semiconductor layer

230:發光層 230: light-emitting layer

232:能障層 232: Energy Barrier Layer

234:能井層 234: Energy Well Layer

240:P型半導體層 240: P-type semiconductor layer

250:電極接觸層 250: Electrode contact layer

252:Al1-wGawN層 252: Al 1-w Ga w N layer

254:Al1-vGavN層 254: Al 1-v Ga v N layer

260、270:電極 260, 270: Electrode

D1:方向 D1: direction

P1:週期 P1: Period

T4:膜厚 T4: Film thickness

Claims (20)

一種複合式基板,包括: 一基板; 一緩衝層,配置於該基板上;以及 一應變釋放層,配置於該緩衝層上,其中該緩衝層位於該基板與該應變釋放層之間,該應變釋放層的材料包括Al 1-xGa xN,其中0≦x<0.15,該應變釋放層中摻雜有矽,以釋放該緩衝層所引起的壓應變,該應變釋放層中摻雜的矽濃度大於10 19cm -3,且該應變釋放層的缺陷密度小於或等於5×10 9/cm 2A composite substrate includes: a substrate; a buffer layer disposed on the substrate; and a strain relief layer disposed on the buffer layer, wherein the buffer layer is located between the substrate and the strain relief layer, and the strain The material of the release layer includes Al 1-x Ga x N, where 0≦x<0.15, the strain release layer is doped with silicon to release the compressive strain caused by the buffer layer, and the strain release layer is doped with silicon The concentration is greater than 10 19 cm -3 , and the defect density of the strain release layer is less than or equal to 5×10 9 /cm 2 . 如請求項1所述的複合式基板,其中該緩衝層為氮化鋁層。The composite substrate according to claim 1, wherein the buffer layer is an aluminum nitride layer. 如請求項1所述的複合式基板,其中該緩衝層的(102) X射線回擺曲線的半高寬小於350角秒。The composite substrate according to claim 1, wherein the full width at half maximum of the (102) X-ray swing curve of the buffer layer is less than 350 arcsec. 如請求項1所述的複合式基板,其中該應變釋放層的下表面與該基板的上表面之間的距離小於600奈米,且該應變釋放層的該下表面與該基板的該上表面互相面對。The composite substrate according to claim 1, wherein the distance between the lower surface of the strain relief layer and the upper surface of the substrate is less than 600 nm, and the lower surface of the strain relief layer and the upper surface of the substrate Face each other. 如請求項1所述的複合式基板,其中該應變釋放層中的差排相對於該基板的法線傾斜一傾斜角,且該傾斜角是落在從10度至30度的範圍內。The composite substrate according to claim 1, wherein the differential row in the strain relief layer is inclined at an inclination angle with respect to the normal line of the substrate, and the inclination angle falls within a range from 10 degrees to 30 degrees. 如請求項1所述的複合式基板,其中該應變釋放層不具有可觀察到的孔洞。The composite substrate according to claim 1, wherein the strain relief layer does not have observable holes. 如請求項1所述的複合式基板,其中該緩衝層為一經退火的膜層。The composite substrate according to claim 1, wherein the buffer layer is an annealed film layer. 如請求項1所述的複合式基板,其中該緩衝層的線差排密度小於2×10 9cm -2The composite substrate according to claim 1, wherein the line offset density of the buffer layer is less than 2×10 9 cm -2 . 一種發光二極體,包括: 一基板; 一緩衝層,配置於該基板上; 一應變釋放層,配置於該緩衝層上,其中該緩衝層位於該基板與該應變釋放層之間,該應變釋放層的材料包括Al 1-xGa xN,其中0≦x<0.15,該應變釋放層中摻雜有矽,以釋放該緩衝層所引起的壓應變,該應變釋放層中摻雜的矽濃度大於10 19cm -3,且該應變釋放層的缺陷密度小於或等於5×10 9/cm 2; 一N型半導體層,配置於該應變釋放層上,該N型半導體層的材料包括Al 1-zGa zN,其中z>x+0.15; 一發光層,配置於該N型半導體層上; 一P型半導體層,配置於該發光層上;以及 一電極接觸層,配置於該P型半導體層上。 A light emitting diode includes: a substrate; a buffer layer disposed on the substrate; a strain relief layer disposed on the buffer layer, wherein the buffer layer is located between the substrate and the strain relief layer, and the strain The material of the release layer includes Al 1-x Ga x N, where 0≦x<0.15, the strain release layer is doped with silicon to release the compressive strain caused by the buffer layer, and the strain release layer is doped with silicon The concentration is greater than 10 19 cm -3 , and the defect density of the strain relief layer is less than or equal to 5×10 9 /cm 2 ; an N-type semiconductor layer is disposed on the strain relief layer, and the material of the N-type semiconductor layer includes Al 1-z Ga z N, where z>x+0.15; a light-emitting layer arranged on the N-type semiconductor layer; a P-type semiconductor layer arranged on the light-emitting layer; and an electrode contact layer arranged on the P Type semiconductor layer. 如請求項9所述的發光二極體,其中該緩衝層為氮化鋁層。The light emitting diode according to claim 9, wherein the buffer layer is an aluminum nitride layer. 如請求項9所述的發光二極體,其中該緩衝層的(102) X射線回擺曲線的半高寬小於350角秒。The light-emitting diode according to claim 9, wherein the half-height width of the (102) X-ray swing curve of the buffer layer is less than 350 arcsec. 如請求項9所述的發光二極體,其中該應變釋放層的下表面與該基板的上表面之間的距離小於600奈米,且該應變釋放層的該下表面與該基板的該上表面互相面對。The light emitting diode according to claim 9, wherein the distance between the lower surface of the strain relief layer and the upper surface of the substrate is less than 600 nm, and the lower surface of the strain relief layer and the upper surface of the substrate The surfaces face each other. 如請求項9所述的發光二極體,其中該應變釋放層中的差排相對於該基板的法線傾斜一傾斜角,且該傾斜角是落在從10度至30度的範圍內。The light emitting diode according to claim 9, wherein the differential row in the strain relief layer is inclined at an inclination angle with respect to the normal line of the substrate, and the inclination angle falls within a range from 10 degrees to 30 degrees. 如請求項9所述的發光二極體,其中該應變釋放層不具有可觀察到的孔洞。The light emitting diode according to claim 9, wherein the strain relief layer does not have observable holes. 如請求項9所述的發光二極體,其中該緩衝層為一經退火的膜層。The light emitting diode according to claim 9, wherein the buffer layer is an annealed film layer. 如請求項9所述的發光二極體,其中該緩衝層的線差排密度小於2×10 9cm -2The light-emitting diode according to claim 9, wherein the line offset density of the buffer layer is less than 2×10 9 cm -2 . 如請求項9所述的發光二極體,更包括一鋁漸變層,配置於該應變釋放層與該N型半導體層之間,其中該鋁漸變層的材料包括Al 1-yGa yN,其中x≦y≦z,該鋁漸變層的鋁濃度沿著從該應變釋放層至該N型半導體層的一方向從接近該應變釋放層的鋁濃度的一濃度逐漸變化至接近該N型半導體層的鋁濃度的一濃度。 The light-emitting diode according to claim 9, further comprising an aluminum graded layer disposed between the strain relief layer and the N-type semiconductor layer, wherein the material of the aluminum graded layer includes Al 1-y Ga y N, Where x≦y≦z, the aluminum concentration of the aluminum graded layer gradually changes from a concentration close to the aluminum concentration of the strain relief layer to close to the N-type semiconductor along a direction from the strain relief layer to the N-type semiconductor layer A concentration of the aluminum concentration of the layer. 如請求項9所述的發光二極體,其中該電極接觸層具有超晶格結構,該超晶格結構包括交替堆疊的多個Al 1-wGa wN層與Al 1-vGa vN層,其中w不等於v。 The light-emitting diode according to claim 9, wherein the electrode contact layer has a superlattice structure, and the superlattice structure includes a plurality of Al 1-w Ga w N layers and Al 1-v Ga v N alternately stacked Layer, where w is not equal to v. 如請求項18所述的發光二極體,其中該超晶格結構的週期小於4奈米。The light emitting diode according to claim 18, wherein the period of the superlattice structure is less than 4 nanometers. 如請求項18所述的發光二極體,其中該電極接觸層對該發光層所發出的光的吸光度小於10%。The light-emitting diode according to claim 18, wherein the absorbance of the light emitted by the light-emitting layer of the electrode contact layer is less than 10%.
TW109129701A 2020-08-31 2020-08-31 Composite substrate and light-emitting diode TWI733574B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109129701A TWI733574B (en) 2020-08-31 2020-08-31 Composite substrate and light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109129701A TWI733574B (en) 2020-08-31 2020-08-31 Composite substrate and light-emitting diode

Publications (2)

Publication Number Publication Date
TWI733574B true TWI733574B (en) 2021-07-11
TW202211501A TW202211501A (en) 2022-03-16

Family

ID=77911130

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109129701A TWI733574B (en) 2020-08-31 2020-08-31 Composite substrate and light-emitting diode

Country Status (1)

Country Link
TW (1) TWI733574B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130214281A1 (en) * 2012-02-17 2013-08-22 Tsmc Solid State Lighting Ltd. Method of growing a high quality iii-v compound layer on a silicon substrate
TW201931621A (en) * 2017-12-28 2019-08-01 日商日機裝股份有限公司 Nitride semiconductor light-emitting element
US20200235260A1 (en) * 2017-10-02 2020-07-23 Dowa Electronics Materials Co., Ltd. Deep ultraviolet light-emitting device and method of manufacturing same
TW202030777A (en) * 2019-01-31 2020-08-16 財團法人工業技術研究院 Composite substrate and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130214281A1 (en) * 2012-02-17 2013-08-22 Tsmc Solid State Lighting Ltd. Method of growing a high quality iii-v compound layer on a silicon substrate
US20200235260A1 (en) * 2017-10-02 2020-07-23 Dowa Electronics Materials Co., Ltd. Deep ultraviolet light-emitting device and method of manufacturing same
TW201931621A (en) * 2017-12-28 2019-08-01 日商日機裝股份有限公司 Nitride semiconductor light-emitting element
TW202030777A (en) * 2019-01-31 2020-08-16 財團法人工業技術研究院 Composite substrate and manufacturing method thereof

Also Published As

Publication number Publication date
TW202211501A (en) 2022-03-16

Similar Documents

Publication Publication Date Title
US9449817B2 (en) Semiconductor devices and methods of manufacturing the same
JP5042100B2 (en) Epitaxial growth substrate, method of manufacturing the same, and group III nitride semiconductor device
JP4580193B2 (en) Light emitting element
TWI401729B (en) Method for interdicting dislocation of semiconductor with dislocation defects
JP5673581B2 (en) Group III nitride semiconductor light emitting device manufacturing method, group III nitride semiconductor light emitting device, lamp, and reticle
TWI416612B (en) Semiconductor device and manufacturing method thereof
KR101118268B1 (en) High Quality Non-polar/Semi-polar Semiconductor Device on Prominence and Depression Patterned Substrate and Manufacturing Method thereof
TWI617045B (en) Light emitting device with nanorod therein and the forming method thereof
US20120217474A1 (en) Photonic device and method of making the same
CN109360871B (en) Patterned substrate, light-emitting diode epitaxial wafer and preparation method thereof
WO2017150280A1 (en) Vertical-type ultraviolet light-emitting diode
TWI736962B (en) Composite substrate and manufacturing method thereof
US11688825B2 (en) Composite substrate and light-emitting diode
KR20120126981A (en) Non-polar nitride-based light emitting device and method for the same
US11220743B2 (en) Composite substrate and manufacturing method thereof
US20150364646A1 (en) Crystal layered structure and light emitting element
TWI733574B (en) Composite substrate and light-emitting diode
CN110838538B (en) Light-emitting diode element and preparation method thereof
KR101471608B1 (en) Nitride based light emitting diode including nanorods and method for manufacturing the same
KR20120065610A (en) Semiconductor light emitting device
TWI755047B (en) Led precursor incorporating strain relaxing structure
You et al. Enhanced performance of InGaN-based light-emitting diodes grown on volcano-shaped patterned sapphire substrates with embedded SiO2
TWI460855B (en) Nitride semiconductor structure and fabricating method thereof
TW202107734A (en) Light-emitting diode and fabrication method thereof
KR101052637B1 (en) Nitride device with excellent interruption of threading dislocation and method of manufacturing the nitride device