TW202024641A - 具可變垂直間距之z軸加速度計 - Google Patents

具可變垂直間距之z軸加速度計 Download PDF

Info

Publication number
TW202024641A
TW202024641A TW108131835A TW108131835A TW202024641A TW 202024641 A TW202024641 A TW 202024641A TW 108131835 A TW108131835 A TW 108131835A TW 108131835 A TW108131835 A TW 108131835A TW 202024641 A TW202024641 A TW 202024641A
Authority
TW
Taiwan
Prior art keywords
pivot
distance
signal electrode
electrode
mems accelerometer
Prior art date
Application number
TW108131835A
Other languages
English (en)
Other versions
TWI716999B (zh
Inventor
張欣
高拉夫 維拉
Original Assignee
美商美國亞德諾半導體公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商美國亞德諾半導體公司 filed Critical 美商美國亞德諾半導體公司
Publication of TW202024641A publication Critical patent/TW202024641A/zh
Application granted granted Critical
Publication of TWI716999B publication Critical patent/TWI716999B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0831Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type having the pivot axis between the longitudinal ends of the mass, e.g. see-saw configuration

Abstract

本發明之Z軸微機電系統(MEMS)加速度計為蹺蹺板形式,具有懸置於基板上之樞杆。所述樞杆與基板間以非均等間距距離相隔,藉此提升加速度計對 Z軸加速之靈敏度。在某些實施例中,所述非均等間距距離是由一或多個基板層所構成,例如懸置樞杆下方基板上所形成之一或多層多晶矽。在某些實施例中,所述非均等間距距離係利用一或多個設於該樞杆上之凸塊而構成。在某些實施例中,係以基板層及凸塊兩者為加速度計之不同電極提供非均等之間距距離。所述非均等間距距離可包括一具有縮減高度之間距,以提升加速度計對於Z軸加速之靈敏度。

Description

具可變垂直間距之Z軸加速度計
本發明係關於Z軸微機電系統(MEMS)加速度計。
Z軸MEMS加速度計為感應Z軸加速之線性加速度計。部分此類加速度計採用蹺蹺板,具有當裝置發生沿z方向之加速時可以中錨為支點而樞轉之板體或杆體。
本發明提供之Z軸微機電系統(MEMS)加速度計為蹺蹺板類型,其具有一懸置於基板上之樞杆。所述樞杆與基板之間存在有非均等間距距離,用以提升加速度計對於Z軸加速之靈敏度。在某些實施例中,所述非均等間距距離是以一或多個基板層所形成,例如在懸置有樞杆之基本上形成一或多層多晶矽。在某些實施例中,所述非均等間距距離是利用樞杆上之一或多個凸塊形成。在某些實施例中,係同時使用基板層及凸塊為加速度計之不同電極提供非均等間距距離。非均等間距距離可包括一縮減高度之間距,有助於提升加速度計對於Z軸加速之靈敏度。
本發明之一種態樣提供一種具有非均等電極距離之Z軸微機電系統(MEMS)加速度計。此Z軸MEMS加速度計包含一基板、一經由錨柱耦接於該基板且可以錨柱為支點而樞轉之樞杆、一設於該基板上之傳導層以及一設於基板之傳導層上方且與該樞杆相隔第一間距之實質連續訊號電極,其中該第一間距具有一第一距離。一參考電極可設於基板上,且與該樞杆相隔一第二間距,該第二間距所具有之第二距離大於該第一距離。
本發明之一種態樣提供一種具有多重電極距離之Z軸微機電系統(MEMS)加速度計,其係包含一矽基板、一樞杆、一參考電極以及一實質連續之訊號電極,該矽基板具有一上表面,該樞杆係懸置於該矽基板之上表面上方,該參考電極位於距該矽基板之該上表面一第一距離之處且與該樞杆相距一第一間距,該第一間距具有一第一間距距離,該實質連續之訊號電極與該矽基板之上表面相距一第二距離,該第二距離大於該第一距離,且及該訊號電極與該樞杆相距一第二間距,該第二間距具有一第二間距距離,該第二間距距離小於該第一間距距離。
本發明之一種態樣提供一種具有多重電極距離之Z軸微機電系統(MEMS)加速度計,其包含一具有上表面之矽基板、一懸置於該矽基板上表面上方之樞杆以及用以偵測該樞杆動作之手段。
本發明之微機電系統(MEMS)蹺蹺板Z軸加速度計於其可動樞杆(或樞板)與下方基板間存在有窄小及/或非均等(或可變)間距距離。此MEMS蹺蹺板Z軸加速度計之靈敏度可取決於其基板上表面與基板上方所懸置樞杆間之距離。距離越大,靈敏度越低。反之,較小間距距離可產生較高靈敏度。再者,就MEMS 蹺蹺板 Z軸加速度計而言,由於靈敏度與頻率成反比,因此操作頻率高通常表示裝置靈敏度較低。是以,縮小樞杆與基板上表面間(以及基板上表面上之驅動及/或感應電極,在此又稱為「訊號電極」)之間距距離應可提升MEMS蹺蹺板Z軸加速度計之靈敏度,有利於高頻操作。再者,於樞杆與基板間形成不同(或非均等)間距距離可促進高靈敏度操作,因此特別適合用於高操作頻率。不同間距距離可利用基板上具有不同高度(或凸升幅度)之不同結構構成。依據某些技術態樣,利用本發明之技巧可於較高頻操作中達成較高靈敏度。
根據本發明之一種態樣,Z軸MEMS加速度計之電極與其蹺蹺板式樞杆之間相隔非均等(或可變)之距離。Z軸MEMS加速度計在某些實施例中包括設於基板上樞杆下方之訊號電極及參考電極,其中訊號電極為實質連續型態。訊號電極可用於驅動及/或感應樞杆之移動,例如樞杆圍繞支點樞轉。參考電極可用於限制樞杆上對應一特定訊號電極之電荷面積。樞杆於其旋轉軸兩側之質量可為非平衡狀態,例如樞杆於旋轉軸一側之長度大於另一側之長度。參考電極有助於維持樞杆在旋轉軸兩側之電荷累積面積相對均等。樞杆可覆蓋訊號電極及參考電極,而樞杆與訊號電極間之距離不同於樞杆與參考電極間之距離,且至少於某些案例中小於樞杆與參考電極間之距離。使用變化之間距距離有利於高頻操作,同時避免裝置發生例如樞杆碰撞及/或卡抵於底部基板等非欲意行為。
上述態樣及實施例連同其他態樣及實施例將於下文詳述。此等態樣及/或實施例可個別或合併使用,或以兩者以上之任何組合方式使用,本發明於此方面並不設限。
根據本發明之一種態樣,Z軸MEMS加速度計包含與加速度計樞杆相隔不同距離之參考電極及實質連續訊號電極。圖1A及1B之剖面示意圖描繪本案Z軸MEMS加速度計之非限制性範例。此Z軸MEMS加速度計100包含一可圍繞支點 104樞轉之樞杆(或樞板)102、正訊號電極Dp、負訊號電極Dn以及參考電極Vcm。訊號電極與參考電極Vcm可設於樞杆102下方之基板,如後續圖面所示。做為隨選方案,一錨柱可於支點104處耦接於樞杆102,如後續圖面所示,然亦可利用替代方式將樞杆102連接至支架或基板。
樞杆102亦可稱為樞板、檢測質量塊、蹺蹺板或其他類似術語,可為任何適當樞杆,本發明在此方面並無限制。樞杆102可由任何適合之材料製成,例如半導體。在某些實施例中,樞杆102之材質為摻雜矽,其摻雜程度足以使樞杆具備傳導性。如此一來,樞杆可與電極Dp、Dn以及Vcm形成電容。替代構造可包括在樞杆102上形成區別電極而非摻雜樞杆。所述樞杆於至少若干實施例中係採用支點 104兩端非對稱結構,藉此促進因應z方向加速而為之旋轉。例如,樞杆102於支點104左側之部分103a質量小於支點104右側之部分103b。在某些實施例中,部分103a在x方向上係短於部分103b。
正訊號電極Dp及負訊號電極Dn可形成於樞杆102下方之基板上,且可泛稱為第一電極及第二電極。採用圖示之兩處訊號電極可使Z軸MEMS加速度計100實現差動操作。正及負訊號電極Dp及Dn可為圖中所示之實質連續形式,亦即電極之外周內部並無任何斷口、開口、孔洞或其他缺口。正及負訊號電極Dp及Dn可由各種材質形成。在某些實施例中,其係以多晶矽形成。
參考電極Vcm亦可稱為共用電極或其他類似術語,其作用為將樞杆中之電荷限制於覆蓋訊號電極Dp及Dn之區域。參考電極Vcm之電位與樞杆102相同,因此得以限制來自正訊號電極Dp及負訊號電極Dn之邊際電場。如此一來,即便部分103a及103b於某些實施例中大小不同,樞杆102在負訊號電極Dn上方之電荷面積亦可與正訊號電極Dp上方之電荷面積相同。參考電極Vcm可透過任何適合之方式電性連接至樞杆102,例如在參考電極Vcm與支撐樞杆之錨柱間形成傳導線跡。亦可使用其他連接方式。
如圖1A所示,樞杆102與正訊號電極Dp及負訊號電極Dn及參考電極Vcm之間距可不相同,亦即非均等。具體而言,於圖1A中,Dp及Dn與樞杆102相隔之間距距離d1小於與參考電極Vcm相隔之距離d2。上述不同間距距離可經由不同方式達成,如下文參照圖2A及3A所詳述者。於一種實施中,正訊號電極Dp及負訊號電極Dn可設於一或多個不位於參考電極Vcm下方之額外基板層,因而較參考電極Vcm凸升。於另一實施中,樞杆102可具有非平面表面輪廓,例如覆蓋且面向訊號電極但不覆蓋參考電極之表面凸塊。於另一實施中,結合使用凸升訊號電極及非平面樞杆表面輪廓,使樞杆102至正訊號電極Dp及負訊號電極Dn之間距距離小於樞杆102與參考電極Vcm間之距離。
圖1A 描繪Z軸MEMS加速度計100於z方向並無加速時之操作狀態。此狀態亦可稱為零g狀態或平衡狀態。如圖所示,於此狀態下,參考電極Vcm可彼此與樞杆102相隔同等距離,即圖中之d2,且正訊號電極Dp及負訊號電極Dn可彼此與樞杆102相隔同等距離,即圖中之d1。
圖1B描繪Z軸MEMS加速度計100於z方向具有加速時之操作狀態,此時樞杆102之部分103a遠離正訊號電極Dp且樞杆102之部分103b趨近負訊號電極Dn。樞杆102相對於其平衡位置傾斜一角度ϴ。由於正訊號電極Dp及負訊號電極Dn與樞杆之距離d1小於距離d2,加速度計之靈敏度高於正訊號電極Dp及負訊號電極Dn與樞杆102相隔較大距離d2之情況。如此提升之靈敏度有益於各種應用,例如高頻應用。在例如大於10kHz(例如10kHz與60kHz之間、15kHz與40kHz之間或於此等範圍內之任何數值)之高頻時,樞杆102之動作相對較小,例如數奈米之譜(例如小於10奈米、小於5奈米或小於1奈米),因此縮小間距距離 d1可具體改善靈敏度。反之,縮小間距距離 d1可能增加靜摩擦傾向,因此不利於低頻應用。依據一種非限制性範例,d1可為1微米與1.5微米之間,以及d2可為1.7微米與2.5微米之間。亦可採用其他尺寸。
利用圖1所示之可變間距距離可有利於高靈敏度操作,同時降低靜摩擦或過載問題風險。如上所述,縮小正訊號電極Dp及負訊號電極Dn之間距距離d1有利於靈敏度操作。但使參考電極Vcm與樞杆102相隔同樣之縮減距離d1可能使得樞杆102兩端容易接觸到參考電極Vcm,增加靜摩擦及/或過載損害之機會。因此,使參考電極Vcm遠離樞杆102可避免樞杆觸及參考電極Vcm並從而降低靜摩擦及樞杆102造成損害之風險。據此,採用圖1A所示方案,為訊號電極及參考電極設置之可變間距距離當可提供有益操作。
於圖1A及1B所示之非限制性實施例中,正訊號電極Dp及負訊號電極Dn於平衡狀態下與樞杆102之距離實質上相等,如圖1A所示,但亦可能為其他替代安排。在某些實施例中,正訊號電極Dp及負訊號電極Dn即使在平衡狀態下,與樞杆102相隔之距離亦不相同。例如,正訊號電極 Dp與樞杆102相隔之平衡距離可大於負訊號電極 Dn,反之亦然。
如上所述,在訊號電極與參考電極間具有非均等間距距離之Z軸MEMS加速度計可以多種方式實施。依據某些實施例,Z軸MEMS加速度計具有凸升之訊號電極。圖2A為一範例之剖視圖。此Z軸MEMS加速度計200包含樞杆202、基板203、錨柱204、參考電極206、第一訊號電極208a及第二訊號電極208b。第一訊號電極208a及第二訊號電極208b係位於層體210及212。
樞杆202可為任何適合之樞杆。例如,樞杆202可為如樞杆102說明中所述之任何類型,或任何其他適合之樞杆。
錨柱204可設於基板203之上表面205,其可為任何適合之基板,例如半導體基板。在某些實施例中,基板203係為矽基板。錨柱204可耦接於樞杆202,使樞杆202懸置於基板203上方且可以錨柱204為支點樞轉。圖2B為圖2A中Z軸MEMS加速度計部分組件之上視平面圖。如圖所示,錨柱204可經由繫鏈或扭力彈簧214a及214b與樞杆202耦接。繫鏈214a及214b可為任何適合之耦接件,使樞杆202得以因應z方向加速而旋轉。
復參照圖2A,參考電極206係位於基板203之上表面205。參考電極206可由任何適合之傳導性材料形成。在某些實施例中,參考電極206之材質係為摻雜多晶矽,其可為Z軸MEMS加速度計200之第一多晶矽層。
如圖所示,第一及第二訊號電極208a及208b係自基板 203之上表面205浮凸出層體210及212。第一及第二訊號電極208a及208b可為以差動方式連接之訊號電極,如上文就圖1A中正、負訊號電極Dp及Dn所述者。層體210及212可為任何適合形成浮凸第一及第二訊號電極208a及208b之層體。在某些實施例中,層體210為絕緣層(例如電介質),例如矽氧化物或氮化物,且層體 212為傳導層。在某些實施例中,層體212之材質與參考電極206相同。例如,參考電極206及層體212可為同一多晶矽層之不同部分。但亦可採用其他替代配置。層體210及212雖可能具有儲存電荷並導致寄生電容產生之缺點,但可用於架第一及第二高訊號電極208a及208b。
由於第一及第二訊號電極208a及208b高於參考電極206,其與樞杆202相隔之間距g1及g2小於參考電極與樞杆202相隔之間距g3及g4,如圖所示。如上文關於圖1A及1B之敘述所言,縮小訊號電極與樞杆間之間距距離有助於提升加速靈敏度,尤其是對於高頻操作而言。並且,第一及第二訊號電極208a及208b較參考電極206更接近錨柱204。
圖2A所示之第一及第二訊號電極208a、208b及參考電極206配置並非限制性,亦可以多種替代方式實施。在某些實施例中,參考電極206可能不直接接觸基板203之上表面205。例如,參考電極206本身可與上表面205相隔一或多個層體,但第一及第二訊號電極208a及208b可與上表面205相隔較大距離,例如以在z方向上之更多層及/或更厚層體相隔。於一種非限制性範例中,層體212為多晶矽層,層體210為絕緣體,且第一及第二訊號電極208a及208b係屬於第二多晶矽層中之結構。但亦可採用其他替代方案。
於至少某些實施例中,第一及第二訊號電極208a及208b可為實質連續(其中「實質連續」包括整體連接不斷)。參照圖2B之上視平面圖,第一及第二訊號電極208a及208b並無任何斷口、孔洞或缺口,而係為一傳導層之實質連續部分。於至少某些實施例中,訊號電極具有連續且無斷口之外周。在某些實施例中,一或多個訊號電極不含任何佔訊號電極面積10%以上之完整斷口或孔洞。再者,於至少某些實施例中,例如圖2A所示者,第一及第二訊號電極208a及/或208b與基板203係以實心層210及212相隔,亦即第一及第二訊號電極208a、208b與基板203之間在z方向上並無任何缺口、空腔或開口。在某些實施例中,第一及第二訊號電極208a及208b為實質連續且與基板 203以不含空隙、孔洞或其他缺口之實心層相隔。
在圖2B中,參考電極206及第一及第二訊號電極208a、208b應位於樞杆202之下,因此以虛線描繪。參考電極206位於樞杆202外側區域或外周之下方,且實質連續第一及第二訊號電極208a及208b位於樞杆202內部區域或中央區域之下方。在某些實施例中,於如圖2B之上視圖中,參考電極206可包圍第一及第二訊號電極208a及208b。在一替代實施例中,係使用單一參考電極,而由上視圖觀之,第一及第二訊號電極208a及208b則是位於參考電極之中央開口內。例如,參照圖2B,圖中之兩枚參考電極206可改為由上視圖觀之具有封閉輪廓而將第一及第二訊號電極208a及208b包圍於其中之單一參考電極。於圖2C之非限制性範例中,係以單一參考電極207取代參考電極206,此參考電極207由上視圖觀之係形成環狀封閉輪廓,其中設有第一及第二訊號電極208a及208b。
由圖2A可見,依據本發明之一種態樣,蹺蹺板式MEMS加速度計包括覆蓋訊號電極及共用電極(亦稱為參考電極)之樞板,且訊號電極係設置於基板上之架高結構上方。此架高結構可為單一層體或為多層結構,例如層體210與212之結合。架高結構可包括傳導層、絕緣層或其組合,且具有任何適合之厚度(沿z方向),以將樞板與訊號電極之間距縮短至所需距離。
圖2A構造可加以變化。依據一種替代實施例,第一及第二訊號電極208a及208b可不 凸升於基板203之上表面205,而是使參考電極206凹入基板203。例如,可於基板203上蝕刻凹槽,而後將參考電極形成於凹槽內。訊號電極可形成於上表面205或形成於上表面205上所設之一或多個層體。將參考電極206設於基板203凹槽中,即可在樞杆202與參考電極及訊號電極間形成非均等間距距離。
根據本發明之一種態樣,Z軸MEMS加速度計之樞杆具有特殊之下側輪廓設計,可縮短樞杆與底部基板上所設訊號電極之間距。圖3A顯示一非限制性範例。此Z軸MEMS加速度計300包含之樞杆302可圍繞支點304樞轉。在圖3A所示之平衡狀態下,上文所述之參考電極Vcm及正、負訊號電極Dp及Dn與樞杆302分別相隔指定距離d1及d2。
樞杆302可包括非平面表面輪廓,使其與訊號電極之間距小於與參考電極之間距。於圖示範例中,樞杆302具有下側凸塊306。下側凸塊係設於樞杆302面向訊號電極之表面。在圖示之範例中,凸塊306並非位於樞杆302之上表面308,因為設置於此處無益於縮短樞杆302與訊號電極之間距距離。是以,如圖所示,在某些實施例中樞杆302之上表面308可實質上為平面,且僅樞杆302之下側具有可縮短與訊號電極間距之輪廓。
所述表面凸塊306可為任何適合之形狀。在某些實施例中,其可為半球形。在某些實施例中,其可為凸柱。在某些實施例中,其可實質上為矩形。具體形狀並無限制。
下側凸塊306可自樞杆302延伸而出。或者,下側凸塊306係以其他材料另行製成後再結合於(例如黏結至)樞杆302之下側。亦可採用其他變化。
下側凸塊306可為任何適合之數量、大小及密度。在某些實施例中,該等下側凸塊可佔樞杆覆蓋訊號電極Dp及Dn面積之30%以上。在某些實施例中,下側凸塊可涵蓋樞杆覆蓋訊號電極面積之30%至70%。某些Z軸MEMS加速度計包括抗靜摩擦凸塊,可預防樞杆對基板造成靜摩擦。抗靜摩擦凸塊之設置密度通常較低,且尺寸較小,因此往往難以確實縮短樞杆與訊號電極間之間距大小。反之,下側凸塊306可具備足以縮短樞杆與訊號電極間距距離之尺寸及密度。例如,在某些非限制性實施例中,下側凸塊306之高度(沿z方向)可界於0.10與0.25微米之間,直徑(於樞杆302下側平面)界於20與40微米之間。在某些實施例中,樞杆可同時具有抗靜摩擦凸塊及下側凸塊,且使其具備能夠縮減樞杆與底部基板間距之尺寸及位置,如所述者。用以縮減間距之抗靜摩擦凸塊及下側凸塊係可具有不同之大小、位置及/或密度。
圖3B為樞杆302之下視圖。如圖所示,下側凸塊306可形成於樞杆之一部分,而非遍及樞杆之整體下側。圖示之下側凸塊306排列並非限制性,實可將所述凸塊以任何方式放置,以達縮減樞杆與訊號電極Dp、Dn間距距離之效果。
根據本發明之一種態樣,Z軸MEMS加速度計係利用樞杆之表面輪廓及凸升之訊號電極而縮減樞杆與底部訊號電極之間距距離。圖4描繪一非限制性範例。此Z軸MEMS加速度計400包含前述各種組件,且兼具凸升訊號電極208a、208b及下側凸塊306。如此一來,間距g1及g2之縮減幅度可大於僅使用下側凸塊306及凸升訊號電極兩者中之一時。
根據本發明之一種態樣,在此所述類型之Z軸MEMS蹺蹺板式加速度計具有自我測試模式,可由訊號電極驅使樞杆移動而後測量因此產生之動作。在此所述之加速度計非均等間距距離有助於在自我測試模式時就固定之驅動訊號產生更大之輸出。因此,本發明之加速度計可提供有益之自我測試操作。
圖5所示為依據本發明之非限制性實施例而描繪之系統,其係使用在此所述類型之Z軸加速度計。此系統500包含加速度計502、讀出電路系統504、輸入輸出(I/O)介面506及供電單元550。加速度計502可為在此所述之任一類型。
讀出電路系統504可提供與加速度計502所感知z方向線性加速成比例之訊號。例如,讀出電路系統504可連接至Z軸MEMS加速度計基板(例如基板203)上之金屬墊片,以產生與感應所得電容成比例之訊號。在某些實施例中,產生之訊號可為單端訊號,但在其他實施例中可為差動訊號。讀出電路系統可包括任何適合執行此等讀出功能之組件,且可包含用以執行例如濾波、放大及解調等訊號處理功能之電路系統。在某些實施例中,所述讀出電路系統可包含轉阻放大器。在某些實施例中,讀出電路系統可為特殊應用積體電路(ASIC),且係與角加速度計設置於不同基板,或者,在另外某些實施例中,兩者可形成於同一基板上。
於圖5之系統中,讀出電路系統504係連接至做為通訊介面之I/O介面506,系統500可透過此介面與例如遠端電腦或伺服器等外部裝置進行通訊。因此,所述I/O介面506可將加速度計502所感應到之加速傳輸至系統500外部,以供後續處理及/或顯示之用。外加於此或以為替代,所述I/O介面506可接收來自外部裝置之通訊,例如控制訊號、無線充電訊號或軟體更新。
I/O介面506可為有線或無線介面。適合之有線連接包括通用序列匯流排(USB)及火線連接等等。於採用有線連接之實施例中,連接可為插接式。有線連接可用於相對不具移動性之系統500設定,例如固定於實質不動物體之情形,或系統500與其所通訊之外部裝置間距離維持固定之情形。然於某些實施例中,所述I/O介面可為無線介面,例如經由撓性射頻(RF)天線通訊。
供電單元550可為系統500之部分或全部組件供應電力,且可為各種形式。在某些實施例中,供電單元550可包含一或多個電池。至少於某些實施例中,在此所述類型之加速度計耗電極低,單純仰賴電池電力即可長時間操作。在某些實施例中,所述電池可再充電。供電單元550可包含一或多個鋰離子電池、鋰聚合物(LiPo)電池、超級電容器電池、鹼性電池、水銀電池、乾性電池、碳鋅電池、鎳鎘電池、石墨烯 電池或任何其他適合類型之電池。
在某些實施例中,供電單元550可包含AC轉DC電路系統。例如,供電單元550可經由例如I/O介面506自系統500外部之電源接收AC功率,並將DC功率提供至系統500之部分或所有組件。在此等情況下,供電單元550可包含整流器、電壓調節器、DC-DC轉換器或任何其他適合用於功率轉換之裝置。
在某些實施例中,供電單元550可包括能源收穫組件及/或能源儲存組件。能源可取自周圍環境並於需要時對系統500供電,包括週期、隨機或連續供電。可依據系統500預期環境選擇適當之能源收穫組件類型,例如依據系統500可能經歷之動作幅度及頻率、系統可能經歷之應力大小、系統可能經歷之光接觸量及/或系統可能接觸之溫度等等考量因素。
本發明之Z軸加速度計類型適合各種應用。根據一種非限制性範例,本發明之Z軸MEMS加速度計可用於機器健康狀態監控應用。如上所述,Z軸MEMS加速度計具有較高之靈敏度,因此特別有益於高操作頻率場景。許多工業機械均可能需要以高頻操作,例如經歷高頻震動。於本發明之一種實施例中,係將具有非均等電極間距距離之Z軸MEMS加速度計耦接於工業設備,以監控該設備之震動。圖6描繪一非限制性範例。
圖6所示之系統600包括三部屬於本發明所述一或多種類型之Z軸MEMS加速度計602a、602b及602c,所述加速度計耦接於一工業設備604。此設備604可為馬達,但不以此為限。加速度計602a-602c可耦接於設備,用以監控設備於各軸方向上之震動。例如,加速度計602a可裝設為偵測Z軸加速,加速度計602b偵測Y軸加速,加速度計602c偵測X軸加速。於一替代實施例中,係將二或多部加速度計602a-602c結合為單一套組或裝入同一外殼中,而非如圖中所示以三個獨立機殼分別設置。在一實施例中,屬於圖5類型之系統可耦接於設備604,而加速度計602a-602c則包含於所述系統中,或包含於圖5所示類型之個別系統中。所述系統可對個別加速度計產生之加速資料進行無線通訊。可自設備604震動收穫能源,用以為加速度計電路系統(例如讀出電路系統504)供電。亦可採用其他替代配置。
本發明之各種態樣提供多樣優點。部分優點已於上文說明,部分則羅列於下。應知並非所有實施例皆應具備所有列出之優點,並且本發明可藉由一或多個實施例實踐於此未能盡述之優點。
本發明之態樣提供能夠以高頻操作之高靈敏度Z軸MEMS加速度計。所述Z軸MEMS加速度計具有高於其他Z軸加速度計之靈敏度,同時亦能降低靜摩擦發生機率。Z軸加速度計並可提供適用於嚴苛條件之穩健操作,例如機器健康狀態監控之用。本發明亦可具有其他優點。
「約略」及「大約」等語在某些實施例中意指與目標值相差±20%以內,在某些實施例中意指與目標值相差 ±10%以內,在某些實施例中意指與目標值相差±5%以內,而在某些實施例中意指與目標值相差±2%以內。「約略」及「大約」等語可將目標值包含在內。
100:Z軸MEMS加速度計 308:上表面 102:樞杆 400:Z軸MEMS加速度計 103a:部分 500:系統 103b:部分 502:加速度計 104:支點 504:讀出電路系統 200:Z軸MEMS加速度計 506:輸入輸出(I/O)介面 202:樞杆 550:供電單元 203:基板 600:系統 204:錨柱 602a:Z軸MEMS加速度計 205:上表面 602b:Z軸MEMS加速度計 206:參考電極 602c:Z軸MEMS加速度計 207:參考電極 604:工業設備 208a:訊號電極 d1:距離 208b:訊號電極 d2:距離 210:層體 Dn:訊號電極 212:層體 Dp:訊號電極 214a:繫鏈或扭力彈簧 Vcm:參考電極 214b:繫鏈或扭力彈簧 g1:間距 300:Z軸MEMS加速度計 g2:間距 302:樞杆 g3:間距 304:支點 g4:間距 306:凸塊
本發明之各種態樣及實施例將配合以下附圖加以說明。應知附圖未必依照比例繪製。各圖中所示之相同元件係以相同參考編號標示。 圖1A為依據本發明之非限制性實施例所繪,一Z軸加速度計之剖面示意圖,其處於零加速狀態,且訊號電極及參考電極與加速度計樞杆相隔不同距離。 圖1B為依據本發明之非限制性實施例所繪,圖1A中Z軸加速度計之剖面示意圖,顯示其處於非零加速狀態。 圖2A為依據本發明之非限制性實施例所繪,一Z軸MEMS加速度計之剖視圖,其訊號電極及參考電極與加速度計樞杆相隔不同距離。 圖2B為圖2A所示Z軸MEMS加速度計中特定組件之上視圖。 圖2C為圖2B之替代實施方式,其中之參考電極形成封閉輪廓。 圖3A為依據本發明之非限制性實施例所繪,一Z軸MEMS加速度計之剖視圖,其具有非均等電極距離,且在加速度計樞杆下側設有凸塊。 圖3B為圖3A中Z軸MEMS加速度計之部分下視圖。 圖4為依據本發明之非限制性實施例所繪,一Z軸MEMS加速度計之剖視圖,其訊號電極及參考電極與加速度計樞杆相隔不同距離,且同時具有凸升訊號電極及 非平面之樞杆下側輪廓。 圖5依據本發明之非限制性實施例描繪一種使用本發明Z軸加速度計之系統。 圖6依據本發明之非限制性實施例描繪一設有三部本發明Z軸加速度計之工業設備。
100:Z軸MEMS加速度計
102:樞杆
103a:部分
103b:部分
104:支點
d1:距離
d2:距離
Dn:訊號電極
Dp:訊號電極

Claims (20)

  1. 一種具有非均等電極距離之Z軸微機電系統(MEMS)加速度計,其係包含: 一基板; 一樞杆,藉由一錨柱耦接於該基板,且配置該錨柱為支點樞轉; 一傳導層,位於該基板上; 一實質連續之訊號電極,位於該基板上之該傳導層上方且與該樞杆間隔一具有一第一距離之第一間距;以及 一參考電極,位於該基板上,與該樞杆間隔一具有一第二距離之第二間距,其中該第二距離大於該第一距離。
  2. 如申請專利範圍第1項所述之Z軸MEMS加速度計,其中該實質連續之訊號電極係較該參考電極更靠近該錨柱。
  3. 如申請專利範圍第1項所述之Z軸MEMS加速度計,其中該傳導層及該實質連續之訊號電極包含多晶矽。
  4. 如申請專利範圍第1項所述之Z軸MEMS加速度計,其中該參考電極並不位於該傳導層上方。
  5. 如申請專利範圍第1項所述之Z軸MEMS加速度計,其中該樞杆具有一面向該實質連續之訊號電極之非平面表面。
  6. 如申請專利範圍第5項所述之Z軸MEMS加速度計,其中該非平面表面包含複數凸塊,該等凸塊佔覆蓋該實質連續之訊號電極之該樞杆的面積之30%以上。
  7. 如申請專利範圍第1項所述之Z軸MEMS加速度計,其中該實質連續之訊號電極係 一位於該錨柱的一第一側之第一訊號電極,且其中該Z軸MEMS加速度計更包含一位於該基板上該傳導層上方之實質連續之第二訊號電極,該錨柱位於該第一訊號電極與該第二訊號電極之間。
  8. 如申請專利範圍第1項所述之Z軸MEMS加速度計,其中該參考電極位於該樞杆之外周下方,且該實質連續之訊號電極位於該樞杆之中央區域下方。
  9. 一種具有多重電極距離之Z軸微機電系統(MEMS)加速度計,其係包含: 一矽基板,其具有一上表面; 一樞杆,其係懸置於該矽基板之該上表面之上; 一參考電極,其係位於距該矽基板之該上表面一第一距離之處,且與該樞杆相距一第一間距,該第一間距具有一第一間距距離;以及 一實質連續之訊號電極,與該矽基板之上表面相隔一大於該第一距離之第二距離,且與該樞杆相隔一具有一第二間距距離之第二間距,該第二間距距離小於該第一間距距離。
  10. 如申請專利範圍第9項所述之Z軸MEMS加速度計,其中該實質連續之訊號電極較該參考電極更靠近該樞杆之一支點。
  11. 如申請專利範圍第9項所述之Z軸MEMS加速度計,其中該矽基板之該上表面與該實質連續之訊號電極之間具有一架高層。
  12. 如申請專利範圍第11項所述之Z軸MEMS加速度計,其中該架高層係一傳導層。
  13. 如申請專利範圍第12項所述之Z軸MEMS加速度計,其中該參考電極並不位於該傳導層上方。
  14. 如申請專利範圍第9項所述之Z軸MEMS加速度計,其中該樞杆具有一面向該實質連續之訊號電極之非共平面表面。
  15. 如申請專利範圍第14項所述之Z軸MEMS加速度計,其中該非共平面表面包含複數凸塊,該等凸塊佔該樞杆覆蓋該實質連續之訊號電極之面積之30%以上。
  16. 如申請專利範圍第9項所述之Z軸MEMS加速度計,其中該參考電極位於該樞杆之一外周下方,且該實質連續之訊號電極位於該樞杆之一中央區域下方。
  17. 一種具有多重電極距離之Z軸微機電系統(MEMS)加速度計,包含: 一矽基板,其具有一上表面; 一樞杆,其係懸置於該矽基板之該上表面之上;以及 用以偵測該樞杆的動作之手段。
  18. 如申請專利範圍第17項所述之Z軸MEMS加速度計,其中該用以偵測該樞杆動作之手段包含用以限制該樞杆中電荷之手段。
  19. 如申請專利範圍第17項所述之Z軸MEMS加速度計,其中該用以偵測該樞杆動作之手段包含用以提升該Z軸MEMS加速度計的靈敏度之手段。
  20. 如申請專利範圍第17項所述之Z軸MEMS加速度計,進一步包含設於該樞杆上之手段,用以提升該Z軸MEMS加速度計之靈敏度。
TW108131835A 2018-09-07 2019-09-04 具可變垂直間距之z軸加速度計 TWI716999B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/125,604 US10816569B2 (en) 2018-09-07 2018-09-07 Z axis accelerometer using variable vertical gaps
US16/125,604 2018-09-07

Publications (2)

Publication Number Publication Date
TW202024641A true TW202024641A (zh) 2020-07-01
TWI716999B TWI716999B (zh) 2021-01-21

Family

ID=69718989

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108131835A TWI716999B (zh) 2018-09-07 2019-09-04 具可變垂直間距之z軸加速度計

Country Status (4)

Country Link
US (1) US10816569B2 (zh)
DE (1) DE112019004479T5 (zh)
TW (1) TWI716999B (zh)
WO (1) WO2020051262A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264844A (zh) * 2021-12-21 2022-04-01 苏州感测通信息科技有限公司 一种具有应力补偿功能的mems加速度计

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11255873B2 (en) 2018-09-12 2022-02-22 Analog Devices, Inc. Increased sensitivity z-axis accelerometer
US11528808B2 (en) 2018-12-03 2022-12-13 X Display Company Technology Limited Printing components to substrate posts
US11482979B2 (en) 2018-12-03 2022-10-25 X Display Company Technology Limited Printing components over substrate post edges
JP7331498B2 (ja) 2019-06-27 2023-08-23 セイコーエプソン株式会社 慣性センサー、電子機器および移動体
US11692825B2 (en) 2020-06-08 2023-07-04 Analog Devices, Inc. Drive and sense stress relief apparatus
CN115812153A (zh) 2020-06-08 2023-03-17 美国亚德诺半导体公司 应力释放mems陀螺仪
CN112034205B (zh) * 2020-08-11 2023-03-17 上海矽睿科技股份有限公司 一种微机电系统的三轴加速度计
US11698257B2 (en) 2020-08-24 2023-07-11 Analog Devices, Inc. Isotropic attenuated motion gyroscope
US11892467B2 (en) 2020-12-18 2024-02-06 Analog Devices, Inc. Accelerometer with translational motion of masses
US11714102B2 (en) 2021-06-08 2023-08-01 Analog Devices, Inc. Fully differential accelerometer
EP4141453B1 (en) 2021-08-25 2024-04-03 Murata Manufacturing Co., Ltd. Seesaw accelerometer
CN115420907B (zh) * 2022-11-02 2023-03-21 杭州麦新敏微科技有限责任公司 一种mems加速度计及其形成方法

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4002077A (en) 1975-03-06 1977-01-11 The Bendix Corporation Integrating angular accelerometer
US4454756A (en) 1982-11-18 1984-06-19 Wilson Industries, Inc. Inertial borehole survey system
US5488864A (en) 1994-12-19 1996-02-06 Ford Motor Company Torsion beam accelerometer with slotted tilt plate
US6038924A (en) 1997-12-22 2000-03-21 Research Foundation Of State Of New York Low frequency seismic accelerometer
US6230566B1 (en) 1999-10-01 2001-05-15 The Regents Of The University Of California Micromachined low frequency rocking accelerometer with capacitive pickoff
EP1257783A1 (en) 2000-01-12 2002-11-20 American GNC Corporation Micro inertial measurement unit
WO2002057799A2 (en) 2001-01-17 2002-07-25 Honeywell International Inc. Accelerometer whose seismic mass is shaped as whiffletree
DE60232250D1 (de) 2001-08-20 2009-06-18 Honeywell Int Inc Bogenförmige federelemente für mikro-elektromechanischen beschleunigungssensor
US6845670B1 (en) 2003-07-08 2005-01-25 Freescale Semiconductor, Inc. Single proof mass, 3 axis MEMS transducer
US7121141B2 (en) 2005-01-28 2006-10-17 Freescale Semiconductor, Inc. Z-axis accelerometer with at least two gap sizes and travel stops disposed outside an active capacitor area
US7140250B2 (en) 2005-02-18 2006-11-28 Honeywell International Inc. MEMS teeter-totter accelerometer having reduced non-linearty
EP1717669A1 (en) 2005-04-26 2006-11-02 Chic Technology Corp. Highly sensitive inertial mouse
US7210352B2 (en) 2005-06-14 2007-05-01 Innovative Micro Technology MEMS teeter-totter apparatus with curved beam and method of manufacture
US20070034007A1 (en) 2005-08-12 2007-02-15 Cenk Acar Multi-axis micromachined accelerometer
US20070090475A1 (en) 2005-10-05 2007-04-26 Honeywell International Inc. Mems performance improvement using high gravity force conditioning
US7777596B2 (en) 2007-12-18 2010-08-17 Robert Bosch Gmbh MEMS resonator structure and method
US8082790B2 (en) 2008-08-15 2011-12-27 Sural C.A. Solid-state inertial sensor on chip
US8304274B2 (en) 2009-02-13 2012-11-06 Texas Instruments Incorporated Micro-electro-mechanical system having movable element integrated into substrate-based package
GB201005875D0 (en) 2010-04-08 2010-05-26 Silicon Sensing Systems Ltd Sensors
GB201009062D0 (en) 2010-05-28 2010-07-14 Cambridge Entpr Ltd MEMS inertial sensor and method of inertial sensing
FR2961305B1 (fr) 2010-06-14 2012-06-22 Eurocopter France Dispositif de mesure inertielle ameliore et aeronef comportant un tel dispositif
US8839670B2 (en) 2010-11-24 2014-09-23 Invensense, Inc. Anchor-tilt cancelling accelerometer
IT1405796B1 (it) 2010-11-26 2014-01-24 St Microelectronics Srl Struttura di accelerometro biassiale risonante di tipo microelettromeccanico
US8539836B2 (en) 2011-01-24 2013-09-24 Freescale Semiconductor, Inc. MEMS sensor with dual proof masses
US8555719B2 (en) 2011-01-24 2013-10-15 Freescale Semiconductor, Inc. MEMS sensor with folded torsion springs
US8927311B2 (en) 2011-02-16 2015-01-06 Freescale Semiconductor, Inc. MEMS device having variable gap width and method of manufacture
ITTO20110782A1 (it) 2011-08-31 2013-03-01 Milano Politecnico Struttura di rilevamento perfezionata per un accelerometro risonante ad asse z
US8689632B2 (en) 2012-01-17 2014-04-08 Freescale Semiconductor, Inc. Fully decoupled lateral axis gyroscope with thickness-insensitive Z-axis spring and symmetric teeter totter sensing element
US8978475B2 (en) 2012-02-01 2015-03-17 Fairchild Semiconductor Corporation MEMS proof mass with split z-axis portions
US9246017B2 (en) 2012-02-07 2016-01-26 Mcube, Inc. MEMS-based dual and single proof-mass accelerometer methods and apparatus
CN104684841A (zh) 2012-06-13 2015-06-03 普渡研究基金会 微电子机械系统和使用方法
US10371714B2 (en) 2012-06-14 2019-08-06 Analog Devices, Inc. Teeter-totter type MEMS accelerometer with electrodes on circuit wafer
US9030655B2 (en) 2012-06-27 2015-05-12 Honeywell International Inc. Closed loop atomic inertial sensor
ITTO20120855A1 (it) 2012-09-28 2014-03-29 Milano Politecnico Struttura integrata di rilevamento risonante di accelerazione e velocita' angolare e relativo dispositivo sensore mems
FR3000484B1 (fr) 2012-12-27 2017-11-10 Tronic's Microsystems Dispositif micro-electromecanique comprenant une masse mobile apte a se deplacer hors du plan
US9470709B2 (en) 2013-01-28 2016-10-18 Analog Devices, Inc. Teeter totter accelerometer with unbalanced mass
US9190937B2 (en) 2013-02-06 2015-11-17 Freescale Semiconductor, Inc. Stiction resistant mems device and method of operation
US9297825B2 (en) 2013-03-05 2016-03-29 Analog Devices, Inc. Tilt mode accelerometer with improved offset and noise performance
US9218065B2 (en) 2013-03-11 2015-12-22 Intel Corporation Stress tolerant MEMS accelerometer
EP2808295B1 (en) 2013-05-31 2015-12-30 Tronics Microsystems S.A. MEMS-Sensor
US20150268268A1 (en) 2013-06-17 2015-09-24 Freescale Semiconductor, Inc. Inertial sensor with trim capacitance and method of trimming offset
US9360496B2 (en) 2014-10-03 2016-06-07 Freescale Semiconductor, Inc. Three-axis microelectromechanical systems device with single proof mass
US10203351B2 (en) 2014-10-03 2019-02-12 Analog Devices, Inc. MEMS accelerometer with Z axis anchor tracking
WO2016108770A1 (en) 2014-12-31 2016-07-07 Aydemir Akin A three axis capacitive mems accelerometer on a single substrate
US10078098B2 (en) 2015-06-23 2018-09-18 Analog Devices, Inc. Z axis accelerometer design with offset compensation
US20170023606A1 (en) 2015-07-23 2017-01-26 Freescale Semiconductor, Inc. Mems device with flexible travel stops and method of fabrication
US10545167B2 (en) 2015-10-20 2020-01-28 Analog Devices, Inc. Multiple-axis resonant accelerometers
TWI570054B (zh) 2015-12-28 2017-02-11 財團法人工業技術研究院 具中央固定座的微機電裝置
EP3546954B1 (en) 2016-01-07 2022-12-14 Analog Devices, Inc. 3-axis angular accelerometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264844A (zh) * 2021-12-21 2022-04-01 苏州感测通信息科技有限公司 一种具有应力补偿功能的mems加速度计

Also Published As

Publication number Publication date
TWI716999B (zh) 2021-01-21
DE112019004479T5 (de) 2021-07-15
WO2020051262A1 (en) 2020-03-12
US20200081028A1 (en) 2020-03-12
US10816569B2 (en) 2020-10-27

Similar Documents

Publication Publication Date Title
TWI716999B (zh) 具可變垂直間距之z軸加速度計
JP5331678B2 (ja) 単結晶シリコン電極を備えた容量性微小電気機械式センサー
JP5432440B2 (ja) 揺動体装置
US10732198B2 (en) Integrated linear and angular MEMS accelerometers
CN101738496B (zh) 多轴电容式加速度计
US8962368B2 (en) CMOS compatible MEMS microphone and method for manufacturing the same
US7252002B2 (en) Planar inertial sensor, in particular for portable devices having a stand-by function
KR20080009735A (ko) 캐패시터 마이크로폰
US20120319174A1 (en) Cmos compatible mems microphone and method for manufacturing the same
US20070201710A1 (en) Condenser microphone
CN1602428A (zh) 加速器
US8338896B2 (en) MEMS sensor, MEMS sensor manufacturing method, and electronic device
US8031890B2 (en) Electroacoustic transducer
US20120027235A1 (en) Mems capacitive microphone
TW202016548A (zh) 經提升靈敏度之z軸加速度計
KR20200110627A (ko) Mems 디바이스 및 그 제조 방법
JP5226907B1 (ja) 振動発電器、振動発電装置、及び振動発電装置を搭載した電気機器と通信装置
US11746004B2 (en) Low-parasitic capacitance MEMS inertial sensors and related methods
CN109813932A (zh) 具有能量采集器的微机电系统mems惯性传感器和相关方法
JP5215871B2 (ja) コンデンサマイクロホン振動板の支持装置
JP2008072703A (ja) 音響トランスデューサ
TWI834968B (zh) 微機電系統聲學感測器、微機電系統封裝結構及其製造方法
JP5899555B2 (ja) 加速度スイッチおよび電子デバイス
KR101118254B1 (ko) 멤스 마이크로 폰
JP5418246B2 (ja) 振動発電装置