TW202021911A - Processing system and processing method for liquid containing tetraalkylammonium hydroxide - Google Patents
Processing system and processing method for liquid containing tetraalkylammonium hydroxide Download PDFInfo
- Publication number
- TW202021911A TW202021911A TW108135954A TW108135954A TW202021911A TW 202021911 A TW202021911 A TW 202021911A TW 108135954 A TW108135954 A TW 108135954A TW 108135954 A TW108135954 A TW 108135954A TW 202021911 A TW202021911 A TW 202021911A
- Authority
- TW
- Taiwan
- Prior art keywords
- liquid
- reverse osmosis
- osmosis membrane
- membrane device
- concentrated water
- Prior art date
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 622
- 150000005622 tetraalkylammonium hydroxides Chemical class 0.000 title claims abstract description 147
- 238000003672 processing method Methods 0.000 title claims description 6
- 238000012545 processing Methods 0.000 title abstract description 113
- 239000012528 membrane Substances 0.000 claims abstract description 399
- 238000001223 reverse osmosis Methods 0.000 claims abstract description 396
- 239000012141 concentrate Substances 0.000 claims abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 788
- 238000004140 cleaning Methods 0.000 claims description 313
- 238000011282 treatment Methods 0.000 claims description 106
- 239000012466 permeate Substances 0.000 claims description 78
- 238000001728 nano-filtration Methods 0.000 claims description 59
- 238000005406 washing Methods 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 16
- 238000001514 detection method Methods 0.000 claims description 5
- 230000004044 response Effects 0.000 claims description 2
- 125000005207 tetraalkylammonium group Chemical group 0.000 claims description 2
- 238000004065 wastewater treatment Methods 0.000 claims description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 238
- 239000002699 waste material Substances 0.000 description 169
- 239000000243 solution Substances 0.000 description 81
- 238000011161 development Methods 0.000 description 64
- 230000004907 flux Effects 0.000 description 19
- 229920002120 photoresistant polymer Polymers 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 239000003513 alkali Substances 0.000 description 10
- 238000000206 photolithography Methods 0.000 description 9
- 238000002835 absorbance Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 239000008400 supply water Substances 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 229910001415 sodium ion Inorganic materials 0.000 description 3
- 239000012670 alkaline solution Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000004094 preconcentration Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010129 solution processing Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/025—Reverse osmosis; Hyperfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/029—Multistep processes comprising different kinds of membrane processes selected from reverse osmosis, hyperfiltration or nanofiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/08—Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/10—Accessories; Auxiliary operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/58—Multistep processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/02—Specific process operations before starting the membrane separation process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/06—Specific process operations in the permeate stream
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/08—Specific process operations in the concentrate stream
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/25—Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
- B01D2311/251—Recirculation of permeate
- B01D2311/2512—Recirculation of permeate to feed side
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/25—Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
- B01D2311/252—Recirculation of concentrate
- B01D2311/2523—Recirculation of concentrate to feed side
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/26—Further operations combined with membrane separation processes
- B01D2311/2673—Evaporation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/10—Specific supply elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/12—Specific discharge elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2317/00—Membrane module arrangements within a plant or an apparatus
- B01D2317/02—Elements in series
- B01D2317/022—Reject series
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/12—Use of permeate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/16—Use of chemical agents
- B01D2321/164—Use of bases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/027—Nanofiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
- C02F1/048—Purification of waste water by evaporation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/442—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/34—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
- C02F2103/346—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2301/00—General aspects of water treatment
- C02F2301/04—Flow arrangements
- C02F2301/046—Recirculation with an external loop
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/16—Regeneration of sorbents, filters
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
Abstract
Description
本發明係關於氫氧化四烷基銨含有液之處理系統及處理方法。The present invention relates to a treatment system and a treatment method for tetraalkylammonium hydroxide containing liquid.
半導體元件、液晶顯示器等之半導體裝置的製造領域的光刻步驟中主要使用正型之光阻劑(以下,亦簡稱為抗蝕劑)。其顯影液大多使用含有氫氧化四烷基銨(TAAH)之溶液(TAAH顯影液)。通常使用四甲基銨(TMAH)作為TAAH。 TMAH顯影液之使用方法係在基板上塗布抗蝕劑以形成抗蝕膜,接著藉由透過光罩使抗蝕膜曝光製作鹼溶液可溶之抗蝕部分。藉由用高鹼性之TMAH顯影液溶解去除該抗蝕部分(顯影步驟)作成抗蝕圖案。TMAH顯影液一般使用TMAH濃度為2.38質量%之TMAH水溶液。 在正型抗蝕劑之情形中,藉由顯影步驟,曝光部分對TMAH顯影液之溶解性增大而可溶解去除,未曝光部分之抗蝕劑則殘留形成抗蝕圖案。然後,用純水等清洗與基板上之抗蝕劑反應的TMAH顯影液。結果,顯影廢液成為顯影液之TMAH、溶解之抗蝕劑及水的混合液。In the photolithography process in the manufacturing field of semiconductor devices such as semiconductor elements and liquid crystal displays, positive photoresists (hereinafter, also referred to as resists) are mainly used. The developer mostly uses a solution containing tetraalkylammonium hydroxide (TAAH) (TAAH developer). Tetramethylammonium (TMAH) is generally used as TAAH. The method of using the TMAH developer is to coat a resist on the substrate to form a resist film, and then expose the resist film through a photomask to make an alkali solution-soluble resist part. A resist pattern is formed by dissolving and removing the resist part (development step) with a highly alkaline TMAH developer. TMAH developer generally uses a TMAH aqueous solution with a TMAH concentration of 2.38% by mass. In the case of a positive resist, through the development step, the solubility of the exposed part to the TMAH developer increases and can be dissolved and removed, and the resist in the unexposed part remains to form a resist pattern. Then, the TMAH developer that reacts with the resist on the substrate is cleaned with pure water or the like. As a result, the development waste liquid becomes a mixed liquid of the TMAH of the developer, the dissolved resist, and water.
因為TMAH被指定為毒物,所以需要排水處理,且在工廠中進行其因應處理。因此,含有TMAH之光阻含有顯影廢液(以下,亦稱為顯影廢液)之處理需求及處理重要性增加。在一部分工廠中使用蒸發器濃縮上述顯影廢液而減容化,並處理產業廢棄物或回收有價物來進行公司外交易。此外,藉由生物處理及使用電透析(ED)與樹脂(例如,離子交換樹脂)之處理等,亦可回收、再利用TMAH。 此外,藉由將TMAH含有排水加壓供給至逆滲透(RO)膜來濃縮之技術(請參照專利文獻1)及使用奈米過濾(NF)膜處理含有光阻及TMAH之光阻顯影廢液,在濃縮側分離光阻且在透過側分離TMAH之技術(請參照專利文獻2)等是習知的。 [先前技術文獻] [專利文獻]Because TMAH is designated as a poison, drainage treatment is required, and the corresponding treatment is carried out in the factory. Therefore, the processing demand and importance of the photoresist containing TMAH containing waste developing solution (hereinafter also referred to as waste developing solution) have increased. In some factories, evaporators are used to concentrate the above-mentioned developing waste liquid to reduce the volume, and deal with industrial waste or collect valuables for off-company transactions. In addition, TMAH can also be recovered and reused through biological treatment and treatment using electrodialysis (ED) and resin (for example, ion exchange resin). In addition, the technology of concentration by supplying TMAH-containing drain water to a reverse osmosis (RO) membrane under pressure (please refer to Patent Document 1) and the use of a nanofiltration (NF) membrane to treat the photoresist developing waste liquid containing photoresist and TMAH The technology of separating the photoresist on the concentration side and separating the TMAH on the transmission side (please refer to Patent Document 2) and the like are well-known. [Prior Technical Literature] [Patent Literature]
專利文獻1:日本特開昭60-118282號公報 專利文獻2:日本特開平11-192481號公報Patent Document 1: Japanese Patent Laid-Open No. 60-118282 Patent Document 2: Japanese Patent Laid-Open No. 11-192481
近年來,TAAH廢液之處理量因顯影步驟數增加及即使只含有微量TAAH亦需要TAAH排水等而增加,且使用蒸發器之濃縮處理量增加。因此,既有蒸發器之濃縮能力不足,需要其對策。 使用分離膜進行如TAAH含有液等顯影廢液之濃縮時,有因抗蝕劑堵塞(閉塞)膜之問題。若產生膜堵塞,則必須更換成新膜。 此外,近年來,高阻止率之RO膜(高壓RO膜等)已上市,使用該RO膜時,可用高阻止率處理TAAH及抗蝕劑。但是,高壓RO膜在習知RO(中壓至超低壓RO)膜以上中有因抗蝕劑閉塞膜之問題。In recent years, the processing volume of TAAH waste liquid has increased due to the increase in the number of development steps and the need for TAAH drainage even if it contains only a small amount of TAAH, and the concentration processing volume using an evaporator has increased. Therefore, the concentration capacity of the existing evaporator is insufficient, and countermeasures are needed. When a separation membrane is used to concentrate the development waste liquid such as TAAH-containing liquid, there is a problem that the membrane is blocked (occluded) by the resist. If the membrane is clogged, it must be replaced with a new membrane. In addition, in recent years, RO membranes with high rejection rates (high-pressure RO membranes, etc.) have been on the market. When this RO membrane is used, TAAH and resist can be treated with high rejection rates. However, the high-pressure RO membrane has a problem of blocking the membrane due to the resist in the conventional RO (medium to ultra-low pressure RO) membrane.
本發明之課題係提供一種TAAH含有液之處理系統及TAAH含有液之處理方法,其減輕蒸發器之濃縮負荷,因此即使TAAH含有液增加,亦可不增設蒸發器來進行TAAH含有液之處理。同時本發明之課題係提供一種TAAH含有液之處理系統及TAAH含有液之處理方法,其可使與蒸發器有關之作為濃縮負荷減輕裝置使用的RO膜由因溶解於顯影液之抗蝕劑產生之孔堵塞造成的處理能力降低狀態或不能處理狀態回復。The subject of the present invention is to provide a TAAH-containing liquid processing system and TAAH-containing liquid processing method, which reduce the concentration load of the evaporator, so even if the TAAH-containing liquid increases, it is possible to process the TAAH-containing liquid without adding an evaporator. At the same time, the subject of the present invention is to provide a TAAH-containing liquid processing system and a TAAH-containing liquid processing method, which enables the RO film used as a concentration load reduction device related to the evaporator to be produced by the resist dissolved in the developer The processing capacity is reduced due to the clogging of the hole or the state cannot be processed.
藉由以下之手段解決了本發明之上述課題。 [1] 一種氫氧化四烷基銨含有液之處理系統,其具有:高壓型之逆滲透膜裝置,其在濃縮側濃縮含有氫氧化四烷基銨之被處理液;及管線,其供給至進一步濃縮藉由該逆滲透膜裝置濃縮之被處理液的蒸發器。 [2] 如[1]記載之氫氧化四烷基銨含有液之處理系統,其具有清洗系統,該清洗系統藉由含有氫氧化四烷基銨之清洗液清洗前述逆滲透膜裝置。 [3] 如[1]或[2]記載之氫氧化四烷基銨含有液之處理系統,其中前述氫氧化四烷基銨含有液之處理系統可使該處理系統之一部份形成包含前述逆滲透膜裝置而構成之循環系統,且藉由使含有氫氧化四烷基銨之清洗液在該循環系統中循環,可利用該循環系統作為清洗前述逆滲透膜裝置之逆滲透膜的清洗系統。 [4] 如[3]記載之氫氧化四烷基銨含有液之處理系統,其中前述氫氧化四烷基銨含有液之處理系統具有: (a-1)液槽,用來貯存氫氧化四烷基銨含有液; (b-1)液體供給配管,其一端連接於該液槽之液體排出側; (c-1)逆滲透膜裝置,其連接該液體供給配管之另一端; (d-1)濃縮水配管,其一端連接於該逆滲透膜裝置之濃縮側且將該逆滲透膜裝置之濃縮水供給至蒸發器; (e-1)濃縮水回流配管,連接於該濃縮水配管且供給前述逆滲透膜裝置之濃縮水至前述液槽; (f-1)透過水配管,其一端連接於前述逆滲透膜裝置之透過側; (g-1)稀薄氫氧化四烷基銨排水處理設備,連接於該透過水配管之另一端;及 (h-1)透過水回流配管,連接於該透過水配管且供給前述逆滲透膜裝置之透過水至前述液槽, 前述清洗系統係供給氫氧化四烷基銨新液至前述液槽,且使該氫氧化四烷基銨新液在由前述(a-1)至(d-1)與(e-1)形成之循環系統及由前述(a-1)至(c-1)、(f-1)與(h-1)形成之循環系統的兩循環系統中循環,藉此清洗前述逆滲透膜裝置具有之逆滲透膜的系統。 [5] 如[3]記載之氫氧化四烷基銨含有液之處理系統,其中前述氫氧化四烷基銨含有液之處理系統具有: (a-2)液槽,用來貯存氫氧化四烷基銨含有液; (b-2)液體供給配管,其一端連接於該液槽之液體排出側; (c-2)逆滲透膜裝置,連接於該液體供給配管之另一端; (d-2)濃縮水配管,其一端連接於該逆滲透膜裝置之濃縮側且將該逆滲透膜裝置之濃縮水供給至蒸發器; (e-2)濃縮水回流配管,連接於該濃縮水配管且供給前述逆滲透膜裝置之濃縮水至前述液槽; (f-2)透過水配管,其一端連接於前述逆滲透膜裝置之透過側; (g-2)透過水槽,配置在該透過水配管之中途; (h-2)稀薄氫氧化四烷基銨排水處理設備,連接於該透過水配管之另一端;及 (i-2)透過水回流配管,連接於位在前述透過水槽與前述稀薄氫氧化四烷基銨排水處理設備之間的前述透過水配管且供給前述逆滲透膜裝置之透過水至前述液槽, 前述清洗系統係供給氫氧化四烷基銨新液至前述液槽,且使該氫氧化四烷基銨新液在由前述(a-2)至(d-2)與(e-2)形成之循環系統及由前述(a-2)至(c-2)、(f-2)、(g-2)與(i-2)形成之循環系統的兩循環系統中循環,藉此清洗前述逆滲透膜裝置具有之逆滲透膜的系統。 [6] 如[3]記載之氫氧化四烷基銨含有液之處理系統,其中前述氫氧化四烷基銨含有液之處理系統具有: (a-3)液槽,用來貯存氫氧化四烷基銨含有液; (b-3)液體供給配管,其一端連接於該液槽之液體排出側; (c-3)逆滲透膜裝置(Y),連接於該液體供給配管之另一端; (d-3)濃縮水配管,其一端連接於該逆滲透膜裝置之濃縮側且將該逆滲透膜裝置之濃縮水供給至蒸發器; (e-3)濃縮水回流配管,連接於該濃縮水配管且供給前述逆滲透膜裝置(Y)之濃縮水至前述液槽; (f-3)透過水配管(P),其一端連接於前述逆滲透膜裝置(Y)之透過側; (g-3)透過水槽,配置在該透過水配管(P)之中途; (h-3)稀薄氫氧化四烷基銨排水處理設備,連接於該透過水配管(P)之另一端; (i-3)透過水回流配管(I),連接於位在前述逆滲透膜裝置(Y)與前述透過水槽之間的前述透過水配管(P)且供給前述逆滲透膜裝置(Y)之透過水至前述液槽; (j-3)透過水濃縮水槽,配置在該透過水回流配管(I)之中途; (k-3)另一透過水回流配管(II),其由位在前述透過水槽與前述稀薄氫氧化四烷基銨排水處理設備之間的前述透過水配管(P)分歧,且連接於位在前述逆滲透膜裝置(Y)與前述透過水濃縮水槽之間的前述透過水回流配管(I); (l-3)另一逆滲透膜裝置(Z),配置在該另一透過水回流配管(II)之中途;及 (m-3)另一透過水配管(Q),其連接該另一逆滲透膜裝置(Z)之透過側及前述稀薄氫氧化四烷基銨排水處理設備, 前述清洗系統係供給藉由前述另一逆滲透膜裝置(Z)濃縮前述逆滲透膜裝置(Y)之透過水的濃縮水(X)至前述液槽,且使前述濃縮水(X)在由前述(a-3)至(d-3)與(e-3)形成之循環系統及由前述(a-3)至(c-3)、(f-3)、(i-3)與(j-3)形成之循環系統的兩循環系統中循環,藉此清洗前述逆滲透膜裝置具有之逆滲透膜的系統。 [7] 如[3]記載之氫氧化四烷基銨含有液之處理系統,其中前述氫氧化四烷基銨含有液之處理系統具有: (a-4)液槽,用來貯存氫氧化四烷基銨含有液; (b-4)液體供給配管,其一端連接於該液槽之液體排出側; (c-4)逆滲透膜裝置,連接於該液體供給配管之另一端; (d-4)濃縮水配管,其一端連接於該逆滲透膜裝置之濃縮側且將該逆滲透膜裝置之濃縮水供給至蒸發器; (e-4)濃縮水槽,配置在該濃縮水配管之中途; (f-4)濃縮水回流配管,連接於位在前述逆滲透膜裝置與前述濃縮水槽之間的前述濃縮水配管且供給前述逆滲透膜裝置之濃縮水至前述液槽; (g-4)濃縮水透過配管,其由位於前述濃縮水槽下游側之前述濃縮水配管分歧且連接於前述濃縮水回流配管; (h-4)奈米過濾裝置,配置在該濃縮水透過配管之中途; (i-4)奈米過濾透過水槽,配置在該濃縮水透過配管之中途且貯存前述奈米過濾裝置之透過水; (j-4)奈米過濾濃縮水配管,其一端連接於前述奈米過濾裝置之濃縮側且供給該奈米過濾裝置之濃縮水至前述蒸發器; (k-4)透過水配管,其一端連接於前述逆滲透膜裝置之透過側; (l-4)稀薄氫氧化四烷基銨排水處理設備,連接於該透過水配管之另一端;及 (m-4)透過水回流配管,連接於該透過水配管且供給透過水至前述液槽, 前述清洗系統係供給氫氧化四烷基銨新液至前述液槽,且使該氫氧化四烷基銨新液在由前述(a-4)至(e-4)與(f-4)至(i-4)形成之循環系統及由前述(a-4)至(c-4)、(k-4)與(m-4)形成之循環系統的兩循環系統中循環,藉此清洗前述逆滲透膜裝置具有之逆滲透膜的系統。 [8] 如[3]記載之氫氧化四烷基銨含有液之處理系統,其中前述氫氧化四烷基銨含有液之處理系統具有: (a-5)液槽,用來貯存氫氧化四烷基銨含有液; (b-5)液體供給配管,其一端連接於該液槽之液體排出側; (c-5)逆滲透膜裝置(Y),連接於該液體供給配管之另一端; (d-5)濃縮水配管,其一端連接於該逆滲透膜裝置之濃縮側且將該逆滲透膜裝置之濃縮水供給至蒸發器; (e-5)濃縮水回流配管,連接於該濃縮水配管且供給前述逆滲透膜裝置(Y)之濃縮水至前述液槽; (f-5)透過水配管(P),其一端連接於前述逆滲透膜裝置(Y)之透過側; (g-5)透過水槽,配置在該透過水配管(P)之中途; (h-5)稀薄氫氧化四烷基銨排水處理設備,配置於該透過水配管(P)之另一端; (i-5)透過水回流配管(I),連接於位在前述逆滲透膜裝置(Y)與前述透過水槽之間的前述透過水配管(P)且供給前述逆滲透膜裝置(Y)之透過水至前述液槽; (j-5)透過水濃縮水槽,配置在該透過水回流配管(I)之中途; (k-5)另一透過水回流配管(II),其由位在前述透過水槽與前述稀薄氫氧化四烷基銨排水處理設備之間的前述透過水配管(P)分歧,且連接於位在前述逆滲透膜裝置(Y)與前述透過水濃縮水槽之間的前述透過水回流配管(I); (l-5)另一逆滲透膜裝置(Z),配置在該另一透過水回流配管(II)之中途; (m-5)奈米過濾裝置,配置在該另一透過水回流配管(II)之中途且處理該另一逆滲透膜裝置(Z)之濃縮水; (n-5)另一透過水配管(Q),其連接該另一逆滲透膜裝置(Z)之透過側及前述稀薄氫氧化四烷基銨排水處理設備;及 (o-5)奈米過濾濃縮水配管,其連接該奈米過濾裝置之濃縮側及該另一透過水配管(Q), 前述清洗系統係供給使前述逆滲透膜裝置(Y)之透過水藉由前述另一逆滲透膜裝置(Z)濃縮並進一步透過前述奈米過濾裝置的透過水處理水至前述液槽,且使前述透過水處理水在由前述(a-5)至(d-5)與(e-5)形成之循環系統及由前述(a-5)至(c-5)、(f-5)與(i-5)形成之循環系統的兩循環系統中循環,藉此清洗前述逆滲透膜裝置具有之逆滲透膜的系統。 [9] 如[4]至[8]中任一項記載之氫氧化四烷基銨含有液之處理系統,其具有: 測定裝置,其測定藉由前述清洗系統由前述液槽供給之清洗液的抗蝕劑濃度;及 清洗狀態檢測裝置,其由前述測定之抗蝕劑濃度檢測清洗狀態。 [10] 一種氫氧化四烷基銨含有液之處理方法,其具有: 藉由蒸發器濃縮含有氧化四烷基銨之被處理液時,藉由配置在前述蒸發器之前段的逆滲透膜裝置在濃縮側濃縮前述被處理液之前述被處理液的濃縮步驟, 前述氫氧化四烷基銨含有液之處理方法具有:因應於前述逆滲透膜裝置之逆滲透膜的堵塞,利用氫氧化四烷基銨新液及/或由該逆滲透膜裝置產生之透過水清洗該逆滲透膜的清洗步驟。The above-mentioned problems of the present invention are solved by the following means. [1] A tetraalkylammonium hydroxide-containing liquid treatment system, which has: a high-pressure reverse osmosis membrane device that concentrates the treated liquid containing tetraalkylammonium hydroxide on the concentration side; and a pipeline that is supplied to the further concentration The evaporator of the liquid to be treated concentrated by this reverse osmosis membrane device. [2] The tetraalkylammonium hydroxide-containing liquid treatment system described in [1] has a cleaning system that cleans the aforementioned reverse osmosis membrane device with a cleaning liquid containing tetraalkylammonium hydroxide. [3] The tetraalkylammonium hydroxide-containing liquid treatment system as described in [1] or [2], wherein the aforementioned tetraalkylammonium hydroxide-containing liquid treatment system can form part of the treatment system containing the aforementioned reverse osmosis membrane The circulation system constituted by the device, and by circulating the cleaning solution containing tetraalkylammonium hydroxide in the circulation system, the circulation system can be used as a cleaning system for cleaning the reverse osmosis membrane of the aforementioned reverse osmosis membrane device. [4] The treatment system for tetraalkylammonium hydroxide containing liquid as described in [3], wherein the aforementioned treatment system for tetraalkylammonium hydroxide containing liquid has: (a-1) Liquid tank for storing liquid containing tetraalkylammonium hydroxide; (b-1) Liquid supply piping, one end of which is connected to the liquid discharge side of the liquid tank; (c-1) A reverse osmosis membrane device, which is connected to the other end of the liquid supply pipe; (d-1) Concentrated water piping, one end of which is connected to the concentration side of the reverse osmosis membrane device and supplies the concentrated water of the reverse osmosis membrane device to the evaporator; (e-1) Concentrated water return pipe, which is connected to the concentrated water pipe and supplies the concentrated water of the reverse osmosis membrane device to the liquid tank; (f-1) Permeate water pipe, one end of which is connected to the permeation side of the aforementioned reverse osmosis membrane device; (g-1) Thin tetraalkylammonium hydroxide wastewater treatment equipment, connected to the other end of the permeate pipe; and (h-1) The permeated water return pipe is connected to the permeated water pipe and supplies the permeated water of the reverse osmosis membrane device to the liquid tank, The aforementioned cleaning system is to supply fresh tetraalkylammonium hydroxide solution to the aforementioned tank, and make the fresh solution of tetraalkylammonium hydroxide form the aforementioned (a-1) to (d-1) and (e-1) The circulation system and the two circulation systems formed by the aforementioned (a-1) to (c-1), (f-1) and (h-1) are circulated, thereby cleaning the reverse osmosis membrane device with Reverse osmosis membrane system. [5] The treatment system for tetraalkylammonium hydroxide containing liquid as described in [3], wherein the aforementioned treatment system for tetraalkylammonium hydroxide containing liquid has: (a-2) Liquid tank for storing liquid containing tetraalkylammonium hydroxide; (b-2) Liquid supply piping, one end of which is connected to the liquid discharge side of the liquid tank; (c-2) A reverse osmosis membrane device connected to the other end of the liquid supply pipe; (d-2) Concentrated water piping, one end of which is connected to the concentration side of the reverse osmosis membrane device and supplies the concentrated water of the reverse osmosis membrane device to the evaporator; (e-2) Concentrated water return pipe, which is connected to the concentrated water pipe and supplies the concentrated water of the reverse osmosis membrane device to the liquid tank; (f-2) Permeate water piping, one end of which is connected to the permeation side of the aforementioned reverse osmosis membrane device; (g-2) The permeated water tank is arranged in the middle of the permeated water pipe; (h-2) Thin tetraalkylammonium hydroxide drainage treatment equipment, connected to the other end of the permeate pipe; and (i-2) The permeated water return pipe is connected to the permeated water pipe between the permeated water tank and the thin tetraalkylammonium hydroxide drainage treatment equipment and supplies the permeated water of the reverse osmosis membrane device to the liquid tank , The aforementioned cleaning system supplies fresh tetraalkylammonium hydroxide liquid to the aforementioned liquid tank, and makes the fresh tetraalkylammonium hydroxide liquid form the aforementioned (a-2) to (d-2) and (e-2) Circulation system and the two-circulation system formed by the aforementioned (a-2) to (c-2), (f-2), (g-2) and (i-2), thereby cleaning the aforementioned The reverse osmosis membrane device has a reverse osmosis membrane system. [6] The treatment system for tetraalkylammonium hydroxide containing liquid as described in [3], wherein the aforementioned treatment system for tetraalkylammonium hydroxide containing liquid has: (a-3) Liquid tank for storing liquid containing tetraalkylammonium hydroxide; (b-3) Liquid supply piping, one end of which is connected to the liquid discharge side of the liquid tank; (c-3) Reverse osmosis membrane device (Y), connected to the other end of the liquid supply pipe; (d-3) Concentrated water piping, one end of which is connected to the concentration side of the reverse osmosis membrane device and supplies the concentrated water of the reverse osmosis membrane device to the evaporator; (e-3) Concentrated water return pipe, which is connected to the concentrated water pipe and supplies the concentrated water of the reverse osmosis membrane device (Y) to the liquid tank; (f-3) Permeate water piping (P), one end of which is connected to the permeation side of the aforementioned reverse osmosis membrane device (Y); (g-3) The permeated water tank is arranged in the middle of the permeated water pipe (P); (h-3) Thin tetraalkylammonium hydroxide drainage treatment equipment, connected to the other end of the permeate pipe (P); (i-3) The permeated water return pipe (I) is connected to the permeated water pipe (P) between the reverse osmosis membrane device (Y) and the permeated water tank and supplies the reverse osmosis membrane device (Y) Permeate water to the aforementioned liquid tank; (j-3) The permeated water concentration tank is arranged in the middle of the permeated water return pipe (I); (k-3) Another permeated water return pipe (II), which is branched from the permeated water pipe (P) between the permeated water tank and the thin tetraalkylammonium hydroxide drainage treatment facility, and is connected to The permeated water return pipe (I) between the reverse osmosis membrane device (Y) and the permeated water concentration tank; (l-3) Another reverse osmosis membrane device (Z) is arranged in the middle of the other permeated water return pipe (II); and (m-3) Another permeated water piping (Q), which connects the permeate side of the other reverse osmosis membrane device (Z) and the aforementioned thin tetraalkylammonium hydroxide drainage treatment equipment, The cleaning system supplies concentrated water (X) that concentrates the permeated water of the reverse osmosis membrane device (Y) by the other reverse osmosis membrane device (Z) to the liquid tank, and makes the concentrated water (X) The circulatory system formed by the aforementioned (a-3) to (d-3) and (e-3) and the aforementioned (a-3) to (c-3), (f-3), (i-3) and ( j-3) A system that circulates in the two-circulation system of the formed circulation system, thereby cleaning the reverse osmosis membrane of the aforementioned reverse osmosis membrane device. [7] The treatment system for tetraalkylammonium hydroxide containing liquid as described in [3], wherein the aforementioned treatment system for tetraalkylammonium hydroxide containing liquid has: (a-4) Liquid tank for storing liquid containing tetraalkylammonium hydroxide; (b-4) Liquid supply piping, one end of which is connected to the liquid discharge side of the liquid tank; (c-4) A reverse osmosis membrane device connected to the other end of the liquid supply pipe; (d-4) Concentrated water piping, one end of which is connected to the concentration side of the reverse osmosis membrane device and supplies the concentrated water of the reverse osmosis membrane device to the evaporator; (e-4) The concentrated water tank is arranged in the middle of the concentrated water piping; (f-4) The concentrated water return pipe is connected to the concentrated water pipe located between the reverse osmosis membrane device and the concentrated water tank and supplies the concentrated water of the reverse osmosis membrane device to the liquid tank; (g-4) Concentrated water permeation piping, which is branched from the concentrated water piping located on the downstream side of the concentrated water tank and connected to the concentrated water return piping; (h-4) The nanofiltration device is arranged in the middle of the concentrated water permeation pipe; (i-4) A nanofiltration permeable water tank is arranged in the middle of the concentrated water permeation pipe and stores the permeated water of the aforementioned nanofiltration device; (j-4) A nanofiltration concentrated water pipe, one end of which is connected to the concentration side of the nanofiltration device and supplies the concentrated water of the nanofiltration device to the evaporator; (k-4) Permeate water piping, one end of which is connected to the permeation side of the aforementioned reverse osmosis membrane device; (l-4) Thin tetraalkylammonium hydroxide drainage treatment equipment, connected to the other end of the permeated water pipe; and (m-4) The permeated water return pipe is connected to the permeated water pipe and supplies the permeated water to the aforementioned liquid tank, The aforementioned cleaning system is to supply fresh tetraalkylammonium hydroxide liquid to the aforementioned liquid tank, and make the fresh tetraalkylammonium hydroxide liquid from the aforementioned (a-4) to (e-4) and (f-4) to (i-4) Circulate in the two-circulation system formed by the circulation system and the circulation system formed by the aforementioned (a-4) to (c-4), (k-4) and (m-4), thereby cleaning the aforementioned The reverse osmosis membrane device has a reverse osmosis membrane system. [8] The treatment system for tetraalkylammonium hydroxide containing liquid as described in [3], wherein the aforementioned treatment system for tetraalkylammonium hydroxide containing liquid has: (a-5) Liquid tank for storing liquid containing tetraalkylammonium hydroxide; (b-5) Liquid supply piping, one end of which is connected to the liquid discharge side of the liquid tank; (c-5) Reverse osmosis membrane device (Y), connected to the other end of the liquid supply pipe; (d-5) Concentrated water piping, one end of which is connected to the concentration side of the reverse osmosis membrane device and supplies the concentrated water of the reverse osmosis membrane device to the evaporator; (e-5) Concentrated water return piping, connected to the concentrated water piping and supplying the concentrated water of the reverse osmosis membrane device (Y) to the liquid tank; (f-5) Permeate water pipe (P), one end of which is connected to the permeate side of the aforementioned reverse osmosis membrane device (Y); (g-5) Permeated water tank, arranged in the middle of the permeated water pipe (P); (h-5) Dilute tetraalkylammonium hydroxide drainage treatment equipment, arranged at the other end of the permeated water pipe (P); (i-5) The permeated water return pipe (I) is connected to the permeated water pipe (P) between the reverse osmosis membrane device (Y) and the permeated water tank and supplies the reverse osmosis membrane device (Y) Permeate water to the aforementioned liquid tank; (j-5) The permeated water concentration tank is arranged in the middle of the permeated water return pipe (I); (k-5) Another permeated water return pipe (II), which is branched from the permeated water pipe (P) between the permeated water tank and the thin tetraalkylammonium hydroxide drainage treatment facility, and is connected to The permeated water return pipe (I) between the reverse osmosis membrane device (Y) and the permeated water concentration tank; (l-5) Another reverse osmosis membrane device (Z) is arranged in the middle of the other permeated water return pipe (II); (m-5) The nanofiltration device is arranged in the middle of the other permeated water return pipe (II) and treats the concentrated water of the other reverse osmosis membrane device (Z); (n-5) Another permeate pipe (Q), which connects the permeate side of the other reverse osmosis membrane device (Z) and the aforementioned thin tetraalkylammonium hydroxide drainage treatment equipment; and (o-5) Nanofiltration concentrated water piping, which connects the concentration side of the nanofiltration device and the other permeated water piping (Q), The cleaning system supplies the permeated water of the reverse osmosis membrane device (Y) through the other reverse osmosis membrane device (Z) to concentrate and further permeate the permeated water treatment water of the nanofiltration device to the liquid tank, and The aforementioned permeate treated water is in the circulation system formed by the aforementioned (a-5) to (d-5) and (e-5) and the aforementioned (a-5) to (c-5), (f-5) and (i-5) A system that circulates in the two-circulation system of the formed circulation system, thereby cleaning the reverse osmosis membrane of the aforementioned reverse osmosis membrane device. [9] The tetraalkylammonium hydroxide-containing liquid treatment system as described in any one of [4] to [8] has: A measuring device that measures the resist concentration of the cleaning solution supplied from the liquid tank by the cleaning system; and The cleaning state detection device detects the cleaning state based on the aforementioned measured resist concentration. [10] A treatment method for tetraalkylammonium hydroxide containing liquid, which has: When the liquid to be treated containing tetraalkylammonium oxide is concentrated by an evaporator, a concentration step of concentrating the liquid to be treated from the liquid to be treated on the concentration side by a reverse osmosis membrane device arranged in the front stage of the evaporator, The treatment method of the aforementioned tetraalkylammonium hydroxide containing liquid includes: in response to the clogging of the reverse osmosis membrane of the aforementioned reverse osmosis membrane device, the use of fresh tetraalkylammonium hydroxide liquid and/or permeate water generated by the reverse osmosis membrane device The cleaning step of cleaning the reverse osmosis membrane.
依據本發明之TAAH含有液之處理系統及處理方法,藉由在蒸發器之前段配置RO膜裝置作為前濃縮裝置,可減輕蒸發器之濃縮負荷。因此,可不增設蒸發器而藉由既有蒸發器實現迄今以上量之TAAH含有液的濃縮處理。 此外,藉由TAAH新液及/或至少利用藉該逆滲透膜裝置處理被處理液製得之透過水來清洗作為前濃縮裝置之RO膜給水側產生之抗蝕劑造成的孔堵塞,可低成本且有率效地解除並由因孔堵塞造成的處理能力降低狀態或不能處理狀態回復。According to the TAAH-containing liquid processing system and processing method of the present invention, the concentration load of the evaporator can be reduced by arranging the RO membrane device as the pre-concentration device in the front stage of the evaporator. Therefore, it is not necessary to add an evaporator, but can realize the concentration treatment of the TAAH-containing liquid of the above amount by the existing evaporator. In addition, by using the new TAAH solution and/or at least using the permeated water produced by the reverse osmosis membrane device to process the treated solution to clean the pore clogging caused by the resist produced on the water side of the RO membrane of the former concentration device, it can reduce It is cost-effective and efficient to remove and recover from the reduced processing capacity or unprocessable state caused by hole clogging.
本發明之上述及其他特徵及優點可由下述記載及添附圖式更了解。The above and other features and advantages of the present invention can be better understood from the following description and appended drawings.
以下,參照圖1說明作為發明TAAH含有液之處理系統的顯影廢液之處理系統的一較佳實施形態(實施形態1)。
如圖1所示地,顯影廢液之處理系統1(1A)具有供給至蒸發器11之管線,且該蒸發器11濃縮在光刻步驟中產生之作為顯影廢液的被處理液。被處理液含有TAAH及光阻。在參照以下圖1至圖9之說明中,雖然以被處理液含有作為TAAH之TMAH及光阻者為中心說明來作為一例,但被處理液含有TMAH以外之TAAH時亦可說是與含有TMAH時相同。此外,除了使用光曝光用之抗蝕劑以外,光阻亦包含電子束、X射線等之能量束曝光的抗蝕劑。蒸發器11之前段具有濃縮非處理液之高壓型逆滲透膜(RO膜)裝置21。最好藉由蒸發器11濃縮用該RO膜裝置21產生之濃縮水。Hereinafter, a preferred embodiment (Embodiment 1) of a processing system for a developing waste liquid as a processing system for the TAAH-containing liquid of the invention will be described with reference to FIG. 1.
As shown in FIG. 1, the processing system 1 (1A) of the development waste liquid has a pipeline supplied to the
具體而言,具有貯藏(貯存)在半導體裝置之製造步驟中使用的非處理液的液槽31。RO膜裝置21透過供給被處理液之液體供給配管32連接於液槽31之液體排出側。液體供給配管32之一端側連接於液槽31之排出側,且RO膜裝置21之給水側連接於液體供給配管32之另一端側。將配管內之液輸送至RO膜裝置21側的液傳送裝置33宜配置在液體供給配管32中。液傳送裝置33只要送出液即可,可使用一般之泵,最好使用例如壓送泵。如此,構成被處理液體供給系統30。該被處理液體供給系統30亦成為後述之清洗液體供給系統30A。Specifically, it has a
蒸發器11透過濃縮水配管41連接於RO膜裝置21之濃縮側21C(濃縮水排出側)。具體而言,濃縮水配管41之一端側連接於RO膜裝置21之濃縮側21C,且蒸發器11之供給側連接於濃縮水配管41之另一端側。即,具有濃縮水配管41作為供給藉由RO膜裝置21濃縮之濃縮水至蒸發器11的管線。在濃縮水配管41之中途宜配置暫時貯藏濃縮水之濃縮水槽42。此外,將濃縮水槽42內之濃縮水傳送至蒸發器11之供給側的濃縮水傳送裝置43宜配置在濃縮水槽42與蒸發器11之間的濃縮水配管41中。The
另一方面,供給濃縮水至液槽31之濃縮水回流配管46連接於RO膜裝置21與濃縮水槽42之間的濃縮水配管41。冷卻器91宜配置在濃縮水回流配管46中。藉由該冷卻器91冷卻被液傳送裝置33加溫之被處理液。因此,可抑制貯存於液槽31中之液的溫度過高。冷卻器91可為水冷或使用其他冷媒者。濃縮水之溫度宜可冷卻至常溫(20℃±15℃(JIS Z8703)),更佳是大約15至25℃。濃縮水回流配管46宜在由濃縮水配管41之分歧點附近具有閥47。此外,濃縮水配管41宜在該分歧點與濃縮水槽42之間具有閥48。處理被處理液時,閥47、48可調整開度而開啟。另一方面,清洗時,開啟閥47且關閉閥48。如此,構成由液槽31通過清洗液體供給系統30A、RO膜裝置21之濃縮側21C、濃縮水配管41、濃縮水回流配管46返回液槽31之濃縮水返回系統40(40A)(濃縮側之循環系統)。On the other hand, the concentrated
最好將透過水配管61之一端側連接於RO膜裝置21之透過側21T,且透過水配管61之另一端側連接於稀薄TAAH排水處理設備93。稀薄TAAH排水處理設備93係藉由生物處理、吸附除害等使稀薄TAAH排水無害化之設備。透過水槽62宜配置在透過水配管61之中途,此外,傳送透過水槽62內之透過水的透過水傳送裝置63宜配置在透過水槽62與稀薄TAAH排水處理設備93之間的透過水配管61中。透過水傳送裝置63只要送出液即可,可使用一般之泵,最好使用例如壓送泵。
此外,透過水配管61亦可未連接於稀薄TAAH排水處理設備93,將流過透過水配管61之液再利用於半導體製造步驟中。另外,亦可將藉由稀薄TAAH排水處理設備93無害化之液再利用於半導體製造步驟中。Preferably, one end of the
另一方面,供給透過水至液槽31之透過水回流配管66連接於RO膜裝置21與透過水槽62之間的透過水配管61。透過水回流配管66宜在由透過水配管61之分歧點附近具有閥67。此外,透過水配管61宜在該分歧點與透過水槽62之間具有閥68。處理被處理液時,閥68開啟且閥67關閉。另一方面,清洗時,閥67相反地開啟且閥68關閉。如此,構成由液槽31通過清洗液體供給系統30A、RO膜裝置21之透過側21T、透過水配管61、透過水回流配管66返回液槽31之透過水返回系統60(60A)(透過側之循環系統)。這可作為後述之清洗系統使用。On the other hand, the permeated
上述RO膜裝置21之RO膜21F宜TMAH之去除率為99.5質量%以上且抗蝕劑之去除率為99.5質量%以上。TMAH去除率係由[1-(透過水TMAH濃度/供給水TMAH濃度)]×100%來定義,且抗蝕劑去除率係由[1-(透過水抗蝕劑濃度/供給水抗蝕劑濃度)]×100%來定義。各濃度係在RO膜裝置21之給水側21S及透過側21T由採取配管34、64採取樣本,接著使用滴定裝置或電泳裝置測定TMAH濃度及使用吸光光度計之吸光度指示值測定抗蝕劑濃度。
此外,上述RO膜裝置21具有排出濃縮鹽類及不純物等之水(濃縮水)的機構,且可藉由排出濃縮水抑制加壓側鹽濃度過度上升及在膜表面產生難溶解性物質(水垢)等並且連續地製得透過水。In the
此外最好RO膜21F對被處理液為如顯影廢液(例如,pH12以上)等之強鹼性溶液具有耐受性。如此之高壓型RO膜可舉聚醯胺之RO膜為例。具體而言,可舉日東電工公司製SWC 5(商品名)為例。該RO膜之製造商推薦常用pH範圍為pH2至11且清洗時為pH1至13,但確認即使進行供給大約pH12之水被處理液的連續試驗(3620小時(大約150天)之連續操作)材質亦無變化,因此作為膜使用沒有問題。In addition, it is preferable that the
因為上述顯影廢液之處理系統1在蒸發器11之前段具有RO膜裝置21,所以可藉由RO膜裝置21濃縮被處理液。例如,處理被處理液時,被處理液之TMAH濃度為1質量%時,藉由RO膜裝置21濃縮3倍而成為3質量%,並進一步藉由蒸發器11濃縮成25質量%。即,蒸發器之濃縮水量最後是習知的1/3。
如此,藉由蒸發器11濃縮之水量減少,因此可增加可藉由1台蒸發器濃縮之被處理液的處理量。結果,可在不增設有關裝置成本之蒸發器11的情形下使被處理液之處理量增加,因此可低成本且有效率地進行被處理液之濃縮處理。Since the
上述RO膜裝置21之RO膜21F長時間濃縮處理含有光阻之被處理液時,光阻附著在RO膜21F之給水側21S且透過水量減少。此時,至少利用TMAH新液(含有TMAH之未使用液)及/或藉由該RO膜裝置21處理被處理液而製得之透過水清洗RO膜裝置21之RO膜21F的給水側21S的清洗系統100(100A)是有效的。即,藉由清洗系統100可去除附著在RO膜21F之濃縮側21C的抗蝕劑。結果,可使被處理液之處理時降低之透過通量回復,因此可使透過水量之降低回復。
上述清洗液宜可包含TMAH來使用。通常,因為附著於RO膜21F之給水側者主要是因顯影而溶解之抗蝕劑,所以藉由在清洗液中含有TMAH使抗蝕劑成為溶解狀態而容易去除。When the
接著,說明清洗系統。
在上述顯影廢液之處理系統1A的情形中,清洗系統100A係由前述之與被處理液體供給系統30共通的清洗液體供給系統30A、濃縮水返回系統40A及透過水返回系統60A構成。
上述清洗液體供給系統30A與前述被處理液體供給系統30之結構相同。濃縮水返回系統40A連接於RO膜裝置21且通入液槽31,並由濃縮水配管41及濃縮水回流配管46構成。此外,濃縮水配管41係由RO膜裝置21之濃縮側21C到連接濃縮水回流配管46之部分。冷卻器91宜配置在濃縮水回流配管46中。另外,透過水返回系統60A係由:連接於RO膜裝置之透過側的透過水配管61之一部份;及由透過水配管61分歧且通入液槽31之透過水回流配管66構成。再者,透過水配管61係由RO膜裝置21之透過側21T到連接透過水回流配管66之部分。
如此,清洗系統100A成為以液槽31為中心藉由濃縮水返回系統40A及透過水返回系統60A供給至液槽31之TMAH新液的全量循環系統。Next, the cleaning system will be described.
In the case of the
接著說明顯影廢液之處理系統1(1A)之量測機器。
採取流過配管內之液的液採取配管34宜在液傳送裝置33與RO膜裝置21之間,透過閥35連接於液體供給配管32。此外,在液體供給配管32中,壓力計81宜配置在液採取配管34與RO膜裝置21之間。
採取流過配管內之液的濃縮水採取配管44宜在RO膜裝置21與濃縮水槽42之間連接於濃縮水配管41,且閥45配置在濃縮水採取配管44中。此外,在濃縮水配管41中,壓力計82宜配置在濃縮水採取配管44之分歧點與RO膜裝置21之間。另外,在濃縮水配管41中,流量計86宜配置在濃縮水回流配管46之與濃縮水配管41的分歧點與濃縮水槽42之間。
在濃縮水回流配管46中,流量計87宜配置在濃縮水回流配管46之與濃縮水配管41的分歧點與冷卻器91之間。
採取流過配管內之液的透過水採取配管64宜在RO膜裝置21與透過水槽62之間連接於透過水配管61,且閥65宜配置在透過水採取配管64中。此外,在透過水配管61中,流量計88宜配置在透過水採取配管64與透過水槽62之間。Next, the measuring machine of the processing system 1 (1A) of the developing waste liquid will be explained.
The
pH計、TMAH濃度計、抗蝕劑吸光度測定裝置等可連接於液採取配管34、濃縮水採取配管44及透過水採取配管64(以下,亦稱為採取配管)。A pH meter, a TMAH concentration meter, a resist absorbance measuring device, etc. can be connected to the
流過上述液體供給配管32、濃縮水配管41及透過水配管61之液係可藉由開啟配置在上述各採取管34、44、64之閥35、45、65,由各採取管34、44、64取得樣本。通常,各閥35、45、65先關閉,採取樣本時再開啟。
各壓力計81、82、83可使用一般壓力計、數位壓力計、隔膜式壓力計等,由高耐鹼性、高壓之觀點來看,以隔膜式壓力計較佳。可舉長野計器公司(股)製SC型(商品名)為例。
各流量計86、87、88可使用面積式流量計、葉輪式流量計、電磁式流量計等,由構造簡單且可保證材質耐pH之觀點來看,以面積式流量計較佳。如此之流量計可舉東京計裝公司(股)製PURGEMETER(商品名)。The liquid system flowing through the
以下,說明主要構成部件。
蒸發器11係具有藉由減壓使固體或液體積極地蒸發之機能的裝置。具體而言係使被蒸氣等之熱源加溫的蒸發器內部藉由用真空泵等減壓使排水之水分容易蒸發的裝置且係一般藉由排水之減容化等使用之裝置。可舉SASAKURA公司(股)製VVCC濃縮裝置(商品名)為例。Hereinafter, the main components will be described.
The
上述RO膜裝置21沒有特別限制,可為高壓型、中壓型、低壓型、超低壓型中之任一型RO膜裝置,但最好使用如上述之TMAH之去除率為99.5質量%以上且光阻之去除率為99.5質量%以上的高壓型RO膜。The above-mentioned
液槽31貯藏光阻含有顯影廢液或清洗液作為被處理液。光阻含有顯影廢液係顯影液之TMAH、溶解之光阻及水的混合液。此外,亦含有來自光阻含有顯影廢液之液。來自光阻含有顯影廢液之液,具體而言,可舉例如:由RO膜裝置21產生之濃縮水、由RO膜裝置21產生之透過水等。The
在由液槽31輸送溶液至RO膜裝置21之液傳送裝置33中,為了輸送強鹼溶液之顯影廢液,至少流路宜由耐鹼性材料構成。可舉流路為金屬、耐鹼性材料製之高壓泵為例。可舉NIKUNI公司(股)製PROCESS PUMP(商品名)為例。In the liquid conveying
濃縮水槽42係暫時地貯藏由RO膜裝置21產生之濃縮水的槽,且可包含使用含有顯影液清洗RO膜21F時之清洗後的液。因此,最好具有耐鹼性。此外,亦可包含使用RO膜裝置之透過水或RO膜裝置之濃縮水清洗RO膜21F後的液。The
透過水槽62係暫時地貯藏由RO膜裝置21產生之透過水的槽。槽內之透過水的TMAH成分濃度極低,且可使透過水傳送裝置63作動而將槽內之透過水立刻輸送至稀薄TAAH排水處理設備93。The permeated
液傳送裝置33宜使用例如壓送泵。壓送泵為了輸送含有強鹼溶液之顯影廢液的被處理液,至少流路或泵內部件宜由耐鹼性材料構成。可舉NIKUNI公司(股)製PROCESS PUMP(商品名)為例。The
濃縮水傳送裝置43宜使用例如與上述液傳送裝置33同樣之壓送泵。For the concentrated
透過水傳送裝置63宜使用例如壓送泵。壓送泵為了輸送鹼溶液之透過水,至少流路或泵內部件宜由耐鹼性材料構成。可舉IWAKI公司(股)製MAGNET PUMP(商品名)為例。The permeated
接著,說明圖1所示之顯影廢液處理系統的一較佳顯影廢液之處理方法例。
處理顯影廢液時,將顯影廢液體供給至液槽31,接著藉由液傳送裝置33將液槽31中之顯影廢液送入RO膜裝置21。最好透過RO膜裝置21之RO膜21F的透過水通過透過水配管61傳送至透過水槽62,接著進一步藉由透過水傳送裝置63將透過水槽62之透過水輸送至稀薄TAAH排水處理設備93。
另一方面,由RO膜裝置21產生之濃縮水通過濃縮水配管41將一部份供給至濃縮水槽42,接著藉由濃縮水傳送裝置43輸送至蒸發器11並進一步濃縮。剩餘之濃縮水由濃縮水配管41通過濃縮水回流配管46返回液槽31。返回液槽31之濃縮水及供給至濃縮水槽42之濃縮水的比例可調整閥47、48之開度而依目的適當地調節。雖然未圖示,但宜例如一面回饋流量計86、87之流量值,一面調整閥47、48之開度以調整至所希望之流量值。
最好如此藉由使濃縮水之一部份返回液槽31,增加供給至RO膜21F之水量比RO膜21F之最低濃縮水量。此時,顯影廢液雖被液傳送裝置33加溫,但被冷卻器91冷卻,故返回液槽31之濃縮水較好成為例如常溫。通常,在抗蝕膜之顯影步驟中,因為未進行顯影液之加溫或清洗液之純水的加溫,所以顯影廢液為常溫。但是,因為返回液槽31之濃縮水被冷卻,所以即使濃縮水返回液槽31亦可避免液槽31內之液溫過高。Next, a description will be given of an example of a preferred method for processing waste development liquid in the waste development liquid processing system shown in FIG. 1.
When processing the developing waste liquid, the developing waste liquid is supplied to the
藉由圖2所示之質量平衡說明例如顯影廢液之處理方法的一具體例。以下之流量、質量%、pH等之數值係一例且不限於該等數值。
顯影廢液係,例如,TMAH濃度為0.476質量%,pH為12以上,抗蝕劑濃度(波長290nm之吸光度、光路長10mm)為0.660且用流量200L/h供給至液槽31作為供給水(RO原水)。以下,抗蝕劑濃度稱為波長290nm時之吸光度。此外,混合520L/h由RO膜裝置21獲得之顯影廢液之濃縮水的一部份(循環水)於上述顯影廢液中,使對RO膜裝置21之供給水的水量為720L/h。藉此,可使RO膜裝置21之濃縮水成為濃縮水量(例如600L/h)以上之600L/h,且使透過水成為120L/h。The mass balance shown in FIG. 2 illustrates, for example, a specific example of the processing method of the developing waste liquid. The following numerical values of flow rate, mass %, pH, etc. are examples and are not limited to these values.
The developing waste liquid system, for example, has a TMAH concentration of 0.476% by mass, a pH of 12 or more, a resist concentration (absorbance at a wavelength of 290nm, optical path length of 10mm) of 0.660 and a flow rate of 200L/h supplied to the
例如,供給至RO膜裝置21之供給水的TMAH濃度係0.988質量%,pH係12以上且抗蝕劑濃度係1.347。此外,RO膜裝置21之濃縮水的TMAH濃度係1.185質量%,pH係12以上且抗蝕劑濃度係1.518。RO膜裝置21之透過水的TMAH濃度係0.003質量%,pH係10.4以上且抗蝕劑濃度係0.000。
上述濃縮水未全部返回液槽31,例如返回520L/h,且剩餘之80L/h輸送至濃縮水槽42作為濃縮水之排出水。
匯整上述例子中之pH、TMAH濃度、抗蝕劑濃度,如表1所示。For example, the TMAH concentration of the water supplied to the
[表1]
如此,經常地供給200L/h之顯影廢液,接著排出120L/h作為透過水且排出80L/h作為濃縮水,藉此使剩餘之濃縮水520L/h返回液槽31。
因為輸送至濃縮水槽42之濃縮水(濃縮排出水:排出側)相對[顯影廢液] 200L/h為80L/h,所以成為200/80=2.5倍濃縮之操作條件(抗蝕劑濃度亦成為大致2.5倍濃縮)。
在上述情形中,為了達成2.5倍濃縮之目標,達成如上所述之質量平衡。最好如此藉由濃縮水返回系統40使濃縮水之一部份返回且將供給至RO膜裝置21之供給水流量維持在最低濃縮水量之720L/h,藉此獲得質量平衡。
即,最好使各液量平衡,以確保使RO膜裝置21穩定操作所需之水量且達成目標濃縮倍率。此外,上述各流量係一例且不限於上述流量值。In this way, 200 L/h of developing waste liquid is constantly supplied, and then 120 L/h is discharged as permeated water and 80 L/h is discharged as concentrated water, thereby returning the remaining
如圖3所示地,經過顯影廢液之處理時間且抗蝕劑堵塞RO膜,因此透過通量減少且操作壓力上升。因此,最好例如在透過通量及/或操作壓力到達臨界值時進行RO膜21F之清洗。此外,最好例如在顯影廢液之處理時間經過預定時間(例如1200小時)時,進行RO膜21F之清洗。此外,藉由進行清洗,可使透過通量及操作壓力返回初期狀態。因此,最好定期地進行RO膜21F之清洗。雖然亦會因RO膜21F之規格不同而不同,但最好例如在透過通量到達初期狀態之大約60%(例如0.4m/d以下)時進行RO膜21F之清洗。或者最好在操作壓力到達初期狀態之大約1.5倍(例如1.8MPa以上)時進行RO膜21F之清洗。As shown in FIG. 3, the processing time of the developing waste liquid has passed and the RO membrane is blocked by the resist, so the permeation flux decreases and the operating pressure increases. Therefore, it is better to clean the
接著,說明RO膜裝置21之RO膜21F的清洗方法的一較佳例。
清洗RO膜裝置21之RO膜21F時,一次全部排出RO膜裝置21之系統內的顯影廢液。此時,亦排出處理濃縮水槽42內之顯影廢液後的濃縮水及處理透過水槽62內之顯影廢液後的透過水,接著包含各配管在內,分別地排空液槽31、RO膜裝置21、濃縮水槽42、透過水槽62之內部。接著,供給TMAH新液至液槽31。然後關閉閥68且開啟閥67,使透過水返回系統60開通。然後,關閉閥48且開啟閥47,使濃縮水返回系統40開通。如此,使由液槽31通過清洗液體供給系統30A、RO膜裝置21之濃縮側21C、濃縮水配管41、濃縮水回流配管46而返回液槽31之濃縮水返回系統40開通。同時,最好使由液槽31通過清洗液體供給系統30A、RO膜裝置21之透過側21T、透過水配管61、透過水回流配管66而返回液槽31之透過水返回系統60開通,因此可使清洗液之全量循環。Next, a preferred example of the cleaning method of the
具體而言,首先供給TMAH新液至去除顯影廢液之液槽31作為清洗液。該供給量宜為RO膜21F之最低濃縮水量以上。TMAH新液可使用未使用於抗蝕膜顯影之例如TMAH濃度為2.38質量%的一般TMAH顯影液,亦可使用濃度比一般TMAH顯影液高之TMAH顯影液。清洗液之TMAH濃度可適當變更。藉由液傳送裝置33將該TMAH新液輸送至RO膜裝置21,接著清洗RO膜21F之給水側。在此情形中,為了不浪費地使用TMAH新液且為了確保RO膜21F之最低濃縮水量,最好使透過RO膜裝置21之清洗液返回液槽31。同時,最好由濃縮側21C排出之濃縮水亦使全量返回液槽31。藉此,較佳地確保供給至RO膜裝置21之液量在RO膜21F之最低濃縮水量以上。Specifically, first, fresh TMAH liquid is supplied to the
上述清洗時間之一例宜為4小時。例如供給50L之TMAH新液至液槽31後,使用濃縮水返回系統40及透過水返回系統60使其循環返回液槽31。此時,使清洗液循環以確保最低濃縮水量。接著,再同樣地使清洗液循環。最好重複進行此步驟4小時。藉由上述圖1說明之清洗方法清洗4小時後,結果清洗液之TMAH濃度及作為對RO膜裝置21之供給水之清洗液的抗蝕劑濃度相對清洗時間的變化顯示在表2及圖4中。
如表2及圖4所示地,清洗液使用TMAH濃度為例如2.50質量%者作為TMAH新液。由清洗開始例如.025小時後,殘留於系統內之TMAH濃度小的顯影廢液混入而使TMAH濃度下降。通常,顯影液之TMAH濃度係2.38質量%,因此清洗液之TMAH濃度下降。後來TMAH濃度呈大致一定地穩定。An example of the above cleaning time is preferably 4 hours. For example, after 50L of TMAH fresh liquid is supplied to the
清洗液流量的RO膜裝置21前之流量(依據流量計(未圖示)測定)宜為RO膜21F之最低濃縮水量以上。例如,上述濃縮水未輸送至濃縮水槽42作為濃縮水之排出水而是使全量返回液槽31。例如,使600L/h返回作為濃縮水循環水。此外,最好透過水亦全量返回液槽31(進行全量循環)。如此,即使濃縮水及透過水都進行全量循環,因為確保RO膜21F之最低濃縮水量,所以不必擔心在RO膜21F中高濃縮化。The flow rate of the cleaning liquid before the RO membrane device 21 (measured by a flow meter (not shown)) is preferably greater than the minimum concentrated water volume of the
此外,由RO膜裝置21前之透過水採取配管34採取並測定之清洗液中的抗蝕劑濃度在開始時為0,且隨著進行清洗而升高,但如表2及圖4所示地,由清洗開始3至4小時後濃度上升大致停止。抗蝕劑濃度如此大致未增加意味幾乎未藉由清洗進行抗蝕劑去除。換言之,意味沒有藉由清洗去除之抗蝕劑。即,顯示清洗完成。因此,清洗時間宜為例如4小時。清洗時間雖然因清洗液之TMAH濃度、清洗液流量等而改變,但若進行4小時可說是獲得充分之清洗效果。In addition, the concentration of the resist in the cleaning solution collected and measured by the permeated
[表2]
因為上述清洗係使用TMAH新液之清洗,所以清洗後不需要在去除用於清洗之顯影液後進行純水清洗,可在清洗步驟後,立刻進行顯影廢液之處理。舉例而言,如表3所示地,顯影廢液去除需要0.25小時、清洗液投入需要0.25小時、清洗需要4小時、清洗液去除需要0.25小時,合計只需要4.75小時之清洗時間。另一方面,清洗液可使用強鹼之氫氧化鈉溶液,但在此情形中,舉例而言,如表3所示地,需要在清洗後進行大約10小時之純水清洗,使系統內不殘留鈉。例如,顯影廢液去除需要0.25小時、清洗液投入需要0.25小時、清洗需要4小時、清洗液去除需要0.25小時、純水投入需要0.25小時、系統內純水清洗需要10小時、純水清洗液去除需要0.25小時,合計需要15.25小時之清洗時間。Because the above-mentioned cleaning is done with new TMAH solution, there is no need to clean with pure water after removing the developer used for cleaning. The waste developer can be treated immediately after the cleaning step. For example, as shown in Table 3, it takes 0.25 hours to remove the developing waste liquid, 0.25 hours to input the cleaning solution, 4 hours to clean, and 0.25 hours to remove the cleaning solution, which only requires 4.75 hours of cleaning time in total. On the other hand, the cleaning solution can use a strong alkali sodium hydroxide solution, but in this case, for example, as shown in Table 3, it is necessary to perform pure water cleaning for about 10 hours after cleaning, so that the system does not Residual sodium. For example, it takes 0.25 hours to remove developing waste liquid, 0.25 hours to input cleaning solution, 4 hours to cleaning, 0.25 hour to remove cleaning solution, 0.25 hour to input pure water, 10 hours to clean the system with pure water, and pure water cleaning solution to remove It takes 0.25 hours for a total of 15.25 hours of cleaning time.
[表3] [table 3]
上述純水清洗要求使鈉濃度儘可能接近0質量%,例如0.005質量%以下。因此,如表4及圖5所示地,需要至少大約10小時之純水清洗。鈉離子即使只有極少量,亦會例如在MOS電晶體中存在閘極氧化膜中時產生漏電流,因此使電晶體之開關特性惡化。有時,在源極、汲極之間電流會呈經常流動之狀態,而無法發揮作為電晶體之機能。如此,鈉離子使半導體裝置之性能劣化,因此一般必須不使其返回半導體裝置步驟並由清洗系統內去除。The above-mentioned pure water cleaning requires that the sodium concentration be as close as possible to 0% by mass, for example, 0.005% by mass or less. Therefore, as shown in Table 4 and Figure 5, at least about 10 hours of pure water cleaning is required. Even if there is only a very small amount of sodium ions, for example, leakage current will be generated when the MOS transistor is present in the gate oxide film, thereby deteriorating the switching characteristics of the transistor. Sometimes, the current flows constantly between the source and drain, and it cannot function as a transistor. In this way, sodium ions degrade the performance of the semiconductor device, so it is generally necessary not to return it to the semiconductor device step and be removed from the cleaning system.
[表4]
進行使用上述圖1所示之清洗系統100A的清洗時,因為使用TMAH新液(抗蝕劑濃度0.000)作為清洗液,所以清洗液之抗蝕劑濃度未如顯影廢液地高。因為清洗液在排出清洗液透過水時需要追加液,所以使清洗液之RO膜透過水及濃縮水亦返回液槽再利用。藉此,可確保RO膜21F之清洗流量。此外,因為清洗液濃縮水係TMAH新液通入逆滲透膜裝置後之濃縮水,所以抗蝕劑濃度比顯影廢液處理時排出之濃縮水低。因此,即使TMAH新液、清洗液透過水及清洗液濃縮水加在一起之清洗液添加清洗液濃縮水,抗蝕劑濃度亦比操作時之RO濃縮水低而為大約1.1,因此具有由RO膜21F之濃縮側表面充分地去除抗蝕劑的能力。以下,清洗液通入RO膜裝置21後由濃縮側21C排出之濃縮水稱為清洗液濃縮水。When the cleaning using the
此外,未使由RO膜裝置21產生之TMAH新液的濃縮水返回液槽31時,為確保清洗液量,必須使TMAH新液之供給量大。此外,清洗時,供給由RO膜裝置21之濃縮側21C產生的清洗液濃縮水至濃縮水槽42時,處理貯存於濃縮水槽42之顯影廢液製得的濃縮水濃度變小。因此,清洗液濃縮水最好全量返回液槽31。因此,最好以濃縮水量可排出至RO膜21F之最低濃縮水量以上的方式確保清洗液對RO膜裝置21之供給水量。In addition, when the concentrated water of the fresh TMAH liquid produced by the
如此依據本發明,提供顯影廢液之處理系統,其係含有在光刻步驟中產生之TAAH的顯影廢液的處理系統,且亦利用包含逆滲透膜裝置而構成之系統的一部份作為用以清洗該逆滲透膜裝置具有之逆滲透膜的清洗系統。在實施形態1中該處理系統具有: (a-1)液槽,用來貯存在光刻步驟中產生之顯影廢液; (b-1)液體供給配管,其一端連接於該液槽之液體排出側; (c-1)逆滲透膜裝置,其連接該液體供給配管之另一端且將該逆滲透膜裝置之濃縮水供給至蒸發器; (d-1)濃縮水配管,其一端連接於該逆滲透膜裝置之濃縮側; (e-1)濃縮水回流配管,連接於該濃縮水配管且供給上述逆滲透膜裝置之濃縮水至上述液槽; (f-1)透過水配管,其一端連接於上述逆滲透膜裝置之透過側; (g-1)稀薄TAAH排水處理設備,連接於該透過水配管之另一端;及 (h-1)透過水回流配管,連接於該透過水配管且供給上述逆滲透膜裝置之透過水至上述液槽, 上述清洗系統係供給TAAH新液至上述液槽,且使該TAAH新液在由上述(a-1)至(d-1)與(e-1)形成之循環系統及由上述(a-1)至(c-1)、(f-1)與(h-1)形成之循環系統的兩循環系統中循環,藉此清洗上述逆滲透膜裝置具有之逆滲透膜的系統。In this way, according to the present invention, a processing system for developing waste liquid is provided, which is a processing system for developing waste liquid containing TAAH generated in the photolithography step, and also uses a part of the system composed of a reverse osmosis membrane device as a function To clean the reverse osmosis membrane device with the reverse osmosis membrane cleaning system. In Embodiment 1, the processing system has: (a-1) Liquid tank, used to store the developing waste liquid produced in the photolithography step; (b-1) Liquid supply piping, one end of which is connected to the liquid discharge side of the liquid tank; (c-1) A reverse osmosis membrane device, which is connected to the other end of the liquid supply pipe and supplies the concentrated water of the reverse osmosis membrane device to the evaporator; (d-1) Concentrated water piping, one end of which is connected to the concentration side of the reverse osmosis membrane device; (e-1) Concentrated water return pipe, which is connected to the concentrated water pipe and supplies the concentrated water of the reverse osmosis membrane device to the liquid tank; (f-1) Permeate water piping, one end of which is connected to the permeation side of the reverse osmosis membrane device; (g-1) Thin TAAH drainage treatment equipment, connected to the other end of the permeated water pipe; and (h-1) The permeated water return pipe is connected to the permeated water pipe and supplies the permeated water of the reverse osmosis membrane device to the liquid tank, The cleaning system is to supply the TAAH fresh liquid to the liquid tank, and make the TAAH fresh liquid in the circulation system formed by the above (a-1) to (d-1) and (e-1) and the above (a-1) ) To (c-1), (f-1) and (h-1) to form a two-circulation system to circulate in a two-circulation system, thereby cleaning the system of the reverse osmosis membrane of the reverse osmosis membrane device.
接著,參照作為具有清洗系統100(100B)之TAAH含有液之處理系統的顯影廢液之處理系統1(1B)的較佳實施形態(實施形態2)來說明。
如圖6所示地,除了變更在上述顯影廢液之處理系統1A中透過水回流配管66之分歧位置及閥67、68之配置以外,顯影廢液之處理系統1B具有與顯影廢液之處理系統1(1A)相同之結構。
即,透過水返回系統60由配置在透過水槽62下游側之透過水配管61的透過水傳送裝置63分歧並供給透過水至液槽31。在透過水傳送裝置63之另一側,透過水配管61連接於稀薄TAAH排水處理設備93。
透過水回流配管69最好在透過水傳送裝置63之下游側具有閥70。此外,最好在透過水傳送裝置63之下游側的透過水配管61中具有閥71。處理顯影廢液時,閥71開啟且閥70關閉。另一方面,清洗時,相反地閥70開啟且閥71關閉。如此,構成由液槽31通過清洗液體供給系統30B、RO膜裝置21之透過側21T、透過水配管61、透過水槽62及透過水回流配管69返回液槽31之透過水返回系統60(60B)(透過側之循環系統)。此外,濃縮水循環系統與前述實施形態1相同。另外,顯影廢液之處理與顯影廢液之處理系統1A相同。Next, a description will be made with reference to a preferred embodiment (Embodiment 2) of the processing system 1 (1B) of the developing waste liquid as a processing system of the TAAH containing liquid with the cleaning system 100 (100B).
As shown in FIG. 6, in addition to changing the branch position of the permeated
在上述清洗系統100B中使用TMAH新液作為清洗液。此外,亦使用清洗時貯存在透過水槽62中之透過RO膜裝置21的透過水。因此,清洗液之抗蝕劑濃度係例如0.002且抗蝕劑濃度非常低。因為如此將清洗液透過水貯存在透過水槽62中,所以清洗液不足時,藉由比透過水量多地供給至液槽31,可確保RO膜裝置21之最低濃縮水量。此外,因為清洗液只有TMAH新液及清洗液透過水無法確保充分之流量,所以RO膜處理清洗液後之濃縮水亦返回液槽31再利用。藉此,可有效率地利用供給至液槽31之TMAH新液的全量,因此可確保RO膜21F之最低濃縮水量(清洗液量)。
此外,因為濃縮水係將清洗液通入RO膜裝置21後之清洗液濃縮水,所以相較於顯影廢液處理時排出之濃縮水,抗蝕劑濃度特別低。而且,雖然因為將TMAH新液及清洗液透過水加在一起形成清洗液,所以含有抗蝕劑,但相較於顯影廢液,該抗蝕劑濃度特別低。因此,具有由RO膜21F表面(給水側21S)充分去除抗蝕劑之能力。以下,將清洗液通入RO膜裝置21而由透過側21T排出之透過水稱為清洗液透過水。In the above-mentioned
如上所述地,未在清洗系統100B中提供濃縮水返回系統40B時,為確保清洗液量,必須增加由透過水槽62之透過水的供給量或增加TMAH新液的供給量。
此外,供給由濃縮側21C產生之清洗液濃縮水至濃縮水槽42時,貯存在濃縮水槽42中之濃縮水的濃度小。因此,清洗時之濃縮水最好全量返回液槽31。因此,最好以濃縮水量可排出至RO膜21F之最低濃縮水量以上的方式確保清洗液對RO膜裝置21之供給水量。As described above, when the concentrated water is not provided in the
因為上述清洗係使用藉由RO膜裝置處理TMAH新液及顯影廢液後之透過水的清洗,所以不需要在清洗後進行純水清洗,可在清洗步驟後立刻進行顯影廢液之處理。Because the above-mentioned cleaning uses the permeated water after the RO membrane device is used to process the new TMAH solution and the developing waste liquid, there is no need to perform pure water washing after the washing, and the developing waste liquid can be treated immediately after the washing step.
如上所述地,在作為本發明之TAAH含有液之處理系統的顯影廢液之處理系統的實施形態2中,顯影廢液之處理系統具有: (a-2)液槽,用來貯存在光刻步驟中產生之顯影廢液; (b-2)液體供給配管,其一端連接於該液槽之液體排出側; (c-2)逆滲透膜裝置,連接於該液體供給配管之另一端; (d-2)濃縮水配管,其一端連接於該逆滲透膜裝置之濃縮側且將該逆滲透膜裝置之濃縮水供給至蒸發器; (e-2)濃縮水回流配管,連接於該濃縮水配管且供給上述逆滲透膜裝置之濃縮水至上述液槽; (f-2)透過水配管,其一端連接於上述逆滲透膜裝置之透過側; (g-2)透過水槽,配置在該透過水配管之中途; (h-2)稀薄TAAH排水處理設備,連接於該透過水配管之另一端;及 (i-2)透過水回流配管,連接於位在上述透過水槽與上述稀薄TAAH排水處理設備之間的上述透過水配管且供給上述逆滲透膜裝置之透過水至上述液槽, 上述清洗系統係供給TAAH新液至上述液槽,且使該TAAH新液在由上述(a-2)至(d-2)與(e-2)形成之循環系統及由上述(a-2)至(c-2)、(f-2)、(g-2)與(i-2)形成之循環系統的兩循環系統中循環,藉此清洗上述逆滲透膜裝置具有之逆滲透膜的系統。As described above, in the second embodiment of the processing system for the development waste liquid as the TAAH-containing liquid processing system of the present invention, the processing system for the development waste liquid has: (a-2) Liquid tank, used to store the developing waste liquid produced in the photolithography step; (b-2) Liquid supply piping, one end of which is connected to the liquid discharge side of the liquid tank; (c-2) A reverse osmosis membrane device connected to the other end of the liquid supply pipe; (d-2) Concentrated water piping, one end of which is connected to the concentration side of the reverse osmosis membrane device and supplies the concentrated water of the reverse osmosis membrane device to the evaporator; (e-2) Concentrated water return pipe, which is connected to the concentrated water pipe and supplies the concentrated water of the reverse osmosis membrane device to the liquid tank; (f-2) Permeate water piping, one end of which is connected to the permeation side of the reverse osmosis membrane device; (g-2) The permeated water tank is arranged in the middle of the permeated water pipe; (h-2) Thin TAAH drainage treatment equipment, connected to the other end of the permeate pipe; and (i-2) The permeated water return pipe is connected to the permeated water pipe located between the permeated water tank and the thin TAAH drainage treatment facility and supplies the permeated water of the reverse osmosis membrane device to the liquid tank, The cleaning system is to supply TAAH fresh liquid to the liquid tank, and make the TAAH fresh liquid in the circulation system formed by the above (a-2) to (d-2) and (e-2) and the above (a-2) ) To (c-2), (f-2), (g-2) and (i-2) to form a two-circulation system, thereby cleaning the reverse osmosis membrane of the reverse osmosis membrane device system.
接著,參照作為具有清洗系統100(100C)之TAAH含有液之處理系統的顯影廢液之處理系統1(1C)的較佳實施形態(實施形態3)來說明。
如圖7所示地,顯影廢液之處理系統1C主要是組合前述顯影廢液之處理系統1A及1B的結構。即,配置另一透過水回流配管69,且該透過水回流配管69連接於配置在透過水配管61中之透過水槽62。在另一透過水回流配管69中配置:另一RO膜裝置72,其濃縮透過水槽62中之透過水;及透過水濃縮水槽73,其暫時地貯存另一RO膜裝置72之濃縮水。
另一透過水回流配管69由另一RO膜裝置72之濃縮側72C連接於透過水濃縮水槽73。另一透過水回流配管69可直接連接於透過水濃縮水槽73,亦可如圖所示地連接於透過水濃縮水槽73之上游側的透過水回流配管66。該透過水回流配管66最好與前述顯影廢液之處理系統1A的透過水回流配管66相同。
最好上述透過水濃縮水槽73配置在該透過水回流配管66中且透過水傳送裝置75進一步配置在液槽31側。另一透過水配管74最好在RO膜裝置72之透過側72T連接於稀薄TAAH排水處理設備93。
透過水回流配管66最好在與透過水回流配管66之分歧的下游側具有閥67。此外,最好在與透過水回流配管66之分歧的下游側的透過水配管61中具有閥68。處理顯影廢液時,開啟閥68且關閉閥67。此外,開啟閥71且關閉閥70。另一方面,清洗時,相反地開啟閥67且關閉閥68。如此,構成由液槽31通過清洗液體供給系統30C、RO膜裝置21之透過側21T、透過水配管61、透過水回流配管66及透過水濃縮水槽73返回液槽31之透過水返回系統60C(透過側之循環系統)。
其他結構與顯影廢液之處理系統1A、1B相同。此外,顯影廢液之處理與顯影廢液之處理系統1A相同。Next, a description will be made with reference to a preferred embodiment (Embodiment 3) of the processing system 1 (1C) of the developing waste liquid as a processing system of the TAAH containing liquid with the cleaning system 100 (100C).
As shown in FIG. 7, the
上述清洗系統100C中,使用貯存在透過水槽62中之顯影廢液的RO膜透過水作為清洗液。因此,清洗液之抗蝕劑濃度係例如0.027且抗蝕劑濃度非常低。而且,因為通過另一RO膜裝置72,所以水分透過透過側72T且TMAH濃度在濃縮側72C提高。因此,可獲得TMAH濃度提高之濃縮水。
此外,最好在清洗中亦將透過RO膜裝置21之清洗液透過水貯存在透過水槽62中並作為清洗液再利用。但是,因為清洗中只有清洗液透過水無法確保充分之流量,所以最好RO膜處理清洗液後之濃縮水亦返回液槽31作為清洗液再利用。藉此,可確保RO膜21F之最低濃縮水量(清洗流量)。In the above-mentioned cleaning system 100C, the RO membrane permeated water of the developing waste liquid stored in the permeated
此外,因為清洗液濃縮水係將清洗液通入RO膜裝置21後之濃縮水,所以相較於顯影廢液處理時排出之濃縮水,抗蝕劑濃度特別低。而且,雖然因為清洗液濃縮水與清洗液透過水加在一起形成清洗液,所以含有抗蝕劑,但相較於顯影廢液,該抗蝕劑濃度特別低,因此具有由RO膜21F表面(RO膜21F之濃縮側21C)充分去除抗蝕劑之能力。In addition, because the cleaning liquid concentrated water is the concentrated water after the cleaning liquid is passed into the
如上所述地,未在清洗系統100C中設置濃縮水返回系統40C時,為確保清洗液量,必須增加由透過水槽62之透過水的供給量。
此外,供給由濃縮側21C產生之清洗液濃縮水至濃縮水槽42時,貯存在濃縮水槽42中之濃縮水的濃度比處理顯影廢液獲得之濃縮水的濃度小。因此,清洗時之濃縮水最好全量返回液槽31。因此,最好以濃縮水量可排出至RO膜21F之最低濃縮水量以上的方式確保清洗液對RO膜裝置21之供給水量。As described above, when the concentrated
因為上述清洗係使用藉由RO膜裝置處理顯影廢液後之透過水的清洗,所以不需要去除顯影廢液之處理系統1C內的清洗液後進行純水清洗,可在清洗步驟後立刻進行顯影廢液之處理。Because the above-mentioned cleaning uses the permeated water cleaning after the development waste liquid is processed by the RO membrane device, there is no need to remove the cleaning liquid in the
如上所述地,在作為本發明之TAAH含有液之處理系統的顯影廢液之處理系統的實施形態3中,顯影廢液之處理系統具有: (a-3)液槽,用來貯存在光刻步驟中產生之顯影廢液; (b-3)液體供給配管,其一端連接於該液槽之液體排出側; (c-3)逆滲透膜裝置(Y),連接於該液體供給配管之另一端; (d-3)濃縮水配管,其一端連接於該逆滲透膜裝置之濃縮側且將該逆滲透膜裝置之濃縮水供給至蒸發器; (e-3)濃縮水回流配管,連接於該濃縮水配管且供給上述逆滲透膜裝置(Y)之濃縮水至上述液槽; (f-3)透過水配管(P),其一端連接於該逆滲透膜裝置(Y)之透過側; (g-3)透過水槽,配置在該透過水配管(P)之中途; (h-3)稀薄TAAH排水處理設備,連接於該透過水配管(P)之另一端; (i-3)透過水回流配管(I),連接於位在上述逆滲透膜裝置(Y)與上述透過水槽之間的上述透過水配管(P)且供給上述逆滲透膜裝置(Y)之透過水至上述液槽; (j-3)透過水濃縮水槽,配置在該透過水回流配管(I)之中途; (k-3)另一透過水回流配管(II),其由位在上述透過水槽與上述稀薄TAAH排水處理設備之間的上述透過水配管(P)分歧,且連接於位在上述逆滲透膜裝置(Y)與上述透過水濃縮水槽之間的上述透過水回流配管(I); (l-3)另一逆滲透膜裝置(Z),配置在該另一透過水回流配管(II)之中途;及 (m-3)另一透過水配管(Q),其連接該另一逆滲透膜裝置(Z)之透過側及上述稀薄TAAH排水處理設備, 上述清洗系統係供給藉由上述另一逆滲透膜裝置(Z)濃縮上述逆滲透膜裝置(Y)之透過水的濃縮水(X)至上述液槽,且使上述濃縮水(X)在由上述(a-3)至(d-3)與(e-3)形成之循環系統及由上述(a-3)至(c-3)、(f-3)、(i-3)與(j-3)形成之循環系統的兩循環系統中循環,藉此清洗上述逆滲透膜裝置具有之逆滲透膜的系統。As described above, in the third embodiment of the processing system for the development waste liquid as the TAAH-containing liquid processing system of the present invention, the processing system for the development waste liquid has: (a-3) Liquid tank, used to store the developing waste liquid produced in the photolithography step; (b-3) Liquid supply piping, one end of which is connected to the liquid discharge side of the liquid tank; (c-3) Reverse osmosis membrane device (Y), connected to the other end of the liquid supply pipe; (d-3) Concentrated water piping, one end of which is connected to the concentration side of the reverse osmosis membrane device and supplies the concentrated water of the reverse osmosis membrane device to the evaporator; (e-3) Concentrated water return piping, connected to the concentrated water piping and supplying the concentrated water of the reverse osmosis membrane device (Y) to the liquid tank; (f-3) Permeate water pipe (P), one end of which is connected to the permeate side of the reverse osmosis membrane device (Y); (g-3) The permeated water tank is arranged in the middle of the permeated water pipe (P); (h-3) Thin TAAH drainage treatment equipment, connected to the other end of the permeate pipe (P); (i-3) The permeated water return pipe (I) is connected to the permeated water pipe (P) between the reverse osmosis membrane device (Y) and the permeated water tank and supplies the reverse osmosis membrane device (Y) Permeate water to the above liquid tank; (j-3) The permeated water concentration tank is arranged in the middle of the permeated water return pipe (I); (k-3) Another permeated water return pipe (II), which is branched from the permeated water pipe (P) between the permeated water tank and the thin TAAH drainage treatment facility, and is connected to the reverse osmosis membrane The permeated water return pipe (I) between the device (Y) and the permeated water concentration tank; (l-3) Another reverse osmosis membrane device (Z) is arranged in the middle of the other permeated water return pipe (II); and (m-3) Another permeated water pipe (Q), which connects the permeate side of the other reverse osmosis membrane device (Z) and the above-mentioned thin TAAH drainage treatment equipment, The cleaning system is to supply concentrated water (X) that concentrates the permeated water of the reverse osmosis membrane device (Y) by the other reverse osmosis membrane device (Z) to the liquid tank, and make the concentrated water (X) The circulatory system formed by the above (a-3) to (d-3) and (e-3) and the above (a-3) to (c-3), (f-3), (i-3) and ( j-3) A system that circulates in the two-circulation system of the formed circulation system, thereby cleaning the reverse osmosis membrane of the above-mentioned reverse osmosis membrane device.
接著,參照作為具有清洗系統100(100D)之TAAH含有液之處理系統的顯影廢液之處理系統1(1D)的較佳實施形態(實施形態4)來說明。
如圖8所示地,顯影廢液之處理系統1D係在與前述顯影廢液之處理系統1A之濃縮水返回系統40A同樣的濃縮水返回系統40D中,組合供給濃縮水槽42之濃縮水至濃縮水回流配管46的濃縮水透過系統50的結構。即,最好濃縮水透過系統50之濃縮水透過配管51由濃縮水傳送裝置43與蒸發器11間之濃縮水配管41分歧且在冷卻器91與流量計87之間連接於濃縮水回流配管46。
最好在濃縮水透過配管51中由與濃縮水配管41之分歧側依序配置奈米過濾(NF)裝置52、NF透過水槽53、NF透過水傳送裝置54。此外,最好濃縮水透過配管51連接於NF裝置52之透過側52T且連接於蒸發器11之濃縮水配管55連接於NF裝置52之濃縮側52C。
最好濃縮水透過配管51在與濃縮水配管41之分歧側配置閥56且濃縮水配管41由與濃縮水透過配管51之分歧點在蒸發器11側配置閥57。
如此,構成由液槽31通過清洗液體供給系統30D、RO膜裝置21之濃縮側21C、濃縮水配管41及濃縮水回流配管46返回液槽31之濃縮水返回系統40D(濃縮水循環系統)。
其他結構與顯影廢液之處理系統1A相同。此外,顯影廢液之處理與顯影廢液之處理系統1A相同。Next, a description will be made with reference to a preferred embodiment (Embodiment 4) of the processing system 1 (1D) of the developing waste liquid as a processing system of the TAAH containing liquid with the cleaning system 100 (100D).
As shown in Fig. 8, the
藉由上述清洗系統100D清洗時,與清洗系統100A同樣地,最好首先去除清洗系統100D內之全部液,接著供給TMAH新液至液槽31作為清洗液。清洗時,開啟濃縮側之閥47及閥48。接著適當調節開啟量。與此同時,關閉閥57且開啟閥56。同時,關閉透過側之閥68且開啟閥67。
因為上述清洗系統100D使用TMAH新液作為清洗液,所以TMAH濃度高(例如,2.38質量%),因此RO膜21F之抗蝕劑清洗性優異。但是,只有TMAH新液作為清洗液之流量不足,因此使用由RO膜裝置21排出之清洗液透過水且進一步亦使用由RO膜裝置21排出之清洗液濃縮水。雖然清洗液濃縮水的一部份藉由濃縮水返回系統40D立刻返回液槽31,但剩餘部份貯存在濃縮水槽42中。貯存在濃縮水槽42中之清洗液濃縮水通入NF裝置52。在NF裝置52中去除抗蝕劑並且TMAH水溶液透過,接著由濃縮水透過配管51供給至濃縮水回流配管46且輸送至液槽31中。因此,抗蝕劑濃度低(例如,抗蝕劑濃度0.012)且藉由RO膜裝置21提高TMAH濃度之液(例如,TMAH濃度2.21質量%)供給至液槽31中。因此,即使直接供給清洗液濃縮水之一部份至液槽31,抗蝕劑濃度亦小且TMAH濃度高。在上述系統中,因為幾乎未去除TMAH且藉由NF裝置52去除抗蝕劑,所以相較於使前述清洗液濃縮水全量返回液槽31之情形,抗蝕劑濃度低(例如,1/99以下)。因為如此清洗液只有清洗液透過水無法確保充分之流量,所以RO膜處理清洗液後之清洗液濃縮水亦返回液槽31作為清洗液再利用。藉此,可確保RO膜21F之最低濃縮水量(清洗流量)。
此外,因為清洗液濃縮水係TMAH新液通入RO膜裝置21後之濃縮水,所以抗蝕劑濃度比顯影廢液處理時排出之濃縮水低。因此,透過水與濃縮水加在一起之清洗液的抗蝕劑濃度十分低,因此具有由RO膜21F之濃縮側表面去除抗蝕劑的能力。When cleaning by the above-mentioned
因為上述清洗係使用TMAH新液之清洗,所以不需要在去除顯影廢液之處理系統1D內的清洗液後進行純水清洗,可在清洗步驟後,立刻進行顯影廢液之處理。Because the above-mentioned cleaning is cleaning with new TMAH solution, there is no need to perform pure water cleaning after removing the cleaning solution in the
如上所述地,在作為本發明之TAAH含有液之處理系統的顯影廢液之處理系統的實施形態4中,顯影廢液之處理系統具有: (a-4)液槽,用來貯存在光刻步驟中產生之顯影廢液; (b-4)液體供給配管,其一端連接於該液槽之液體排出側; (c-4)逆滲透膜裝置,連接於該液體供給配管之另一端; (d-4)濃縮水配管,其一端連接於該逆滲透膜裝置之濃縮側; (e-4)濃縮水槽,配置在該濃縮水配管之中途; (f-4)濃縮水回流配管,連接於位在上述逆滲透膜裝置與上述濃縮水槽之間的上述濃縮水配管且供給上述逆滲透膜裝置之濃縮水至上述液槽; (g-4)濃縮水透過配管,其由位於上述濃縮水槽與上述蒸發器之間的上述濃縮水配管分歧且連接於上述濃縮水回流配管; (h-4)奈米過濾裝置,配置在該濃縮水透過配管之中途; (i-4)奈米過濾透過水槽,配置在該濃縮水透過配管之中途且貯存上述奈米過濾裝置之透過水; (j-4)奈米過濾濃縮水配管,其一端連接於上述奈米過濾裝置之濃縮側且供給該奈米過濾裝置之濃縮水至上述蒸發器; (k-4)透過水配管,其一端連接於上述逆滲透膜裝置之透過側; (l-4)稀薄TAAH排水處理設備,連接於該透過水配管之另一端;及 (m-4)透過水回流配管,連接於該透過水配管且供給透過水至上述液槽, 上述清洗系統係供給TMAH新液至上述液槽,且使該TMAH新液在由上述(a-4)至(e-4)與(f-4)至(i-4)形成之循環系統及由前述(a-4)至(c-4)、(k-4)與(m-4)形成之循環系統的兩循環系統中循環,藉此清洗上述逆滲透膜裝置具有之逆滲透膜的系統。As described above, in the fourth embodiment of the processing system for the development waste liquid as the processing system for the TAAH-containing liquid of the present invention, the processing system for the development waste liquid has: (a-4) Liquid tank, used to store the developing waste liquid produced in the photolithography step; (b-4) Liquid supply piping, one end of which is connected to the liquid discharge side of the liquid tank; (c-4) A reverse osmosis membrane device connected to the other end of the liquid supply pipe; (d-4) Concentrated water piping, one end of which is connected to the concentration side of the reverse osmosis membrane device; (e-4) The concentrated water tank is arranged in the middle of the concentrated water piping; (f-4) The concentrated water return pipe is connected to the concentrated water pipe located between the reverse osmosis membrane device and the concentrated water tank and supplies the concentrated water of the reverse osmosis membrane device to the liquid tank; (g-4) Concentrated water permeation piping, which is branched from the concentrated water piping located between the concentrated water tank and the evaporator and connected to the concentrated water return piping; (h-4) The nanofiltration device is arranged in the middle of the concentrated water permeation pipe; (i-4) A nanofiltration permeable water tank is arranged in the middle of the concentrated water permeation piping and stores the permeated water of the above-mentioned nanofiltration device; (j-4) A nanofiltration concentrated water pipe, one end of which is connected to the concentration side of the nanofiltration device and supplies the concentrated water of the nanofiltration device to the evaporator; (k-4) Permeate water piping, one end of which is connected to the permeation side of the reverse osmosis membrane device; (l-4) Thin TAAH drainage treatment equipment, connected to the other end of the permeate pipe; and (m-4) The permeated water return pipe is connected to the permeated water pipe and supplies the permeated water to the liquid tank, The cleaning system is to supply new TMAH liquid to the liquid tank, and make the new TMAH liquid in the circulation system formed by the above (a-4) to (e-4) and (f-4) to (i-4) and Circulate in the two-circulation system of the circulation system formed by the aforementioned (a-4) to (c-4), (k-4) and (m-4), thereby cleaning the reverse osmosis membrane of the above-mentioned reverse osmosis membrane device system.
接著,參照作為具有清洗系統100(100E)之TAAH含有液之處理系統的顯影廢液之處理系統1(1E)的較佳實施形態(實施形態5)來說明。
如圖9所示地,顯影廢液之處理系統1E係在前述顯影廢液之處理系統1C中,在透過水傳送裝置63與透過水濃縮水槽73間之另一透過水回流配管69中由透過水傳送裝置63側依序配置另一RO膜裝置72及NF裝置76。
最好在另一RO膜裝置72之給水側72S連接供給透過水槽62中之透過水的另一透過水回流配管69且另一透過水回流配管69由RO膜裝置72之濃縮側72C連接於上述NF裝置76之給水側76S。最好在另一RO膜裝置72之透過側72T將另一透過水配管74連接於稀薄TAAH排水處理設備93。此外,最好由NF裝置76之透過側76T將另一透過水回流配管69連接於上述透過水濃縮水槽73。NF裝置76之濃縮側76C最好透過另一濃縮水配管77連接於另一透過水配管74。
如圖所示,另一透過水回流配管69亦可透過透過水回流配管66連接於透過水濃縮水槽73。
如此,構成由液槽31通過被處理液體供給系統30E、RO膜裝置21之透過側21T、透過水配管61、透過水回流配管66及透過水濃縮水槽73返回液槽31之透過水返回系統60E(濃縮側之循環系統)。
其他結構與顯影廢液之處理系統1C相同。為了使用顯影廢液之處理系統1E處理顯影廢液,最好與顯影廢液之處理系統1A同樣地進行閥操作。此外,清洗時,為了由貯存顯影廢液之透過水的透過水槽62輸送透過水至液槽31,最好關閉閥71且開啟閥70。接著,最好在NF裝置76之透過水貯存於透過水濃縮水槽73中後,關閉閥68且開啟閥67。Next, a description will be made with reference to a preferred embodiment (Embodiment 5) of the processing system 1 (1E) of the developing waste liquid as a processing system of the TAAH containing liquid with the cleaning system 100 (100E).
As shown in Figure 9, the
在上述清洗系統100E中,最好使貯存在透過水槽62中之顯影廢液的透過水通過另一RO膜裝置72並使該濃縮水進一步通入NF裝置76,接著使用該透過水作為清洗液。因此,顯影廢液之透過水因為水分藉由RO膜裝置72排出至透過側且TMAH殘留在濃縮側,所以TMAH濃度提高。此外,因為該TMAH濃度提高之液通過NF裝置76,所以TMAH透過且去除抗蝕劑。因此,供給作成TMAH濃度提高且抗蝕劑降低之液的清洗液至透過水濃縮水槽73中。該清洗液之抗蝕劑濃度係例如0.001且抗蝕劑濃度十分低。此外,藉由通過另一RO膜裝置72濃縮TMAH濃度,可抑制TMAH濃度過低。因為清洗液只有顯影廢液之透過水無法確保充分之流量,所以最好RO膜處理清洗液後之清洗液濃縮水亦返回液槽31作為清洗液再利用。藉此,可確保RO膜21F之最低濃縮水量(清洗流量)。
此外,因為清洗液濃縮水係清洗液通入RO膜裝置21後之濃縮水,所以抗蝕劑濃度比顯影廢液處理時排出之濃縮水低。而且雖然因為清洗液濃縮水與清洗液透過水加在一起形成清洗液,所以含有抗蝕劑,但該抗蝕劑濃度相較於顯影廢液特別地低,因此具有由逆滲透膜表面充分去除抗蝕劑的能力。In the above-mentioned
如上所述地未在清洗系統100E中設置濃縮水返回系統40E時,為了確保清洗液量,必須增加來自透過水槽62之透過水的供給量。
此外,由濃縮側21C產生之清洗液濃縮水供給至濃縮水槽42時,處理清洗後之顯影廢液時貯存在濃縮水槽42中之濃縮水的濃度小。因此,清洗時之濃縮水最好全量返回液槽31。因此,最好以濃縮水量可排出至RO膜21F之最低濃縮水量以上的方式確保清洗液對RO膜裝置21之供給水量。As described above, when the concentrated
因為上述清洗係使用藉由RO膜裝置處理顯影廢液後之透過水的清洗,所以不需要在去除顯影廢液之處理系統1E內之清洗液後進行純水清洗,可在清洗步驟後立刻進行顯影廢液之處理。Because the above-mentioned cleaning uses the permeated water cleaning after the development waste liquid is processed by the RO membrane device, there is no need to perform pure water cleaning after removing the cleaning liquid in the
如上所述地,在作為本發明之TAAH含有液之處理系統的顯影廢液之處理系統的實施形態5中,顯影廢液之處理系統具有: (a-5)液槽,用來貯存在光刻步驟中產生之顯影廢液; (b-5)液體供給配管,其一端連接於該液槽之液體排出側; (c-5)逆滲透膜裝置(Y),連接於該液體供給配管之另一端; (d-5)濃縮水配管,其一端連接於該逆滲透膜裝置之濃縮側且將該逆滲透膜裝置之濃縮水供給至蒸發器; (e-5)濃縮水回流配管,連接於該濃縮水配管且供給上述逆滲透膜裝置(Y)之濃縮水至上述液槽; (f-5)透過水配管(P),其一端連接於該逆滲透膜裝置(Y)之透過側; (g-5)透過水槽,配置在該透過水配管(P)之中途; (h-5)稀薄TAAH排水處理設備,配置於該透過水配管(P)之另一端; (i-5)透過水回流配管(I),連接於位在上述逆滲透膜裝置(Y)與上述透過水槽之間的上述透過水配管(P)且供給上述逆滲透膜裝置(Y)之透過水至上述液槽; (j-5)透過水濃縮水槽,配置在該透過水回流配管(I)之中途; (k-5)另一透過水回流配管(II),其由位在上述透過水槽與上述稀薄TAAH排水處理設備之間的上述透過水配管(P)分歧,且連接於位在上述逆滲透膜裝置(Y)與上述透過水濃縮水槽之間的上述透過水回流配管(I); (l-5)另一逆滲透膜裝置(Z),配置在該另一透過水回流配管(II)之中途; (m-5)奈米過濾裝置,配置在該另一透過水回流配管(II)之中途且處理該另一逆滲透膜裝置(Z)之濃縮水; (n-5)另一透過水配管(Q),其連接該另一逆滲透膜裝置(Z)之透過側及上述稀薄TAAH排水處理設備;及 (o-5)奈米過濾濃縮水配管,其連接該奈米過濾裝置之濃縮側及上述另一透過水配管(Q), 上述清洗系統係供給使上述逆滲透膜裝置(Y)之透過水藉由上述另一逆滲透膜裝置(Z)濃縮並進一步透過上述奈米過濾裝置的透過水處理水至上述液槽,且使上述透過水處理水在由上述(a-5)至(d-5)與(e-5)形成之循環系統及由上述(a-5)至(c-5)、(f-5)與(i-5)形成之循環系統的兩循環系統中循環,藉此清洗上述逆滲透膜裝置具有之逆滲透膜的系統。As described above, in the fifth embodiment of the processing system for the development waste liquid as the TAAH-containing liquid processing system of the present invention, the processing system for the development waste liquid has: (a-5) Liquid tank, used to store the developing waste liquid produced in the photolithography step; (b-5) Liquid supply piping, one end of which is connected to the liquid discharge side of the liquid tank; (c-5) Reverse osmosis membrane device (Y), connected to the other end of the liquid supply pipe; (d-5) Concentrated water piping, one end of which is connected to the concentration side of the reverse osmosis membrane device and supplies the concentrated water of the reverse osmosis membrane device to the evaporator; (e-5) Concentrated water return piping, connected to the concentrated water piping and supplying the concentrated water of the reverse osmosis membrane device (Y) to the liquid tank; (f-5) Permeate water pipe (P), one end of which is connected to the permeation side of the reverse osmosis membrane device (Y); (g-5) Permeated water tank, arranged in the middle of the permeated water pipe (P); (h-5) Thin TAAH drainage treatment equipment, arranged at the other end of the permeated water pipe (P); (i-5) The permeated water return pipe (I) is connected to the permeated water pipe (P) between the reverse osmosis membrane device (Y) and the permeated water tank and supplies the reverse osmosis membrane device (Y) Permeate water to the above liquid tank; (j-5) The permeated water concentration tank is arranged in the middle of the permeated water return pipe (I); (k-5) Another permeated water return pipe (II), which is branched from the permeated water pipe (P) between the permeated water tank and the thin TAAH drainage treatment facility, and is connected to the reverse osmosis membrane The permeated water return pipe (I) between the device (Y) and the permeated water concentration tank; (l-5) Another reverse osmosis membrane device (Z) is arranged in the middle of the other permeated water return pipe (II); (m-5) The nanofiltration device is arranged in the middle of the other permeated water return pipe (II) and treats the concentrated water of the other reverse osmosis membrane device (Z); (n-5) Another permeate pipe (Q), which connects the permeate side of the other reverse osmosis membrane device (Z) and the above-mentioned thin TAAH drainage treatment equipment; and (o-5) Nanofiltration concentrated water piping, which connects the concentration side of the nanofiltration device and the other permeated water piping (Q), The cleaning system supplies the permeated water of the reverse osmosis membrane device (Y) through the other reverse osmosis membrane device (Z) to concentrate and further permeate the permeated water treatment water of the nanofiltration device to the liquid tank, and The above-mentioned permeated water treatment water is in the circulation system formed by the above (a-5) to (d-5) and (e-5) and the above (a-5) to (c-5), (f-5) and (i-5) A system that circulates in the two-circulation system of the formed circulation system, thereby cleaning the reverse osmosis membrane of the above-mentioned reverse osmosis membrane device.
在上述各顯影廢液之處理系統1B至1E中,進行顯影廢液之處理時,與上述顯影廢液之處理系統1A同樣地供給顯影廢液至液槽31且通過液體供給配管32輸送至RO膜裝置21。顯影廢液藉由RO膜裝置21分離成濃縮水及透過水。該濃縮水之一部份通過濃縮水返回系統40並藉由冷卻器91冷卻後返回液槽31。另一方面,濃縮水之剩餘部分通過濃縮水配管41並導入濃縮水槽42,接著輸送至蒸發器11。在顯影廢液之處理中,最好藉由閥操作使顯影廢液未流入清洗液系統側。例如,最好在處理系統1A中關閉閥67,在處理系統1B中關閉閥70,在處理系統1C、1E中關閉閥67、70且在處理系統1D中關閉閥56、67。In the
雖然上述顯影廢液之處理系統1A顯示質量平衡之一例,但其他顯影廢液之處理系統1B至1E亦可配合RO膜、NF膜等之膜使用而適當地設定質量平衡。Although the above-mentioned
在上述各顯影廢液之處理系統1A至1E中,最好具有測定藉由清洗系統100A至100E由液槽31供給之清洗液的抗蝕劑濃度的裝置。例如,較佳地,由採取配管34取得樣本且藉由吸光光度分析法使用例如前述分光光度計測定該樣本之抗蝕劑濃度。此外,最好具有由測得之抗蝕劑濃度檢測清洗狀態的清洗狀態檢測裝置(未圖示)。該清洗狀態檢測裝置藉由比較抗蝕劑濃度之上述測定值與需要清洗之抗蝕劑濃度的臨界值,判別是否進行清洗步驟。In each of the above-mentioned
上述各顯影廢液之處理系統1A至1E最好藉由測定RO膜裝置21之處理水量、透過水量、操作壓力、膜間壓差(給水側壓力與透過側壓力之差)中之任一者以上,檢測RO膜裝置21之RO膜21F的膜堵塞狀態。
檢測方法係由藉由流量計86至88測定之流量的合計值求得RO膜裝置21之處理水量。透過水量係藉由流量計88測定。此外,操作壓力係藉由壓力計81測定。膜間壓差(給水側壓力與透過側壓力之差)係藉由壓力計81及83測定並求得其壓差。The above-mentioned
在上述各顯影廢液之處理系統1A至1E中,最好判別有無由檢出之RO膜21F的堵塞狀態轉移至RO膜裝置21之清洗步驟,且在需要轉移至清洗步驟時轉移至RO膜裝置之清洗步驟。
判別有無轉移至清洗步驟最好:在處理水量達到初期之大約60質量%時、在透過水量達到初期之大約60質量%時、在操作壓力達到大約1.8MPa時、在膜間壓差達到大約1.8MPa時其中至少一者,轉移至清洗步驟。
雖然在上述各顯影廢液之處理系統1A、1B中清洗液使用TMAH新液,但在上述各顯影廢液之處理系統1C、1E中在透過水濃縮水槽73中保管含有TMAH之濃縮水且在上述各顯影廢液之處理系統1D中在NF透過水槽53中保管含有TMAH之透過水,並且該保管之液可用於清洗液。因此,TMAH新液之使用量可比上述各顯影廢液之處理系統1A、1B少。此外,顯影廢液之處理系統1C至1E以儘可能回收廢液中之TMAH用於清洗液為目的且達成此目的。另外,顯影廢液之處理系統1C至1E中當然可使用TMAH新液。In the
雖然上述RO膜裝置或NF膜裝置係1段結構,但亦可為多段結構。此時,最好RO膜時及NF膜時都串聯地配置成多段。最好多段RO膜裝置中至少一段係高壓RO膜裝置。 實施例Although the aforementioned RO membrane device or NF membrane device has a one-stage structure, it may also have a multi-stage structure. In this case, it is preferable that both the RO membrane and the NF membrane are arranged in multiple stages in series. Preferably, at least one of the multi-stage RO membrane devices is a high-pressure RO membrane device. Example
(實施例1)
實施例1使用圖1所示之顯影廢液之處理系統1A,進行顯影廢液的濃縮處理及RO膜21F之給水側21S的清洗。RO膜裝置21之RO膜21F使用日東電工公司製SWC 5海水淡化膜4英吋、膜面積37.1m2
。此外,確認該RO膜(SWC 5)即使如前所述地連續操作大約pH 12之連續試驗3620小時(大約150天),包含材質之膜使用上亦沒有問題。
處理顯影廢液時之質量平衡係閥47、48調整開度,接著與前述圖2所示者同樣地設定。
因此處理顯影廢液時係閥47、48調整開度而開啟,接著開啟閥68且關閉閥67。另一方面,清洗步驟時,開啟閥47且關閉閥48,接著開啟閥67且關閉閥68。在該狀態下繼續進行顯影廢液之處理,接著在透過通量接近0.4m/d時進行1次清洗步驟。一般而言進行3次1200小時之顯影廢液處理步驟且在其間進行2次清洗步驟。1次清洗步驟係去除顯影廢液之時間、投入清洗液之時間、清洗時間、去除清洗液之時間合計進行4.75小時。
顯影廢液實際使用半導體製造時排出之顯影廢液。操作壓力為1.8MPa以上。
如上所述地設定處理條件後,進行顯影廢液之處理。
由RO膜裝置21之供給側、濃縮側、透過側之各採取配管34、44、64採取樣本,接著求得試驗各液(顯影廢液、RO膜供給水、RO膜濃縮水、RO膜透過水)之pH、TMAH濃度、抗蝕劑濃度(290nm吸光度)。其結果顯示於表1。
顯影廢液處理之經過時間與透過通量(m/d)之關係顯示於圖3中。隨著顯影廢液之處理進行,透過通量降低。在透過通量接近0.4m/d時轉移至清洗步驟,實施RO膜之清洗。此外,清洗時點亦可任意設定。
進行清洗步驟後,結果如圖3所示地,透過通量、操作壓力一起回復至初期狀態。初期狀態係開始顯影廢液之處理前的狀態。此外,即使重複進行顯影廢液之濃縮處理、清洗步驟,每次進行清洗步驟時,透過通量、操作壓力均一起回復至初期狀態。如此,藉由定期地進行清洗步驟,可使RO膜21F之處理能力回復並且可延長RO膜21F之壽命。
清洗液使用TMAH濃度為2.50質量%之TMAH顯影新液。TMAH顯影新液係用於光刻之顯影步驟中之未使用TMAH顯影液。如前述表2所示地,由清洗開始例如0.25小時後,殘留在系統內之TMAH濃度小的顯影廢液混入後TMAH濃度下降至2.20質量%。考慮混入例如TMAH濃度低之透過水。TMAH濃度下降後,大致穩定在下降值。
因為清洗後之清洗液係TMAH及水,所以清洗步驟後,清洗液可立刻流入濃縮水槽。(Example 1) In Example 1, the
(比較例1)
除了未進行清洗步驟以外,比較例1與實施例1同樣地進行顯影廢液之處理。因此,由RO膜裝置21之供給側、濃縮側、透過側之各採取配管34、44、64採取的顯影廢液、RO膜供給水、RO膜濃縮水及RO膜透過水的pH、TMAH濃度及抗蝕劑濃度(290nm吸光度)係與實施例1相同之值。
顯影廢液處理之經過時間與透過通量(m/d)之關係顯示於圖3中。隨著顯影廢液之處理進行,透過通量降低。透過通量接近0.4m/d時透過通量之變化變小。操作壓力在操作壓力接近1.8MPa時操作壓力之變化變小。
如此未進行清洗步驟時,無法使RO膜21F之處理能力回復,因此必須更換RO膜21F。(Comparative example 1)
Except that the washing step was not performed, Comparative Example 1 was treated in the same manner as Example 1 to treat the development waste liquid. Therefore, the development waste liquid, RO membrane feed water, RO membrane concentrated water, and RO membrane permeate water pH and TMAH concentration collected from the supply side, concentration side, and permeate side of the
(比較例2) 除了使用2.5質量%氫氧化鈉(NaOH)水溶液以外,與實施例1同樣地進行清洗。因此,清洗時間為4小時。清洗前後之透過通量係清洗前為0.422m/d且清洗後為0.685m/d。如此,即使是2.5質量%NaOH水溶液清洗,結果亦與TMAH清洗時相同。但是透過通量回復,需要用以去除NaOH之純水清洗。純水清洗係實施到與顯影廢液相同之鈉濃度達到0.005質量%以下,使鈉離子對回收TMAH不產生影響為止(請參照前述表4及圖5)。純水清洗係在系統內保持流動地進行。 清洗時間係顯影廢液去除花費0.25小時、清洗液投入花費0.25小時、清洗花費4小時、清洗液去除花費0.25小時、純水投入花費0.25小時、系統內純水清洗花費10小時、純水清洗液去除花費0.25小時,合計需要15.25小時之清洗時間(請參照前述表3)。 結果,可了解的是本發明之顯影廢液處理系統之使用TMAH的清洗方法的清洗步驟少、清洗時間短,因此可有效率且低成本地進行清洗。(Comparative example 2) Washing was performed in the same manner as in Example 1, except that a 2.5% by mass sodium hydroxide (NaOH) aqueous solution was used. Therefore, the cleaning time is 4 hours. The flux before and after cleaning was 0.422m/d before cleaning and 0.685m/d after cleaning. In this way, even with 2.5% by mass NaOH aqueous solution cleaning, the result is the same as during TMAH cleaning. But through flux recovery, pure water cleaning is needed to remove NaOH. The pure water cleaning system is implemented until the same sodium concentration as the developing waste solution reaches 0.005% by mass or less, so that sodium ions do not affect the recovery of TMAH (please refer to the aforementioned Table 4 and Figure 5). The pure water cleaning is carried out while keeping the flow in the system. The cleaning time is 0.25 hours for developing waste liquid removal, 0.25 hours for cleaning solution input, 4 hours for cleaning, 0.25 hours for cleaning solution removal, 0.25 hours for pure water input, 10 hours for pure water cleaning in the system, pure water cleaning solution Removal takes 0.25 hours, and a total cleaning time of 15.25 hours is required (please refer to Table 3 above). As a result, it can be understood that the cleaning method using TMAH of the developing waste liquid treatment system of the present invention has fewer cleaning steps and a short cleaning time, and therefore can be cleaned efficiently and at low cost.
(實施例2至5)
實施例2使用圖6所示之顯影廢液之處理系統1B進行顯影廢液之濃縮處理及RO膜21F之清洗步驟。清洗液使用TMAH顯影新液作為TMAH新液。除此以外之條件與實施例1相同。
實施例3使用圖7所示之顯影廢液之處理系統1C進行顯影廢液之濃縮處理及RO膜21F之清洗步驟。清洗液使用藉由另一RO膜裝置72濃縮透過RO膜裝置21之顯影廢液的透過水後的濃縮水。除此以外之條件與實施例1相同。
實施例4使用圖8所示之顯影廢液之處理系統1D進行顯影廢液之濃縮處理及RO膜21F之清洗步驟。清洗液使用TMAH顯影新液作為TMAH新液。除此以外之條件與實施例1相同。
實施例5使用圖9所示之顯影廢液之處理系統1E進行顯影廢液之濃縮處理及RO膜21F之清洗步驟。清洗液使用藉由另一RO膜裝置72濃縮透過RO膜裝置21之顯影廢液的透過水且使該濃縮水透過NF裝置76的透過水。除此以外之條件與實施例1相同。
實施例4及5之NF膜使用日東電工公司製NF,型式NTR.7450。
各實施例1至5之清洗結果顯示於表5中。(Examples 2 to 5)
Embodiment 2 uses the
如表5所示地,在實施例1至5中,清洗液之TMAH濃度係2.20至2.38。都是可充分清洗RO膜21F之抗蝕劑的TMAH濃度。此外,供給至RO膜21F前之抗蝕劑濃度係0.000至0.027且都是十分低之值。
透過通量在清洗後回復到0.68至0.70。不管是哪一種液,該回復率都大致回復到97%以上且對本發明之顯影廢液處理系統的TMAH清洗是有效的。As shown in Table 5, in Examples 1 to 5, the TMAH concentration of the cleaning solution was 2.20 to 2.38. Both are TMAH concentrations that can sufficiently clean the resist of the
[表5]
雖然與本發明之實施例一起說明本發明,但除非我們特別地指定,我們的發明不限於說明的任何細節部分,而是考慮應該在不違反添附申請專利範圍所示之發明精神與範圍的情形下廣義地解釋。Although the present invention is described together with the embodiments of the present invention, unless we specifically specify, our invention is not limited to any details of the description, but should be considered in a situation that does not violate the spirit and scope of the invention shown in the scope of the attached patent application. Explain broadly.
本申請案依據2018年10月19日在日本申請專利之特願2018-197694主張優先權,且在此參照該申請案並加入其內容作為本說明書之記載的一部份。This application claims priority based on Japanese Patent Application No. 2018-197694 filed on October 19, 2018, and the application is referred to here and its content is added as part of the description of this specification.
1,1A,1B,1C,1D,1E:顯影廢液之處理系統 11:蒸發器 21,72:RO膜裝置 21C,52C,72C,76C:濃縮側 21F:RO膜 21S,72S,76S:給水側 21T,52T,72T,76T:透過側 30:被處理液體供給系統 30A,30B,30C,30D,30E:清洗液體供給系統 31:液槽 32:液體供給配管 33:液傳送裝置 34,64:透過水採取配管 35,45,47,48,56,57,65,67,68,70,71:閥 40,40A,40B,40C,40D,40E:濃縮水返回系統 41,77:濃縮水配管 42:濃縮水槽 43:濃縮水傳送裝置 44:濃縮水採取配管 46:濃縮水回流配管 50:濃縮水透過系統 51:濃縮水透過配管 52,76:奈米過濾(NF)裝置 53:NF透過水槽 54:NF透過水傳送裝置 55:濃縮水配管 60,60A,60B,60C,60D,60E:透過水返回系統 61,74:透過水配管 62:透過水槽 63,75:透過水傳送裝置 66,69:透過水回流配管 73:透過水濃縮水槽 81,82,83:壓力計 86,87,88:流量計 91:冷卻器 93:稀薄TAAH排水處理設備 100,100A,100B,100C,100D,100E:清洗系統1, 1A, 1B, 1C, 1D, 1E: processing system for developing waste liquid 11: Evaporator 21, 72: RO membrane device 21C, 52C, 72C, 76C: concentrated side 21F: RO membrane 21S, 72S, 76S: water supply side 21T, 52T, 72T, 76T: through side 30: Liquid supply system to be processed 30A, 30B, 30C, 30D, 30E: cleaning liquid supply system 31: Liquid tank 32: Liquid supply piping 33: Liquid delivery device 34, 64: Permeate water to take piping 35, 45, 47, 48, 56, 57, 65, 67, 68, 70, 71: Valve 40, 40A, 40B, 40C, 40D, 40E: concentrated water return system 41, 77: Concentrated water piping 42: Concentrated water tank 43: Concentrated water transfer device 44: Concentrated water take piping 46: Concentrated water return piping 50: Concentrated water permeation system 51: Concentrated water through piping 52, 76: Nanofiltration (NF) device 53: NF through the sink 54: NF permeable water transmission device 55: Concentrated water piping 60, 60A, 60B, 60C, 60D, 60E: permeated water return system 61, 74: Permeated water piping 62: Through the sink 63, 75: Water transmission device 66, 69: Permeated water return piping 73: Permeated water concentration tank 81, 82, 83: pressure gauge 86, 87, 88: Flowmeter 91: cooler 93: Thin TAAH drainage treatment equipment 100, 100A, 100B, 100C, 100D, 100E: cleaning system
[圖1]係顯示本發明TAAH含有液之處理系統之一較佳實施形態(實施形態1)的概略結構圖。 [圖2]係顯示在第一實施形態之TAAH含有液之處理系統中TAAH含有液(顯影廢液)處理時之質量平衡的一較佳例的質量平衡圖。 [圖3]係透過通量及操作壓力與有無清洗步驟之TAAH含有液(顯影廢液)處理的經過時間的關係圖。 [圖4]係清洗步驟中之TMAH濃度與清洗時間的關係圖。 [圖5]係純水清洗步驟中之Na濃度與清洗時間的關係圖。 [圖6]係顯示本發明TAAH含有液之處理系統之一較佳實施形態(實施形態2)的概略結構圖。 [圖7]係顯示本發明TAAH含有液之處理系統之一較佳實施形態(實施形態3)的概略結構圖。 [圖8]係顯示本發明TAAH含有液之處理系統之一較佳實施形態(實施形態4)的概略結構圖。 [圖9]係顯示本發明TAAH含有液之處理系統之一較佳實施形態(實施形態5)的概略結構圖。[Fig. 1] is a schematic diagram showing a preferred embodiment (Embodiment 1) of a processing system for TAAH-containing liquid of the present invention. Fig. 2 is a mass balance diagram showing a preferred example of the mass balance of the TAAH-containing solution (developing waste liquid) in the TAAH-containing solution processing system of the first embodiment. [Figure 3] A graph showing the relationship between permeation flux and operating pressure and the elapsed time of TAAH-containing solution (developing waste liquid) treatment with or without a cleaning step. [Figure 4] The relationship between the TMAH concentration and the cleaning time in the cleaning step. [Figure 5] is a graph showing the relationship between Na concentration and cleaning time in the pure water cleaning step. Fig. 6 is a schematic configuration diagram showing a preferred embodiment (Embodiment 2) of a processing system for TAAH-containing liquid of the present invention. Fig. 7 is a schematic configuration diagram showing a preferred embodiment (Embodiment 3) of a processing system for TAAH-containing liquid of the present invention. Fig. 8 is a schematic configuration diagram showing a preferred embodiment (Embodiment 4) of a processing system for TAAH-containing liquid of the present invention. Fig. 9 is a schematic configuration diagram showing a preferred embodiment (Embodiment 5) of a processing system for TAAH-containing liquid of the present invention.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018197694 | 2018-10-19 | ||
JP2018-197694 | 2018-10-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202021911A true TW202021911A (en) | 2020-06-16 |
TWI835877B TWI835877B (en) | 2024-03-21 |
Family
ID=70283871
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108135954A TWI835877B (en) | 2018-10-19 | 2019-10-04 | Processing system and processing method for liquid containing tetraalkylammonium hydroxide |
TW113105212A TW202423851A (en) | 2018-10-19 | 2019-10-04 | Processing system and processing method for liquid containing tetraalkylammonium hydroxide |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW113105212A TW202423851A (en) | 2018-10-19 | 2019-10-04 | Processing system and processing method for liquid containing tetraalkylammonium hydroxide |
Country Status (6)
Country | Link |
---|---|
US (1) | US11524261B2 (en) |
JP (2) | JP7357635B2 (en) |
KR (1) | KR102571258B1 (en) |
CN (2) | CN112789101A (en) |
TW (2) | TWI835877B (en) |
WO (1) | WO2020080008A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3139480A1 (en) * | 2022-09-08 | 2024-03-15 | Bucher Vaslin | Installation for filtering a liquid, in particular wine, and a process for filtering a liquid, in particular wine, with such an installation |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60118282A (en) | 1983-11-29 | 1985-06-25 | Kurita Water Ind Ltd | Treatment of tetraalkylammonium hydroxide-containing waste solution |
JPS63294989A (en) * | 1987-05-28 | 1988-12-01 | Nippon Rensui Kk | Treatment of photoresist-containing waste water |
JPH06142697A (en) * | 1992-11-09 | 1994-05-24 | Fuji Photo Film Co Ltd | Treatment method for photograph development treatment waste liquid |
GB2319531B (en) * | 1996-11-21 | 2001-03-07 | Organo Corp | Process for rejuvenation treatment of photoresist development waste |
JP3543915B2 (en) * | 1996-11-21 | 2004-07-21 | オルガノ株式会社 | Recycling treatment method for photoresist developing waste liquid |
JP3736950B2 (en) * | 1997-07-14 | 2006-01-18 | オルガノ株式会社 | Wastewater treatment method |
JP3671644B2 (en) | 1998-01-05 | 2005-07-13 | オルガノ株式会社 | Photoresist developing waste liquid recycling method and apparatus |
JP2000225324A (en) * | 1998-10-19 | 2000-08-15 | Nefuronetto:Kk | Reverse osmosis apparatus provided with automatic reverse osmosis membrane washing mechanism |
JP3728945B2 (en) * | 1998-10-30 | 2005-12-21 | オルガノ株式会社 | Method and apparatus for recovering and reusing developer from photoresist developer waste |
KR20000032313A (en) * | 1998-11-13 | 2000-06-15 | 이구택 | Treatment method of dyeing wastewater using reverse osmosis and evaporation |
JP3758011B2 (en) * | 1998-11-24 | 2006-03-22 | オルガノ株式会社 | Equipment for recovering and reusing recycled developer from photoresist developer waste |
JP2001017965A (en) * | 1999-07-09 | 2001-01-23 | Japan Organo Co Ltd | Treatment of photoresist development waste liquid |
JP2001276824A (en) * | 2000-03-30 | 2001-10-09 | Japan Organo Co Ltd | Treatment method of drain containing tetraalkylammonium ion |
JP2003053328A (en) * | 2001-08-20 | 2003-02-25 | Japan Organo Co Ltd | Waste water treating equipment |
JP2003215810A (en) * | 2002-01-22 | 2003-07-30 | Japan Organo Co Ltd | Method for recovering developer from photoresist developer waste liquid |
CN1197785C (en) * | 2003-08-27 | 2005-04-20 | 兖矿鲁南化工科技发展有限公司 | Method for treating waste water containing low concentration ammonium chloride |
JP4936505B2 (en) | 2005-10-04 | 2012-05-23 | 株式会社神鋼環境ソリューション | Method and apparatus for treating ammonia-containing water |
JP5245626B2 (en) * | 2008-08-04 | 2013-07-24 | 栗田工業株式会社 | Method and apparatus for recovering water-soluble organic solvent having amino group |
JPWO2010061811A1 (en) * | 2008-11-27 | 2012-04-26 | 栗田工業株式会社 | Apparatus and method for separating and recovering water-soluble organic solvent having amino group |
TWI405050B (en) * | 2010-01-20 | 2013-08-11 | Chang Chun Petrochemical Co | Process for recovering and purifying tetraalkyl ammonium hydroxide from waste solution containing the same |
JP2012192367A (en) * | 2011-03-17 | 2012-10-11 | Kurita Water Ind Ltd | Treatment device for organic waste water containing nitrogen |
JP2012210568A (en) * | 2011-03-31 | 2012-11-01 | Kurita Water Ind Ltd | Regeneration apparatus and regeneration method of development waste liquid |
JP2012210566A (en) * | 2011-03-31 | 2012-11-01 | Kurita Water Ind Ltd | Method for washing taah recovery apparatus |
JP2012210565A (en) * | 2011-03-31 | 2012-11-01 | Kurita Water Ind Ltd | Apparatus and method for regenerating development waste liquid |
JP6853661B2 (en) * | 2016-12-15 | 2021-03-31 | オルガノ株式会社 | Amine-containing wastewater treatment method and treatment equipment |
JP6365624B2 (en) * | 2016-10-20 | 2018-08-01 | 栗田工業株式会社 | Method and apparatus for purifying hydrogen peroxide aqueous solution |
JP2018153789A (en) * | 2017-03-21 | 2018-10-04 | 三浦工業株式会社 | Water treatment system |
-
2019
- 2019-09-13 CN CN201980064496.XA patent/CN112789101A/en active Pending
- 2019-09-13 WO PCT/JP2019/036092 patent/WO2020080008A1/en active Application Filing
- 2019-09-13 KR KR1020217014901A patent/KR102571258B1/en active IP Right Grant
- 2019-09-13 US US17/286,114 patent/US11524261B2/en active Active
- 2019-09-13 JP JP2020552969A patent/JP7357635B2/en active Active
- 2019-09-13 CN CN202311270224.XA patent/CN117101411A/en active Pending
- 2019-10-04 TW TW108135954A patent/TWI835877B/en active
- 2019-10-04 TW TW113105212A patent/TW202423851A/en unknown
-
2023
- 2023-09-26 JP JP2023163598A patent/JP2023178301A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2020080008A1 (en) | 2020-04-23 |
CN112789101A (en) | 2021-05-11 |
US11524261B2 (en) | 2022-12-13 |
TWI835877B (en) | 2024-03-21 |
KR20210074374A (en) | 2021-06-21 |
JP2023178301A (en) | 2023-12-14 |
JPWO2020080008A1 (en) | 2021-09-09 |
JP7357635B2 (en) | 2023-10-06 |
CN117101411A (en) | 2023-11-24 |
US20210370234A1 (en) | 2021-12-02 |
TW202423851A (en) | 2024-06-16 |
KR102571258B1 (en) | 2023-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105283422B (en) | Hyperpure water manufacturing systems, ultra-pure water manufacture feed system and its washing methods | |
US20180280888A1 (en) | Reverse osmosis treatment apparatus and reverse osmosis treatment method | |
JP4228732B2 (en) | Ultrapure water production system | |
JP5287713B2 (en) | Cleaning and sterilization method for ultrapure water production system | |
AU2015244268B2 (en) | Osmotic separation systems and methods | |
JP2023178301A (en) | Treatment system and treatment method for tetraalkylammonium hydroxide-containing liquid | |
US20100083985A1 (en) | Method for cleaning photomask-related substrate, cleaning method, and cleaning fluid supplying apparatus | |
JPWO2012147715A1 (en) | Membrane module cleaning method | |
WO2017204054A1 (en) | Reverse osmosis membrane apparatus and method for operating reverse osmosis membrane apparatus | |
CN107406277A (en) | Method for treating water and device | |
JP2018043229A (en) | Ultrapure water manufacturing device | |
TW201341070A (en) | Liquid management system, and recovery and recycling device for cleaning liquid | |
JP2018043190A (en) | Ultrapure water manufacturing device | |
JP2007125527A (en) | Operation method of reverse osmosis membrane separator | |
TW200418729A (en) | Super pure water producing system and a operation method for that | |
KR101372615B1 (en) | A direct-type purifying device | |
JP2020171892A (en) | Hollow fiber membrane damage detector and ultra pure water manufacturing apparatus, and hollow fiber membrane damage detection method | |
JP2001187323A (en) | Membrane separation device and operation method thereof | |
US20230285903A1 (en) | Method for operating desalting device | |
CN110215846A (en) | A kind of cleaning agent and cleaning method handling reverse osmosis concentrated water plate nanofiltration membrane | |
JP2018144015A (en) | Reverse osmosis membrane filtration method | |
JP4940631B2 (en) | Operation method of reverse osmosis membrane separator | |
JP2009208012A (en) | Water treating method and water treating apparatus | |
CN206512007U (en) | water purification system | |
CN210286989U (en) | Reclaimed water recycling system |