JP4940631B2 - Operation method of reverse osmosis membrane separator - Google Patents
Operation method of reverse osmosis membrane separator Download PDFInfo
- Publication number
- JP4940631B2 JP4940631B2 JP2005322399A JP2005322399A JP4940631B2 JP 4940631 B2 JP4940631 B2 JP 4940631B2 JP 2005322399 A JP2005322399 A JP 2005322399A JP 2005322399 A JP2005322399 A JP 2005322399A JP 4940631 B2 JP4940631 B2 JP 4940631B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- reverse osmosis
- osmosis membrane
- membrane separation
- flushing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000012528 membrane Substances 0.000 title claims description 102
- 238000001223 reverse osmosis Methods 0.000 title claims description 42
- 238000000034 method Methods 0.000 title claims description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 145
- 238000011010 flushing procedure Methods 0.000 claims description 59
- 238000000926 separation method Methods 0.000 claims description 41
- 239000012466 permeate Substances 0.000 claims description 15
- 239000003513 alkali Substances 0.000 claims description 12
- 239000005416 organic matter Substances 0.000 claims description 7
- 238000011033 desalting Methods 0.000 claims description 3
- 239000000126 substance Substances 0.000 description 20
- 230000004907 flux Effects 0.000 description 18
- 238000004140 cleaning Methods 0.000 description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 241000191291 Abies alba Species 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 238000011084 recovery Methods 0.000 description 8
- 239000002351 wastewater Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 238000004065 wastewater treatment Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000011017 operating method Methods 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 239000008238 pharmaceutical water Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Description
本発明は逆浸透膜分離装置(RO装置)の運転方法に係り、特に、脱塩及び/又は有機物除去を行うRO装置の膜面透過流束の低下を抑制し、長期安定運転を可能とするRO装置の運転方法に関する。 The present invention relates to an operation method of a reverse osmosis membrane separation device (RO device), and in particular, suppresses a decrease in membrane surface permeation flux of a RO device that performs desalination and / or organic matter removal, and enables long-term stable operation. The present invention relates to a method for operating an RO device.
RO装置は用水の造水プロセス、食品・医薬用水の製造プロセス、排水回収プロセスなど幅広い分野で使用されている。中でも近年、用排水のコスト低減、環境負荷低減の目的から、排水回収プロセスにおいて、RO装置を使用するケースが急激に増加している。 RO devices are used in a wide range of fields such as fresh water production processes, food / pharmaceutical water production processes, and wastewater recovery processes. In particular, in recent years, the number of cases in which RO devices are used in the wastewater recovery process has been increasing rapidly for the purpose of reducing the cost of wastewater for use and reducing the environmental burden.
通常、RO装置は、供給水に対する水回収率を高める目的から、例えば、図2に示すようなクリスマスツリーと呼ばれる配置をとる。即ち、図2において、ROエレメントを内蔵したROベッセル(RO手段本体)1A,1B,1C,1Dが4機並列配置されてなる第1ROベッセル群(ROベッセル群は「バンク」とも言う。)1と、ROベッセル2A,2Bが2機並列配置されてなる第2ROバンク2とでクリスマスツリー型の多段RO装置が構成されている。
Usually, the RO device has an arrangement called a Christmas tree as shown in FIG. 2 for the purpose of increasing the water recovery rate with respect to the supplied water. That is, in FIG. 2, a first RO vessel group (RO vessel group is also referred to as a “bank”) 1 in which four RO vessels (RO means main bodies) 1A, 1B, 1C, 1D incorporating RO elements are arranged in parallel. The
被処理水、即ち、RO装置の供給水(RO給水)はまず第1バンク1に流入し、透過水と濃縮水とに分離される。続いて第1バンク1の濃縮水は第2バンク2に流入し、ここでも透過水と濃縮水とに分離される。第1バンク1の透過水と第2バンク2の透過水は合流し、後段処理工程に移送される。一方、第2バンク2の濃縮水は系外に放流されるか排水処理設備等に移送される。通常、RO装置におけるクリスマスツリー構造は、要求される水回収率にもよるが、2又は3バンクで構成されることが多い。
The water to be treated, that is, the supply water (RO feed water) of the RO device first flows into the first bank 1 and is separated into permeated water and concentrated water. Subsequently, the concentrated water in the first bank 1 flows into the
このようなRO装置を、排水処理プロセス、特に被処理水中の有機物成分濃度が比較的高い排水回収プロセスに利用した場合、被処理水のTOC濃度が高いことにより、膜面に微生物が繁殖して引き起こされるバイオファウリングの発生、並びに排水処理プロセスに設置されている生物処理手段から排出される生物代謝物系有機物又は生物難分解性有機物である非イオン性界面活性剤のRO装置への流入による膜面閉塞で、RO装置の透過水量が低下し易く、そのために頻繁に膜洗浄を実施しなければならないという問題があり、この問題は近年特に顕著になる傾向にある。 When such an RO device is used in a wastewater treatment process, particularly a wastewater recovery process in which the concentration of organic components in the treated water is relatively high, microorganisms propagate on the membrane surface due to the high TOC concentration of the treated water. Due to the occurrence of biofouling caused and the inflow of non-ionic surfactants, which are biometabolite-based organic matter or biodegradable organic matter discharged from biological treatment means installed in the wastewater treatment process, into the RO device Due to the membrane surface blockage, the amount of permeated water of the RO device tends to decrease, and therefore there is a problem that the membrane must be frequently washed. This problem tends to be particularly noticeable in recent years.
特許3321179号においては、RO給水のpHを10以上のアルカリ性に調整してRO装置に常時通水する方法が提案されているが、この方法ではアルカリ性でRO処理を行うため、膜面におけるスケール生成を抑制する目的から、硬度除去装置、又はアルカリ度除去装置をRO装置の前段に設置しなければならず、設備構成や運転管理が煩雑となる欠点がある。 In Japanese Patent No. 3321179, a method for adjusting the pH of RO water supply to 10 or more alkaline and constantly passing water through the RO device is proposed. However, since this method performs alkaline RO treatment, scale generation on the membrane surface is proposed. For the purpose of suppressing the hardness, the hardness removing device or the alkalinity removing device must be installed in the front stage of the RO device, and there is a drawback that the equipment configuration and operation management become complicated.
また、特開平11−128919号においては、RO連続運転中に一時的にRO給水のpHを10〜12とし、このpH調整中においても膜透過水を処理水として取り出す方法が提案されている。しかし、この方法は、RO給水のpHをアルカリ性として運転する時間がわずかであったとしても、スケール防止のための前処理対策なしで実施した場合、膜面にスケールが生成し、膜面が閉塞する恐れがある。一方で、スケール防止のための前処理装置を設けることは、上述の如く、設備が煩雑となる。 Japanese Patent Application Laid-Open No. 11-128919 proposes a method of temporarily setting the pH of RO water supply to 10 to 12 during continuous RO operation and taking out the membrane permeated water as treated water during this pH adjustment. However, in this method, even if the operation time is short with the pH of the RO water supply being alkaline, if it is carried out without pretreatment measures for scale prevention, scale is generated on the membrane surface and the membrane surface is blocked. There is a fear. On the other hand, providing a pretreatment device for scale prevention makes the facilities complicated as described above.
なお、例えば特開2004−58022号に記載されるように、RO装置等の膜分離装置をアルカリ洗浄することは知られている。膜分離装置のアルカリ洗浄は、膜分離装置の通常運転を完全に停止して、即ち、被処理水の通水及び透過水の採水を完全に停止して実施されるものであり、給水ポンプの停止はもとより、系内の被処理水も排出した後、洗浄液貯槽と膜分離装置との間で洗浄ラインを形成して洗浄工程に入るものである。そして、洗浄液を循環させ、膜の一次側(濃縮水側)と二次側(透過水側)を洗浄液に浸漬し、更に再循環し、洗浄液の排出などの手順を経て実施される。このようなアルカリによる薬品洗浄では、洗浄ラインへの切替えなど複雑な手順を踏まねばならず、その間の通水停止時間も長く運転効率の低下にもつながるため、できるだけ薬品洗浄の回数を減らすことが望まれている。
本発明は、脱塩及び/又は有機物除去を行うRO装置において、スケール防止のための前処理装置等を必要とすることなく、膜面透過流束の低下を抑制し、長期安定運転を可能とするRO装置の運転方法を提供することを目的とする。 In the RO apparatus for performing desalting and / or organic matter removal, the present invention can suppress a decrease in the membrane surface permeation flux without requiring a pretreatment apparatus for scale prevention, and enables long-term stable operation. An object of the present invention is to provide a method for operating an RO device.
本発明の逆浸透膜分離装置の運転方法は、脱塩及び/又は有機物除去を行う逆浸透膜分離手段を有する逆浸透膜分離装置の運転方法において、アルカリを添加してpHを9.5〜13にした被処理水をフラッシング水として、該逆浸透膜分離手段を一時的にフラッシングする工程を備える逆浸透膜分離装置の運転方法であって、前記逆浸透膜分離装置は、前段逆浸透膜分離手段と、該前段逆浸透膜分離手段の濃縮水が供給される後段逆浸透膜分離手段とを備える多段逆浸透膜分離装置であり、前記フラッシング工程は、フラッシング水を前段逆浸透膜分離手段のみに供給してフラッシングする工程と、続いてフラッシング水を前段逆浸透膜分離手段と後段逆浸透膜分離手段とに直列的に供給してフラッシングする工程とを備えることを特徴とする。 The operating method of the reverse osmosis membrane separation device of the present invention is the operating method of the reverse osmosis membrane separation device having reverse osmosis membrane separation means for desalting and / or organic matter removal, wherein alkali is added to adjust the pH to 9.5. 13 is a method for operating a reverse osmosis membrane separation apparatus comprising a step of temporarily flushing the reverse osmosis membrane separation means using the treated water as flushing water , wherein the reverse osmosis membrane separation apparatus comprises a preceding reverse osmosis membrane A multi-stage reverse osmosis membrane separation device comprising a separation means and a latter-stage reverse osmosis membrane separation means to which the concentrated water of the preceding-stage reverse osmosis membrane separation means is supplied, wherein the flushing step a step of flushing supply only, followed by; and a step of flushing with serially supplying flushing water to the preceding stage reverse osmosis membrane separation means and the rear stage reverse osmosis membrane separation means and That.
請求項2の逆浸透膜分離装置の運転方法は、請求項1において、前記逆浸透膜分離装置は、逆浸透膜を有する逆浸透膜分離手段本体と、被処理水の導入排管と、逆浸透膜を透過した透過水の排出配管と、開閉弁を備える濃縮水の排出配管とを有し、透過水の採水を行う通常運転時には、被処理水を逆浸透膜分離手段本体に導入すると共に前記開閉弁を閉とするか、或いはその開度を絞って透過水を取り出し、前記フラッシング工程においては、被処理水の該逆浸透膜分離手段本体への導入を継続したまま該開閉弁を開とするか、その開度を大きくすることにより、該逆浸透膜分離本体に導入した被処理水の殆どを濃縮水排出配管から排出することを特徴とする。 Method of operating a reverse osmosis membrane separation apparatus 請 Motomeko 2 Oite to claim 1, wherein the reverse osmosis membrane separation device, a reverse osmosis membrane separation means body having a reverse osmosis membrane, the introduction cannula treated water And a reverse osmosis membrane separation means main body during normal operation in which the permeated water is sampled. And the on-off valve is closed, or the permeate is taken out by narrowing the opening, and in the flushing step, the water to be treated is continuously introduced into the reverse osmosis membrane separation means main body. By opening the on-off valve or increasing the opening, most of the water to be treated introduced into the reverse osmosis membrane separation main body is discharged from the concentrated water discharge pipe.
請求項3の逆浸透膜分離装置の運転方法は、請求項2において、前記被処理水の導入排管にアルカリを注入するアルカリ添加手段が設けられていることを特徴とする。
Method of operating a reverse osmosis membrane separation apparatus of claim 3, in
なお、フラッシングとは、給水ポンプの稼動を継続したまま、濃縮水排出配管の開閉弁を開とすることにより、RO給水の殆どを膜透過させることなく、膜の一次側(濃縮水側)に流し、濃縮水排出配管から系外へ排出させる操作をさす。この際、RO給水の殆どが膜透過しないので、供給水量のほぼ全量が一次側の膜面を流れることにより、透過水の採水を行う通常運転時より速い流速でかつ多量の水が流れることにより、膜面を閉塞している汚れを効果的に洗い流すことができる。 In addition, flushing is the primary side (concentrated water side) of the membrane without allowing most of RO feed water to permeate the membrane by opening the on-off valve of the concentrated water discharge pipe while continuing the operation of the feed water pump. This is the operation of draining and discharging the concentrated water out of the system. At this time, since most RO water supply does not permeate the membrane, almost all of the water supply flows through the membrane surface on the primary side, so that a large amount of water flows at a faster flow rate than during normal operation in which permeate is sampled. Thus, the dirt blocking the membrane surface can be washed away effectively.
本発明によれば、RO装置の運転中にアルカリ性の被処理水でフラッシングを行うことにより、効果的に膜面を洗浄して膜面透過流束の低下を抑制し、長期に亘り安定運転を行うことが可能となる。 According to the present invention, by flushing with alkaline treated water during operation of the RO device, the membrane surface is effectively washed to suppress a decrease in the membrane surface permeation flux, and stable operation can be performed over a long period of time. Can be done.
このフラッシング時には、RO給水の殆どは膜を透過せず、従って、膜面における濃縮が生じないため、RO給水がアルカリ性であっても、膜面におけるスケール生成の問題は発生しない。従って、スケール防止のための前処理装置等は不要である。 At the time of this flushing, most of the RO water supply does not permeate the membrane, and therefore no concentration on the membrane surface occurs, so that even if the RO water supply is alkaline, the problem of scale generation on the membrane surface does not occur. Therefore, a pretreatment device for preventing scale is not necessary.
以下、図面を参照して本発明のRO装置の運転方法の実施の形態を詳細に説明する。 DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment of a method for operating an RO apparatus of the present invention will be described in detail with reference to the drawings.
図1は本発明のRO装置の運転方法の実施の形態を示す系統図である。 FIG. 1 is a system diagram showing an embodiment of a method of operating an RO device according to the present invention.
図1に示すRO装置は、2個のROベッセル1A,1Bが並列配置されて前段の第1バンク(ベッセル群)1が構成され、1個のROベッセル2Aのみで後段の第2バンク2が構成されている2段のクリスマスツリー型RO装置である。
In the RO apparatus shown in FIG. 1, two
各ROベッセル1A,1B,2Aには、各々、ROエレメントが1本又は複数本内蔵されている。また、各バンク1,2には、給水配管11,13Aと、透過水配管12,15と、濃縮水配管13,16とが設けられている。
Each
第1バンク1においては、給水配管11から分岐した給水分岐管11a,11bが各ROベッセル1A,1Bに接続され、被処理水が各ROベッセル1A,1Bに並列的に供給される。また、各ベッセル1A,1BでRO膜を透過した透過水は各々透過水分岐管12a,12bから透過水配管12に集められ、後段の第2バンク2の透過水と共に透過水排出管14を経て系外へ排出される。他方、各ベッセル1A,1Bの濃縮水は各々濃縮水分岐管13a,13bから濃縮水配管13に集められ、次段の第2バンク2の給水としてROベッセル2Aに送られる。
In the first bank 1, water
第2バンク2のROベッセル2Aにおいても、RO膜を透過した透過水が透過水配管15から、透過水排出管14を経て、第1バンク1のROベッセル1A,1Bからの透過水と共に系外へ排出される。一方、濃縮水は、濃縮水配管16より系外へ排出される。この濃縮水配管16には絞り弁AV2が設けられている。
In the
このRO装置では、給水配管11の給水ポンプP1の上流側に、薬品タンク3からのアルカリ薬品を注入するための薬注ポンプP2を有する薬注配管18が設けられている。また、第1バンク1の濃縮水配管13には、開閉弁AV1を有する濃縮水排出管17が分岐している。
In this RO apparatus, a
本発明においては、このようなRO装置において、次のような運転を行う通常運転(採水運転)の際には、弁AV1を閉、弁AV2は所定の水回収率となるように開路設定し、給水ポンプP1を作動させて、被処理水を配管11から、配管11a,11bを経て第1バンク1のROベッセル1A,1Bに加圧供給し、透過水を配管12a,12b,12,14を経て系外へ排出する。一方、濃縮水は配管13a,13b,13,13Aを経て第2バンク2のROベッセル2Aに導入し、透過水を配管15,14を経て系外へ排出する。第2バンク2の濃縮水は配管16より系外へ排出される。
In the present invention, in such an RO device, during normal operation (water sampling operation) in which the following operation is performed, the valve AV1 is closed and the valve AV2 is set to be open so as to have a predetermined water recovery rate. and, by operating the water supply pump P 1, the treated water from the
なお、濃縮水は放流又は後段の排水処理装置に送給される。透過水は更に後段の処理装置に送給される。 The concentrated water is discharged or sent to a wastewater treatment device at the subsequent stage. The permeated water is further fed to a subsequent processing device.
このような通常運転を所定時間行った後は次のようにしてフラッシングを行う。 After such normal operation is performed for a predetermined time, flushing is performed as follows.
まず、通常運転時と同様に給水ポンプP1を作動したまま、薬注ポンプP2を作動させて、被処理水にアルカリ薬品を添加してpH9.5〜13に調整すると共に、弁AV1を開く。これにより、前段の第1バンク1のROベッセル1A,1Bに流入した水の殆どは、RO膜を透過することなく、配管13a,13b,13,17を経て系外へ排出される。
First, while operating the water supply pump P 1 as in normal operation, by operating the chemical feed pump P 2, while adjusting the pH9.5~13 by adding an alkali chemical to the water to be treated, the valves AV1 open. As a result, most of the water flowing into the
この操作で、第1バンク1のROベッセル1A,1Bの膜面をアルカリ性の水が多量にかつ高流速で流れることにより、各膜面が洗浄される。
By this operation, a large amount of alkaline water flows at a high flow rate on the membrane surfaces of the
上述の如く、第1バンク1のみのフラッシングを行った後は、ポンプP1,P2を作動したまま弁AV1を閉じ、弁AV2を開放する。これにより、前段の第1バンク1に流入したアルカリ性の水の殆どは、配管13a,13b,13,13Aを経て第2バンク2のROベッセル2Aに流入し、更に流入した水の殆どがRO膜を透過することなく配管16より系外へ排出される。
As described above, after flushing only the first bank 1, the valve AV1 is closed and the valve AV2 is opened while the pumps P 1 and P 2 are operated. As a result, most of the alkaline water flowing into the first bank 1 in the preceding stage flows into the
この操作で、第1バンク1のROベッセル1A,1Bの膜面と第2バンク2のROベッセル2Aの膜面を連続して直列的にアルカリ性の水が多量にかつ高流速で流れることにより、各膜面が洗浄される。
By this operation, a large amount of alkaline water flows in series and at a high flow rate in series on the membrane surface of the
このようにして、第1バンク1のフラッシングと、それに続く第1バンク1と第2バンク2の連続フラッシングを行った後は、薬注ポンプ弁P2を停止すると共にAV2を通常運転時の開度に調整して通常運転を再開する。なお、この際、薬注ポンプP2を停止して所定時間経過後に弁AV2の開度を調整して通常運転を再開しても良い。
In this way, the flushing of the first bank 1, after making subsequent first bank 1 and a continuous flushing of the
本発明に係るRO装置は、一般に、用水の造水プロセス、食品・医薬用水の製造プロセス、排水回収プロセスに設けられたRO装置であって、このようなRO装置のRO給水は、通常、pH5〜7程度の弱酸性ないし中性の水である。従って、本発明においては、このような中性の被処理水に水酸化ナトリウム(NaOH)等のアルカリ薬品を添加してpHが9.5〜13となるように調整した水をフラッシング水として用いてフラッシング工程を行う。これは次のような理由による。 The RO apparatus according to the present invention is generally an RO apparatus provided in a fresh water production process, a food / medicine water production process, and a wastewater recovery process. It is slightly acidic to neutral water of about ˜7. Accordingly, in the present invention, water adjusted to have a pH of 9.5 to 13 by adding an alkaline chemical such as sodium hydroxide (NaOH) to such neutral treated water is used as flushing water. To perform the flushing process. This is due to the following reason.
即ち、微生物はアルカリ性域では生息することができない。そのため、フラッシング水のpHを9.5以上に調整することにより栄養源はあるが微生物が生息できない環境を作り出すことが可能となり、従来のような高価なスライムコントロール剤の添加を必要とすることなく、バイオファウリングを防止することができる。また、膜面透過流束を低下させる恐れのある非イオン性界面活性剤又は生物代謝物系有機物はアルカリ性領域では膜面から脱着することが知られており、pHを9.5以上にすることにより膜面への付着を抑制することが可能となる。 That is, microorganisms cannot live in the alkaline region. Therefore, by adjusting the pH of the flushing water to 9.5 or higher, it is possible to create an environment where there are nutrients but microorganisms cannot live, without the need for the addition of an expensive slime control agent as in the past. Biofouling can be prevented. In addition, it is known that nonionic surfactants or biological metabolite-based organic substances that may lower the membrane surface permeation flux are desorbed from the membrane surface in the alkaline region, and the pH should be 9.5 or higher. This makes it possible to suppress adhesion to the film surface.
ただし、このフラッシング時のRO給水のpHが高過ぎるとRO膜が耐アルカリ性の限界を超え、破損し易くなる上に、添加する薬注コストも高くつき、好ましくないため、フラッシング工程時のRO給水のpHは13以下とする。 However, if the pH of the RO water supply at the time of flushing is too high, the RO membrane exceeds the limit of alkali resistance and easily breaks, and the cost of adding chemicals is high. The pH of the solution is 13 or less.
微生物に対する抑制効果、有機物洗浄効果、汚れ除去効果、薬注コスト、膜の保護の面から、フラッシング時のRO給水のpHは特に10〜12であることが好ましい。 From the viewpoints of the effect of suppressing microorganisms, the effect of cleaning organic matter, the effect of removing dirt, the cost of chemical injection, and the protection of the membrane, the pH of the RO water supply during flushing is particularly preferably 10-12.
このpH調整のためのアルカリは、被処理水がROベッセルに流入する前の段階であれば任意の位置で添加することができるが、図1に示す如く、特に給水ポンプの上流側の給水配管にライン注入するのが効率的である。 The alkali for pH adjustment can be added at any position before the water to be treated flows into the RO vessel. However, as shown in FIG. It is efficient to inject the line.
本発明において、このようなフラッシングの頻度としては特に制限はなく、被処理水の水質やRO処理条件等に応じて適宜決定されるが、通常数時間〜10日に一度の割合で5〜60分間程度実施することが好ましい。特に、前述の如く、第1バンクのみのフラッシングと、その後、第1バンク→第2バンクの連続フラッシングとを行う場合、或いは更に後段の連続フラッシングを行う場合、各フラッシング毎の時間は5〜30分とし、全フラッシング時間が10〜60分程度となるように行うことが好ましい。 In the present invention, the frequency of such flushing is not particularly limited and is appropriately determined according to the quality of the water to be treated, the RO treatment conditions, and the like, but is usually 5 to 60 at a rate of once every several hours to 10 days. It is preferable to carry out for about minutes. In particular, as described above, when performing flushing of only the first bank and thereafter performing continuous flushing from the first bank to the second bank, or further performing subsequent flushing, the time for each flushing is 5 to 30. The total flushing time is preferably about 10 to 60 minutes.
なお、図1においては、第1バンクに2個のROベッセルが並列配置され、第2バンクに1個のROベッセルが設けられたクリスマスツリー型RO装置を示したが、本発明が適用されるRO装置は、何ら図1の構成のものに限らず、図2のように、第1バンクに4個のROベッセルが並列配置され、第2バンクに2個のROベッセルが並列配置されているものであっても良い。また、クリスマスツリー型RO装置に限らず、各段1個のROベッセルが多段に連結されたものであっても良い。 Although FIG. 1 shows a Christmas tree type RO device in which two RO vessels are arranged in parallel in the first bank and one RO vessel is provided in the second bank, the present invention is applied. The RO device is not limited to the one shown in FIG. 1, and as shown in FIG. 2, four RO vessels are arranged in parallel in the first bank, and two RO vessels are arranged in parallel in the second bank. It may be a thing. Further, the present invention is not limited to the Christmas tree type RO device, and one RO vessel in each stage may be connected in multiple stages.
クリスマスツリー型RO装置の場合、そのバンク数やベッセル数には特に制限はないが、バンクの段数は通常2段又は3段である。ただし、4段以上の多段構成であっても良いことは言うまでもない。また、各段のバンクのROベッセル数は、処理水量とROベッセルの処理能力に応じて適宜設定されるが、一般的には上流側ほど多く、下流側ほど少なくなる。通常、2段の場合は第1バンクのベッセル数:第2バンクのベッセル数=2:1の割合でベッセル数が設定され、3段の場合は、第1バンクのベッセル数:第2バンクのベッセル数:第3バンクのベッセル数=4:2:1の割合でベッセル数が設定されることが多い。最終段のベッセル数は1個である場合もある。 In the case of a Christmas tree type RO device, the number of banks and the number of vessels are not particularly limited, but the number of banks is usually two or three. However, it goes without saying that a multi-stage configuration of four or more stages may be used. Further, the number of RO vessels in each bank is appropriately set according to the amount of treated water and the processing capacity of the RO vessel, but in general, the number is larger on the upstream side and smaller on the downstream side. Normally, in the case of two stages, the number of vessels in the first bank: the number of vessels in the second bank = 2: 1 is set. In the case of three stages, the number of vessels in the first bank: second bank The number of vessels is often set at a ratio of the number of vessels: the number of vessels in the third bank = 4: 2: 1. The number of vessels in the final stage may be one.
いずれの場合も、前述の如く、各ROベッセルには、ROエレメントが内蔵されており、1ベッセルにROエレメントが1本又は複数本内蔵されている。 In any case, as described above, each RO vessel has a built-in RO element, and one vessel contains one or more RO elements.
各バンク(ベッセル群)には、給水配管と、透過水配管と、濃縮水配管とが設けられている。そして、各バンクにおいて、給水配管から分岐した給水分岐管が各ROベッセルに接続され、被処理水が各ベッセルに並列的に供給される。また、各ベッセルで膜を透過した透過水は透過水配管に集められ、排出される。他方、各ベッセルの濃縮水は濃縮水配管に集められ、次段のバンクの給水として、次段の給水配管に送られる。次段においても同様に水が流れ、RO処理される。 Each bank (vessel group) is provided with a water supply pipe, a permeate pipe, and a concentrated water pipe. And in each bank, the feed water branch pipe branched from the feed water pipe is connected to each RO vessel, and to-be-processed water is supplied to each vessel in parallel. Further, the permeated water that has passed through the membrane in each vessel is collected in a permeated water pipe and discharged. On the other hand, the concentrated water of each vessel is collected in the concentrated water pipe and sent to the next-stage water supply pipe as the water supply for the next-stage bank. In the next stage, water flows in the same manner and RO treatment is performed.
前段側のバンクの濃縮水配管は、次段のバンクの給水配管と接続されているが、各段の濃縮水配管の任意の位置で分岐して濃縮水を系外へ排出する配管が設けられ、この濃縮水排出管には開閉弁が設けられている。最終段の濃縮水排出管は、濃縮水配管から分岐して設けてもよく、濃縮水配管と兼用でもよい。 The concentrated water piping of the upstream bank is connected to the water supply piping of the next bank, but there is a piping that branches at any position of the concentrated water piping of each stage and discharges the concentrated water out of the system. The concentrated water discharge pipe is provided with an open / close valve. The final stage concentrated water discharge pipe may be provided by branching from the concentrated water pipe, or may be combined with the concentrated water pipe.
そして、少なくとも、最終段の濃縮水配管には絞り弁が設けられ、最終段のバンクのROベッセルの運転圧を調整できるようになっている。濃縮水配管と濃縮水排出管とが兼用の場合、開閉弁を省略して絞り弁で開閉弁の代用としてもよい。 In addition, at least the concentrated water pipe in the final stage is provided with a throttle valve so that the operating pressure of the RO vessel in the bank in the final stage can be adjusted. When the concentrated water pipe and the concentrated water discharge pipe are shared, the on / off valve may be omitted and a throttle valve may be substituted for the on / off valve.
開閉弁、絞り弁は自動弁が好ましいが、手動弁でもよい。開閉弁、絞り弁を自動弁とし、その開閉と薬注ポンプのオン、オフを、タイマーで自動制御することにより、フラッシング工程を自動的に通常運転中に組み込むことができる。 The on-off valve and throttle valve are preferably automatic valves, but may be manual valves. The on / off valve and throttle valve are automatic valves, and the flushing process can be automatically incorporated during normal operation by automatically controlling the opening / closing and on / off of the chemical injection pump with a timer.
クリスマスツリー型RO装置のような多段RO装置の場合、特に、超低圧RO膜を用いた場合や浸透圧の大きい被処理水を処理する場合、前段のバンク(ないしベッセル)のRO膜の汚染が顕著になることから、前述の如く、前段のバンク(ベッセル群)のみのフラッシングを行い、その後前段バンクと後段バンク(ベッセル群)の連続フラッシングを順次行う。従って、例えば、3段のバンクで構成されるRO装置の場合は、第1バンクのみのフラッシングを行った後、第1バンク→第2バンクの連続フラッシングを行い、その後第1バンク→第2バンク→第3バンクの連続フラッシングを行うことが好ましい。 In the case of a multi-stage RO device such as a Christmas tree type RO device, especially when an ultra-low pressure RO membrane is used or when water to be treated having a large osmotic pressure is treated, the RO membrane in the preceding bank (or vessel) is contaminated. from becoming conspicuous, as described above, it performs flushing only front bank (Bessel group), intends then sequentially line continuous flushing of the front bank and the rear stage bank (Bessel group). Therefore, for example, in the case of an RO device composed of three banks, after flushing only the first bank, continuous flushing from the first bank to the second bank is performed, and then the first bank to the second bank. → It is preferable to perform continuous flushing of the third bank.
ただし、前段バンクのみのフラッシングを行わずに、直接全バンクの連続フラッシングを行うことも可能である。この場合には、例えば、図1のRO装置において、給水ポンプP1を作動させたまま薬注ポンプP2を作動させ、開閉弁AV1を閉じたままで絞り弁AV2を開とする。これにより、アルカリ性の水が第1バンク1のROベッセル1A,1Bから第2バンク2のROベッセル2Aに流入し、配管16から排出されることにより各ROベッセルの膜面が洗浄される。
However, it is also possible to directly perform flushing of all banks directly without performing flushing of only the preceding bank. In this case, for example, in RO apparatus of FIG. 1, is operated while keeping dosing pump P 2 was operated water pump P 1, the throttle valve AV2 open while closing the opening and closing valve AV1. As a result, alkaline water flows from the
しかし、この場合には、前段バンクの膜面に付着していた汚染物質が後段バンクに流入することとなるため、前段バンクのみのフラッシングを行った後、前段バンクと後段バンクの連続フラッシングを行う場合に比べて、後述の参考例1に示されるように、洗浄効果が若干劣るものとなる。従って、前述の如く、まず、前段バンクのみのフラッシングを行って前段バンクの汚染物質を系外へ排出した後、前段バンクと後段バンクの連続フラッシングを行う。 However, in this case, contaminants adhering to the film surface of the preceding bank flow into the succeeding bank, so after flushing only the preceding bank, continuous flushing between the preceding bank and the succeeding bank is performed. Compared to the case, as shown in Reference Example 1 described later, the cleaning effect is slightly inferior. Therefore, as described above, first, after discharging the pollutants front bank to the outside of the system by performing a flushing only front bank intends line continuous flushing of the front bank and the rear bank.
このような本発明のRO装置の運転方法は、特に膜面の閉塞が起こり易い、TOC濃度が3mg/L以上であるような被処理水をRO給水とする場合に有効である。 Such a method of operating the RO device of the present invention is particularly effective when the treated water having a TOC concentration of 3 mg / L or more, which is likely to block the membrane surface, is used as RO water supply.
本発明によれば、従来のアルカリを用いた薬品洗浄のように運転を停止することなく、単なる弁の開閉操作、薬注ポンプの作動操作といった簡易な操作で膜面を効果的に洗浄することができ、しかも、スケール対策も不要であることから、既存の設備にも容易に適用することができる。 According to the present invention, the membrane surface can be effectively cleaned by a simple operation such as opening / closing a valve or operating a chemical injection pump without stopping the operation as in the case of conventional chemical cleaning using alkali. In addition, since scale measures are not required, it can be easily applied to existing facilities.
以下に実施例、参考例及び比較例を挙げて本発明をより具体的に説明する。
(実施例1)
TOC濃度3mg/L,電気伝導率100mS/mの液晶工場総合排水を凝集・沈殿・濾過、活性炭処理した後、図1に示すRO装置に1m3/hr、回収率75%の条件で通水を行った。このときのRO給水のpHは5であった。各ROベッセル1A,1B,2AのROエレメントとしては超低圧RO膜であるES−20(日東電工製)を用いた。
Hereinafter, the present invention will be described more specifically with reference to Examples , Reference Examples and Comparative Examples.
Example 1
Liquid crystal factory general wastewater with a TOC concentration of 3 mg / L and electrical conductivity of 100 mS / m is agglomerated, precipitated, filtered, and activated carbon treated, and then passed through the RO device shown in FIG. 1 under the conditions of 1 m 3 / hr and a recovery rate of 75%. Went. The pH of the RO water supply at this time was 5. As the RO element of each
フラッシングは4重量%NaOH水溶液を薬品タンク3から薬注ポンプP2を用いRO給水のpHが11となるようRO給水に添加して行い、4時間に1回の頻度で、第1バンク1のみのフラッシングを15分、続いて第1バンクバンク1→第2バンク2の連続フラッシングを15分の順で実施した。
Flushing was carried out by adding 4 wt% NaOH aqueous solution from chemical tank 3 to RO feedwater to pH of RO water with chemical feed pump P 2 is 11, once every 4 hours, only the first bank 1 Flushing was performed for 15 minutes, followed by continuous flushing from the first bank bank 1 to the
このときの運転日数と膜面透過流束との関係を図3と図4に示した。 The relationship between the operation days and the membrane surface permeation flux at this time is shown in FIGS.
(参考例1)
第1バンク1のみのフラッシングを行わず、第1バンク1→第2バンク2の連続フラッシングのみを30分実施したこと以外は、実施例1と同条件でRO装置の運転を行った。このときの運転日数と膜面透過流束との関係を図3に示した。
( Reference Example 1 )
The RO apparatus was operated under the same conditions as in Example 1 except that only flushing of the first bank 1 was not performed and only continuous flushing of the first bank 1 →
(比較例1)
フラッシングを実施しなかったこと以外は実施例1と同条件でRO装置の運転を行った。このときの運転日数と膜面透過流束との関係を図3に示した。
(Comparative Example 1)
The RO device was operated under the same conditions as in Example 1 except that the flushing was not performed. The relationship between the operation days at this time and the membrane surface permeation flux is shown in FIG.
図3より次のことが明らかである。 The following is clear from FIG.
実施例1では、膜面透過流束は殆ど低下することなく通水開始から90日後においても、膜面透過流束は0.77m3/m2・day程度であった。一方、参考例1においてはフラッシングを実施しなかった比較例1に比べ膜面透過流束は向上するものの、90日後には膜面透過流束は0.68m3/m2・dayとなり、第1バンクのフラッシング後に第1バンクと第2バンクの連続フラッシングを実施した実施例1に比べ低下が見られた。フラッシング未実施の比較例1においては、90日後の膜面透過流束0.55m3/m2・dayと顕著なRO膜面の閉塞が観測された。 In Example 1, the membrane surface permeation flux hardly decreased, and the membrane surface permeation flux was about 0.77 m 3 / m 2 · day even 90 days after the start of water flow. On the other hand, in Reference Example 1 , the membrane surface flux was improved as compared with Comparative Example 1 in which flushing was not performed, but after 90 days, the membrane flux was 0.68 m 3 / m 2 · day, A decrease was seen compared to Example 1 in which continuous flushing of the first bank and the second bank was performed after flushing of one bank. In Comparative Example 1 in which flushing was not performed, the membrane surface permeation flux after 90 days was 0.55 m 3 / m 2 · day, and a marked blockage of the RO membrane surface was observed.
(実施例2)
フラッシング時のRO給水のpHを9.5としたこと以外は実施例1と同条件でRO装置の運転を行った。このときの運転日数と膜面透過流束との関係を図4に示した。
(Example 2 )
The RO device was operated under the same conditions as in Example 1 except that the pH of the RO water supply during flushing was 9.5. The relationship between the operation days at this time and the membrane surface permeation flux is shown in FIG.
(比較例2)
フラッシング時のRO給水のpHを7としたこと以外は実施例1と同条件でRO装置の運転を行った。このときの運転日数と膜面透過流束との関係を図4に示した。
(Comparative Example 2)
The RO device was operated under the same conditions as in Example 1 except that the pH of the RO water supply during flushing was set to 7. The relationship between the operation days at this time and the membrane surface permeation flux is shown in FIG.
(比較例3)
フラッシング時のRO給水のpHを8としたこと以外は実施例1と同条件でRO装置の運転を行った。このときの運転日数と膜面透過流束との関係を図4に示した。
(Comparative Example 3)
The RO device was operated under the same conditions as in Example 1 except that the pH of the RO water supply during flushing was set to 8. The relationship between the operation days at this time and the membrane surface permeation flux is shown in FIG.
図4より、フラッシング水のpHが9.5以上であれば、膜面透過流束の低下が観測されず、安定運転が可能であることが分かる。 From FIG. 4, it can be seen that when the pH of the flushing water is 9.5 or higher, a decrease in the membrane surface permeation flux is not observed and stable operation is possible.
1 第1バンク(第1ROベッセル群)
2 第2バンク(第2ROベッセル群)
1A,1B,1C,1D,2A,2B ROベッセル
3 薬品タンク
1 First bank (first RO vessel group)
2 Second bank (second RO vessel group)
1A, 1B, 1C, 1D, 2A, 2B RO vessel 3 Chemical tank
Claims (3)
前記逆浸透膜分離装置は、前段逆浸透膜分離手段と、該前段逆浸透膜分離手段の濃縮水が供給される後段逆浸透膜分離手段とを備える多段逆浸透膜分離装置であり、前記フラッシング工程は、フラッシング水を前段逆浸透膜分離手段のみに供給してフラッシングする工程と、続いてフラッシング水を前段逆浸透膜分離手段と後段逆浸透膜分離手段とに直列的に供給してフラッシングする工程とを備えることを特徴とする逆浸透膜分離装置の運転方法。 In a method for operating a reverse osmosis membrane separation apparatus having a reverse osmosis membrane separation means for desalting and / or removing organic matter, water to be treated, which has been adjusted to pH 9.5 to 13 by adding alkali, is used as flushing water. A method for operating a reverse osmosis membrane separation device comprising a step of temporarily flushing osmosis membrane separation means ,
The reverse osmosis membrane separation device is a multi-stage reverse osmosis membrane separation device comprising a first-stage reverse osmosis membrane separation means and a second-stage reverse osmosis membrane separation means to which the concentrated water of the first-stage reverse osmosis membrane separation means is supplied, and the flushing In the process, flushing is performed by supplying flushing water only to the first-stage reverse osmosis membrane separation means, and then flushing is performed by supplying flushing water in series to the first-stage reverse osmosis membrane separation means and the second-stage reverse osmosis membrane separation means. A process for operating a reverse osmosis membrane separation device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005322399A JP4940631B2 (en) | 2005-11-07 | 2005-11-07 | Operation method of reverse osmosis membrane separator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005322399A JP4940631B2 (en) | 2005-11-07 | 2005-11-07 | Operation method of reverse osmosis membrane separator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007125526A JP2007125526A (en) | 2007-05-24 |
JP4940631B2 true JP4940631B2 (en) | 2012-05-30 |
Family
ID=38148631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005322399A Expired - Fee Related JP4940631B2 (en) | 2005-11-07 | 2005-11-07 | Operation method of reverse osmosis membrane separator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4940631B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102015078A (en) * | 2008-04-14 | 2011-04-13 | 栗田工业株式会社 | Method of operating reverse osmosis membrane module |
CN102701478B (en) * | 2012-05-30 | 2014-02-26 | 河北工业大学 | Concentrated seawater treatment method |
JP7115522B2 (en) * | 2020-09-14 | 2022-08-09 | 栗田工業株式会社 | Operation method of desalting equipment |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3944973B2 (en) * | 1997-10-28 | 2007-07-18 | 栗田工業株式会社 | Reverse osmosis membrane treatment method |
JP2000189961A (en) * | 1998-10-20 | 2000-07-11 | Nitto Denko Corp | Fresh water maker and production of fresh water |
JP2001164455A (en) * | 1999-12-03 | 2001-06-19 | Toray Ind Inc | Dyeing and finishing apparatus for fiber |
JP4635414B2 (en) * | 2003-07-10 | 2011-02-23 | 栗田工業株式会社 | Cleaning method for reverse osmosis membrane device |
-
2005
- 2005-11-07 JP JP2005322399A patent/JP4940631B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007125526A (en) | 2007-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4472050B2 (en) | Fresh water generator and fresh water generation method | |
JP4228732B2 (en) | Ultrapure water production system | |
US20180280888A1 (en) | Reverse osmosis treatment apparatus and reverse osmosis treatment method | |
WO2009128328A1 (en) | Method of operating reverse osmosis membrane module | |
JP4241684B2 (en) | Membrane module cleaning method | |
JP2005087887A (en) | Membrane washing method | |
CN105080893A (en) | Filtration washing method for clean in place (CIP) central control system of dairy product production line | |
JP2017113729A (en) | Membrane cleaning agent, membrane cleaning liquid and cleaning method of membrane | |
JP4940631B2 (en) | Operation method of reverse osmosis membrane separator | |
JP2017200683A (en) | Start-up method of ultra-pure water manufacturing apparatus | |
FR3017543A1 (en) | METHOD FOR OPERATING A WATER TREATMENT PLANT, AND INSTALLATION FOR IMPLEMENTING THE METHOD | |
TW200404601A (en) | Operating method of separation membrane module and separation membrane apparatus | |
KR20110009076A (en) | Method for washing water supply pipeline of water-treating system | |
JP6344114B2 (en) | Water treatment apparatus and water treatment equipment cleaning method | |
CN109289538B (en) | Method for on-line chemical cleaning of reverse osmosis membrane | |
JP3473465B2 (en) | Cleaning method of membrane | |
JP2011235235A (en) | Water treatment system | |
JP6428017B2 (en) | Water treatment apparatus and water treatment equipment cleaning method | |
EP3173140A1 (en) | Water treatment device and operating method for same | |
JP2010227851A (en) | Membrane filtration system and method of cleaning the same | |
JP2005046762A (en) | Water treatment method and water treatment apparatus | |
JP3281238B2 (en) | Ultrapure water supply device and sterilization method for its piping | |
JPH08155273A (en) | Membrane separation | |
JP2005046802A (en) | Water treatment method and apparatus therefor | |
JP2010104920A (en) | Method for operating reverse osmosis membrane separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081104 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120131 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120213 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4940631 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150309 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |