TWI457985B - Semiconductor structure with stress absorbing buffer layer and manufacturing method thereof - Google Patents

Semiconductor structure with stress absorbing buffer layer and manufacturing method thereof Download PDF

Info

Publication number
TWI457985B
TWI457985B TW100148013A TW100148013A TWI457985B TW I457985 B TWI457985 B TW I457985B TW 100148013 A TW100148013 A TW 100148013A TW 100148013 A TW100148013 A TW 100148013A TW I457985 B TWI457985 B TW I457985B
Authority
TW
Taiwan
Prior art keywords
buffer layer
semiconductor structure
germanium
layer
stress absorbing
Prior art date
Application number
TW100148013A
Other languages
Chinese (zh)
Other versions
TW201327633A (en
Original Assignee
Nat Inst Chung Shan Science & Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Inst Chung Shan Science & Technology filed Critical Nat Inst Chung Shan Science & Technology
Priority to TW100148013A priority Critical patent/TWI457985B/en
Publication of TW201327633A publication Critical patent/TW201327633A/en
Application granted granted Critical
Publication of TWI457985B publication Critical patent/TWI457985B/en

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Led Devices (AREA)

Description

具有應力吸收緩衝層之半導體結構及其製造方法Semiconductor structure having stress absorbing buffer layer and method of fabricating the same

本發明係有關於一種具有應力吸收緩衝層之半導體結構及其製造方法,藉由一表面處理技術可消除半導體結構之緩衝層之應力,進而達到降低缺陷密度且避免磊晶層龜裂或剝落之功效。The invention relates to a semiconductor structure with a stress absorbing buffer layer and a manufacturing method thereof, which can eliminate the stress of the buffer layer of the semiconductor structure by a surface treatment technology, thereby reducing the defect density and avoiding cracking or peeling of the epitaxial layer. efficacy.

近年來,以化合物半導體為代表之半導體有效利用其各種特性,應用範圍進一步擴大。例如:化合物半導體作為用以積層磊晶層之基底基板而有用,可用於發光二極體(LED,Light Emitting Diode)、雷射二極體(LD,Laser Diode)等半導體裝置。In recent years, semiconductors represented by compound semiconductors have effectively utilized various characteristics, and the range of applications has been further expanded. For example, a compound semiconductor is useful as a base substrate for laminating an epitaxial layer, and can be used for a semiconductor device such as a light emitting diode (LED) or a laser diode (LD).

然而,在製作這些材料期間通常會產生的一個問題就是因為異性磊晶(hereroepitaxial)沈積造成的晶格扭曲。所謂的「異性磊晶」沈積層是一種磊晶或是單晶層,此沈積層會沈積在單晶基底上,其與單晶基底具有不同的組成。當沈積的磊晶層受到壓迫而產生一種至少兩個方位與其下方的單晶基底相同的晶格結構,但是與其本來的晶格常數不同時就會被稱為「扭曲」;其中,晶格扭曲的發生是因為當薄膜沈積的方式是讓其晶格結構會與下層的單晶基底相配時,沈積層內的原子會離開原來的位置,也就是在單獨大量材料的晶格結構中原本佔據的位置。舉例來說,在一個單晶矽基底上沈積像是矽鍺或是鍺本身等含鍺材料的異性磊晶一般會產生壓縮的晶格扭曲,因為沈積的含鍺材料其晶格常數比矽基底大,扭曲的程度跟沈積層的厚度以及沈積材料與下層的積底之間的晶格不協調的程度有關。However, one problem that typically arises during the fabrication of these materials is the lattice distortion caused by the deposition of hereroepitaxial. The so-called "heterostatic epitaxial" deposition layer is an epitaxial or single crystal layer deposited on a single crystal substrate having a different composition from the single crystal substrate. When the deposited epitaxial layer is pressed to produce a lattice structure having at least two orientations identical to the single crystal substrate below it, but when it is different from its original lattice constant, it is called "distortion"; wherein, the lattice distortion This occurs because when the film is deposited in such a way that its lattice structure will match the underlying single crystal substrate, the atoms in the deposited layer will leave the original position, which is originally occupied by the lattice structure of a large number of materials alone. position. For example, depositing an epitaxial epitaxial layer of tantalum-containing material such as tantalum or tantalum itself on a single crystal germanium substrate generally produces a compressive lattice distortion because the deposited germanium-containing material has a lattice constant greater than that of the germanium substrate. Large, the degree of distortion is related to the thickness of the deposited layer and the degree of lattice inconsistency between the deposited material and the underlying layer.

請參照美國專利第5,122,845號,其揭示了一種緩衝層用於化合物半導體和發光二極體。其中,利用在基板與氮化鎵層之間沉積以氮化鋁(AlN)為主之緩衝層(buffer layer),且此緩衝層的結晶結構係以微結晶或是多結晶且在非結晶矽的狀態下混合,藉此緩衝層之結晶結構可以改善在氮化鎵化合物層之間的晶格不匹配(crystal mismatching)的問題。然而,該專利之緩衝層需由微晶矽或多晶矽於非晶矽的狀態下混合,缺點在於作法並未詳細之揭露。No. 5,122,845, which discloses a buffer layer for compound semiconductors and light-emitting diodes. Wherein, a buffer layer mainly composed of aluminum nitride (AlN) is deposited between the substrate and the gallium nitride layer, and the crystal structure of the buffer layer is microcrystalline or polycrystalline and is in an amorphous state. The state of the buffer layer is mixed, whereby the crystal structure of the buffer layer can improve the problem of crystal mismatching between the gallium nitride compound layers. However, the buffer layer of this patent needs to be mixed by microcrystalline germanium or polycrystalline germanium in an amorphous state. The disadvantage is that the method is not disclosed in detail.

另參照美國專利第5,290,393號,其揭示一種光電元件係以氮化鎵為主之化合物半導體層,例如Gax Al1-x N(0<x≦1)。然而,在基板上以磊晶的方式形成化合物半導體層時,在基底上的晶格表面圖案不佳且會影響到後續製作藍光光電元件的品質,因此,藉由一緩衝層例如Gax Alx-1 N來改善基底與化合物半導體之間的晶格匹配問題。然而,在上述習知技術中,所產生的光電效益有其限制。Another reference to U.S. Patent No. 5,290,393, which discloses a compound semiconductor layer of a photovoltaic element of the main gallium nitride based, for example, Ga x Al 1-x N ( 0 <x ≦ 1). However, when the compound semiconductor layer is formed on the substrate in an epitaxial manner, the lattice surface pattern on the substrate is poor and affects the quality of the subsequent fabrication of the blue light-emitting element, and thus, by a buffer layer such as Ga x Al x -1 N to improve the lattice matching problem between the substrate and the compound semiconductor. However, in the above-mentioned prior art, the photoelectric benefit produced has its limitations.

職是之故,申請人乃進行試驗與研究,提出種一種具有應力吸收緩衝層之半導體結構及其製造方法,特別係有關於藉由一表面處理技術可消除緩衝層之應力,進而達到降低缺陷密度且避免磊晶層龜裂或剝落之功效。For the sake of his position, the applicant conducted experiments and research, and proposed a semiconductor structure with a stress absorption buffer layer and a manufacturing method thereof, in particular, a surface treatment technique can eliminate the stress of the buffer layer, thereby reducing defects. Density and avoid the effect of cracking or peeling of the epitaxial layer.

本發明之主要目的在於提出一種具有應力吸收緩衝層之半導體結構及其製造方法,其係於該緩衝層與磊晶層的接面上,進行一表面處理技術以形成複數個具有多孔隙之結構,藉由該些複數個具有多孔隙之表面可消除緩衝層之應力,以避免磊晶層龜裂或剝落。The main object of the present invention is to provide a semiconductor structure having a stress absorbing buffer layer and a method for fabricating the same, which are applied to a surface of the buffer layer and the epitaxial layer to perform a surface treatment technique to form a plurality of structures having a plurality of pores. By using the plurality of porous surfaces, the stress of the buffer layer can be eliminated to avoid cracking or peeling of the epitaxial layer.

為達上述目的,本發明提出一具有應力吸收緩衝層之半導體結構,其包含:一基板、一絕緣層、一緩衝層、一磊晶層;其中,該絕緣層形成於該基板之表面;該緩衝層形成於該絕緣層之表面;以及該磊晶層形成於該緩衝層之表面。In order to achieve the above object, the present invention provides a semiconductor structure having a stress absorbing buffer layer, comprising: a substrate, an insulating layer, a buffer layer, and an epitaxial layer; wherein the insulating layer is formed on a surface of the substrate; A buffer layer is formed on a surface of the insulating layer; and the epitaxial layer is formed on a surface of the buffer layer.

此外,本發明尚提出一種具有應力吸收緩衝層之半導體結構之製造方法,其步驟包含:提供一基板;沈積一絕緣層,形成於該基板表面;沈積一緩衝層,形成於該絕緣層表面;提供一表面處理於該緩衝層表面,形成複數個具有多孔隙之結構,且該些複數個具有多孔性之結構可消除該緩衝層之應力;沈積一磊晶層,形成於該緩衝層表面。In addition, the present invention further provides a method for fabricating a semiconductor structure having a stress absorbing buffer layer, the method comprising: providing a substrate; depositing an insulating layer formed on the surface of the substrate; depositing a buffer layer formed on the surface of the insulating layer; A surface treatment is provided on the surface of the buffer layer to form a plurality of structures having a plurality of pores, and the plurality of structures having a porosity can eliminate the stress of the buffer layer; depositing an epitaxial layer formed on the surface of the buffer layer.

於本發明之一實施例中,該絕緣層係自氧化矽(SiOx)、氮化矽(SiNx)、氧化鈦(TiOx)或氧化鋁(AlOx)等氧化物所組成之群中的任一種。In one embodiment of the invention, the insulating layer is any one of the group consisting of oxides such as SiOx, SiOx (Sixx), Titanium oxide (TiOx) or alumina (AlOx).

於本發明之一實施例中,該緩衝層係選自矽或多孔性矽、多晶矽、碳化矽(SiC)、氮化鎵(GaN)、藍寶石、氮化鋁(AlN)、矽鍺(SiGe)與氮化矽之一。In an embodiment of the invention, the buffer layer is selected from the group consisting of germanium or porous germanium, polycrystalline germanium, tantalum carbide (SiC), gallium nitride (GaN), sapphire, aluminum nitride (AlN), germanium (SiGe). One with tantalum nitride.

於本發明之一實施例中,該些複數個多孔隙之結構之表面顯微結構可為有序的點狀、纖維狀、樹枝狀或無序的混合結構之一。In an embodiment of the invention, the surface microstructure of the plurality of porous structures may be one of ordered mixed structures of dots, fibers, dendrites or disorder.

於本發明之一實施例中,該表面處理技術係選自電漿處理技術、乾式蝕刻、濕式蝕刻之一或其組合。In one embodiment of the invention, the surface treatment technique is selected from one of plasma processing techniques, dry etching, wet etching, or a combination thereof.

為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數個較佳實施例,並配合所附圖式,作詳細說明如下。The above and other objects, features, and advantages of the present invention will become more apparent and understood.

雖然本發明可表現為不同形式之實施例,但附圖所示者及於下文中說明者係為本發明可之較佳實施例,並請瞭解本文所揭示者係考量為本發明之一範例,且並非意圖用以將本發明限制於圖示及/或所描述之特定實施例中。While the invention may be embodied in various forms, the embodiments illustrated in the drawings It is not intended to limit the invention to the particular embodiments illustrated and/or described.

請參考第1圖,其顯示為本發明具有應力吸收緩衝層之半導體結構示意圖。該具有應力吸收緩衝層之半導體結構100主要包含:一基板110、一絕緣層120、一緩衝層130、一磊晶層140;其中該絕緣層120係形成於該基板110之表面;該緩衝層130係形成於該絕緣層120之表面;該磊晶層140係形成於該緩衝層130表面,而該緩衝層130之表面係藉由一表面處理技術形成複數個具有多孔隙之結構131,且該些複數個具有多孔性之結構131可消除該緩衝層130之應力,進而避免該磊晶層140之龜裂或剝落。Please refer to FIG. 1 , which shows a schematic diagram of a semiconductor structure having a stress absorption buffer layer according to the present invention. The semiconductor structure 100 having a stress absorbing buffer layer mainly includes: a substrate 110, an insulating layer 120, a buffer layer 130, and an epitaxial layer 140; wherein the insulating layer 120 is formed on a surface of the substrate 110; 130 is formed on the surface of the insulating layer 120; the epitaxial layer 140 is formed on the surface of the buffer layer 130, and the surface of the buffer layer 130 is formed into a plurality of structures 131 having a plurality of pores by a surface treatment technique, and The plurality of porous structures 131 can eliminate the stress of the buffer layer 130, thereby preventing cracking or peeling of the epitaxial layer 140.

請再參考第2圖,其顯示為本發明具有應力吸收緩衝層之半導體結構之製造流程示意圖,其包含下列之步驟:步驟210:提供一基板110;步驟220:沈積一絕緣層120,形成於該基板110之表面;步驟230:沈積一緩衝層130,形成於該絕緣層120之表面;步驟240:提供一表面處理於該緩衝層130之表面,形成複數個具有多孔隙之結構131,且該些複數個具有多孔性之結構131可消除該緩衝層130之應力;步驟250:沈積一磊晶層140,形成於該緩衝層130表面。Please refer to FIG. 2 again, which shows a manufacturing process diagram of a semiconductor structure having a stress absorbing buffer layer according to the present invention, which includes the following steps: Step 210: providing a substrate 110; Step 220: depositing an insulating layer 120, formed on a surface of the substrate 110; a step 230: depositing a buffer layer 130 on the surface of the insulating layer 120; and step 240: providing a surface treatment on the surface of the buffer layer 130 to form a plurality of structures 131 having a plurality of pores, and The plurality of porous structures 131 can eliminate the stress of the buffer layer 130; and step 250: deposit an epitaxial layer 140 on the surface of the buffer layer 130.

其中,該基板110材料係選自矽(Si)、藍寶石、碳化矽(SiC)、氮化鋁(AlN)或金剛石所組成之群中的任一種。The material of the substrate 110 is selected from the group consisting of bismuth (Si), sapphire, tantalum carbide (SiC), aluminum nitride (AlN) or diamond.

接著如圖2所示,該絕緣層120材料係選自氧化矽(SiOx)、氮化矽(SiNx)、氧化鈦(TiOx)或氧化鋁(AlOx)等氧化物所組成之群中的任一種。較佳地,係選用氧化矽(SiOx)作為絕緣層120。雖然一般來說,絕緣層120與基板110的厚度並非發明之關鍵,但較佳是控制厚度高約1微米的絕緣層120。此外,該絕緣層120沉積於基板110表面之沉積方法係選自濺鍍法、蒸鍍法以及化學氣相沉積法之一。Next, as shown in FIG. 2, the material of the insulating layer 120 is selected from any group consisting of oxides such as SiOx, SiNx, TiOx, or AlOx. . Preferably, yttrium oxide (SiOx) is selected as the insulating layer 120. Although in general, the thickness of the insulating layer 120 and the substrate 110 is not critical to the invention, it is preferred to control the insulating layer 120 having a thickness of about 1 micron. In addition, the deposition method of the insulating layer 120 deposited on the surface of the substrate 110 is selected from one of a sputtering method, an evaporation method, and a chemical vapor deposition method.

該緩衝層130材料係選自矽或多孔性矽、多晶矽、碳化矽(SiC)、氮化鎵(GaN)、藍寶石、氮化鋁(AlN)、矽鍺(SiGe)與氮化矽之一。其中,該緩衝層130沉積於絕緣層120表面之沉積方法係選自濺鍍法、蒸鍍法、化學氣相沉積法之一。The buffer layer 130 material is selected from the group consisting of germanium or porous germanium, polycrystalline germanium, tantalum carbide (SiC), gallium nitride (GaN), sapphire, aluminum nitride (AlN), germanium (SiGe), and tantalum nitride. The deposition method of the buffer layer 130 deposited on the surface of the insulating layer 120 is selected from one of a sputtering method, an evaporation method, and a chemical vapor deposition method.

值得注意的是,若單純沉積磊晶層140於緩衝層上130會導致內應力產生使得缺陷密度提升,最終導致磊晶層140剝落。舉例如下:藍寶石上沉積GaN磊晶層係處於壓縮應力中;在碳化矽上獲得的彼等層係處於輕微張應力下;在矽上者處於高張力下。對於壓縮應力與張力下之層,這導致在磊晶薄膜中將形成裂紋進而剝落。尤其,上述之現象對於在矽上沉積磊晶層140特別嚴重。對於磊晶載體而言,超過出現裂紋之限度為約1微米至2微米,此係關於產生優良品質層的一個限制因素。It is worth noting that simply depositing the epitaxial layer 140 on the buffer layer 130 causes internal stress to be generated such that the defect density is increased, eventually causing the epitaxial layer 140 to flake off. Examples are as follows: the deposited GaN epitaxial layer on sapphire is in compressive stress; the layers obtained on tantalum carbide are under slight tensile stress; the upper layer is under high tension. For layers under compressive stress and tension, this results in cracks that will form and then flake off in the epitaxial film. In particular, the above phenomenon is particularly serious for depositing the epitaxial layer 140 on the crucible. For epitaxial carriers, the limit beyond the occurrence of cracks is from about 1 micron to 2 microns, which is a limiting factor in producing a good quality layer.

因此,為了解決上述之問題,本發明之一較佳實施例中係採用SOI(絕緣層上矽)之方式,尤其是有關於一種在矽基板上圖案化之方式。值得注意的是,圖案化之方式並不限定於矽基板,亦即於藍寶石或碳化矽基板可得同樣之功效。然而,雖然上述之改良磊晶生長薄膜之晶體品質之方法並不能完全且有效的解決磊晶生長薄膜中的應力問題。Therefore, in order to solve the above problems, a preferred embodiment of the present invention employs a method of SOI (on-insulator), and more particularly, a method of patterning on a germanium substrate. It is worth noting that the patterning method is not limited to the germanium substrate, that is, the same effect can be obtained on the sapphire or tantalum carbide substrate. However, although the above-described method for improving the crystal quality of the epitaxial growth film does not completely and effectively solve the stress problem in the epitaxial growth film.

因此,本發明提出一種解決方法,亦為本發明之重要特徵:該緩衝層130之表面係藉由一表面處理技術形成複數個具有多孔隙之結構131,以避免磊晶層140龜裂或剝落。Therefore, the present invention proposes a solution, which is also an important feature of the present invention: the surface of the buffer layer 130 is formed by a surface treatment technique to form a plurality of structures 131 having a plurality of pores to prevent the epitaxial layer 140 from cracking or peeling off. .

此外,該些複數個具有多孔隙結構之表面顯微結構可為有序的點狀、纖維狀、樹枝狀或無序的混合結構之一。In addition, the plurality of surface microstructures having a porous structure may be one of ordered mixed structures of dots, fibers, dendrites or disorder.

最後,將磊晶層140沉積於該緩衝層130表面。其中,本發明可應用於磊晶生長以下材料層之技術,如GaN、GaAs、InP、GaAlAs、InGaAs、AlN、AlGaN或甚至SiGe。此外,該磊晶層140之磊晶方法可選自有機金屬氣相磊晶法(MOCVD)、分子束磊晶(MBE),氣相磊晶法(VPE)及液相磊晶法(LPE)之一。其中,LPE及VPE的磊晶長成的速度和量產能力較MOCVD佳,但在磊晶薄度及平整度的控制能力就不如MOCVD好。然而,MOCVD有成本較高,良率低而且原料取得不易等缺點。基於以上因素,造成在不同的產品所應用的磊晶方法也不同,在傳統亮度的LED上(如GaP、GaAsP及AlGaAs)常用LPE(液相磊晶法),若是高亮度LED(如AlGaInP及GaN等)則要求的品質較為嚴格,較佳地則要用有機金屬氣相磊晶法(MOCVD)。Finally, an epitaxial layer 140 is deposited on the surface of the buffer layer 130. Among them, the present invention can be applied to a technique of epitaxially growing a material layer such as GaN, GaAs, InP, GaAlAs, InGaAs, AlN, AlGaN or even SiGe. In addition, the epitaxial method of the epitaxial layer 140 may be selected from the group consisting of metal metal vapor phase epitaxy (MOCVD), molecular beam epitaxy (MBE), vapor phase epitaxy (VPE), and liquid phase epitaxy (LPE). one. Among them, the speed and mass production capacity of LPE and VPE are better than MOCVD, but the control ability of epitaxial thinness and flatness is not as good as MOCVD. However, MOCVD has disadvantages such as high cost, low yield, and difficulty in obtaining raw materials. Based on the above factors, the epitaxial method applied in different products is also different. LPE (liquid phase epitaxy) is commonly used on conventional brightness LEDs (such as GaP, GaAsP and AlGaAs), and high-brightness LEDs (such as AlGaInP and GaN, etc.) require more stringent quality, preferably by organometallic vapor phase epitaxy (MOCVD).

<實施例1><Example 1>

首先,將矽(Si)基板110經由RCA Standard Clean,除去基板110上之微塵、金屬離子及有機物之雜質。接著,以直流磁控濺鍍法於矽(Si)基板110之表面沉積層厚為1微米之二氧化矽(SiO2 )絕緣層120;接著,以直流磁控濺鍍法沉積多晶矽之緩衝層130,其該表面緩衝層130之粗糙度為8nm(以RMS基準計)。其中,多晶矽之緩衝層130經由表面處理,其中,該表面處理技術係電漿處理技術,產生壓力係介於5 mTorr至30 mTorr之間,且電漿頻率係於一偏壓頻率為2 MHz或13.56 MHz之一。此外,電漿處理所採用之氣體為含有氟氣或氫氟氣及載氣之混合氣體之一。其中,氟氣之氣體可為C1 F4 、C2 F2 、C2 F4 、C3 F6 、C4 F6 、C4 F8 、C5 F8 、或C6 F6 其中之一;氫氟氣之氣體可為C2 HF5 、CHF3 、CH2 F2 、CH3 F、C3 H2 F6 、C3 H2 F4 、C3 HF5 或C3 HF7 其中之一;載氣可為氦氣、氮氣、氬氣、氫氣或空氣其中之一。可得緩衝層130表面有較佳之粗糙度3.6nm,可使磊晶層140之結晶品質進一步提高。另外,該緩衝層130表面係藉為複數個有序點狀之多孔隙之表面結構,藉由該結構可吸收內應力,以避免磊晶層於其上龜裂或剝落。最後,以有機金屬氣相磊晶法(MOCVD)沉積磷砷化鎵(GaAsP)之磊晶層140,即完成整個具有應力吸收之磊晶半導體結構。藉由本發明與其先前例比較,本發明不需額外複雜之結構,藉由電漿處理技術可使磊晶層140之結晶品質進一步提高,提升整體元件之發光特性。(註電漿產生條件為表1)First, the cerium (Si) substrate 110 is subjected to removal of impurities such as fine dust, metal ions, and organic substances on the substrate 110 via RCA Standard Clean. Next, a 1 μm thick cerium oxide (SiO 2 ) insulating layer 120 is deposited on the surface of the ytterbium (Si) substrate 110 by DC magnetron sputtering; then, a buffer layer of polycrystalline germanium is deposited by DC magnetron sputtering. 130, the surface buffer layer 130 has a roughness of 8 nm (on an RMS basis). Wherein, the polysilicon buffer layer 130 is subjected to surface treatment, wherein the surface treatment technology is a plasma processing technology, and the pressure system is generated between 5 mTorr and 30 mTorr, and the plasma frequency is at a bias frequency of 2 MHz or One of the 13.56 MHz. Further, the gas used for the plasma treatment is one of a mixed gas containing fluorine gas or hydrogen fluoride gas and a carrier gas. Wherein, the gas of the fluorine gas may be C 1 F 4 , C 2 F 2 , C 2 F 4 , C 3 F 6 , C 4 F 6 , C 4 F 8 , C 5 F 8 , or C 6 F 6 a hydrogen fluoride gas may be C 2 HF 5 , CHF 3 , CH 2 F 2 , CH 3 F, C 3 H 2 F 6 , C 3 H 2 F 4 , C 3 HF 5 or C 3 HF 7 One; the carrier gas may be one of helium, nitrogen, argon, hydrogen or air. The surface of the buffer layer 130 has a preferred roughness of 3.6 nm, which further improves the crystal quality of the epitaxial layer 140. In addition, the surface of the buffer layer 130 is formed by a plurality of ordered dot-like porous surface structures, and the structure can absorb internal stress to prevent the epitaxial layer from being cracked or peeled thereon. Finally, the epitaxial layer 140 of phosphorus gallium arsenide (GaAsP) is deposited by organometallic vapor phase epitaxy (MOCVD) to complete the entire epitaxial semiconductor structure with stress absorption. By comparing the present invention with its previous examples, the present invention does not require an additional complicated structure, and the plasma quality of the epitaxial layer 140 can be further improved by the plasma processing technology to improve the light-emitting characteristics of the overall device. (Note that plasma generation conditions are shown in Table 1)

<實施例2><Example 2>

首先,將矽(Si)基板110經由RCA Standard Clean,除去基板110上之微塵、金屬離子及有機物之雜質。接著,以射頻磁控濺鍍法於矽(Si)基板110表面沉積一層厚為1.5微米之二氧化矽(SiO2 )絕緣層120;然後,以射頻磁控濺鍍法沉積矽鍺(SiGe)之緩衝層130,其該表面緩衝層130粗糙度為7nm。其中,多晶矽之緩衝層130經由電漿處理後,可得緩衝層130表面有較佳之粗糙度為4nm,可使磊晶層140之結晶品質進一步提高。另外,該緩衝層130表面係藉由電漿處理技術形成複數個有序樹枝狀之多孔隙之表面結構而吸收應力,藉由該結構可吸收內應力,以避免磊晶層於其上剝落。其後,以有機金屬氣相磊晶法(MOCVD)沉積砷化鎵(GaAs)之磊晶層140,即完成整個具有應力吸收之磊晶半導體結構。藉由本發明與其先前例比較,本發明不需額外複雜之結構,藉由電漿處理技術可使磊晶層140之結晶品質進一步提高,且錯位密度降低15%以上。(註電漿產生條件為表1)First, the cerium (Si) substrate 110 is subjected to removal of impurities such as fine dust, metal ions, and organic substances on the substrate 110 via RCA Standard Clean. Next, a 1.5 μm thick SiO 2 insulating layer 120 is deposited on the surface of the ytterbium (Si) substrate 110 by RF magnetron sputtering; then, yttrium (SiGe) is deposited by RF magnetron sputtering. The buffer layer 130 has a surface buffer layer 130 having a roughness of 7 nm. Wherein, after the buffer layer 130 of the polysilicon is processed by the plasma, the surface of the buffer layer 130 has a preferred roughness of 4 nm, and the crystal quality of the epitaxial layer 140 can be further improved. In addition, the surface of the buffer layer 130 absorbs stress by forming a plurality of ordered dendritic porous surface structures by a plasma treatment technique, and the internal stress can be absorbed by the structure to prevent the epitaxial layer from peeling off thereon. Thereafter, the epitaxial layer 140 of gallium arsenide (GaAs) is deposited by organometallic vapor phase epitaxy (MOCVD) to complete the entire epitaxial semiconductor structure with stress absorption. By comparing the present invention with its prior examples, the present invention does not require an additional complicated structure, and the plasma quality of the epitaxial layer 140 can be further improved by the plasma treatment technique, and the dislocation density is reduced by more than 15%. (Note that plasma generation conditions are shown in Table 1)

<實施例3><Example 3>

首先,將碳化矽(SiC)基板110經由RCA Standard Clean,除去基板110上之微塵、金屬離子及有機物之雜質。接著,以射頻磁控濺鍍法於碳化矽(SiC)基板110表面形成一層厚為1.5微米之氮化矽(SiNx)之絕緣層120;接著,以射頻磁控濺鍍法沉積矽鍺(SiGe)之緩衝層130,其該表面緩衝層130粗糙度為10nm。其中,矽鍺(SiGe)之緩衝層130經由電漿處理後,可得緩衝層130表面有較佳之粗糙度為3.6nm,可使磊晶層140之結晶品質進一步提高。另外,該緩衝層130表面係藉由電漿處理技術形成複數個有序樹枝狀之多孔隙之表面結構而吸收應力,藉由該結構可吸收內應力,以避免磊晶層於其上剝落。最後,以有機金屬氣相磊晶法(MOCVD)沉積砷化鎵(GaAs)之磊晶層140,即完成整個具有應力吸收之磊晶半導體結構。藉由本發明與其先前例比較,本發明不需額外複雜之結構,藉由電漿處理技術可使磊晶層140之結晶品質進一步提高,且錯位密度降低22%以上。(註電漿產生條件為表1)First, the ruthenium carbide (SiC) substrate 110 is subjected to removal of impurities such as fine dust, metal ions, and organic substances on the substrate 110 via RCA Standard Clean. Next, an insulating layer 120 of 1.5 μm thick tantalum nitride (SiNx) is formed on the surface of the tantalum carbide (SiC) substrate 110 by RF magnetron sputtering; then, germanium (SiGe) is deposited by radio frequency magnetron sputtering. The buffer layer 130 has a surface buffer layer 130 having a roughness of 10 nm. Wherein, the buffer layer 130 of germanium (SiGe) is treated by plasma, and the surface of the buffer layer 130 has a preferred roughness of 3.6 nm, so that the crystal quality of the epitaxial layer 140 can be further improved. In addition, the surface of the buffer layer 130 absorbs stress by forming a plurality of ordered dendritic porous surface structures by a plasma treatment technique, and the internal stress can be absorbed by the structure to prevent the epitaxial layer from peeling off thereon. Finally, the epitaxial layer 140 of gallium arsenide (GaAs) is deposited by organometallic vapor phase epitaxy (MOCVD) to complete the entire epitaxial semiconductor structure with stress absorption. By comparing the present invention with its prior examples, the present invention does not require an additional complicated structure, and the plasma quality of the epitaxial layer 140 can be further improved by the plasma treatment technique, and the dislocation density is reduced by 22% or more. (Note that plasma generation conditions are shown in Table 1)

雖然本發明已以前述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與修改。如上述的解釋,都可以作各型式的修正與變化,而不會破壞此創作的精神。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described in its preferred embodiments, it is not intended to limit the scope of the invention, and various modifications and changes can be made without departing from the spirit and scope of the invention. As explained above, all types of corrections and changes can be made without destroying the spirit of this creation. Therefore, the scope of the invention is defined by the scope of the appended claims.

100...具有應力吸收之磊晶半導體結構100. . . Epitaxial semiconductor structure with stress absorption

110...基板110. . . Substrate

120...絕緣層120. . . Insulation

130...緩衝層130. . . The buffer layer

131...複數個具有多孔隙之結構131. . . Multiple structures with multiple porosity

140...磊晶層140. . . Epitaxial layer

210~250...製備方法之步驟210~250. . . Steps of the preparation method

第1圖,顯示為本發明具有應力吸收緩衝層之半導體結構示意圖。Fig. 1 is a schematic view showing the structure of a semiconductor having a stress absorbing buffer layer of the present invention.

第2圖,顯示為本發明具有應力吸收緩衝層之半導體結構之製造流程示意圖。Fig. 2 is a schematic view showing the manufacturing process of the semiconductor structure having the stress absorbing buffer layer of the present invention.

100...具有應力吸收之磊晶半導體結構100. . . Epitaxial semiconductor structure with stress absorption

110...基板110. . . Substrate

120...絕緣層120. . . Insulation

130...緩衝層130. . . The buffer layer

140...磊晶層140. . . Epitaxial layer

Claims (9)

一種具有應力吸收緩衝層之半導體結構,其包含:一基板;一絕緣層,係形成於該基板之表面;一緩衝層,係形成於該絕緣層之表面,且該緩衝層之表面係藉由一表面處理技術形成複數個具有多孔隙之結構並降低該緩衝層表面之粗糙度;以及一磊晶層,係形成於該緩衝層之表面,可藉由各多孔性之結構消除該緩衝層之應力,進而避免該磊晶層產生龜裂或剝落。 A semiconductor structure having a stress absorbing buffer layer, comprising: a substrate; an insulating layer formed on a surface of the substrate; a buffer layer formed on a surface of the insulating layer, and the surface of the buffer layer is a surface treatment technique forms a plurality of structures having a plurality of pores and reduces the roughness of the surface of the buffer layer; and an epitaxial layer is formed on the surface of the buffer layer, and the buffer layer can be eliminated by the structure of each porous layer Stress, and thus avoid cracking or spalling of the epitaxial layer. 依申請專利範圍第1項所述之具有應力吸收緩衝層之半導體結構,其中,該絕緣層係自氧化矽(SiOx)、氮化矽(SiNx)、氧化鈦(TiOx)或氧化鋁(AlOx)等氧化物所組成之群中的任一種。 A semiconductor structure having a stress absorbing buffer layer according to claim 1, wherein the insulating layer is made of SiOx, SiNx, TiOx or alumina (AlOx). Any of a group of equal oxides. 依申請專利範圍第1項所述之具有應力吸收緩衝層之半導體結構,其中,該緩衝層係選自矽或多孔性矽、多晶矽、碳化矽(SiC)、氮化鎵(GaN)、藍寶石、氮化鋁(AlN)、矽鍺(SiGe)與氮化矽之一。 The semiconductor structure having a stress absorbing buffer layer according to claim 1, wherein the buffer layer is selected from the group consisting of germanium or porous germanium, polycrystalline germanium, tantalum carbide (SiC), gallium nitride (GaN), sapphire, One of aluminum nitride (AlN), germanium (SiGe) and tantalum nitride. 依申請專利範圍第1項所述之具有應力吸收緩衝層之半導體結構,其中,該些複數個多孔隙之結構之表面顯微結構可為有序的點狀、纖維狀、樹枝狀或無序的混合結構之一。 The semiconductor structure having a stress absorbing buffer layer according to claim 1, wherein the surface microstructure of the plurality of porous structures may be ordered, fibrous, dendritic or disordered. One of the hybrid structures. 一種具有應力吸收緩衝層之半導體結構之製造方法,其步驟包含:(a)提供一基板;(b)沈積一絕緣層,形成於該基板之表面; (c)沈積一緩衝層,形成於該絕緣層之表面;(d)提供一表面處理技術於該緩衝層表面,形成複數個具有多孔隙之結構並降低該緩衝層表面之粗糙度,且該些複數個具有多孔性之結構可消除該緩衝層之應力;以及(e)沈積一磊晶層,形成於該緩衝層表面。 A method of fabricating a semiconductor structure having a stress absorbing buffer layer, the method comprising: (a) providing a substrate; (b) depositing an insulating layer formed on a surface of the substrate; (c) depositing a buffer layer formed on the surface of the insulating layer; (d) providing a surface treatment technique on the surface of the buffer layer, forming a plurality of structures having a porosity and reducing the roughness of the surface of the buffer layer, and The plurality of porous structures can eliminate the stress of the buffer layer; and (e) deposit an epitaxial layer formed on the surface of the buffer layer. 依申請專利範圍第5項所述之具有應力吸收緩衝層之半導體結構之製造方法,其中,該絕緣層係自氧化矽(SiOx)、氮化矽(SiNx)、氧化鈦(TiOx)或氧化鋁(AlOx)等氧化物所組成之群中的任一種。 A method of fabricating a semiconductor structure having a stress absorbing buffer layer according to claim 5, wherein the insulating layer is ruthenium oxide (SiOx), tantalum nitride (SiNx), titanium oxide (TiOx) or aluminum oxide. Any of a group consisting of oxides such as (AlOx). 依申請專利範圍第5項所述之具有應力吸收緩衝層之半導體結構之製造方法,其中,該緩衝層係選自矽或多孔性矽、多晶矽、碳化矽(SiC)、氮化鎵(GaN)、藍寶石、氮化鋁(AlN)、矽鍺(SiGe)與氮化矽之一。 A method of fabricating a semiconductor structure having a stress absorbing buffer layer according to claim 5, wherein the buffer layer is selected from the group consisting of germanium or porous germanium, polycrystalline germanium, tantalum carbide (SiC), gallium nitride (GaN). One of sapphire, aluminum nitride (AlN), germanium (SiGe) and tantalum nitride. 依申請專利範圍第5項所述之具有應力吸收緩衝層之半導體結構之製造方法,其中,該些複數個多孔隙之結構之表面顯微結構可為有序的點狀、纖維狀、樹枝狀或無序的混合結構之一。 The method for fabricating a semiconductor structure having a stress absorbing buffer layer according to claim 5, wherein the surface microstructure of the plurality of porous structures may be ordered dot, fiber, or dendritic Or one of the disordered hybrid structures. 依申請專利範圍第5項所述之具有應力吸收緩衝層之半導體結構之製造方法,其中,該步驟(d)之表面處理技術係選自電漿處理技術、乾式蝕刻、濕式蝕刻之一或其組合。 The method for fabricating a semiconductor structure having a stress absorbing buffer layer according to claim 5, wherein the surface treatment technique of the step (d) is selected from the group consisting of plasma processing technology, dry etching, wet etching or Its combination.
TW100148013A 2011-12-22 2011-12-22 Semiconductor structure with stress absorbing buffer layer and manufacturing method thereof TWI457985B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100148013A TWI457985B (en) 2011-12-22 2011-12-22 Semiconductor structure with stress absorbing buffer layer and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100148013A TWI457985B (en) 2011-12-22 2011-12-22 Semiconductor structure with stress absorbing buffer layer and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201327633A TW201327633A (en) 2013-07-01
TWI457985B true TWI457985B (en) 2014-10-21

Family

ID=49225170

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100148013A TWI457985B (en) 2011-12-22 2011-12-22 Semiconductor structure with stress absorbing buffer layer and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI457985B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050199883A1 (en) * 2003-12-22 2005-09-15 Gustaaf Borghs Method for depositing a group III-nitride material on a silicon substrate and device therefor
TWI348200B (en) * 2004-06-29 2011-09-01 Ibm Method of forming strained si/sige on insulator with silicon germanium buffer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050199883A1 (en) * 2003-12-22 2005-09-15 Gustaaf Borghs Method for depositing a group III-nitride material on a silicon substrate and device therefor
TWI348200B (en) * 2004-06-29 2011-09-01 Ibm Method of forming strained si/sige on insulator with silicon germanium buffer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吳坤憲,"應用於光伏元件之奈米多孔矽的製備與研究",南台科技大學學報第34卷第1期,2009年7月,第89-102頁 *

Also Published As

Publication number Publication date
TW201327633A (en) 2013-07-01

Similar Documents

Publication Publication Date Title
US7811902B2 (en) Method for manufacturing nitride based single crystal substrate and method for manufacturing nitride based light emitting diode using the same
US9209023B2 (en) Growing III-V compound semiconductors from trenches filled with intermediate layers
KR100677683B1 (en) Semiconductor base and its manufacturing method, and semiconductor crystal manufacturing method
TWI447959B (en) Method for manufacturing nitride semiconductor crystal layer
JP4741572B2 (en) Nitride semiconductor substrate and manufacturing method thereof
JP5117596B2 (en) Semiconductor light emitting device, wafer, and method of manufacturing nitride semiconductor crystal layer
JP3589200B2 (en) Nitride semiconductor substrate, method of manufacturing the same, and nitride semiconductor device using the nitride semiconductor substrate
US20100044719A1 (en) III-V Compound Semiconductor Epitaxy Using Lateral Overgrowth
TWI407491B (en) Method for separating semiconductor and substrate
KR102071034B1 (en) Method of fabricating nitride substrate
JP2009099932A (en) Method for forming group-iii nitride semiconductor layer on semiconductor substrate
KR101672213B1 (en) Method for manufacturing semiconductor device
US10727054B2 (en) Nitride-based semiconductor device and method for preparing the same
JP3441415B2 (en) Manufacturing method of semiconductor crystal
CN111681946B (en) Preparation method of gallium nitride single crystal substrate
JPH11233391A (en) Crystalline substrate, semiconductor device using the same and manufacture of the semiconductor device
JP2022104771A (en) Semiconductor substrate, semiconductor device and electronic equipment
CN110867483A (en) Epitaxial layer structure of GaN-based power semiconductor device on Si substrate and preparation method thereof
KR20100034332A (en) Method for manufacturing of crystalline substrate, crystalline substrate manufactured thereby, light emitting device including crystalline substrate and manufacturing method thereof
CN113066911B (en) LED epitaxial wafer substrate structure and preparation method thereof, LED chip and preparation method thereof
JP2007246289A (en) Method for manufacturing gallium nitride semiconductor substrate
CN102222738A (en) Method for manufacturing GaN (gallium nitride) substrate material
US20140151714A1 (en) Gallium nitride substrate and method for fabricating the same
US20150079769A1 (en) Semiconductor device and method of manufacturing the same
TWI457985B (en) Semiconductor structure with stress absorbing buffer layer and manufacturing method thereof

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent