JP2010104920A - Method for operating reverse osmosis membrane separator - Google Patents

Method for operating reverse osmosis membrane separator Download PDF

Info

Publication number
JP2010104920A
JP2010104920A JP2008280102A JP2008280102A JP2010104920A JP 2010104920 A JP2010104920 A JP 2010104920A JP 2008280102 A JP2008280102 A JP 2008280102A JP 2008280102 A JP2008280102 A JP 2008280102A JP 2010104920 A JP2010104920 A JP 2010104920A
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
membrane separation
flushing
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008280102A
Other languages
Japanese (ja)
Inventor
Takahiro Kawakatsu
孝博 川勝
Kunihiro Hayakawa
邦洋 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2008280102A priority Critical patent/JP2010104920A/en
Publication of JP2010104920A publication Critical patent/JP2010104920A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/144Wave energy

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform a long-term stable operation by suppressing a deterioration of membrane surface permeation flux in an RO separator where desalination and/or organic matter removal is performed. <P>SOLUTION: The method for operating a reverse osmosis membrane separator provided in a multistage where a reverse osmosis membrane separating means for performing the desalination and/or organic matter removal is performed is provided, wherein flushing is performed on a first reverse osmosis separating means (vessels 21-24) only by opening a valve V<SB>A</SB>, flushing drainage is discharged outside the separator through pipes 41-44, 45, and 49, the valve V<SB>A</SB>may be closed during flushing, the valves V<SB>A</SB>, V<SB>C</SB>may be opened, and flushing frequency may be controlled based on a differential pressure (P<SB>1</SB>-P<SB>2</SB>). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は逆浸透膜分離装置(RO装置)の運転方法に係り、特に、脱塩及び/又は有機物除去を行うRO装置の運転圧力の上昇及び/又は膜面透過流束の低下を抑制し、長期安定運転を可能とするRO装置の運転方法に関する。   The present invention relates to a method for operating a reverse osmosis membrane separation device (RO device), and in particular, suppresses an increase in operating pressure and / or a decrease in membrane surface permeation flux of an RO device that performs desalting and / or organic matter removal, The present invention relates to an operation method of an RO device that enables long-term stable operation.

RO装置は用水の造水プロセス、食品・医薬用水の製造プロセス、排水回収プロセスなど幅広い分野で使用されている。中でも近年、用排水のコスト低減、環境負荷低減の目的から、排水回収プロセスにおいて、RO装置を使用するケースが増加している。   RO devices are used in a wide range of fields such as fresh water production processes, food / pharmaceutical water production processes, and wastewater recovery processes. In particular, in recent years, the number of cases where RO devices are used in the wastewater recovery process is increasing for the purpose of reducing the cost of wastewater for use and reducing the environmental load.

通常、RO装置は、供給水に対する水回収率を高める目的から、例えば、第4図に示すようなクリスマスツリーと呼ばれる配置をとる。即ち、第4図において、ROエレメントを内蔵したROベッセル(RO手段本体)1A,1B,1C,1Dが4機並列配置されてなる第1ROベッセル群(ROベッセル群は「バンク」とも言う。)1と、ROベッセル2A,2Bが2機並列配置されてなる第2ROバンク2とでクリスマスツリー型の多段RO装置が構成されている。   Usually, the RO device has an arrangement called a Christmas tree as shown in FIG. 4 for the purpose of increasing the water recovery rate for the supplied water. That is, in FIG. 4, a first RO vessel group in which four RO vessels (RO body) 1A, 1B, 1C, 1D incorporating RO elements are arranged in parallel (the RO vessel group is also referred to as a “bank”). 1 and a second RO bank 2 in which two RO vessels 2A and 2B are arranged in parallel constitute a Christmas tree type multi-stage RO device.

被処理水、即ち、RO装置の供給水(RO給水)はまず第1バンク1に流入し、透過水と濃縮水とに分離される。続いて第1バンク1の濃縮水は第2バンク2に流入し、ここでも透過水と濃縮水とに分離される。第1バンク1の透過水と第2バンク2の透過水は合流し、後段処理工程に移送される。一方、第2バンク2の濃縮水は系外に放流されるか排水処理設備等に移送される。通常、RO装置におけるクリスマスツリー構造は、要求される水回収率にもよるが、2又は3バンクで構成されることが多い。   The water to be treated, that is, the supply water (RO feed water) of the RO device first flows into the first bank 1 and is separated into permeated water and concentrated water. Subsequently, the concentrated water in the first bank 1 flows into the second bank 2 and is again separated into permeated water and concentrated water. The permeated water of the first bank 1 and the permeated water of the second bank 2 merge and are transferred to the subsequent processing step. On the other hand, the concentrated water in the second bank 2 is discharged out of the system or transferred to a wastewater treatment facility or the like. Usually, the Christmas tree structure in the RO device is often composed of two or three banks, depending on the required water recovery rate.

このようなRO装置を、用水系造水プロセス、特に被処理水中の濁質除去の不十分な用水系造水プロセスや排水処理プロセス、特に被処理水中の有機物成分濃度が比較的高い排水回収プロセスに利用した場合、濁質や微生物有機ゲルなどのRO装置への流入による膜面閉塞で、RO装置、特に第1バンクでの操作圧力の上昇や透過水量の低下が進み、そのために頻繁に膜洗浄を実施しなければならないという問題があり、この問題は近年特に顕著になる傾向にある。   Such an RO device can be used as an irrigation process, particularly an irrigation process or an effluent treatment process with insufficient removal of turbidity in the treated water, especially a wastewater recovery process with a relatively high concentration of organic components in the treated water. In the case of use, the membrane surface is blocked due to the inflow of turbidity, microbial organic gel, etc. into the RO device, and the operating pressure and the permeate flow rate in the RO device, especially the first bank, increase. There is a problem that cleaning has to be carried out, and this problem tends to become particularly prominent in recent years.

特開2007−125526には、2段に直列に配置された逆浸透膜分離手段を有する逆浸透膜分離装置を運転する方法において、アルカリを添加してpHを9.5〜13にした被処理水をフラッシング水として用い、まずフラッシング水を前段逆浸透膜分離手段のみに供給してフラッシングし、続いて、フラッシング水を前段逆浸透膜分離手段と後段逆浸透膜分離手段とに直列的に供給して後段逆浸透膜分離手段もフラッシングする方法が記載されている。   In JP 2007-125526 A, in a method of operating a reverse osmosis membrane separation device having reverse osmosis membrane separation means arranged in series in two stages, an alkali is added to adjust the pH to 9.5 to 13 Water is used as flushing water. First, flushing water is supplied only to the first-stage reverse osmosis membrane separation means for flushing, and then flushing water is supplied in series to the first-stage reverse osmosis membrane separation means and the second-stage reverse osmosis membrane separation means. A method of flushing the latter reverse osmosis membrane separation means is also described.

しかしながら、この方法は、すべての逆浸透膜分離手段をフラッシングするものであるため、流路切替に手間がかかると共に、流路切替手段の構成も複雑となる。更に、フラッシングによって第1バンクの閉塞物を第2,第3バンクに送り込んでしまう可能性もある。
特開2007−125526号
However, since this method flushes all the reverse osmosis membrane separation means, it takes time to switch the flow path, and the configuration of the flow path switching means becomes complicated. Furthermore, there is a possibility that the obstruction in the first bank is sent to the second and third banks by flushing.
JP 2007-125526 A

本発明は、上記従来の問題点を解消し、簡易なフラッシングによって、膜面透過流束の低下を抑制し、長期安定運転を可能とするRO装置の運転方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned conventional problems, and to provide a method of operating an RO apparatus that can suppress a decrease in membrane surface permeation flux by simple flushing and enables long-term stable operation.

請求項1の逆浸透膜分離装置の運転方法は、直列に多段に設置された逆浸透膜分離手段を有する逆浸透膜分離装置の運転方法であって、該逆浸透膜分離手段を一時的にフラッシングするフラッシング工程を有する逆浸透膜分離装置の運転方法において、フラッシング工程においては、1段目の逆浸透膜分離手段のみをフラッシングし、フラッシング排水を該逆浸透膜分離装置外に排出することを特徴とするものである。   The operation method of the reverse osmosis membrane separation device according to claim 1 is an operation method of the reverse osmosis membrane separation device having reverse osmosis membrane separation means installed in multiple stages in series. In the operation method of the reverse osmosis membrane separation apparatus having a flushing process for flushing, in the flushing process, only the first-stage reverse osmosis membrane separation means is flushed, and the flushing waste water is discharged outside the reverse osmosis membrane separation apparatus. It is a feature.

請求項2の逆浸透膜分離装置の運転方法は、請求項1において、1段目の逆浸透膜分離手段の濃縮水取出口と2段目の逆浸透膜分離手段の被処理水流入口とをつなぐ流路からフラッシング排水流路が分岐しており、透過水の採水工程にあっては1段目の逆浸透膜分離手段からの濃縮水の全量を2段目の逆浸透膜分離手段に供給し、フラッシング工程にあっては、被処理水の1段目の逆浸透膜分離手段への導入を継続したまま、1段目の逆浸透膜分離手段からの濃縮水の全量又はほぼ全量を該フラッシング排水流路から該逆浸透膜分離装置外に排出することを特徴とするものである。   The operation method of the reverse osmosis membrane separation device according to claim 2 is the method of claim 1, wherein the concentrated water outlet of the first-stage reverse osmosis membrane separation means and the treated water inlet of the second-stage reverse osmosis membrane separation means are provided. The flushing drainage channel branches off from the connecting channel, and in the permeated water sampling process, the entire amount of concentrated water from the first-stage reverse osmosis membrane separation means is used as the second-stage reverse osmosis membrane separation means. In the supply and flushing step, the entire amount or almost the entire amount of concentrated water from the first-stage reverse osmosis membrane separation means is maintained while continuing to introduce the treated water into the first-stage reverse osmosis membrane separation means. It discharges out of the reverse osmosis membrane separation device from the flushing drainage channel.

請求項3の逆浸透膜分離装置の運転方法は、請求項2において、フラッシング工程にあっては、1段目の逆浸透膜分離手段からのフラッシング排水の全量を逆浸透膜分離装置外に排出することを特徴とするものである。   The operation method of the reverse osmosis membrane separation device according to claim 3 is the operation method according to claim 2, wherein in the flushing step, the entire amount of flushing drainage from the first stage reverse osmosis membrane separation means is discharged out of the reverse osmosis membrane separation device. It is characterized by doing.

請求項4の逆浸透膜分離装置の運転方法は、請求項1ないし3のいずれか1項において、フラッシング工程を1〜30回/dayの頻度で、1回のフラッシング時間5〜500秒にて行うことを特徴とするものである。   The operation method of the reverse osmosis membrane separation apparatus according to claim 4 is the operation method according to any one of claims 1 to 3, wherein the flushing step is performed at a frequency of 1 to 30 times / day and once for a flushing time of 5 to 500 seconds. It is characterized by doing.

請求項5の逆浸透膜分離装置の運転方法は、請求項1ないし3のいずれか1項において、1段目の被処理水流入口と濃縮水取出口との差圧を検出手段で検出し、この差圧が高くなるほどフラッシング工程の頻度を増大させるように制御手段によって制御することを特徴とするものである。   The operation method of the reverse osmosis membrane separation apparatus according to claim 5 is the method according to any one of claims 1 to 3, wherein the detection means detects a differential pressure between the first-stage treated water inlet and the concentrated water outlet, The control means controls such that the frequency of the flushing process is increased as the differential pressure increases.

本発明によれば、RO装置の運転中に一時的に1段目の逆浸透膜分離手段のみをフラッシングとするという簡易なフラッシングにより、膜面透過流束の低下を抑制し、長期に亘り安定運転を行うことが可能となる。   According to the present invention, a simple flushing in which only the first-stage reverse osmosis membrane separation means is temporarily flushed during operation of the RO device can suppress a decrease in membrane surface permeation flux, and can be stable over a long period of time. It becomes possible to drive.

以下、図面を参照して本発明のRO装置の運転方法の実施の形態を詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment of a method for operating an RO apparatus of the present invention will be described in detail with reference to the drawings.

第1図は本発明のRO装置の運転方法の実施の形態を示す系統図である。   FIG. 1 is a system diagram showing an embodiment of a method for operating an RO apparatus according to the present invention.

第1図に示すRO装置は、4個のROベッセル21〜24が並列配置されて1段目の第1バンク(ベッセル群)が構成され、3個のROベッセル51〜53で2段目の第2バンクが構成され、2個のROベッセル81,82で3段目の第3バンクが構成されている、3段のクリスマスツリー型RO装置である。   In the RO apparatus shown in FIG. 1, four RO vessels 21 to 24 are arranged in parallel to form a first bank (a group of vessels), and three RO vessels 51 to 53 form a second stage. This is a three-stage Christmas tree RO apparatus in which the second bank is configured and the third bank of the third stage is configured by two RO vessels 81 and 82.

各ROベッセル21〜24,51〜53,81,82には、各々、ROエレメントが1本又は複数本内蔵されている。   Each RO vessel 21-24, 51-53, 81, 82 has one or more RO elements built therein.

なお、RO膜としては、通常のRO膜のほか、表面を表面処理剤で修飾した膜を用いてもよい。表面処理剤としては、分子量2000〜10000のポリアルキレングリコールあるいはその誘導体を挙げることができる。誘導体としては、イオン性基やエーテルあるいはエステル結合したアルキル基を有するポリアルキレングリコールを挙げることができる。イオン性基としては、スルホ基、カルボキシル基、アミノ基を挙げることができ、アルキル基の炭素数は好ましくは1〜20である。また、分子量10万以上のカチオン性、アニオン性高分子も挙げることができる。   In addition to the normal RO membrane, a membrane whose surface is modified with a surface treatment agent may be used as the RO membrane. Examples of the surface treatment agent include polyalkylene glycol having a molecular weight of 2000 to 10,000 or a derivative thereof. Examples of the derivatives include polyalkylene glycols having an ionic group, an ether, or an ester-bonded alkyl group. Examples of the ionic group include a sulfo group, a carboxyl group, and an amino group, and the alkyl group preferably has 1 to 20 carbon atoms. Further, cationic and anionic polymers having a molecular weight of 100,000 or more can also be mentioned.

表面処理剤の種類を変えて、複数回処理することも有効である。処理の順番としては、例えば、カチオン性高分子による処理を行った後、アニオン性高分子による処理を行うことで、吸着層が安定化し、表面のアニオン性基がアニオンの反発を強め、アニオン性物質の吸着を抑制することができる。   It is also effective to perform the treatment multiple times by changing the type of the surface treatment agent. As the order of treatment, for example, after treatment with a cationic polymer, treatment with an anionic polymer stabilizes the adsorption layer, and the anionic group on the surface strengthens anion repulsion, and anionic Adsorption of substances can be suppressed.

RO膜としては、表面を酸化剤で処理したものを用いてもよい。例えば、特許第3807395に示される、過酸化水素処理RO膜が挙げられる。   As the RO membrane, a surface treated with an oxidizing agent may be used. For example, a hydrogen peroxide-treated RO membrane disclosed in Japanese Patent No. 3807395 can be given.

第1図において、被処理水(原水)は、圧力計Pを有した原水配管10から分岐原水配管11,12,13,14に流入する。これらのベッセル21〜24からの透過水は透過水配管31,32,33,34から集合透過水配管30を介して系外(装置外)に取り出される。 In FIG. 1, treated water (raw water) flows from a raw water pipe 10 having a pressure gauge P 1 into branch raw water pipes 11, 12, 13, and 14. The permeated water from the vessels 21 to 24 is taken out from the system (outside the apparatus) through the permeated water pipes 31, 32, 33, and 34 through the collective permeated water pipe 30.

各ベッセル21〜24からの濃縮水は、濃縮水配管41,42,43,44から集合濃縮水配管45に集められ、次いで弁Vを通り、分岐配管46,47,48を介して第2バンクのベッセル51,52,53に供給される。 Concentrated water from each of the vessels 21 to 24 is collected from the concentrated water pipes 41, 42, 43, and 44 into the concentrated concentrated water pipe 45, and then passes through the valve VA to be connected to the second through the branch pipes 46, 47, and 48. It is supplied to the vessels 51, 52, 53 of the bank.

なお、濃縮水配管45の弁Vよりも上流側からフラッシング排水配管49が分岐している。この配管49には圧力計Pが設けられると共に、それよりも下流側にフラッシング排水の排出及び排水停止を行うための弁Vが設けられている。 A flushing drain pipe 49 is branched from the upstream side of the valve VA of the concentrated water pipe 45. With a pressure gauge P 2 is provided in the pipe 49, the valve V B for performing discharge and drainage stop flushing wastewater downstream is provided than that.

これらのベッセル51〜54からの透過水は透過水配管61,62,63から集合透過水配管64,30を介して系外に取り出される。   The permeated water from the vessels 51 to 54 is taken out of the system from the permeated water pipes 61, 62, 63 through the collective permeated water pipes 64, 30.

各ベッセル51〜53からの濃縮水は、濃縮水配管71,72,73から集合濃縮水配管74に集められ、次いで分岐配管75,76を介して第3バンクのベッセル81,82に供給される。
なお、濃縮水配管74には圧力計Pが設けられている。
Concentrated water from each of the vessels 51 to 53 is collected from the concentrated water pipes 71, 72, 73 to the collective concentrated water pipe 74 and then supplied to the vessels 81, 82 of the third bank via the branch pipes 75, 76. .
Incidentally, the pressure gauge P 3 are provided on the concentrated water pipe 74.

これらのベッセル81,82からの透過水は透過水配管91,92から集合透過水配管93,30を介して系外に取り出される。   The permeated water from the vessels 81 and 82 is taken out of the system from the permeated water pipes 91 and 92 through the aggregate permeated water pipes 93 and 30.

各ベッセル81,82からの濃縮水は、濃縮水配管101,102から集合濃縮水配管103及び弁Vを通り、系外に排出される。なお、濃縮水配管103の弁Vよりも上流側には圧力計Pが設けられている。 Concentrated water from the vessel 81 passes a set concentrated water pipe 103 and the valve V C from the concentrated water pipe 101, and is discharged out of the system. Incidentally, the pressure gauge P 4 is provided on the upstream side of the valve V C of the concentrated water pipe 103.

この第1図のRO装置において、通常運転(採水運転)の際には、弁Vを閉、Vを開、弁Vは所定の水回収率となる開度とし、給水ポンプ(図示略)を作動させて、被処理水を配管10から、配管11〜14を経て第1バンクのROベッセル21〜24に加圧供給し、透過水を配管31〜34,30を経て系外へ排出する。一方、濃縮水は配管41〜48を経て第2バンクのROベッセル51〜53に導入し、透過水を配管61〜64を経て系外へ排出する。第2バンクのROベッセル51〜53からの濃縮水は配管71〜76を経て第3バンクのROベッセル81,82に導入され、透過水を配管91〜93を経て系外へ排出する。第3バンクから濃縮水は配管103より系外へ排出される。
なお、濃縮水は放流又は後段の排水処理装置に送給される。透過水は更に後段の処理装置に送給される。
このような通常運転を所定時間行った後は次のようにしてフラッシングを行う。
In RO apparatus of Figure 1, during normal operation of the (water sampling operation), the valve V B is closed, the V A open, the valve V C is the degree of opening of a predetermined water recovery, water supply pump ( (Not shown) is operated, and the water to be treated is pressurized and supplied from the pipe 10 to the RO vessels 21 to 24 of the first bank via the pipes 11 to 14, and the permeated water is supplied to the outside of the system via the pipes 31 to 34 and 30. To discharge. On the other hand, the concentrated water is introduced into the RO vessels 51 to 53 of the second bank through the pipes 41 to 48, and the permeate is discharged out of the system through the pipes 61 to 64. The concentrated water from the RO banks 51 to 53 in the second bank is introduced into the RO vessels 81 and 82 in the third bank through the pipes 71 to 76, and the permeate is discharged out of the system through the pipes 91 to 93. The concentrated water is discharged from the third bank to the outside through the pipe 103.
The concentrated water is discharged or sent to a wastewater treatment device at the subsequent stage. The permeated water is further fed to a subsequent processing device.
After such normal operation is performed for a predetermined time, flushing is performed as follows.

まず、通常運転時と同様に給水ポンプを作動させたまま、弁Vを開く。このとき、弁Vは閉としてもよく、開のままとしてもよい。弁Vを開とすることにより、第1バンクのROベッセル21〜24に流入した水の全量(弁V閉の場合)又は大部分(弁Vを開のままとした場合)は、RO膜を透過することなく、配管41〜44,49を経て系外へ排出される。 First, while operating the water supply pump as in normal operation, open the valve V B. At this time, the valve VA may be closed or may remain open. By the valve V B opened, RO vessel (if the valve V A closed) the total amount of flowing water in 21 to 24 or most of the first bank (when left the valve V A open), the Without passing through the RO membrane, it is discharged out of the system through the pipes 41 to 44, 49.

この操作で、第1バンクのROベッセル21〜24の膜面に沿って水が多量にかつ高流速で流れることにより、各膜面が洗浄される。   By this operation, a large amount of water flows at a high flow rate along the membrane surfaces of the RO vessels 21 to 24 of the first bank, thereby cleaning each membrane surface.

上述の如く、第1バンクのみのフラッシングを行った後は、弁Vが閉のときは開に戻し、弁Vを閉とし、通常運転を再開する。 As described above, after making flushing only the first bank, when the valve V A is closed back to open, and the valves V B is closed, resume normal operation.

本発明において、フラッシングの頻度としては特に制限はなく、被処理水の水質やRO処理条件等に応じて適宜決定されるが、通常1〜30日に一度の割合で1回当り5〜500秒程度実施することが好ましい。   In the present invention, the frequency of flushing is not particularly limited and is appropriately determined according to the quality of the water to be treated, the RO treatment conditions, and the like, but is usually 5 to 500 seconds per time at a rate of once every 1 to 30 days. It is preferable to carry out to the extent.

なお、第1図においては、第1バンクに4個のROベッセルが並列配置され、第2バンクに3個のROベッセルが設けられ、第3バンクに2個のROベッセルが設けられたクリスマスツリー型RO装置を示したが、本発明が適用されるRO装置は、何ら第2図の構成のものに限らず、各バンクのベッセル数は任意であり、バンク数も2以上であれば任意である。クリスマスツリー型RO装置に限らず、各段1個のROベッセルが多段に連結されたものであっても良い。   In FIG. 1, a Christmas tree in which four RO vessels are arranged in parallel in the first bank, three RO vessels are provided in the second bank, and two RO vessels are provided in the third bank. Although the RO device to which the present invention is applied is not limited to the one shown in FIG. 2, the number of vessels in each bank is arbitrary and the number of banks is two or more. is there. Not only a Christmas tree type RO device but also one RO vessel of each stage may be connected in multiple stages.

クリスマスツリー型RO装置の場合、そのバンク数やベッセル数には特に制限はないが、バンクの段数は通常2段又は3段である。ただし、4段以上の多段構成であっても良いことは言うまでもない。また、各段のバンクのROベッセル数は、処理水量とROベッセルの処理能力に応じて適宜設定されるが、一般的には上流側ほど多く、下流側ほど少なくなる。通常、2段の場合は第1バンクのベッセル数:第2バンクのベッセル数=2:1の割合でベッセル数が設定され、3段の場合は、第1バンクのベッセル数:第2バンクのベッセル数:第3バンクのベッセル数=4:2:1の割合でベッセル数が設定されることが多い。最終段のベッセル数は1個である場合もある。   In the case of a Christmas tree type RO device, the number of banks and the number of vessels are not particularly limited, but the number of banks is usually two or three. However, it goes without saying that a multi-stage configuration of four or more stages may be used. Further, the number of RO vessels in each bank is appropriately set according to the amount of treated water and the processing capacity of the RO vessel, but in general, the number is larger on the upstream side and smaller on the downstream side. Normally, in the case of two stages, the number of vessels in the first bank: the number of vessels in the second bank = 2: 1 is set. In the case of three stages, the number of vessels in the first bank: second bank The number of vessels is often set at a ratio of the number of vessels: the number of vessels in the third bank = 4: 2: 1. The number of vessels in the final stage may be one.

いずれの場合も、前述の如く、各ROベッセルには、ROエレメントが内蔵されており、1ベッセルにROエレメントが1本又は複数本内蔵されている。また、少なくとも、最終段のバンクからの濃縮水配管には絞り弁又は開度調節可能な弁Vが設けられ、全てのバンクのROベッセルにかかる運転圧を調整できるようになっている。 In any case, as described above, each RO vessel has a built-in RO element, and one vessel contains one or more RO elements. Also, at least, the concentrated water pipe from the bank of the last stage provided throttle valve or opening adjustable valve V C is adapted to adjust the operating pressure according to the RO vessel of all banks.

開閉弁、絞り弁は自動弁が好ましいが、手動弁でもよい。第2図は、弁V,Vを自動弁とし、その開閉を圧力計P,Pの差圧に基づいて制御装置110で自動制御することにより、フラッシング工程を自動的に通常運転中に行うようにしたものである。 The on-off valve and throttle valve are preferably automatic valves, but may be manual valves. FIG. 2 shows that the valves V A and V B are automatic valves, and the opening and closing thereof are automatically controlled by the control device 110 based on the pressure difference between the pressure gauges P 1 and P 2 , thereby automatically performing the normal flushing process. It is something that is done inside.

この場合、膜透過差圧が大きくなるほどフラッシングの頻度を多くするのが好ましいが、1回のフラッシング時間を長くするようにしてもよい。第2図のその他の構成は第1図と同一であり、同一符号は同一部分を示している。   In this case, it is preferable to increase the frequency of flushing as the membrane permeation differential pressure increases. However, the time for one flushing may be increased. The other structure of FIG. 2 is the same as that of FIG. 1, and the same code | symbol has shown the same part.

クリスマスツリー型RO装置のような多段RO装置の場合、特に、超低圧RO膜を用いた場合や濁質除去が不十分であったり、微生物抑制剤が使用されていない被処理水を処理する場合、1段目のバンク(ないしベッセル)のRO膜の汚染が顕著になることから、前述の如く、1段目のバンク(ベッセル群)のみのフラッシングを行うだけで透過水量を長期にわたって高く保つことができる。   In the case of a multi-stage RO device such as a Christmas tree type RO device, particularly when an ultra-low pressure RO membrane is used, turbidity removal is insufficient, or water to be treated that does not use a microbial inhibitor is treated. Since the RO membrane contamination of the first-stage bank (or vessel) becomes significant, as described above, the permeated water amount can be kept high for a long period only by flushing only the first-stage bank (vessel group). Can do.

本発明では、第1バンクのフラッシング時に弁Vを開のままとしてもよいので、弁Vを省略してもよい。 In the present invention, the valve VA may be left open during the flushing of the first bank, so the valve VA may be omitted.

本発明では、RO膜として、表面を高分子(例えばポリエチレングリコール)で修飾したり、酸化剤で処理したものを用いてもよい。   In the present invention, a RO membrane whose surface is modified with a polymer (for example, polyethylene glycol) or treated with an oxidizing agent may be used.

本発明のRO装置の運転方法は、例えば濁質除去が不十分なSDIが3以上の被処理水や排水回収プロセスなどTOC濃度が0.5mg/L以上、例えば、0.5〜20mg/L程度であるような被処理水や生菌数が5000CFU/mL以上である被処理水をRO給水とする場合に有効である。なお、TOCは溶存成分であるが、生物代謝物などの高分子が含まれている場合、膜面で濃縮されたり、カチオンと結合してゲル化する場合があり、RO膜供給水の流路に付着して、流路を閉塞させる場合があることがわかった。   The operation method of the RO device of the present invention is such that the TOC concentration is 0.5 mg / L or more, for example, 0.5 to 20 mg / L, such as treated water or effluent recovery process with SDI of insufficient turbidity removal of 3 or more. This is effective when the water to be treated or the water to be treated having a viable count of 5000 CFU / mL or more is used as RO water supply. In addition, although TOC is a dissolved component, when a polymer such as a biological metabolite is included, it may be concentrated on the membrane surface or may be gelled by binding with a cation. It has been found that the flow path may be blocked by adhering to the liquid.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
以下の実施例及び比較例では表1に示す水質の原水を用いた。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
In the following Examples and Comparative Examples, raw water of the quality shown in Table 1 was used.

Figure 2010104920
Figure 2010104920

実施例1,2、比較例1,2
採水時には、弁Vを開、弁Vを閉、弁Vを半開とし、原水を第1図に示すRO装置(膜は栗田工業(株)製K−RO−A2032。ベッセル1個当り4本に30m/hにて供給し、濃縮水流量を10m/h、回収率75%とした。
Examples 1 and 2 and Comparative Examples 1 and 2
When water sampling, the valve V A opens, the valve V B closed, the valve V C half open, RO apparatus according to the raw water in Figure 1 (film Kurita Water Industries Ltd. K-RO-A2032. Vessel 1 was supplied at 30 m 3 / h into four per, the concentrated water flow rate was set to 10 m 3 / h, the recovery rate of 75%.

実施例1,2では、1回/dayの頻度で1回当り60秒間V,V,Vの開閉を表2の通りとしてフラッシングを行った。比較例1ではフラッシングを行わなかった。比較例2では、1回/dayの頻度で1回当り60秒間、弁Vを全開とした。 In Examples 1 and 2, flushing was performed by opening and closing V A , V B , and V C at a frequency of once / day for 60 seconds per time as shown in Table 2. In Comparative Example 1, no flushing was performed. In Comparative Example 2, 60 seconds per once with a frequency of once / day, was fully open valve V C.

Figure 2010104920
Figure 2010104920

実施例3
第2図に示すように、圧力計P,Pの検出値を制御装置110に入力し、差圧(P−P)に応じて、バルブVを60秒だけ開とし且つバルブVを60秒だけ閉とするフラッシングを、次の頻度にて行った。
Example 3
As shown in FIG. 2 , the detected values of the pressure gauges P 1 and P 2 are input to the control device 110, and the valve V B is opened for 60 seconds according to the differential pressure (P 1 -P 2 ), and the valve Flushing for closing VA for 60 seconds was performed at the following frequency.

−Pが0.15未満のとき 1回/day
−Pが0.15〜0.20のとき 2回/day
−Pが0.20〜0.25のとき 3回/day
−Pが0.25超のとき 4回/day
なお、膜の材質及び各ベッセルの膜面積は実施例1,2及び比較例1,2と同一である。
1 time / day when P 1 -P 2 is less than 0.15
When P 1 -P 2 is 0.15 to 0.20, 2 times / day
3 times / day when P 1 -P 2 is 0.20 to 0.25
4 times / day when P 1 -P 2 exceeds 0.25
The material of the film and the film area of each vessel are the same as in Examples 1 and 2 and Comparative Examples 1 and 2.

実施例1〜3及び比較例1,2の運転開始直後及び1ヶ月経過後の圧力計P〜Pの検出値を表3,表4に示す。表3,4及び後述の表5,7において、電導度の単位はmS/mである。 Tables 3 and 4 show the detected values of the pressure gauges P 1 to P 4 immediately after the start of operation of Examples 1 to 3 and Comparative Examples 1 and 2 and after one month. In Tables 3 and 4 and Tables 5 and 7 described later, the unit of conductivity is mS / m.

Figure 2010104920
Figure 2010104920

Figure 2010104920
Figure 2010104920

フラッシングを行わない比較例1では圧力計1の圧力が上昇し、圧力計4の圧力が低下している。Vを開放する比較例2ではこの傾向は小さくなるものの、やはり圧力計1の圧力上昇や他の圧力計の圧力低下が顕著である。Vを開放する本発明(実施例1,2及び3)では、圧力計1の圧力上昇と他の圧力計での圧力低下は抑えられた。圧力に応じて、バルブの開閉を制御する実施例3で、最もこの効果は大きい。 In Comparative Example 1 in which flushing is not performed, the pressure of the pressure gauge 1 is increased and the pressure of the pressure gauge 4 is decreased. In Comparative Example 2 in which V C is opened, this tendency is small, but the pressure rise of the pressure gauge 1 and the pressure drop of other pressure gauges are also remarkable. In the present invention (Examples 1, 2 and 3) in which V B is opened, the pressure rise of the pressure gauge 1 and the pressure drop of other pressure gauges were suppressed. In Example 3 in which the opening / closing of the valve is controlled according to the pressure, this effect is most significant.

実施例4、比較例3
膜として、上記K−RO−A2032に、2ppmポリエチレングリコール水溶液(平均分子量3000)を30分間、0.75MPaで通水処理して、ポリエチレングリコールによる修飾処理を行ったものを用いたほかは、それぞれ実施例3、比較例1と同一条件にて通水した。運転開始直後及び1ヶ月経過後の圧力計P〜Pの検出値を表5に示す。
Example 4, Comparative Example 3
As the membrane, except that the above-mentioned K-RO-A2032 was subjected to a water treatment at 0.75 MPa for 30 minutes with a 2 ppm polyethylene glycol aqueous solution (average molecular weight 3000) and modified with polyethylene glycol, respectively. Water was passed under the same conditions as in Example 3 and Comparative Example 1. Table 5 shows the detected values of the pressure gauges P 1 to P 4 immediately after the start of operation and after one month.

Figure 2010104920
Figure 2010104920

表5の通り、修飾処理によって膜の抵抗が増加した分、運転開始直後の初期圧力は高い。しかしながら、実施例4及び比較例3ともに、実施例3、比較例1に比べて1ヵ月後の圧力上昇は抑えられており、実施例4では圧力上昇が著しく抑えられている。   As shown in Table 5, the initial pressure immediately after the start of operation is high because the resistance of the membrane is increased by the modification treatment. However, in both Example 4 and Comparative Example 3, the pressure increase after one month was suppressed compared to Example 3 and Comparative Example 1, and in Example 4, the pressure increase was remarkably suppressed.

実施例5
表6に示す原水を第3図に示すRO装置に28m/hにて供給し、濃縮水流量を12m/hとし、回収率を70%とした。
Example 5
The raw water shown in Table 6 was supplied to the RO apparatus shown in FIG. 3 at 28 m 3 / h, the concentrated water flow rate was 12 m 3 / h, and the recovery rate was 70%.

第3図のRO装置は、第1バンクと第2バンクとの2バンクよりなり、第1バンクは8個のROベッセル21〜24、24a〜24dを並列に設け、配管11〜14、14a〜14dによってそれぞれ原水を供給し、透過水を配管31〜34、34a〜34dによって取り出し、濃縮水を配管41〜44、44a〜44dを介して配管45に送り出すようにしている。   The RO apparatus of FIG. 3 is composed of two banks, a first bank and a second bank. The first bank is provided with eight RO vessels 21-24, 24a-24d in parallel, and pipes 11-14, 14a- The raw water is supplied by 14d, the permeated water is taken out by the pipes 31 to 34 and 34a to 34d, and the concentrated water is sent to the pipe 45 through the pipes 41 to 44 and 44a to 44d.

第2バンクは4個のROベッセル52〜53、53Aを並列に設け、分岐配管46〜48、4aによって配管45からの濃縮水を各ベッセル51〜53Aに供給し、透過水を配管61〜63、63aによって取り出し、濃縮水を配管71〜73、73aによって配管74に送り出し、系外に取り出すようにしている。   The second bank is provided with four RO vessels 52 to 53, 53A in parallel, the concentrated water from the piping 45 is supplied to the respective vessels 51 to 53A by branch piping 46 to 48, 4a, and the permeated water is supplied to the piping 61 to 63. 63a, and the concentrated water is sent out to the pipe 74 through the pipes 71 to 73 and 73a and taken out of the system.

その他の構成は第1図と同一であり、同一符号は同一部分を示している。   Other configurations are the same as those in FIG. 1, and the same reference numerals indicate the same parts.

膜としては、日東電工(株)製NTR−759HRを、1%過酸化水素水に24時間浸漬処理したものを用いた。   As the membrane, NTR-759HR manufactured by Nitto Denko Corporation was immersed in 1% hydrogen peroxide solution for 24 hours.

フラッシングは弁Vのみを1回/hrの頻度で1回当り60秒だけ開とすることにより行った。運転開始直後及び1ヶ月経過後の圧力計P〜Pの検出値を表7に示す。 Flushing was carried out by the open only 60 seconds per once only valve V B at a frequency of once / hr. Table 7 shows the detected values of pressure gauges P 1 to P 4 immediately after the start of operation and after one month has elapsed.

比較例4
実施例5において、膜として過酸化水素水しなかったものを用い、フラッシングを行わなかったこと以外は実施例5と同一とした。運転開始直後及び1ヶ月経過後の圧力計P〜Pの検出値を表7に示す。
Comparative Example 4
In Example 5, the same film as Example 5 was used except that the film was not subjected to hydrogen peroxide solution and flushing was not performed. Table 7 shows the detected values of pressure gauges P 1 to P 4 immediately after the start of operation and after one month has elapsed.

比較例5
実施例5において、フラッシングを行わなかったこと以外は、実施例5と同一とした。運転開始直後及び1ヶ月経過後の圧力計P〜Pの検出値を表7に示す。
Comparative Example 5
Example 5 was the same as Example 5 except that flushing was not performed. Table 7 shows the detected values of pressure gauges P 1 to P 4 immediately after the start of operation and after one month has elapsed.

Figure 2010104920
Figure 2010104920

Figure 2010104920
Figure 2010104920

表7の通り、実施例5では比較例4,5に比べて1ヶ月経過後の圧力計Pの圧力上昇が顕著に抑制され、P及びPも低い値に維持されている。 As Table 7, the pressure rise in the pressure gauge P 1 after one month has elapsed as compared with Comparative Examples 4 and 5 In Example 5 is remarkably suppressed, is maintained at a value lower P 2 and P 3.

本発明のRO装置の運転方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the operating method of RO apparatus of this invention. 本発明のRO装置の運転方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the operating method of RO apparatus of this invention. 本発明のRO装置の運転方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the operating method of RO apparatus of this invention. 一般的なクリスマスツリー型RO装置の構成を示す系統図である。It is a systematic diagram which shows the structure of a general Christmas tree type RO apparatus.

符号の説明Explanation of symbols

1 第1バンク(第1ROベッセル群)
2 第2バンク(第2ROベッセル群)
21〜24,51〜53,81,82 ROベッセル
1 First bank (first RO vessel group)
2 Second bank (second RO vessel group)
21-24, 51-53, 81, 82 RO vessel

Claims (5)

直列に多段に設置された逆浸透膜分離手段を有する逆浸透膜分離装置の運転方法であって、
該逆浸透膜分離手段を一時的にフラッシングするフラッシング工程を有する逆浸透膜分離装置の運転方法において、
フラッシング工程においては、1段目の逆浸透膜分離手段のみをフラッシングし、フラッシング排水を該逆浸透膜分離装置外に排出することを特徴とする逆浸透膜分離装置の運転方法。
A method of operating a reverse osmosis membrane separation device having reverse osmosis membrane separation means installed in multiple stages in series,
In a method of operating a reverse osmosis membrane separation apparatus having a flushing step of temporarily flushing the reverse osmosis membrane separation means,
In the flushing step, only the first-stage reverse osmosis membrane separation means is flushed, and the flushing waste water is discharged out of the reverse osmosis membrane separation device.
請求項1において、
1段目の逆浸透膜分離手段の濃縮水取出口と2段目の逆浸透膜分離手段の被処理水流入口とをつなぐ流路からフラッシング排水流路が分岐しており、
透過水の採水工程にあっては1段目の逆浸透膜分離手段からの濃縮水の全量を2段目の逆浸透膜分離手段に供給し、
フラッシング工程にあっては、被処理水の1段目の逆浸透膜分離手段への導入を継続したまま、1段目の逆浸透膜分離手段からの濃縮水の全量又はほぼ全量を該フラッシング排水流路から該逆浸透膜分離装置外に排出することを特徴とする逆浸透膜分離装置の運転方法。
In claim 1,
A flushing drainage channel is branched from a channel connecting the concentrated water outlet of the first-stage reverse osmosis membrane separation means and the treated water inlet of the second-stage reverse osmosis membrane separation means,
In the permeated water sampling process, the entire amount of concentrated water from the first-stage reverse osmosis membrane separation means is supplied to the second-stage reverse osmosis membrane separation means,
In the flushing step, the entire amount or almost all of the concentrated water from the first-stage reverse osmosis membrane separation means is continuously discharged into the first-stage reverse osmosis membrane separation means while the treated water is continuously introduced into the first-stage reverse osmosis membrane separation means. A method for operating a reverse osmosis membrane separation device, wherein the reverse osmosis membrane separation device is discharged from a flow path to the outside of the reverse osmosis membrane separation device.
請求項2において、フラッシング工程にあっては、1段目の逆浸透膜分離手段からのフラッシング排水の全量を逆浸透膜分離装置外に排出することを特徴とする逆浸透膜分離装置の運転方法。   3. The operation method of a reverse osmosis membrane separation device according to claim 2, wherein in the flushing step, the entire amount of flushing waste water from the first stage reverse osmosis membrane separation means is discharged out of the reverse osmosis membrane separation device. . 請求項1ないし3のいずれか1項において、フラッシング工程を1〜30回/dayの頻度で、1回のフラッシング時間5〜500秒にて行うことを特徴とする逆浸透膜分離装置の運転方法。   The method of operating a reverse osmosis membrane separation device according to any one of claims 1 to 3, wherein the flushing step is performed at a frequency of 1 to 30 times / day in a single flushing time of 5 to 500 seconds. . 請求項1ないし3のいずれか1項において、1段目の被処理水流入口と濃縮水取出口との差圧を検出手段で検出し、この差圧が高くなるほどフラッシング工程の頻度を増大させるように制御手段によって制御することを特徴とする逆浸透膜分離装置の運転方法。   4. The method according to claim 1, wherein the detection means detects a differential pressure between the first-stage treated water inlet and the concentrated water outlet, and the frequency of the flushing process is increased as the differential pressure increases. And a control means for controlling the reverse osmosis membrane separation device.
JP2008280102A 2008-10-30 2008-10-30 Method for operating reverse osmosis membrane separator Pending JP2010104920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008280102A JP2010104920A (en) 2008-10-30 2008-10-30 Method for operating reverse osmosis membrane separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008280102A JP2010104920A (en) 2008-10-30 2008-10-30 Method for operating reverse osmosis membrane separator

Publications (1)

Publication Number Publication Date
JP2010104920A true JP2010104920A (en) 2010-05-13

Family

ID=42294896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008280102A Pending JP2010104920A (en) 2008-10-30 2008-10-30 Method for operating reverse osmosis membrane separator

Country Status (1)

Country Link
JP (1) JP2010104920A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094428A1 (en) * 2011-12-19 2013-06-27 株式会社日立プラントテクノロジー Reverse osmosis treatment device and method for cleaning reverse osmosis treatment device
KR20210103829A (en) * 2020-02-14 2021-08-24 (주)엔퓨텍 Movable used-disinfectant purification device and vehicle base sterilizer including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094428A1 (en) * 2011-12-19 2013-06-27 株式会社日立プラントテクノロジー Reverse osmosis treatment device and method for cleaning reverse osmosis treatment device
JP2013126635A (en) * 2011-12-19 2013-06-27 Hitachi Plant Technologies Ltd Reverse osmosis treatment apparatus, and method for cleaning reverse osmosis treatment apparatus
KR20210103829A (en) * 2020-02-14 2021-08-24 (주)엔퓨텍 Movable used-disinfectant purification device and vehicle base sterilizer including the same
KR102411395B1 (en) * 2020-02-14 2022-06-21 (주)엔퓨텍 Movable used-disinfectant purification device and vehicle base sterilizer including the same

Similar Documents

Publication Publication Date Title
JP4472050B2 (en) Fresh water generator and fresh water generation method
Lehman et al. Application of ceramic membranes with pre-ozonation for treatment of secondary wastewater effluent
CN106564990B (en) Low energy reverse osmosis process
US20180280888A1 (en) Reverse osmosis treatment apparatus and reverse osmosis treatment method
JP4903113B2 (en) Water treatment system and operation method thereof
AU2010334047B2 (en) Water production system and operation method therefor
KR101810814B1 (en) Ultra filtration unit and water purifying system having the same
JP2007000788A (en) Water treatment apparatus using reverse osmosis membrane
JP2008149285A (en) Water treatment system for producing drinking water and its operation method
JP5135676B2 (en) Operation method of reverse osmosis membrane separator
JPWO2013039224A1 (en) Fresh water production apparatus and fresh water production method
EP3587678B1 (en) Water supply management system and method and computer-readable recording medium including instructon for performing the method
JPWO2014007301A1 (en) Fresh water generation method and fresh water generation apparatus
JP2000189964A (en) Fresh water maker and production of fresh water
TW200404601A (en) Operating method of separation membrane module and separation membrane apparatus
JP2010104920A (en) Method for operating reverse osmosis membrane separator
JP2007130587A (en) Membrane filtration apparatus and method for washing membrane
WO2017168720A1 (en) Reverse osmosis membrane processing method and reverse osmosis membrane processing equipment
RU2323036C2 (en) Method and device for concentrating water solutions of biology-active agents
JP2001187323A (en) Membrane separation device and operation method thereof
WO2018182033A1 (en) Water production method and water production device
JP4940631B2 (en) Operation method of reverse osmosis membrane separator
JP3443806B2 (en) Fresh water production method
JP6029904B2 (en) Membrane filtration system and operation control method thereof
JP2014034005A (en) Salt water desalination apparatus and fresh water production method