TW202021393A - 無線傳輸/接收單元(wtru)功率控制方法及裝置 - Google Patents

無線傳輸/接收單元(wtru)功率控制方法及裝置 Download PDF

Info

Publication number
TW202021393A
TW202021393A TW108129787A TW108129787A TW202021393A TW 202021393 A TW202021393 A TW 202021393A TW 108129787 A TW108129787 A TW 108129787A TW 108129787 A TW108129787 A TW 108129787A TW 202021393 A TW202021393 A TW 202021393A
Authority
TW
Taiwan
Prior art keywords
wtru
csi
time slot
power mode
offset value
Prior art date
Application number
TW108129787A
Other languages
English (en)
Other versions
TWI750499B (zh
Inventor
李汶宜
艾爾登 貝拉
博寇威斯 珍妮特A 史騰
愛辛 哈格海爾特
馬里恩 魯道夫
保羅 馬里內爾
法里斯 艾爾法漢
迪倫詹姆士 華茲
基斯蘭 佩勒特爾
Original Assignee
美商Idac控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Idac控股公司 filed Critical 美商Idac控股公司
Publication of TW202021393A publication Critical patent/TW202021393A/zh
Application granted granted Critical
Publication of TWI750499B publication Critical patent/TWI750499B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

所描述的是用於無線傳輸/接收單元(WTRU)功率控制的方法及裝置。一種方法包括:接收包含條目的時域資源分配(TDRA)清單配置,其中每一個條目都包括含有時槽偏移值的資源分配。接收指示最小時槽偏移值的L1傳訊。在時槽中在實體下鏈控制通道上解碼下鏈控制資訊(DCI)。從所解碼的DCI中獲得識別TDRA清單中的條目的索引。從TDRA清單中檢索該索引識別的特別時槽偏移值,並且將其與最小時槽偏移值相比較。如果該特別時槽偏移值小於最小時槽偏移值,那麼該條目無效。如果該特別時槽偏移值大於或等於最小時槽偏移值,則接收實體下鏈共用通道。

Description

無線傳輸/接收單元(WTRU)功率控制方法及裝置
相關申請案的交叉引用
本申請要求享有2018年8月21日提交的美國臨時申請62/720,547、2018年9月25日提交的美國臨時申請62/735,939、2018年10月30日提交的美國臨時申請62/752,797、2018年10月31日提交的美國臨時申請62/753,597以及2019年04月30日提交的美國臨時申請62/840,935的權益,這些申請的內容在這裡被引入以作為參考。
下一代空中介面(包括先進LET Pro(LTE Advanced Pro)的進一步演進以及新型無線電(NR))有望支援廣泛的用例。針對多樣的WTRU能力(例如低功率低頻寬,非常寬的頻寬(例如80MHz)以及高頻率(例如>6GHz),此類用例可能具有不同的服務需求(例如低負擔低資料速率的功效服務(mMTC),超可靠低潛時服務(URLLC)以及高資料速率移動寬頻服務(eMBB))。此類用例可能具有不同的頻譜使用模型(例如授權或非授權/共用),並且可以使用足夠靈活以適配不同部署場景(例如分立的,具有來自不同空中介面的援助的非分立的,集中式,虛擬化,或是理想/非理想回載上的分散式)的架構而在不同的移動性場景(例如穩定/固定或高速的火車)中操作。
描述了無線傳輸/接收單元(WTRU)功率控制之方法和裝置。一種方法包括接收包含了條目的時域資源分配(TDRA)清單配置,每一個條目都包括資源分配,該資源配置包括時槽偏移值。接收的L1傳訊指示最小時槽偏移值。在時槽中,在實體下鏈控制通道上解碼下行控制資訊(DCI)。從所解碼的DCI獲得識別TDRA清單中的條目的索引。從TDRA清單中檢索該索引所識別的特定時槽偏移值,並將其與最小時槽偏移值相比較。如果該特定時槽偏移值小於最小時槽偏移值,那麼該條目是無效的。如果該特定時槽偏移值大於或等於最小時槽偏移值,則接收實體下鏈共用通道。
圖1A是示出了可以在其中實施所揭露的一個或複數實施例的範例通信系統100的圖式。該通信系統100可以是為複數無線使用者提供諸如語音、資料、視訊、消息傳遞、廣播等內容的多重存取系統。該通信系統100可以藉由共用包括無線頻寬在內的系統資源而使複數無線使用者能夠存取此類內容。舉例來說,通信系統100可以採用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾唯一字離散傅利葉變換擴展OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、資源塊過濾OFDM以及濾波器組多載波(FBMC)等等。
如圖1A所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、無線電存取網路(RAN)104、核心網路(CN)106、公共交換電話網路(PSTN)108、網際網路110以及其他網路112,然而應該瞭解,所揭露的實施例設想了任意數量的WTRU、基地台、網路和/或網路元件。每一個WTRU 102a、102b、102c、102d可以是被配置成在無線環境中操作和/或通信的任何類型的裝置。舉例來說,任何一個WTRU 102a、102b、102c、102d都可被稱為站(STA),其可以被配置成傳輸和/或接收無線信號,並且可以包括使用者設備(UE)、移動站、固定或移動用戶單元、基於訂閱的單元、呼叫器、移動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、熱點或Mi-Fi裝置、物聯網(IoT)裝置、手錶或其他可穿戴裝置、頭戴顯示器(HMD)、車輛、無人機、醫療裝置和應用(例如遠端手術)、工業裝置和應用(例如機器人和/或在工業和/或自動處理鏈環境中操作的其他無線裝置)、消費類電子裝置、以及在商業和/或工業無線網路上操作的裝置等等。WTRU 102a、102b、102c和102d中的任何一個可被可交換地稱為UE。
通信系統100還可以包括基地台114a和/或基地台114b。每一個基地台114a和/或基地台114b可以是被配置成與WTRU 102a、102b、102c、102d中的至少一個有無線介面來促進存取一個或複數通信網路(例如CN106、網際網路110、和/或其他網路112)的任何類型的裝置。例如,基地台114a、114b可以是基地收發台(BTS)、節點B、e節點B(eNB)、本地節點B、本地e節點 B、下一代節點B(諸如g節點B(gNB))、新無線電(NR)節點B、網站控制器、存取點(AP)以及無線路由器等等。雖然每一個基地台114a、114b都被描述成了單個部件,然而應該瞭解,基地台114a、114b可以包括任何數量的互連基地台和/或網路部件。
基地台114a可以是RAN 104的一部分,並且該RAN還可以包括其他基地台和/或網路部件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)以及中繼節點等等。基地台114a和/或基地台114b可被配置成在可稱為胞元(未顯示)的一個或複數載波頻率上傳輸和/或接收無線信號。這些頻率可以處於授權頻譜、無授權頻譜或是授權與無授權頻譜的組合之中。胞元可以為有可能相對固定或者有可能隨時間變化的特定地理區域提供無線服務覆蓋。胞元可被進一步分成胞元扇區。例如,與基地台114a相關聯的胞元可被分為三個扇區。由此,在一個實施例中,基地台114a可以包括三個收發器,也就是說,胞元的每一個扇區有一個。在實施例中,基地台114a可以採用多輸入多輸出(MIMO)技術,並且可以為胞元的每一個扇區利用複數收發器。例如,藉由使用波束成形,可以在期望的空間方向上傳輸和/或接收信號。
基地台114a、114b可以藉由空中介面116來與WTRU 102a、102b、102c、102d中的一個或複數進行通信,其中該空中介面可以是任何適當的無線通訊鏈路(例如射頻(RF)、微波、釐米波、微米波、紅外線(IR)、紫外線(UV)、可見光等等)。空中介面116可以使用任何適當的無線電存取技術(RAT)來建立。
更具體地說,如上所述,通信系統100可以是多重存取系統,並且可以採用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA以及SC-FDMA等等。例如,RAN 104中的基地台114a與WTRU 102a、102b、102c可以實施無線電技術,例如通用移動電信系統(UMTS)陸地無線電存取(UTRA),其可以使用寬頻CDMA(WCDMA)來建立空中介面116。WCDMA可以包括如高速封包存取(HSPA)和/或演進型HSPA(HSPA+)之類的通信協定。HSPA可以包括高速下鏈(DL)封包存取(HSDPA)和/或高速上鏈(UL)封包存取(HSUPA)。
在實施例中,基地台114a和WTRU 102a、102b、102c可以實施無線電技術,例如演進型UMTS陸地無線電存取(E-UTRA),其可以使用長期演進(LTE)和/或先進LTE(LTE-A)和/或先進LTA Pro(LTE-A Pro)來建立空中介面116。
在實施例中,基地台114a和WTRU 102a、102b、102c可以實施無線電技術,例如NR無線電存取,該無線電技術可以使用NR來建立空中介面116。
在實施例中,基地台114a和WTRU 102a、102b、102c可以實施多種無線電存取技術。例如,基地台114a和WTRU 102a、102b、102c可以共同實施LTE無線電存取和NR無線電存取(例如使用雙連接(DC)原理)。由此,WTRU 102a、102b、102c利用的空中介面可以多種類型的無線電存取技術和/或向/從多種類型的基地台(例如eNB和gNB)發送的傳輸為特徵。
在其他實施例中,基地台114a和WTRU 102a、102b、102c可以實施以下的無線電技術,例如IEEE 802.11(即無線保真度(WiFi))、IEEE 802.16(全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球移動通信系統(GSM)、用於GSM演進的增強資料速率(EDGE)以及GSM EDGE(GERAN)等等。
舉例而言,圖1A中的基地台114b可以是無線路由器、本地節點B、本地e節點B或存取點,並且可以利用任何適當的RAT來促進局部區域中的無線連接,例如營業場所、住宅、車輛、校園、工業設施、空中走廊(例如供無人機使用)以及道路等等。在一個實施例中,基地台114b與WTRU 102c、102d可以實施IEEE 802.11之類的無線電技術來建立無線區域網路(WLAN)。在實施例中,基地台114b與WTRU 102c、102d可以實施IEEE 802.15之類的無線電技術來建立無線個人區域網路(WPAN)。在再一個實施例中,基地台114b和WTRU 102c、102d可利用基於蜂巢的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等等)來建立微微胞元或毫微微胞元。如圖1A所示,基地台114b可以直連到網際網路110。由此,基地台114b不需要經由CN 106來存取網際網路110。
RAN 104可以與CN 106進行通信,該CN可以是被配置成向一個或複數WTRU 102a、102b、102c、102d提供語音、資料、應用和/或網際網路協定語音(VoIP)服務的任何類型的網路。該資料可以具有不同的服務品質(QoS)需求,例如不同的輸送量需求、潛時需求、容錯需求、可靠性需求、資料輸送量需求、以及移動性需求等等。CN 106可以提供呼叫控制、記帳服務、基於移動位置的服務、預付費呼叫、網際網路連接、視訊分發等等,和/或可以執行使用者驗證之類的高級安全功能。雖然在圖1A中沒有顯示,然而應該瞭解,RAN 104和/或CN 106可以直接或間接地和其他那些與RAN 104採用相同RAT或不同RAT的RAN進行通信。例如,除了與利用NR無線電技術的RAN 104相連之外,CN 106還可以與採用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi無線電技術的別的RAN(未顯示)通信。
CN 106還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110和/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用了共同通信協定(例如TCP/IP網際網路協定族中的傳輸控制協定(TCP)、使用者資料報協定(UDP)和/或網際網路協定(IP))的全球性互聯電腦網路及裝置之系統。網路112可以包括由其他服務供應商擁有和/或操作的有線和/或無線通訊網路。例如,網路112可以包括與一個或複數RAN相連的另一個CN,其中該一個或複數RAN可以與RAN 104採用相同RAT或不同RAT。
通信系統100中一些或所有WTRU 102a、102b、102c、102d可以包括多模式能力(例如WTRU 102a、102b、102c、102d可以包括在不同無線鏈路上與不同無線網路通信的複數收發器)。例如,圖1A所示的WTRU 102c可被配置成與可以採用基於蜂巢的無線電技術的基地台114a通信,以及與可以採用IEEE 802無線電技術的基地台114b通信。
圖1B是示出了範例WTRU 102的系統圖式。如圖1B所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136和/或其他週邊設備138等等。應該瞭解的是,在保持符合實施例的同時,WTRU 102還可以包括前述部件的任何子組合。
處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、複數微處理器、與DSP核心關聯的一個或複數微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)、其他任何類型的積體電路(IC)以及狀態機等等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理、和/或其他任何能使WTRU 102在無線環境中操作的功能。處理器118可以耦合至收發器120,該收發器120可以耦合至傳輸/接收元件122。雖然圖1B將處理器118和收發器120描述成各別組件,然而應該瞭解,處理器118和收發器120也可以整合在電子封裝或晶片中。
傳輸/接收元件122可被配置成經由空中介面116來傳輸或接收往或來自基地台(例如基地台114a)的信號。舉個例子,在一個實施例中,傳輸/接收元件122可以是被配置成傳輸和/或接收RF信號的天線。作為範例,在實施例中,傳輸/接收元件122可以是被配置成傳輸和/或接收IR、UV或可見光信號的放射器/偵測器。在再一個實施例中,傳輸/接收元件122可被配置成傳輸和/或接收RF和光信號兩者。應該瞭解的是,傳輸/接收元件122可以被配置成傳輸和/或接收無線信號的任何組合。
雖然在圖1B中將傳輸/接收元件122描述成是單個部件,但是WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地說,WTRU 102可以採用MIMO技術。由此,在一個實施例中,WTRU 102可以包括兩個或更多個藉由空中介面116來傳輸和接收無線信號的傳輸/接收元件122(例如複數天線)。
收發器120可被配置成對傳輸/接收元件122所要傳輸的信號進行調變,以及對傳輸/接收元件122接收的信號進行解調。如上所述,WTRU 102可以具有多模式能力。因此,收發器120可以包括允許WTRU 102經由多種RAT(例如NR和IEEE 802.11)來進行通信的複數收發器。
WTRU 102的處理器118可以耦合到揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元),並且可以接收來自揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元)的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以從諸如非可移記憶體130和/或可移記憶體132之類的任何適當的記憶體存取資訊,以及將資訊存入這些記憶體。非可移記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是其他任何類型的記憶存放裝置。可移記憶體132可以包括用戶身份模組(SIM)卡、記憶條、安全數位(SD)記憶卡等等。在其他實施例中,處理器118可以從那些並非實體位於WTRU 102的記憶體存取資訊,以及將資料存入該記憶體,作為範例,此類記憶體可以位於伺服器或家用電腦(未顯示)。
處理器118可以接收來自電源134的電力,並且可被配置分發和/或控制用於WTRU 102中的其他組件的電力。電源134可以是為WTRU 102供電的任何適當裝置。例如,電源134可以包括一個或複數乾電池組(如鎳鎘(NiCd)、鎳鋅(NiZn)、鎳氫(NiMH)、鋰離子(Li-ion)等等)、太陽能電池以及燃料電池等等。
處理器118還可以耦合到GPS晶片組136,該晶片組136可被配置成提供與WTRU 102的目前位置相關的位置資訊(例如經度和緯度)。WTRU 102可以經由空中介面116接收來自基地台(例如基地台114a、114b)的加上或取代GPS晶片組136資訊之位置資訊,和/或根據從兩個或多個附近基地台接收的信號時序來確定其位置。應該瞭解的是,在保持符合實施例的同時,WTRU 102可以經由任何適當的定位方法來獲得位置資訊。
處理器118可以進一步耦合到其他週邊設備138,其中該週邊設備可以包括提供附加特徵、功能和/或有線或無線連接的一個或複數軟體和/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片和/或視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、藍牙®模組、調頻(FM)無線電單元、數位音樂播放機、媒體播放機、視訊遊戲機模組、網際網路瀏覽器、虛擬實境和/或增強實境(VR/AR)裝置、以及活動追蹤器等等。週邊設備138可以包括一個或複數感測器。該感測器可以是以下的一個或複數:陀螺儀、加速度計、霍爾效應感測器、磁力計、方位感測器、鄰近感測器、溫度感測器、時間感測器、地理位置感測器、高度計、光感測器、觸摸感測器、磁力計、氣壓計、姿態感測器、生物測定感測器以及濕度感測器等等。
WTRU 102可以包括全雙工無線電,對於該無線電來說,一些或所有信號(例如與用於UL(例如對傳輸而言)和DL(例如對接收而言)的特定子訊框相關聯的)的接收或傳輸可以是並行和/或同時的。全雙工無線電可以包括經由硬體(例如扼流圈)或是經由處理器(例如各別的處理器(未顯示)或是經由處理器118)的信號處理來減小和/或實質消除自干擾的介面管理單元。在實施例中,WTRU 102可以包括傳輸或接收一些或所有信號(例如與用於UL(例如對傳輸而言)或DL(例如對接收而言)的特定子訊框相關聯的)的半雙工無線電。
圖1C是示出了根據實施例的RAN 104和CN 106的系統圖式。如上所述,RAN 104可以採用E-UTRA無線電技術來藉由空中介面116與WTRU 102a、102b、102c進行通信。RAN 104還可以與CN 106進行通信。
RAN 104可以包括e節點B 160a、160b、160c,然而應該瞭解,在保持符合實施例的同時,RAN 104可以包括任何數量的e節點B。每一個e節點B 160a、160b、160c都可以包括藉由空中介面116與WTRU 102a、102b、102c通信的一個或複數收發器。在一個實施例中,e節點B 160a、160b、160c可以實施MIMO技術。由此,舉例來說,e節點B 160a可以使用複數天線來向WTRU 102a傳輸無線信號,和/或接收來自WTRU 102a的無線信號。
每一個e節點B 160a、160b、160c都可以關聯於特定胞元(未顯示),並且可被配置成處理無線電資源管理決定、交接決定、UL和/或DL中的使用者排程等等。如圖1C所示,e節點B 160a、160b、160c彼此可以藉由X2介面進行通信。
圖1C中顯示的CN 106可以包括移動性管理閘道(MME)162、服務閘道(SGW)164以及封包資料網路(PDN)閘道(或PGW)166。雖然前述的每一個部件都被描述成是CN 106的一部分,然而應該瞭解,這其中的任一部件都可以由CN操作者之外的實體擁有和/或操作。
MME 162可以經由S1介面連接到RAN 104中的每一個e節點B 160a、160b、160c,並且可以充當控制節點。例如,MME 162可以負責驗證WTRU 102a、102b、102c的使用者,承載啟動/去啟動,以及在WTRU 102a、102b、102c的初始附著期間選擇特定的服務閘道等等。MME 162還可以提供用於在RAN 104與採用其他無線電技術(例如GSM和/或WCDMA)的其他RAN(未顯示)之間進行切換的控制平面功能。
SGW 164可以經由S1介面連接到RAN 104中的每一個e節點B 160a、160b、160c。SGW 164通常可以路由和轉發往/來自WTRU 102a、102b、102c的使用者資料封包。並且,SGW 164還可以執行其他功能,例如在e節點B間的交接期間錨定使用者平面,在DL資料可供WTRU 102a、102b、102c使用時觸發傳尋,以及管理並儲存WTRU 102a、102b、102c的上下文等等。
SGW 164可以連接到PGW 166,該PGW 166可以為WTRU 102a、102b、102c提供至封包交換網路(例如網際網路110)的存取,以便促進WTRU 102a、102b、102c與賦能IP的裝置之間的通信。
CN 106可以促進與其他網路的通信。例如,CN 106可以為WTRU 102a、102b、102c提供至電路切換式網路(例如PSTN 108)的存取,以便促進WTRU 102a、102b、102c與傳統的陸線通信裝置之間的通信。例如,CN 106可以包括IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之進行通信,並且該IP閘道可以充當CN 106與PSTN 108之間的介面。此外,CN 106可以為WTRU 102a、102b、102c提供至其他網路112的存取,其中該其他網路可以包括其他服務供應商擁有和/或操作的其他有線和/或無線網路。
雖然在圖1A至圖1D中將WTRU描述成了無線終端,然而應該想到的是,在某些代表實施例中,此類終端與通信網路可以使用(例如臨時或永久性)有線通信介面。
在代表的實施例中,其他網路112可以是WLAN。
基礎架構基本服務集(BSS)模式中的WLAN可以具有用於BSS的存取點(AP)以及與AP相關聯的一個或複數站(STA)。AP可以存取或是有介面到分散式系統(DS)或是將訊務送入和/或送出BSS的別的類型的有線/無線網路。源自BSS外部且往STA的訊務可以藉由AP到達並被遞送至STA。源自STA往BSS外部的目的地的訊務可被發送至AP,以便遞送到相應的目的地。處於BSS內部的STA之間的訊務可以藉由AP來發送,例如其中源STA可以向AP發送訊務並且AP可以將訊務遞送至目的地STA。處於BSS內部的STA之間的訊務可被認為和/或稱為點到點訊務。該點到點訊務可以在源與目的地STA之間(例如在其間直接)用直接鏈路建立(DLS)來發送。在某些代表實施例中,DLS可以使用802.11e DLS或802.11z隧道化DLS(TDLS))。舉例來說,使用獨立BSS(IBSS)模式的WLAN不具有AP,並且處於該IBSS內部或是使用該IBSS的STA(例如所有STA)彼此可以直接通信。在這裡,IBSS通信模式有時可被稱為“特定(ad-hoc)”通信模式。
在使用802.11ac基礎設施操作模式或類似的操作模式時,AP可以在固定通道(例如主通道)上傳輸信標。該主通道可以具有固定寬度(例如20MHz的頻寬)或是動態設定的寬度。主通道可以是BSS的操作通道,並且可被STA用來與AP建立連接。在某些代表實施例中,所實施的可以是具有衝突避免的載波感測多重存取(CSMA/CA)(例如在802.11系統中)。對於CSMA/CA來說,包括AP在內的STA(例如每一個STA)可以感測主通道。如果特別STA感測到/偵測到和/或確定主通道繁忙,那麼該特定STA可以回退。在指定的BSS中,在任何指定時間都有一個STA(例如只有一個站)進行傳輸。
高輸送量(HT)STA可以使用寬度為40MHz的通道來進行通信(例如經由將寬度為20MHz的主通道與寬度為20MHz的相鄰或不相鄰通道相結合來形成寬度為40MHz的通道)。
超高輸送量(VHT)STA可以支援寬度為20MHz、40MHz、80MHz和/或160MHz的通道。40MHz和/或80MHz通道可以藉由組合連續的20MHz通道來形成。160MHz通道可以藉由組合8個連續的20MHz通道或者藉由組合兩個不連續的80MHz通道(這種組合可被稱為80+80配置)來形成。對於80+80配置來說,在通道編碼之後,資料可被傳遞並經過分段解析器,該分段解析器可以將資料分成兩個串流。在每一個串流上可以各別執行反向快速傅利葉變換(IFFT)處理以及時域處理。該流可被映射在兩個80MHz通道上,並且資料可以由傳輸的STA來傳輸。在接收的STA的接收器上,用於80+80配置的上述操作可以是相反的,並且組合的資料可被發送至媒體存取控制(MAC)。
802.11af和802.11ah支援次1GHz的操作模式。相比於802.11n和802.11ac中使用的那些,在802.11af和802.11ah中通道操作頻寬和載波有所縮減。802.11af在TV白空間(TVWS)頻譜中支援5MHz、10MHz和20MHz頻寬,並且802.11ah支援使用非TVWS頻譜的1MHz、2MHz、4MHz、8MHz和16MHz頻寬。根據代表實施例,802.11ah可以支援儀錶類型控制/機器類型通信(例如巨集覆蓋區域中的MTC裝置)。MTC裝置可以具有某種能力,例如包含了支援(例如只支援)某些和/或有限頻寬在內的受限能力。MTC裝置可以包括電池,並且該電池的電池壽命高於臨界值(例如用於保持很長的電池壽命)。
可以支援複數通道和通道頻寬的WLAN系統(例如802.11n、802.11ac、802.11af以及802.11ah)包含了可被指定成主通道的通道。該主通道的頻寬可以等於BSS中的所有STA所支援的最大共同操作頻寬。主通道的頻寬可以由STA設定和/或限制,其中該STA源自在支援最小頻寬操作模式的BSS中操作的所有STA。在802.11ah的範例中,即使BSS中的AP和其他STA支援2 MHz、4 MHz、8 MHz、16 MHz和/或其他通道頻寬操作模式,但對支援(例如只支援)1MHz模式的STA(例如MTC類型的裝置)來說,主通道的寬度可以是1MHz。載波感測和/或網路分配向量(NAV)設定可以取決於主通道的狀態。如果主通道繁忙(例如因為STA(其只支援1MHz操作模式)對AP進行傳輸),那麼即使大多數的可用頻帶保持空閒,也可以認為整個可用頻帶繁忙。
在美國,可供802.11ah使用的可用頻帶是902 MHz到928 MHz。在韓國,可用頻帶是917.5MHz到923.5MHz。在日本,可用頻帶是916.5MHz到927.5MHz。依照國家碼,可用於802.11ah的總頻寬是6MHz到26MHz。
圖1D是示出了根據實施例的RAN 104和CN 106的系統圖式。如上所述,RAN 104可以採用NR無線電技術來藉由空中介面116與WTRU 102a、102b、102c進行通信。RAN 104還可以與CN 106進行通信。
RAN 104可以包括gNB 180a、180b、180c,但是應該瞭解,在保持符合實施例的同時,RAN 104可以包括任何數量的gNB。每一個gNB 180a、180b、180c都可以包括一個或複數收發器,以便藉由空中介面116來與WTRU 102a、102b、102c通信。在一個實施例中,gNB 180a、180b、180c可以實施MIMO技術。例如,gNB 180a、180b、180c可以利用波束成形處理來向和/或從gNB 180a、180b、180c傳輸和/或接收信號。由此,舉例來說,gNB 180a可以使用複數天線來向WTRU 102a傳輸無線信號,和/或接收來自WTRU 102a的無線信號。在實施例中,gNB 180a、180b、180c可以實施載波聚合技術。例如,gNB 180a可以向WTR 102a傳輸複數分量載波(未顯示)。這些分量載波的子集可以處於無授權頻譜上,而剩餘分量載波則可以處於授權頻譜上。在實施例中,gNB 180a、180b、180c可以實施協作多點(CoMP)技術。例如,WTRU 102a可以接收來自gNB 180a和gNB 180b(和/或gNB 180c)的協作傳輸。
WTRU 102a、102b、102c可以使用與可縮放參數集相關聯的傳輸來與gNB 180a、180b、180c進行通信。例如,對於不同的傳輸、不同的胞元和/或不同的無線傳輸頻譜部分來說,OFDM符號間距和/或OFDM子載波間距可以是不同的。WTRU 102a、102b、102c可以使用具有不同或可縮放長度的子訊框或傳輸時間間隔(TTI)(例如包含了不同數量的OFDM符號和/或持續不同的絕對時間長度)來與gNB 180a、180b、180c進行通信。
gNB 180a、180b、180c可被配置成與採用分立配置和/或非分立配置的WTRU 102a、102b、102c進行通信。在分立配置中,WTRU 102a、102b、102c可以在不存取其他RAN(例如e節點B 160a、160b、160c)的情況下與gNB 180a、180b、180c進行通信。在分立配置中,WTRU 102a、102b、102c可以利用gNB 180a、180b、180c中的一個或複數作為移動錨點。在分立配置中,WTRU 102a、102b、102c可以使用無授權頻帶中的信號來與gNB 180a、180b、180c進行通信。在非分立配置中,WTRU 102a、102b、102c會在與別的RAN(例如e節點B 160a、160b、160c)進行通信/相連的同時與gNB 180a、180b、180c進行通信/相連。舉例來說,WTRU 102a、102b、102c可以藉由實施DC原理而以基本同時的方式與一個或複數gNB 180a、180b、180c以及一個或複數e節點B 160a、160b、160c進行通信。在非分立配置中,e節點B 160a、160b、160c可以充當WTRU 102a、102b、102c的移動錨點,並且gNB 180a、180b、180c可以提供附加的覆蓋和/或輸送量,以便為WTRU 102a、102b、102c提供服務。
每一個gNB 180a、180b、180c都可以關聯於特別胞元(未顯示),並且可以被配置成處理無線電資源管理決定、交接決定、UL和/或DL中的使用者排程、支援網路截割、DC、實施NR與E-UTRA之間的交互工作、路由往使用者平面功能(UPF)184a、184b的使用者平面資料、以及路由往存取和移動性管理功能(AMF)182a、182b的控制平面資訊等等。如圖1D所示,gNB 180a、180b、180c彼此可以經由X2介面通信。
圖1D中顯示的CN 106可以包括至少一個AMF 182a、182b,至少一個UPF 184a、184b,至少一個對話管理功能(SMF)183a、183b,並且有可能包括資料網路(DN)185a、185b。雖然每一個前述元件都被描述成CN 106的一部分,但是應該瞭解,這其中的任一部件都可以被CN操作者之外的其他實體擁有和/或操作。
AMF 182a、182b可以經由N2介面連接到RAN 104中的一個或複數gNB 180a、180b、180c,並且可以充當控制節點。例如,AMF 182a、182b可以負責驗證WTRU 102a、102b、102c的使用者、支援網路截割(例如處理具有不同需求的不同PDU對話)、選擇特別的SMF 183a、183b、管理註冊區域、終止非存取層(NAS)傳訊、以及移動性管理等等。AMF 182a、1823b可以使用網路截割,以便基於WTRU 102a、102b、102c利用的服務類型來定制為WTRU 102a、102b、102c提供的CN支援。作為範例,針對不同的用例,可以建立不同的網路截割,例如依賴於超可靠低潛時(URLLC)存取的服務、依賴於增強型大規模移動寬頻(eMBB)存取的服務、和/或用於MTC存取的服務等等。AMF 182a、182b可以提供用於在RAN 104與採用其他無線電技術(例如LTE、LTE-A、LTE-A Pro和/或諸如WiFi之類的非3GPP存取技術)的其他RAN(未顯示)之間切換的控制平面功能。
SMF 183a、183b可以經由N11介面連接到CN 106中的AMF 182a、182b。SMF 183a、183b還可以經由N4介面連接到CN 106中的UPF 184a、184b。SMF 183a、183b可以選擇和控制UPF 184a、184b,並且可以藉由UPF 184a、184b來配置訊務路由。SMF 183a、183b可以執行其他功能,例如管理和分配UE IP位址、管理PDU對話、控制策略實施和QoS,以及提供DL資料通知等等。PDU對話類型可以是基於IP的、不基於IP的,以及基於乙太網路的等等。
UPF 184a、184b可以經由N3介面連接到RAN 104中的一個或複數gNB 180a、180b、180c,這樣可以為WTRU 102a、102b、102c提供至封包交換網路(例如網際網路110)的存取,以便促進WTRU 102a、102b、102c與賦能IP的裝置之間的通信。UPF 184、184b可以執行其他功能,例如路由和轉發封包、實施使用者平面策略、支援多連接(multi-homed)PDU對話、處理使用者平面QoS、緩衝DL封包、以及提供移動性錨定等等。
CN 106可以促進與其他網路的通信。例如,CN 106可以包括可以充當CN 106與PSTN 108之間的介面的IP閘道(例如IP多媒體子系統(IMS)伺服器),或者與之進行通信。此外,CN 106可以為WTRU 102a、102b、102c提供至其他網路112的存取,其可以包括其他服務供應商擁有和/或操作的其他有線和/或無線網路。在一個實施例中,WTRU 102a、102b、102c可以經由到UPF 184a、184b的N3介面以及介於UPF 184a、184b與DN 185a、185b之間的N6介面藉由UPF 184a、184b連接到本地DN185a、185b。
有鑒於圖1A至圖1D以及關於圖1A至圖1D的相應描述,在這裡對照以下的一項或多項描述的一個或複數或所有功能可以由一個或複數模擬裝置(未顯示)來執行:WTRU 102a-d、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF 183a-b、DN185 a-b和/或這裡描述的其他一個或複數任何裝置。這些模擬裝置可以是被配置成模擬這裡一個或複數或所有功能的一個或複數裝置。舉例來說,這些模擬裝置可用於測試其他裝置和/或模擬網路和/或WTRU功能。
模擬裝置可被設計成在實驗室環境和/或操作者網路環境中實施關於其他裝置的一項或多項測試。例如,該一個或複數模擬裝置可以在被完全或部分作為有線和/或無線通訊網路一部分實施和/或部署的同時執行一個或複數或所有功能,以便測試通信網路內部的其他裝置。該一個或複數模擬裝置可以在被臨時作為有線和/或無線通訊網路的一部分實施/部署的同時執行一個或複數或所有功能。該模擬裝置可以直接耦合到別的裝置以用於執行測試,和/或可以使用空中無線通訊來執行測試之目的。
一個或複數模擬裝置可以在未被作為有線和/或無線通訊網路一部分實施/部署的同時執行包括所有功能在內的一個或複數功能。例如,該模擬裝置可以在測試實驗室和/或未被部署(例如測試)的有線和/或無線通訊網路的測試場景中利用,以便實施關於一個或複數組件的測試。該一個或複數模擬裝置可以是測試設備。該模擬裝置可以使用直接的RF耦合和/或經由RF電路系統(例如該電路可以包括一個或複數天線)的無線通訊來傳輸和/或接收資料。
在這裡描述了一個或複數網路,並且在實施例中,這些網路可以指代一個或複數gNB,其中每一個gNB都可以與RAN中的一個或複數傳輸/接收點(TRP)或任意其他節點相關聯。
WTRU的接收器可能需要實施自動頻率控制(AFC)來保持其本地振盪器的頻率調諧至傳輸器側使用的振盪器。這種功能可以由不同的同步信號(SS)和/或參考信號(RS)來支援。保持粗略AFC對於針對實體下鏈控制通道(PDCCH)以及任何傳入的排程DL傳輸的同調偵測而言有可能是必要的。在LTE中,粗略AFC可以使用每5 ms即有可能出現的PSS/SSS同步碼以及每1ms的間隔就會出現在至少2個OFDM符號上的CRS。在NR中,粗略AFC可以使用週期至少為20ms的同步信號塊(SSB)。如果配置和啟動了CSI參考信號(CSI-RS),那麼NR裝置還可以使用該CSI-RS,或者可以使用只會在DL傳輸期間出現的解調參考信號(DMRS)。對於NR裝置來說,還可其配置和啟動特殊信號,即追蹤參考信號(TRS),由此促進粗略AFC。TRS可被配置成是具有10、20、40或80ms的重現週期的非零功率CSI-RS資源集合。它可以存在於資源塊(RB)中的三個資源元素(RE)之上以及兩個連續時槽的14個OFDM符號中的兩個OFDM符號之中。此外還可以配置只使用第一時槽的密度減小的TRS。
圖2是不連續接收(DRX)的範例的圖示200。圖2顯示了一個完整的DRX週期202a以及第二DRX週期202b的一部分。在圖2所示的範例中,每一個DRX週期202a、202b都包括啟動(ON)持續時間204a、204b和關閉(OFF)持續時間206a、206b。WTRU可以在啟動持續時間204a、204b監視DL控制通道(例如PDCCH),並且可以在關閉持續時間206a、206b進入睡眠狀態(例如不監視PDCCH)。雖然在圖2中只示出了兩個DRX週期202a、202b,但是被配置用於DRX的WTRU可以在任何數量的週期上以週期性的方式重複該DRX週期。
如圖2的範例所示,WTRU可以啟動持續時間開始DRX週期。啟動持續時間計時器可以用於確定可能需要由WTRU監視或解碼的連續PDCCH時機數量(例如在從DRX週期甦醒之後或是開始DRX週期的時候)。DRX無活動計時器可以用於確定何時切換到關閉持續時間。DRX重傳計時器可以用於確定在WTRU期望重傳的時候所要監視的連續PDCCH時機數量。DRX重傳計時器可以用於確定最大持續時間,直到接收到DL重傳或是UL重傳許可。
在關閉持續時間,例如關閉持續時間206a、206b,除了不監視DL通道(例如PDCCH)之外, WTRU不會在被配置成測量和/或報告週期性CSI報告的子訊框中測量或報告通道狀態資訊(CSI)。在實施例中,WTRU有可能需要在可能會在啟動持續時間或關閉持續時間期間發生的活動時間期間監視PDCCH或PDCCH時機。在其他實施例中,活動時間可以開始於啟動持續時間期間,並且會在關閉持續時間期間繼續。活動時間可以包括滿足以下的至少一項所在期間的時間:任意DRX計時器(例如啟動持續時間計時器,無活動計時器,重傳計時器或隨機存取爭用解決計時器)處於運行狀態;發送了排程請求(例如在實體上鏈控制通道(PUCCH)上);以及在成功接收到針對基於爭用的隨機存取前序碼中未被MAC實體選擇的隨機存取前序碼的隨機存取回應之後,沒有接收到指示定址到該WTRU之MAC實體的胞元無線電網路識別符(C-RNTI)的新傳輸的PDCCH。
DRX週期(例如DRX週期202a、202b)可以是短DRX週期或長DRX週期。在實施例中,WTRU可以在一段時間使用短DRX週期,然後使用長DRX週期。DRX無活動計時器可以用於確定PDCCH時機之後的持續時間(例如依據傳輸時間間隔(TTI)),其中成功解碼的PDCCH指示UL或DL使用者資料傳輸。PDCCH時機可以是可包含PDCCH的時段,例如符號、符號集合、時槽或子訊框。DRX短週期可以是WTRU在DRX無活動計時器到期之後進入的第一個DRX週期。直到DRX短週期計時器到期,WTRU可以處於短DRX週期之中。當DRX短週期計時器到期時,WTRU可以使用長DRX週期。DRX短週期計時器可以用於確定在DRX無活動計時器到期之後遵從短DRX週期的連續子訊框的數量。
在RRC連接模式中,WTRU可以使用連接模式的DRX(C-DRX)。當LTE或NR裝置處於C-DRX中時,其可以被配置具有DRX週期。各別的短DRX週期和長DRX週期的配置都是可能的。C-DRX週期可被設定在數十到數百毫秒的範圍以內。WTRU可以在確定的時刻(例如DRX啟動持續時間期間)甦醒,並且可以嘗試在DRX啟動持續時間的第一時槽中解碼PDCCH。如果在該時槽中沒有接收到或解碼出消息,那麼WTRU可以減少可配置的啟動持續時間計數器,並且可以再次嘗試在在活動的CORESET上並針對所配置的搜尋空間在下一個PDCCH監視機會中解碼PDCCH。當計數器達到零時,WTRU可以返回休眠狀態,並且不再嘗試解碼PDCCH,直至下一個DRX啟動持續時間。
為了能在C-DRX啟動持續時間的開端(例如第一時槽)解碼PDCCH,WTRU可能需要至少實現粗略AFC。包含在攜帶用於裝置的PDCCH的活動頻寬部分(BWP)的RB內部的DMRS只能在正在進行的PDDCH接收期間以及後續時槽中被用於精細調諧AFC。在LTE中,WTRU可以藉由在DRX啟動持續時間開始前甦醒短時間段並測量大多數子訊框中可用的胞元特定參考信號(CRS)來實現粗略AFC。
在實施例中,作為範例,可以結合DRX操作來使用甦醒信號(WUS)和轉入休眠信號(GOS)。WUS/GOS可以與一個或複數DRX週期相關聯,並且可以在相關聯的時間或相關聯的DRX週期的部分之前被傳輸和/或接收。
圖3是具有WUS和GOS的範例DRX週期302的圖示300。在圖3所示的範例中,WTRU可以接收WUS 308,並且作為回應,它可以在相關聯的啟動持續時間304中甦醒,以便監視下鏈通道。在實施例中,接收WUS的WTRU可以在一個或複數DRX週期的啟動持續時間中甦醒並監視下鏈通道。WTRU還可以接收GOS 310,並且作為回應,它不會在相關聯的關閉持續時間306監視下鏈通道。在實施例中,接收GOS的WTRU不會在一個或複數DRX週期監視下鏈通道,並且可以保持處於休眠模式。在實施例中,WUS或GOS之一或是WUS和GOS這二者都是可以實施的。
在NR中,WTRU可以一個或複數CSI資源配置被配置,例如非零功率(NZP)CSI資源。每一個CSI資源配置可以包括一個或複數NZP-CSI-RS資源集合。每一個NZP CSI資源集合可以包含多達64個NZP-CSI-RS資源。在每一個NZP-CSI-RS資源集合,可以配置針對非週期性的NZP-CSI-RS資源的觸發偏移。WTRU可以進一步以一個或複數CSI報告配置被配置。每一個CSI報告配置可以與用於通道測量的CSI資源配置相關聯。相關聯的BWP-ID和資源類型(例如非週期性、週期性或半持久性)可以依照CSI資源配置來配置。
圖4是範例的CSI資源和CSI報告配置的圖示400,並且顯示了各種NZP-CSI-RS資源、NZP-CSI-RS資源集合、CSI資源配置以及CSI報告配置之間的關聯。在圖4所示的範例中,WTRU以八個NZP-CSI-RS資源401、402、403、404、405、406、407和408被配置。然而,圖4中的省略符號表明可以為WTRU配置任意數量的NZP-CSI-RS資源。NZP-CSI-RS資源401包括資源集合410,NZP-CSI-RS資源402包括資源集合411,NZP-CSI-RS資源403包括資源集合410和411,NZP-CSI-RS資源404和405中的每一個都包括資源集合412,以及NZP-CSI-RS資源406、407和408中的每一個都包括資源集合413。資源集合410可以具有0的AP觸發偏移,並且資源集合411可以具有4的AP觸發偏移。剩餘資源集合(例如412和413)同樣可以不同的AP觸發偏移被配置。
資源集合410和411可與CSI資源配置420相關聯,資源集合412可與CSI資源配置421相關聯,以及資源集合413可與CSI資源配置422相關聯。CSI資源配置420可以用於非週期性資源類型和BWP-ID 0,CSI資源配置421可以用於週期性資源類型和BWP-ID 0,以及CSI資源配置422可以用於半持久性資源類型和BWP-ID 2。CSI資源配置420可以與CSI報告配置430、431和433相關聯,CSI資源配置421可以與CSI報告配置432和434相關聯,以及CSI報告配置422可以與CSI報告配置435相關聯。
WTRU可以在時槽n中接收非週期性CSI請求,並且其關聯的非週期性CSI-RS(或NZP-CSI-RS)資源集合可以位於時槽n+x中,其中x可以是{0,1,2,3,4}中的至少一個。下表1顯示了關於CSI請求欄位以及其關聯的報告和資源設定的範例。 表1
Figure 108129787-A0304-0001
每一個CSI請求欄位可以與報告設定(或是CSI關聯報告配置資訊)相關聯,並且該報告設定可以包括多達16個報告配置。每一個報告配置可被認為是CSI報告配置。如果一個以上的非週期性NZP-CSI-RS資源集合與報告配置相關聯,那麼可以為CSI請求欄位選擇單個的非週期性NZP-CSI-RS資源集合。每一個非週期性NZP-CSI-RS資源集合都可以時槽偏移值被配置,該時槽偏移值自WTRU接收CSI請求所在的時槽起。
在NR中,WTRU可以用於實體下鏈共用通道(PDSCH)排程之時槽偏移集合被配置,該時槽偏移集合是自WTRU接收排程DCI所在的時槽起。WTRU可以PDSCH-時域資源分配列表(PDSCH-TimeDomainResourceAllocationList或PDSCH-TDRA列表)而被配置,其可以包含達複數(例如16個)PDSCH-TDRA配置。每一個PDSCH-TDRA配置可以包括:時槽偏移值(例如k0)(作為範例,該時槽偏移值可以是{0, 1, …, 32}中的一個),映射類型(作為範例,它可以是{類型A, 類型B}中的一個),和/或開始符號和長度(例如SLIV)(作為範例,它可以是{0, 1, …, 127}中的一個)。k0值可以確定與接收排程DCI的時槽相偏移的用於PDSCH接收的時槽偏移。舉例來說,如果WTRU在時槽#n中接收到用於PDSCH的DCI,那麼它可以在時槽#n+k0中接收PDSCH。映射類型可以確定時槽長度。作為範例,類型A可被用於正常時槽長度,以及類型B可被用於子時槽長度。SLIV可以確定PDSCH在時槽內部的起始符號和長度。在這裡描述的範例和實施例中,PDSCH可以被PUSCH取代,並且時槽偏移k0可以被時槽偏移k2取代。舉例來說,WTRU可以PUSCH-TimeDomainResourceAllocationList(或PUSCH-TDRA列表)被配置,其可以包含達複數(例如16個)PUSCH-TDRA配置。每一個PUSCH-TDRA配置都可以包括:時槽偏移值(例如k2)(作為範例,該時槽偏移值可以是{0, 1, …, 32}中的一個),映射類型(作為範例,它可以是{類型A, 類型B}中的一個),和/或開始符號和長度(例如SLIV)(作為範例,它可以是{0, 1. …, 127}中的一個)。k2的值可以確定與接收排程DCI的時槽相偏移的用於PUSCH傳輸的時槽偏移。
無線通訊裝置的接收器可以配備複數RF鏈。每一個這樣的鏈可以包括一個或複數天線元件以及類比電路系統(例如低雜訊放大器,濾波器,振盪器,混頻器和/或類比數位轉換器)。使用複數RF鏈來執行接收可以藉由分集和/或空間處理來提高性能。RF靈敏度的最低性能需求假設WTRU配備了最少數量的Rx天線埠。
為了在頻率範圍1(6GHz以下)中操作,很多NR裝置會使用四個Rx RF鏈來接收源自gNB的DL信號和通道(例如用於提供強健的鏈路性能以及有效使用空間多工來實現高DL頻譜效率)。針對若干個NR操作頻帶,可以為其設定使用了四個Rx RF鏈的假設的最低接收需求。特殊類型的NR裝置(例如旨在用於V2X類型的應用的裝置)有可能期望只會使用兩個Rx RF鏈。共用共同RF的雙模式LTE/NR裝置同樣有望遵循關於DL接收的LTE需求。為了在頻率範圍2(mm波)中操作,很多NR裝置會藉由使用複數RF面板來實施模擬波束成形支援。除了其他優點之外,波束成形可以允許在以mm波頻率操作的時候改進鏈路預算。
在現有NR技術中,與LTE相似,供裝置用於DL接收的Rx天線的數量取決於操作頻帶。裝置性能需求可以藉由假設強制性數量的裝置Rx天線的可用性來設定。裝置可以向網路通告支援一組LTE或NR操作頻帶(有可能會與針對載波聚合或雙連線性的所支援的頻帶組合相結合)。這有可能隱性地指示針對操作頻帶之裝置上的強制性數量的Rx鏈支援。
對於活動RF組件(例如振盪器、低雜訊放大器(LNA)和類比數位(A/D)轉換器)來說,功耗有可能會與裝置中的活動Rx鏈的數量成線性縮放。數位基帶(BB)可以實現低級功能,例如通道採樣緩衝、空間層去映射以及通道估計。低級數位BB中的功耗同樣會隨著活動Rx路徑的數量而增加。在使用裝置中的複數活動RF鏈執行接收的情況下,數位BB中的其他高級功能(例如傳輸通道處理和通道解碼)可能會看到功耗增大,但是這一點主要取決於傳輸資料速率,如果信號干擾雜訊比(SINR)足夠好,那麼即使在Rx鏈數量很少的情況下,傳輸資料速率也會很高。
隨著載波頻率的提高、頻寬變寬以及先進的MIMO方案的部署,預計WTRU功耗在NR及之外將會增大。舉例來說,包括RF鏈在內的收發器電路系統會耗費大量功率(例如與基帶處理相比)。即使配置了C-DRX,當WTRU在活動時間期間監視PDCCH時,也有可能會在一段時間接收不到資料。結果,配備了複數接收(Rx)鏈的WTRU可能會浪費大量功率來嘗試執行接收,同時不會轉移任何資料。如果WTRU的實施嘗試藉由在活動時間期間關閉一些Rx鏈來節省功率,那麼將會存在WTRU無法滿足性能需求的風險,其原因在於網路可能會假設WTRU始終準備使用所有的Rx鏈來接收PDCCH和PDSCH。常規的節能機制不允許動態地啟動和關閉RF鏈或收發器電路系統的其他部分。在這裡描述了可以允許WTRU在可能不會影響性能的同時安全地減少其Rx鏈的數量的實施例。
此外,在WTRU的啟動持續時間開始之前,實現粗略AFC所需要的信號正好通常是不可用的。結果,NR WTRU有可能僅僅會出於偵測適當信號(例如SSB)的目的而在啟動持續時間之間需要甦醒。在考慮用於接通和關斷相關電路系統的實際轉換時間時,與剛好在啟動持續時間開始之前的WTRU相比,這效率較低。這裡描述了能夠保持粗略AFC,同時減少與實際的DRX啟動持續時間無關的甦醒間隔的數量的實施例。
更進一步,作為範例,在R15 NR中,DRX可以至多單個的DRX配置被配置。休眠機會純粹基於時域。更進一步,WTRU可能會在未被排程的情況下耗費大量時間來監視PDCCH。在R15中,在啟動持續時間期間,WTRU需要在每一個啟動持續時間監視活動的BWP中的所有CORESET和所有搜尋空間,由此導致執行大量的盲解碼並消耗大量的裝置功率。考慮到DRX中的WTRU有可能會因為無活動計時器到期而處於預設BWP中,並且在指定的啟動持續時間期間排程該WTRU時依賴於發送帶有BWP切換的DCI,使用R15框架減少盲解碼數量的潛在工具可以是利用單個搜尋空間配置預設的BWP。然而,考慮到RACH和SR功能依賴於預設的BWP,並且考慮到WTRU在BWP無活動計時器短的情況下會採用預設BWP,如果將預設的BWP限制於一個搜尋空間或一個CORESET,那麼排程容量有可能會受到限制。在這裡描述了可以解決這種情況的實施例。
這裡描述的實施例提供了很多不同的無線電性能狀態、無線電性能模式、功率模式或傳輸模式。本領域普通技術人員將會理解,這些術語或類似術語始終可以互換使用的。在實施例中,WTRU可以被配置成依照可能的無線電性能狀態、無線電性能模式、功率模式或傳輸模式中的集合中的一者來操作。作為範例,無線電性能狀態、無線電性能模式、功率模式或傳輸模式可以確定在指定時間點適用於WTRU的最大性能度量和/或能力的集合。
如上所述,WTRU可以PDSCH-TDRA集合(例如PDSCH-TDRA清單)被配置。WTRU可以在用於PDSCH排程的DCI中接收關於其中一個PDSCH-TDRA的指示。舉例來說,如果所指示的PDSCH-TDRA是k0=0,那麼有可能需要過量的WTRU功耗,因為WTRU可能需要在針對帶有C-RNTI或是配置的排程RNTI(CS-RNTI)的DCI進行PDCCH監視的時槽中緩衝PDSCH區域。
在一些實施例中,功率模式可以確定所配置的PDSCH-TDRA清單中的哪一個PDSCH-TDRA條目子集在用於PDSCH排程的關聯DCI中有效或是存在。舉例來說,如果WTRU處於第一功率模式(例如正常模式),那麼當WTRU監視時槽中的PDCCH時,該WTRU可以假設可以使用PDSCH-TDRA列表中的所有PDSCH-TDRA條目。如果WTRU處於第二功率模式(例如節能模式),那麼當WTRU在時槽中監視PDCCH時,該WTRU可以假設不會使用k0=0的PDSCH-TDRA條目,或者WTRU可以忽略k0=0的PDSCH-TDRA條目。
在一些實施例中,功率模式可以確定所配置的CSI報告觸發狀態清單中的哪一個非週期CSI報告觸發狀態子集在用於非週期CSI報告的關聯DCI中會是有效的(或存在於該DCI中)。舉例來說,如果WTRU處於第一功率模式,那麼WTRU可以假設或預期所配置的CSI報告觸發狀態清單中的所有CSI報告觸發狀態在該WTRU監視用於非週期性CSI報告的PDCCH的時候都會是有效的。如果WTRU處於第二功率模式,那麼WTRU可以假設或預期與具有小於臨界值的時槽偏移的非週期性NZP-CSI-RS資源集合相關聯的CSI報告觸發狀態有可能是無效的。在CSI報告觸發上下文中,這裡使用的無效和不可用是可以交換使用的,並且不可用是關於無效的一個範例。在一些實施例中,臨界值(Ttre)可以是預先定義的數字,例如“1”。在一些實施例中,該臨界值可以基於參數集(numerology)來確定。舉例來說,第一臨界值可被用於第一子載波間距(例如對15kHz的SCS來說,Ttre=1),以及第二臨界值可被用於第二子載波間距(例如對60kHz的SCS來說,Ttre=3)。
在一些實施例中,功率模式可以確定與一個或複數配置的非週期性CSI報告觸發狀態相關聯的NZP-CSI-RS資源集合的最小時槽偏移值。在一些實施例中,功率模式可以確定PDSCH的最大傳輸秩和/或最大調變階數。舉例來說,如果WTRU處於第一功率模式,那麼當WTRU在時槽中監視相關聯的PDCCH時,WTRU會基於該WTRU的能力而預期接收具有最大傳輸秩(Rmax )和/或最大調變階數(Mmax )的PDSCH。如果WTRU處於第二功率模式,那麼當WTRU在時槽中監視相關聯的PDCCH時,WTRU可以假設或預期接收具有受限的最大傳輸秩(Rlimit ,Rmax >Rlimit )和/或受限的最大調變階數(Mlimit ,Mmax >Mlimit )的PDSCH。
在一些實施例中,功率模式可以確定聚合等級集合和/或聚合等級候選的數量。舉例來說,如果WTRU處於第一功率模式,那麼WTRU可以監視所有聚合等級和/或為搜尋空間配置的與之關聯的候選的數量。如果WTRU處於第二功率模式,那麼WTRU可以監視聚合等級子集和/或為搜尋空間配置的候選的數量。在此類實施例中,所監視的可以是以用於每一個配置的聚合等級的解碼候選中的前N個條目為基礎確定的子集。N可以是預先定義的數字,可以經由較高層傳訊配置,可以由WTRU確定。作為替換或補充,在此類實施例中,WTRU可以監視配置的聚合等級內的最大聚合等級。
在一些實施例中,功率模式可以確定操作頻率頻寬(例如活動的BWP的頻寬)。舉例來說,如果WTRU處於第一功率模式,那麼WTRU可以在第一BWP中監視PDCCH,以及如果WTRU處於第二功率模式,那麼WTRU可以在第二BWP中監視PDCCH。第一BWP可以寬於第二BWP。
在一些實施例中,功率模式可以基於搜尋空間類型或ID來確定。在範例中,在第一搜尋空間類型(例如與CORESET#0相關聯的任何共同搜尋空間)中可以使用第一功率模式,並且在第二搜尋空間類型(例如WTRU特定搜尋空間)中可以使用第二功率模式。在另一個範例中,在第一搜尋空間(例如與第二功率模式不相關聯的搜尋空間ID)中可以使用第一功率模式,並且在可配置搜尋空間ID所針對的第二搜尋空間中可以使用第二功率。作為替換,第二功率模式的搜尋空間ID可以隱性地基於與特定CORESET相關聯的搜尋空間ID來確定。舉例來說,可以為第二功率模式確定與CORESET #x相關聯的搜尋空間,其中x值可以經由較高層傳訊來配置或預先確定(例如0)。作為補充或替換,第二功率模式的搜尋空間ID可以隱性地基於用於特定RNTI的搜尋空間ID來確定。舉例來說,可以為第二功率模式確定用於節能RNTI(PS-RNTI)的搜尋空間,其中PS-RNTI可以用於上鏈和下鏈共用通道(例如PDSCH和PUSCH)。.
在一些實施例中,功率模式可以基於搜尋空間配置參數來確定。在一個範例中,功率模式可以基於搜尋空間的週期性來確定。舉例來說,如果搜尋空間的週期性長於或短於臨界值,那麼可以使用第一功率模式,以及如果搜尋空間的週期性短於或長於該臨界值,那麼可以使用第二功率。該臨界值可以是預先確定的,或可以經由較高層傳訊來配置。在另一個範例中,功率模式可以基於為搜尋空間配置的聚合等級集合(或者是最小聚合等級或最大聚合等級)來確定。
在一些實施例中,功率模式可以經由較高層傳訊來配置。在其他實施例中,功率模式可以由相關聯的節能信號來指示,該信號可以指示WTRU是否需要監視關聯的PDCCH監視時機。
在一些實施例中,功率模式可以基於WTRU RRC狀態來確定,該WTRU RRC狀態可以包括RRC空閒、RRC連接以及RRC無活動。第一功率模式和第二功率模式可被用於RRC連接,而第一功率模式可以只用於RRC空閒和RRC無活動。
在一些實施例中,功率模式可以基於配置的PDSCH-TDRA清單中的PDSCH-TDRA條目來確定。舉例來說,如果配置的PDSCH-TDRA清單中的PDSCH-TDRA條目的最小k0值小於臨界值,那麼可以使用第一功率模式。否則,可以使用第二功率模式。在一些實施例中,該臨界值(Ttre)可以是“1”。如果配置的PDSCH-TDRA清單中的一個或複數PDSCH-TDRA條目包括k0=0,那麼WTRU可以使用第一功率模式。如果配置的PDSCH-TDRA清單中的所有PDSCH-TDRA條目都具有k0>0,那麼WTRU可以使用第二功率模式。在其他實施例中,該臨界值可以基於參數集來確定。舉例來說,第一臨界值可被用於第一子載波間距(例如對15kHz SCS來說,Ttre=1),以及第二臨界值可被用於第二子載波間距(例如對60kHz SCS來說,Ttre=3)。在一些實施例中,功率模式可以根據頻寬部分(BWP)、胞元、搜尋空間、CORESET和/或實體通道來確定。
在一些實施例中,配置的PDSCH-TDRA清單中的PDSCH-TDRA條目的最小時槽偏移(例如最小k0)值可以被動態限制。例如,節能信號可以指示關於配置的PDSCH-TDRA清單中的PDSCH-TDRA條目的最小k0值的臨界值,並且WTRU可以忽略與小於該臨界值的k0值相關聯的PDSCH-TDRA條目。作為範例,WTRU可以忽略與小於該臨界值的k0值相關聯的(例如任何)PDSCH-TDRA條目。
WTRU忽略一個或複數PDSCH-TDRA條目有可能意味著該WTRU不會預期接收此類條目,WTRU可能不緩衝少於來自用於PDCCH監視的時槽之臨界值的時槽的PDSCH區域,和/或WTRU可能不在少於來自用於PDCCH監視的時槽之臨界值的時槽中接收PDSCH。
WRTU可以在可以與一個或複數PDCCH監視時機相關聯的一個或複數預先定義或預先確定的時間位置中接收或監視節能信號。
節能信號可以是DCI、參考信號和/或前序碼中的至少一個。
在這裡使用了k0和k2作為偏移(例如時槽偏移)的範例。其他參數同樣是可以使用的,並且仍然會與這裡描述的範例和實施例相一致。其他的偏移(例如符號偏移)是可以使用的,並且仍然與這裡描述的範例和實施例相一致。
圖5是範例的WTRU節能方法500的流程圖。在圖5所示的範例中,無線傳輸/接收單元(WTRU)可以接收TDRA清單配置(502)。該TDRA清單配置可以包含複數條目。每一個條目可以包括資源分配,該資源配置可以包括時槽偏移值,作為範例,該時槽偏移值可以用於定位接收PDSCH(或傳輸PUSCH)所在的時槽。在實施例中,如上文中更詳細描述的那樣,TDRA列表中的每一個條目都可以包括映射類型和/或開始符號和長度(startSymbolAndLength)參數。
WTRU可以接收實體層或層1(L1)傳訊,該傳訊可以包括最小時槽偏移值(504)。在實施例中,實體層或L1傳訊可以用於動態地向WTRU提供最小時槽偏移值。WTRU可以(例如在被排程用於PDSCH(或PUSCH)時)對PDCCH上的時槽中或時槽上的DCI進行解碼(506)。WTRU可以從所解碼的DCI獲得用於識別TDRA清單中的條目其中之一的索引(508)。WTRU可以從TDRA清單中檢索由該索引識別的特定時槽偏移值(510)。
WTRU可以將該特别時槽偏移值與最小時槽偏移值(例如在實體層或LI傳訊中接收)相比較(512)。如果該特別時槽偏移值小於最小偏移值(514),那麼WTRU可以確定該索引識別的TDRA清單中的條目無效(516)。在實施例中,如果WTRU確定條目無效,那麼WTRU不會(例如不)接收或緩衝所排程的PDSCH(或傳輸所排程的PUSCH),例如在與解碼出DCI的所在時槽相偏移的時槽偏移中,其中該時槽偏移可以是該特別時槽偏移值。然而,如果WTRU確定該特別時槽偏移值大於或等於最小時槽偏移值(514),那麼WTRU可以繼而接收所排程的PDSCH(或傳輸所排程的PUSCH),例如在與解碼出DCI的時槽相偏移的時槽中(518),其中時槽偏移可以是該特別時槽偏移值。
上述實施例是針對PDSCH描述的。然而,本領域普通技術人員將會理解,相同或相似的方法也可用於PUSCH。在實施例中,最小時槽偏移可以對應於特別的無線電性能狀態,並且當WTRU處於特別的無線電性能狀態時,只有當可從DCI獲得的指示的時槽偏移(例如k0和/或k2)大於或等於與目前的無線電性能狀態相適用的最小值(k0min和/或k2min)時,其才會嘗試解碼PDSCH或傳輸PUSCH。在實施例中,只有在時槽或CORESET的某些時槽符號中解碼PDCCH時,最小值(例如k0min或k2min)才會是適用的。舉例來說,如果在時槽的最後三個符號中解碼PDCCH,那麼該值可以是適用的。在實施例中,至少在相同的BWP中,與非週期性CSI報告觸發狀態相關聯的NZP-CSI-RS資源集合的最小時槽偏移(例如AP觸發偏移)可以基於PDSCH-TDRA列表中的PDSCH-TDRA的最小時槽偏移(例如k0)來限制或確定。舉例來說,如果配置的PDSCH-TDRA清單中的最小k0值是n1(例如n1=1),那麼最小AP觸發偏移值可以是或者可以被限制成n2(例如n2=1),其中n1和n2可以是相同的值或不同的值。
如果為BWP確定了最小k0值,那麼WTRU不會預期最小AP觸發偏移值小於針對該BWP的臨界值(例如該最小k0值)。如果為BWP確定了最小k0值,那麼WTRU可以忽略或者不會預期接收與具有小於該相同BWP的臨界值(例如最小k0值)的AP觸發偏移的NZP-CSI-RS資源集合相關聯的CSI報告觸發狀態。忽略CSI報告觸發狀態將會暗示WTRU不會為所觸發的CSI報告觸發狀態報告CSI。如果為BWP確定了最小k0值,那麼在關於該相同BWP的被觸發的CSI報告觸發狀態中,WTRU可以忽略與具有小於臨界值(例如最小k0值)的AP觸發偏移的NZP-CSI-RS資源集合相關聯的CSI報告配置。CSI報告觸發狀態可以包括或對應於一個或複數CSI報告配置,並且每一個CSI報告配置可以與NZP-CSI-RS資源集合相關聯。WTRU可以報告與具有大於或等於臨界值(例如最小k0值)的AP觸發偏移的NZP-CSI-RS資源集合相關聯的CSI報告配置。
報告CSI報告配置可以對應於報告關於報告配置的CSI。報告CSI報告配置可以對應於基於(例如基於對相關聯的NZP-CSI-RS資源集合的測量)和/或使用相關聯的NZP-CSI-RS資源集合來報告CSI。
在其他實施例中,用於CSI報告配置(或非週期性CSI報告觸發狀態)的NZP-CSI-RS資源集合的最小AP觸發偏移值可以被動態限制。舉例來說,節能信號可以指示用於CSI報告配置(或非週期性CSI報告觸發狀態)的最小AP觸發偏移值的臨界值,並且WTRU可以忽略與具有小於該臨界值的AP觸發偏移值的NZP-CSI-RS資源集合相關聯的CSI報告配置(或非週期性CSI報告觸發狀態)。
AP觸發偏移可以是非週期性觸發偏移,該非週期性觸發偏移可以是時槽偏移。AP觸發偏移可以是用於DL接收或UL傳輸的偏移。AP觸發偏移可以是從AP觸發的PDCCH接收時槽(或其他時間)到RS資源集合的偏移。RS資源集合可被用於(例如可以是、可以包括或者可以識別時間和/或頻率資源以用於)接收和/或測量(例如關於RS的接收和/或測量)。RS資源集合可以用於(例如可以是、可以包括或可以識別時間和/或頻率資源以用於)傳輸(例如RS的傳輸)。CSI請求是關於AP觸發的範例。SRS請求是關於AP觸發的範例。
NZP-CSI-RS是關於RS的範例。別的RS也是可以使用的,並且仍然與這裡描述的範例和實施例相一致。NZP-CSI-RS資源集合是關於RS資源集合的範例。別的RS資源集合也是可以使用的,並且仍然與這裡描述的範例和實施例相一致。SRS是可以應用最小偏移的RS的另一範例,對其最小偏移可適用並被用於將SRS傳輸限制在大於或等於最小偏移的AP觸發偏移。
具備k0min、k2min和/或最小非週期性CSI觸發偏移的WTRU可以接收小於所指示的最小對應值的k0、k2和/或非週期性CSI觸發偏移(例如在資料排程DCI中)。在一些實施例中,當WTRU在時槽n 中接收小於所指示的最小對應值的k0、k2和/或非週期CSI觸發偏移時,WTRU可以將相應的k0min、k2min和/或最小非週期CSI觸發偏移設定成一值(例如配置值或預設值,比方說0)。在結束解碼排程DCI之後(例如一旦完成了該解碼),則WTRU可以設定或應用更新值(例如在時槽n 或更晚的時槽)。
在一些實施例中,WTRU可以具備最小時槽偏移值(k0min和/或k2min)和/或最小非週期性CSI-RS觸發偏移值。在此類實施例中,如果WTRU接收到DCI(例如具有指向k0<k0min的PDSCH TDRA表條目的時域資源指配的下鏈許可,或者具有指向k2>k2min的PUSCH TDRA表條目的時域資源指配的上鏈許可,或者具有指向指示了小於最小非週期性觸發偏移的非週期性觸發偏移的CSI非週期性觸發狀態清單(CSI-AperiodicTriggerStateList)中的狀態的CSI請求的上鏈許可),那麼WTRU可以將最小非週期性觸發偏移(例如k0min和/或k2min)設定成一值(例如配置值和/或預設值)。該值可以為零。WTRU會預期接收具有指向PDSCH或PUSCH TDRA表中的任何條目的時域資源分配的DCI(例如,諸如DL許可和/或UL許可的排程DCI)。WTRU可以在接收DCI的時槽中應用新的最小非週期性觸發偏移值(例如k0min和/或k2min),或者它可以在接收到新值之後的時槽中應用該新值。
作為補充或替換,在實施例中,如果可以為WTRU提供具有指向k0>k0min的PDSCH TDRA表條目的時域資源指配的最小時槽許可值,或是具有指向k2>k2min的PUSCH TDRA表條目的時域資源指配的上鏈許可值,或是具有CSI請求(指向進一步指示了小於最小非週期性觸發偏移的非週期性觸發偏移的CSI-AperiodicTriggerStateList中的狀態)的上鏈許可值,那麼WTRU可以將最小非週期性CSI-RS觸發偏移設定成一值(例如配置值或預設值)。該值可以為零。WTRU將會預期接收具有指向CSI-AperiodicTriggerStateList中的任一狀態的CSI請求的DCI(例如UL許可這樣的排程DCI)。WTRU可以依照所指示的CSI-AperiodicTriggerStateList的狀態來測量CSI-RS。如果WTRU接收到PDCCH並且在接收到具有CSI-RS資源的時槽的第一個OFDM符號之前解碼DCI,那麼WTRU可以測量CSI-RS並回饋所指示的CSI報告。如果WTRU沒有準備好報告,那麼它也可以丟棄排程DCI中指示的CSI報告。
在以上方法中,如藉由RRC在對應清單中配置的那樣,k0min、k2min和最小非週期性觸發偏移的預設值可以分別是所有k0、所有k2和所有非週期性觸發偏移中的最小值。在一些實施例中,當WTRU藉由發送隨機存取前序碼來發起隨機存取以及當WTRU切換到新BWP時,在之前的兩個段落中描述的實施例同樣是可以類似方式適用的。
在一些實施例中,DCI可被用於排程資料以及指示WTRU執行至少一種節能技術。作為範例,DCI可以使用該DCI中的至少1位元來排程資料以及向WTRU指示k0min值。
在一些實施例中,DCI可以有至少兩種配置,並且這些配置可以具有相同數量的位元。舉例來說,DCI格式1_1可被配置成具有N個位元,並且在第一種配置中,該N個位元中的m(例如m=2)個位元可被配置成向WTRU指示頻寬部分,以及在第二種配置中,相同的m個位元可被配置成向WTRU指示k0min的值。
在一些實施例中,WTRU可以使用各別的搜尋空間配置來解釋DCI的內容。針對每一個DCI配置,至少一個搜尋空間配置是可供使用的。
WTRU可以基於哪個時間接收到包含DCI的PDCCH(時槽索引和/或時槽內部的OFDM符號索引)來解釋m個位元指示的屬性(例如這些位元指示的是BWP的索引還是k0min)。配置監視時槽以及時槽偏移和/或時槽內部的監視符號的搜尋空間配置參數可被用於指示時間。更進一步,WTRU可以兩個搜尋空間被配置,並且每一個搜尋空間配置都可以具有相同的DCI格式以及不同的監視時槽週期及偏移(monitoringSlotPeriodicityAndOffset )參數。舉例來說,WTRU可以每p1個時槽監視所配置的CORESET(例如CORESET #1),並且如果偵測到PDCCH,那麼DCI可以指示BWP。更進一步,WTRU可以每p2個時槽監視所配置的CORESET,並且如果偵測到PDCCH,那麼DCI可以指示k0min。
作為替換,WTRU可以基於接收到包含DCI的PDCCH的CORESET來解釋m個位元指示的屬性(例如這些位元指示的是BWP索引還是k0min)。用於配置CORESET的搜尋空間配置參數可被用於指示接收PDCCH所在的控制資源元素。更進一步,WTRU可以兩個搜尋空間被配置。每一個搜尋空間配置可以具有相同的DCI格式和不同的控制資源設定ID(controlResourceSetId )參數。作為範例,WTRU可以監視第一所配置的CORESET(例如CORESET #1),並且如果偵測到PDCCH,那麼該DCI可以指示BWP。更進一步,WTRU可以監視第二所配置的CORESET(例如CORESET #2),並且如果偵測到PDCCH,那麼該DCI可以指示k0min。
在其他實施例中,monitoringSlotPeriodicityAndOffset 、監視時槽內符號(monitoringSymbolsWithinSlot )以及controlResourceSetId 搜尋空間配置參數中的至少兩個的組合可被用於解釋所接收的DCI的內容。
在其他實施例中,搜尋空間配置中的至少一個參數可被用於解釋所接收的DCI的內容。在這裡,DCI是在該搜尋空間中配置的DCI。第一BWP可以藉由RRC而以TDRA表被配置,並且可以用L1傳訊來動態改變適用於第一BWP的TDRA表的k0min/k2min。當在第一BWP中操作的WTRU接收到切換到第二BWP的指示時,該WTRU可以將適用於第一BWP的TDRA表的k0min/k2min值設定成在RRC配置的TDRA表中指示的值。舉例來說,RRC為第一BWP配置的TDRA表可以包含k0min=0個時槽,並且可以藉由L1傳訊將k0min值設定成1個時槽。當WTRU切換到第二BWP時,適用於第一BWP的TDRA表的k0min可被設定成是已經由RRC指示的值,即0個時槽。換句話說,適用於第一BWP的TDRA表的所有條目都是可以再次使用的。當WTRU切回到第一BWP時,適用於第一BWP的TDRA表的所有條目都是可用的。
在實施例中,WTRU可以在可與一個或複數PDCCH監視時機相關聯的預先定義或預先確定的時間位置接收或監視節能信號,例如對照圖5描述的L1傳訊。在實施例中,節能信號可以是DCI、參考信號和/或前序碼。在實施例中,該節能信號可以是PHY傳訊、RRC傳訊、MAC或MAC CE。每一個頻寬部分(BWP)都可以被配置一個k0min值。在此類實施例中,可應用的值可以是解碼PDCCH所在的活動BWP的值。以下將會針對WTRU如何可以確定無線電性能狀態來描述關於節能信號的附加替換方案。
在實施例中,無線電性能狀態可以包括至少一個參考靈敏度等級。作為補充或替換,無線電性能狀態可以包括用於PDSCH解碼或PUSCH傳輸的最大TBS、秩、調變階數或編碼率和/或可能的PDSCH映射類型的集合。作為補充或替換,無線電性能狀態可以包括BWP集合或最大數量的BWP或可被操作的活動BWP。作為補充或替換,無線電性能狀態可以包括最大數量的以下各項或該以下各項的集合或子集(針對每一BWP、CC或WTRU):用於PDCCH的活動TCI狀態,用於PDSCH的活動TCI狀態,用於波束管理的一個埠或兩埠NZP-CSI-RS資源(例如CRI/RSRP、SSBRI/RSRP),用於CSI報告的NZP CSI-RS或SSB資源,用於RRM測量、週期性CSI報告、半持久性CSI報告或非週期性CSI報告設定、可被WTRU同時處理的CSI報告的NZP CSI-RS或SSB資源,可被WTRU同時追蹤的TRS資源集合,用於PDCCH品質監視的CSI-RS或SSB資源,用於新波束識別的CSI-RS/SSB資源,和/或用於基於非群組的RSRP報告的RSRP值。
在實施例中,無線電性能狀態可以包括複數以下各項、最大數量的以下各項或以下各項的集合:CORESET、PDCCH搜尋空間、PDCCH候選、PDCCH聚合等級,DCI格式和/或CORESET或其圖案(pattern)內部被監視的用於PDCCH監視(針對每一BWP,CC或WTRU)的PDCCH時機和/或是否可以將PDCCH重多工於PDCCH監視的PDCCH時機。作為補充或替換,無線電性能狀態可以包括監視行為,例如是否期望某些RS或SSB只在活動時間期間(或是在某些DRX計時器運行的同時)或者每當它們被配置成正在發生的時候即被接收。作為補充或替換,無線電性能狀態可以包括WTRU處理等級和/或DRX配置、DRX配置的方面和/或DRX配置內部的參數配置。
在實施例中,無線電性能狀態可以包括以下的至少一項RRM需求(例如在關於無線電鏈路品質的評估時段中定義的RRM需求):可被監視的NR或RAT間頻率載波的數量,可被平行支援的報告準則的數量,可被監視的頻內、頻間或RAT間胞元的數量,用於識別新的可偵測的頻內、頻間或RAT間胞元的潛時,測量週期和/或關於RRM測量的精度要求。作為補充或替換,無線電性能狀態可以包括可以由DCI指示的所配置的PDSCH至HARQ的回饋時序指示符(k1)的集合。PDSCH至HARQ的回饋時序的最小值k1min可以被配置。在此類實施例中,舉例來說,只有在所指示的k1值等於或大於與目前無線電性能狀態相適用的最小值k1min的情況下,WTRU才會傳輸HARQ回饋。PDSCH至HARQ的回饋時序的偏移k1off也是可以配置的。在此類實施例中,WTRU可以應用與適用於無線電性能狀態的k1off的總和及所指示的k1值的總和相對應的PDSCH至HARQ的回饋時序。
在實施例中,無線電性能狀態可以包括可以由DCI指示的PDCCH與PDSCH之間的配置時域關係的集合,作為範例,其包括PDCCH與PDSCH之間的時槽數量(k0)(例如跨時槽排程偏移)、PDSCH映射類型以及PDSCH的開始符號和長度的組合。作為補充或替換,無線電性能狀態可以包括PDCCH與PDSCH(或PUSCH)之間的時槽數量k0的偏移量k0off。WTRU可以確定PDCCH與PDSCH之間的時槽數量對應於所指示的k0值與適用於目前無線電性能狀態的偏移量k0off的總和。該偏移值k0off可以視情形而定或僅在時槽或CORESET的某些時間符號中解碼PDCCH的情形才是適用的。舉例來說,該值可以取決於是在時槽的最後三個符號還是在前4個符號中解碼PDCCH。用於無線電性能狀態的k0off的值可以藉由RRC或MAC CE來用信號通告。每一個BWP都可以被配置k0off值。在這種情況下,可應用的值可以是解碼PDCCH所在的有效頻寬部分的值。
在實施例中,無線電性能狀態可以包括期望被用於接收的RF鏈、活動天線鏈、RF面板和/或分集支路的數量。作為補充或替換,無線電性能狀態可以包括用於MIMO和/或MIMO演算法的天線部件的數量。
當WTRU在包含了降低的需求或能力的無線電性能狀態中操作時,WTRU功耗可以從不同的實施方面加以改善。舉例來說,如果WTRU知道依據目前無線電性能狀態的所需靈敏度等級被放寬到某個值,那麼它能夠斷開一個或複數RF鏈。如果活動的TCI狀態的數量減少,那麼WTRU還可以關斷某些天線面板。
同樣,如果WTRU能夠知道用於PDSCH的最大傳輸塊大小或秩至少會在未來最多某個已知時間點低於某個值,那麼它能夠關斷一個或複數RF鏈,並且有可能關斷一些基帶組件。為使其行之有效,切換到與較高性能相對應的無線電性能狀態之前的允許潛時應該高於在實際的實施中啟動必要組件所需要的潛時。這種最小潛時可以是無線電性能狀態(或狀態間轉換)的方面,並且是可以被配置或預先定義的。
WTRU接收器可以實現或使用一個或複數接收器組件(或配置、類型),並且每一個接收器組件都可以具有自己的能力(例如配置)。舉例來說,第一接收器組件可以使用單個RF鏈,以及第二接收器組件可以使用複數RF鏈。在另一個範例中,第一接收器組件可以支援QPSK作為最大調變階數,以及第二接收器組件可以支援256QAM作為最大調變階數。第一接收器組件可以在消耗較低功率/能量的同時提供低峰值輸送量性能,並且第二接收器組件可以在消耗較高功率/能量的同時提供高峰值輸送量性能。與第二接收器組件相比,第一接收器組件可以消耗較低的功率/能量。
WTRU可以一次使用一個接收器組件,或者WTRU可以一次使用接收器組組件集合或是接收器組件子集。接收器組件或接收器組件集合可被配置成是具有某種能力的WTRU接收器。在下文中,接收器組件、接收器組組件集合、接收器組件子集、接收器配置,Rx配置、Rx組件、接收器類型、Rx類型、接收器能力以及Rx能力是可以互換使用的。RF鏈、傳輸接收單元(TXRU)、RF收發器以及RF是可以互換使用的。
在實施例中,功率或性能模式可以確定可供WTRU使用的一個或複數接收器組件。每一個接收器組件有可能消耗單獨或不同等級的功率或能量。作為範例,可消耗高功率/能量的接收器組件(或接收器組件集合)可以對應於高功率模式。可消耗低功率/能量的接收器組件(或接收器組件集合)可以對應於低功率模式。低功率模式、節能模式和省電模式在這裡是可以互換使用的。高功率模式、正常功率模式和非節能模式在這裡是可以互換使用的。在另一個範例中,可支援高峰值輸送量的接收器組件或接收器組件集合可以對應於高性能模式。可支援低峰值輸送量的接收器組件或接收器組件集合可以對應於低性能模式。
在實施例中,功率或性能模式可以與一個或複數傳輸和/或接收(Tx/Rx)參數相關聯。Tx/Rx參數可以由WTRU確定或獲知。Tx/Rx參數是可以被配置的,例如經由來自gNB的傳訊。WTRU可以將該WTRU支援的Tx/Rx參數用信號通告或報告給gNB。WTRU可以用信號通告或報告該WTRU支援的用於每一個接收器組件、接收器組件集合、功率模式和/或性能模式的Tx/Rx參數。
在實施例中,Tx/Rx參數可以是RF鏈的數量。在胞元、載波或BWP中,第一功率模式可以使用第一數量的RF鏈(例如4個),並且第二功率模式可以使用第二數量的RF鏈(例如1個)。在WTRU接收器使用的RF鏈的數量可被稱為所支援的用於PDSCH接收的最大的秩。舉例來說,如果所支援的最大的秩是X(例如1或4),那麼至少有X(例如1或4)個RF鏈會被使用或處於活動狀態,例如用於在載波/BWP中執行接收。第一功率模式可以支援的最大秩4,並且第二功率模式可以支援最大秩1。
在WTRU接收器使用的RF鏈的數量可以基於WTRU的覆蓋等級來指示、確定或使用。第一覆蓋等級可以與第一功率模式相關聯,並且第二覆蓋等級可以與第二功率模式相關聯。覆蓋模式和功率模式是可以互換使用的。
所支援的功率模式可以從WTRU指示或是由WTRU報告,例如WTRU能力。舉例來說,如果WTRU支援多種功率模式(例如正常和低或是高、中、及低),那麼WTRU可以向gNB報告所支援的功率模式。在另一個範例中,WTRU可以報告其支援低功率或節能模式。WTRU可以報告與功率模式或覆蓋等級相關聯的能力(例如RF鏈的數量或最大的秩)。作為範例,針對其所支援的每一種功率模式和/或覆蓋等級,WTRU可以報告其支援的能力。如果WTRU支援多種功率模式,那麼WTRU可以將所支援的功率模式以及其關聯的能力報告給gNB。
在實施例中,Tx/Rx參數可以是接收器靈敏度等級,該接收器靈敏度等級可以基於功率模式而不同。WTRU可以基於功率模式來報告其接收器靈敏度等級。
在實施例中,Tx/Rx參數可以是支援的最大調變階數(例如256QAM),其可以針對每一種功率模式被確定、指示或報告為WTRU能力。WTRU可以指示其針對每一種功率模式所支援的最大調變階數的能力。在這裡,最大調變階數和最大調變編碼方案(MCS)等級是可以互換使用的。
在實施例中,Tx/Rx參數可以是最大支援RF頻寬(例如1GHz)。針對每一種功率模式,可以確定、指示或報告最大可支援頻寬被作為WTRU能力。最大RF頻寬可以被指示為支援用於PDSCH的RB的最大數量。作為補充或替換,Tx/Rx參數可以是所支援的載波(例如與載波聚合同時)的最大數量、載波內部的最大BWP大小(例如多達275個RB)和/或所支援的用於同時接收的最大BWP數量的至少其中之一。作為補充或替換,Tx/Rx參數可以是所支援的波束(或波束群組)的最大數量。所支援的波束的數量可以基於功率模式而不同。波束的數量可以是Rx波束的數量(或者被指示成是在WTRU的波束管理所需要的SRS資源的數量)。
在實施例中,Tx/Rx參數可以是所支援的最大耦合損耗(例如覆蓋等級)。作為補充或替換,Tx/Rx參數可以是指定頻帶(例如15kHz、30kHz、60kHz、120kHz)中支援的子載波間距集合。作為補充或替換,Tx/Rx參數可以是在其被觸發時所支援的用於排程參數和/或條件集合所支援的最小HARQ-ACK時序和/或用於非週期性CSI報告配置集合的最小時間線(timeline)中的至少一個。作為補充或替換,Tx/Rx參數可以是以下的至少一項:通道估計方案,用於DM-RS的通道估計的預編碼粒度,通道編碼方案(例如Turbo、LDPC、極化、卷積、RM)和/或MIMO接收器類型(例如MMSE、ML)。作為補充或替換,Tx/Rx參數可以是休眠模式(例如無休眠、深度休眠、局部休眠、輕度休眠)。甦醒時間可以基於休眠模式來確定。甦醒時間可以是開始接收下鏈信號(例如PDCCH)的時間(例如所需時間)。甦醒時間、預熱時間、準備時間和啟動時間是可以互換使用的。
圖6是被配置了可以與不同功率模式相對應的複數接收器組件的範例WTRU 600的圖式。在圖6所示的範例中,WTRU600包括可以可通信地耦合到接收器組件604、606和608的兩個天線610和612。雖然圖6顯示了兩個天線和三個接收器組件,但是本領域普通技術人員將會認識到,這裡描述的實施例可以適用於具有任何數量的天線和接收器組件的WTRU。
在圖6所示的範例中,每可以基於目標功率模式來使用接收器組件604、606和608中的一個。第一接收器組件604可以僅僅用於WUS接收,並且會消耗第一(例如非常低的)功率量。作為範例,其原因在於它只能用相關器來偵測序列。第二接收器組件606可被用於下鏈信號接收,例如具有排程限制(例如純QPSK調變,多達秩1以及多達100個PRB)的下鏈接收。第二接收器組件606會消耗第二(例如低功率/能量)功率量。第三或第N個接收器組件608可被用於下鏈信號,例如沒有排程限制的下鏈信號。該第三或第N個接收器組件608會消耗第三或第N個功率/能量(例如接收器組件中的最高功率/能量)。
接收器組件的數量可以基於WTRU能力。WTRU可以將所支援的接收器組件的數量作為WTRU能力來報告。一個或複數接收器組件集合可以被支援,並且WTRU可以指示其支援哪一個集合。關於集合的範例可以包括:第一集合(集合1),該集合可以包括單個接收器組件,並且作為範例,該集合可以只支援正常功率模式;以及第二集合(集合2),該集合可以包括兩個接收器組件,作為範例,該集合只支援WUS接收或者支援WUS接收和正常功率模式;第三集合(集合3),該集合可以包括兩個接收器組件,作為範例,該集合可以支援低功率模式和正常功率模式;以及第四集合(集合4),該集合可以包括三個接收器組件,作為範例,該集合可以支援所有功率模式。
WTRU可以報告接收器組件之間的必需切換時間(例如WTRU從一個接收器組件或接收器組件集合切換到另一個接收器組件或接收器組件集合所需要的時間)。該切換時間可以取決於目前功率模式和目標功率模式。舉例來說,如果目前功率模式與目標功率模式相比是較高的功率模式,那麼切換時間有可能會較短。否則,切換時間有可能會較長。
接收器組件或接收器組件集合可以具有覆蓋等級。兩個或複數接收器組件或接收器組件集合可以具有不同的覆蓋等級。可用於無排程限制的功率模式的接收器組件或接收器組件集合可以支援最佳覆蓋。僅可用於WUS接收的接收器組件或接收器組件集合可以支援與正常功率模式相似的覆蓋等級。可用於具有排程限制的功率模式的接收器組件或接收器組件集合可以支援較低或最差的覆蓋(例如與用於沒有排程限制的正常功率模式和/或用於WUS接收(例如只用於WUS接收)的接收器組件或接收器組件集合相比更低的覆蓋)。
在實施例中,WTRU可以使用一個或複數接收器組件。WTRU可以確定用於下鏈信號接收的接收器組件或接收器組件集合。哪一接收器組件或接收器組件集合用於下鏈接收可被(例如直接或間接地)指示給WTRU。更進一步,排程限制參數(SRP)集合可以被配置或提供(例如由gNB)。WTRU可以基於所配置或提供的SRP來確定使用哪一個接收器組件或接收器組件集合。排程限制參數(SRP)可以包括以下的一項或多項:最大秩(例如用於PDSCH和/或PUSCH),最大調變階數(例如QPSK、16QAM、256QAM),最大TBS,候選傳輸方案(例如單個TRP或多點TRP),最低或最小編碼率,RB的最大數量,最小和/或最大HARQ時間線,和/或最大時序提前(TA)值。
一個或複數搜尋空間或CORESET可以被配置,並且每一個搜尋空間都可以與SRP集合相關聯。舉例來說,每一個搜尋空間ID(SearchSpaceID)可以與SRP集合相關聯。WTRU可以基於該WTRU監視的搜尋空間來確定使用哪一個接收器組件、接收器組件集合或功率模式。在對搜尋空間監視的DCI中的DCI欄位可以基於相關聯的SRP集合來確定。具有不同SRP集合的一個或複數搜尋空間有可能無法被同時(例如在相同時槽或相同時間視窗)被監視。如果一個或複數搜尋空間在相同的時間視窗中重疊,那麼WTRU可以以較低或較高的功率模式來監視搜尋空間子集,並且可以略過對剩餘搜尋空間的監視。如果具有不同SRP集合的一個或複數搜尋空間在時間視窗(例如在相同時槽)中重疊,那麼WTRU可以使用可在該時間視窗中接收所有搜尋空間的接收器組件。在這裡,術語搜尋空間和CORESET是可以互換使用的。一個或複數PDCCH候選可以被使用,並且每一個PDCCH候選都可以與SRP集合相關聯。WTRU可以基於該WTRU接收DCI所在的PDCCH候選來確定接收器組件、接收器組件集合或功率模式。
WTRU可以基於WTRU RRC連接狀態(例如RRC連接、RRC空閒和RRC無活動)來確定使用哪一個接收器組件、組件集合或功率模式。當WTRU處於RRC空閒或RRC無活動時,所使用的可以是第一接收器組件、接收器組件集合或功率模式(例如低功率模式)。當WTRU處於RRC連接時,所使用的可以是第二接收器組件、接收器組件集合或功率模式(例如高功率模式)。WTRU可以將第一接收器組件、接收器組件集合或功率模式用於RRC空閒和RRC無活動。WTRU可以基於所確定的SRP集合而在RRC連接中使用第一或第二接收器組件、接收器組件集合或功率模式。
WTRU可以基於下鏈通道類型(例如PDCCH、PDSCH、SS/PBCH塊)來確定使用哪一個接收器組件、組件集合或功率模式。作為補充或替換,WTRU可以基於頻寬部分身分(例如活動BWP的BWP-id)來確定使用哪一個接收器組件、組件集合或功率模式(例如在BWP中)。
對每一個BWP可配置SRP集合,並且WTRU可以在活動的BWP中基於相關聯的SRP集合來確定接收器組件、組件集合或功率模式。第一BWP可以與調變階數子集(例如,多達QPSK)相關聯,並且第二BWP可以與第二調變階數子集或全部調變階數集合(例如,多達64QAM或256QAM)相關聯。作為範例,基於與BWP相關聯的調變階數集合,WTRU可以確定在BWP中操作(例如執行接收)時使用的接收器組件、接收器組件集合或功率模式。在每一個BWP配置中都可以配置相關聯的調變階數集合(或最大調變階數)。
用於CSI報告的CQI表可以基於BWP(或活動BWP的BWP-id)和/或相關聯的調變階數集合(或最大調變階數)來確定。用於PDSCH排程的MCS指示條目的數量可以基於BWP(或活動BWP的BWP-id)和/或相關聯的調變階數集合(或最大調變階數)來確定。用於PDSCH排程的DCI中的MCS位元數量可以基於活動BWP的BWP-ID來確定。最大調變階數可以僅僅針對下鏈或上鏈而被限制。
當在具有相同SRP集合的BWP之間切換活動BWP時,所使用的可以是第一BWP切換時間或間隙,並且當在具有不同SRP集合的BWP之間切換活動BWP時,所使用的可以是第二BWP切換時間(或間隙)。在接收器組件、接收器組件集合或功率模式在BWP之間存在差異時,有可能需要或使用較長的切換時間(或間隙)。
WTRU可以基於以下的一項或多項來確定使用哪一個接收器組件、組件集合或功率模式:載波索引(例如服務胞元ID),頻率範圍(例如頻率範圍1或頻率範圍2),訊務類型(例如eMBB、mMTC或URLLC),和/或QoS類型(例如潛時等級、可靠性等級、所需輸送量等級)。
WTRU可以基於覆蓋等級來確定使用哪一個接收器組件、組件集合或功率模式。接收器組件、接收器組件集合或功率模式可以基於該WTRU接收到DCI所在的PDCCH聚合等級來確定。接收器組件、接收器組件集合或功率模式可以基於一個或複數下鏈測量(例如CQI、SINR、L1-RSRP、RSRP或RSRQ)來確定。WTRU可以監視可與所確定的接收器組件、接收器組件集合或功率模式相關聯的DCI。
圖7是顯示了低功率模式接收器在不同覆蓋場景中的範例用法的系統圖示700。當WTRU處於胞元邊緣時(例如WTRU 710和712),WTRU可能無法接收高於QPSK的調變階數(例如因為通道狀況不良)。如果WTRU使用或gNB允許WTRU使用僅支援多達QPSK調變階數的接收器組件,那麼WTRU可以節省電池。與支援更高調變階數的接收器組件相比,該接收器組件在PDCCH和PDSCH接收的過程中會消耗較低的功率。未處於胞元邊緣的WTRU 708可以在支援多達256QAM的不同的更高功率模式中操作。
WTRU可以接收關於使用可支援受限的最大調變階數和/或一個或複數其他排程限制的接收器組件、接收器組件集合或功率模式的配置或指示(例如從gNB接收)。作為替換,WTRU可以接收關於可被排程或使用的最大調變階數和/或一個或複數其他排程限制的配置或指示。WTRU可以假設為下鏈通道(例如PDCCH或PDSCH)排程的調變階數不會高於受限的最大調變階數(例如QPSK)。最大傳輸秩可以基於供所確定的接收器組件使用的最大調變階數來確定。最大傳輸頻寬可以基於供所確定的接收器組件使用的最大調變來確定。
gNB可以使用具有切換時間的動態指示(例如由搜尋空間啟動隱性指示或是由DCI顯性指示)來從低功率模式(例如多達QPSK)切換到高功率模式,或反過來。在增加或減小用於下鏈排程的最大調變階數時,可以提供和/或使用切換時間(例如接收器組件切換時間)。該切換時間與用於BWP切換的切換時間可以是相同的。WTRU可以在該切換時間期間忽略對於PDCCH的監視。
在一些實施例中,一些無線電性能方面(例如上文中描述的方面)可以被獨立配置和/或啟動。舉例來說,可以針對包括例如參考靈敏度水準和RF鏈數量的RF方面來定義第一類型的無線電性能狀態,可以針對包括例如最大傳輸塊大小的基帶方面來配置第二類型的無線電性能狀態,以及可以針對RRM方面來定義第三類型的無線電性能狀態。在另一個範例中,第一類型的無線電性能狀態可以是針對PDCCH解碼方面定義的,並且第二類型的無線電性能狀態可以是針對PDSCH解碼方面定義的。
在實施例中,無線電性能狀態可以藉由配置用於至少一個適用方面的一組值來配置(例如藉由RRC)。舉例來說,RRC配置可以包括無線電性能狀態的清單,其中每一個無線電性能狀態包括最大傳輸塊大小、最大秩、接收器靈敏度值以及關於適用方面的其他資訊元素。更進一步,對每一個無線電性能狀態都可以配置身份參數。作為範例,該身份參數可被配置成使得較高的值可以與較高的需求相對應。
在實施例中,預設的無線電性能狀態可以被定義。此類無線電性能狀態可以與提供給較高層的WTRU能力集合(例如最大性能或能力)相對應。此類預設無線電性能不需要藉由RRC的附加配置。作為替換,預設無線電性能狀態可以與高功效狀態相對應。
在關於適用方面的配置中可以添加適用的無線電性能狀態集合。舉例來說,關於TCI狀態的配置可以包括至少一個附加資訊元素,其指示這個TCI狀態可為活動所針對的一個或複數無線電性能狀態。該指示可被提供資訊元素,該資訊元素指示適用無線電性能狀態的最大身份參數。如果只定義了兩個無線電性能狀態,那麼該資訊元素可以是指示是否能在與高功效狀態相對應的無線電性能狀態中啟動該TCI狀態的布林值。
當處於特定無線電性能狀態時,可以為某些方面的配置定義附加資訊元素。舉例來說,可以使用在處於非預設(高功效)無線電性能狀態時配置CSI報告配置的資訊元素。當大量參數受到影響並且只定義了兩種性能狀態(例如預設狀態和高功效狀態)時,這是特別有用的。
WTRU可以基於多種不同方法中的至少一種來確定適用的無線電性能狀態。在一些實施例中,無線電性能狀態可以藉由實體層、MAC或RRC傳訊顯性指示。舉例來說,WTRU可以接收指示無線電性能狀態或是關於適用方面的值的MAC控制元素。WTRU可以啟動必要組件,以使其準備在傳輸了對相應傳輸塊的接收做出應答之HARQ之後不晚於預先定義的數量的時槽或符號(或ms)使用所指示的狀態操作。
作為範例,在一些實施例中,最小跨時槽排程延遲(最小的k0或最小的k2)可以藉由DCI欄位(例如時域資源分配(TDRA)欄位)來指示。舉例來說,除了已有參數(例如k0,映射類型,開始符號和長度)之外,對該欄位的每一個碼點都可以配置最小的k0或k2值。如果該欄位所指示的最小的k0(或k2)的值不同於WTRU目前使用的最小值,那麼WTRU可以相應地修改最小的k0(或k2)值。此外,WTRU可以確定沒有接收或傳輸PDSCH(或PUSCH)。只有在所指示的k0(或k2)的最小值小於目前值時,這種情況才是適用的。如果DCI的至少一個其他欄位被設定成預先定義的值,那麼WTRU可以確定最小的k0(或k2)的變化有效,由此改善強健性。作為範例,頻域資源指配欄位可能必須被設定成預先定義的值。WTRU可以藉由傳輸針對相應DCI的HARQ-ACK(例如在PUCCH資源指示符所指示的資源上傳輸)來對接收到該傳訊做出應答。
在一些實施例中,當WTRU接收到關於相關聯的方面的啟動命令時,無線電性能狀態可能會被隱性地切換或啟動。舉例來說,TCI狀態可被配置成適用於非預設無線電性能狀態(例如與較高的參考靈敏度或較少數量的RF鏈相對應的狀態)。一旦接收到指示啟動這個針對PDCCH接收的TCI狀態的MAC CE,那麼WTRU可以根據對應的非預設無線電性能狀態來操作。
在一些實施例中,無線電性能狀態可以基於至少一個WTRU測量(例如RRM測量)或CSI測量(例如L1-RSRP)來確定。舉例來說,如果WTRU的服務胞元的RSRP低於臨界值,那麼WTRU可以啟動預設無線電性能狀態。此類臨界值可以藉由MAC或RRC用信號通告。相反,如果WTRU的服務胞元的RSRP高於臨界值,那麼該WTRU可以啟動非預設無線電性能狀態。WTRU可以使用MAC或RRC傳訊來用信號通告此類無線電性能狀態切換。
在一些實施例中,在解碼包含針對這個WTRU的DL指配或UL許可的PDCCH之後,該WTRU可以切換到無線電性能狀態,例如允許最大性能的無線電性能狀態。作為補充或替換,在一些實施例中,WTRU可以某個持續時間的無線電性能狀態計時器被配置。在解碼包含針對這個WTRU的DL指配或UL許可的PDCCH時,該WTRU可以開始或重新開始該無線電性能計時器。一旦計時器到期,則WTRU可以切換到高功效無線電性能狀態。
在一些實施例中,無線電性能狀態可以基於是否有至少一個DRX計時器正在運行或者基於對DRX MAC CE的接收來確定。舉例來說,當無活動計時器開始時,WTRU可以切換到預設無線電性能狀態,並且當無活動計時器、UL或DL重傳計時器以及UL和DL HARQ RTT計時器到期時,WTRU可以切換到非預設無線電性能狀態。在另一個範例中,在接收到DRX命令MAC CE或長DRX命令MAC CE之後,WTRU可以切換到非預設無線電性能狀態。
在一些實施例中,無線電性能狀態可被配置成與BWP相關聯。一旦切換到新的BWP,則WTRU還可以切換到相關聯的無線電性能狀態。舉例來說,高功效的無線電性能狀態可被配置成與頻寬相對窄的頻寬部分相關聯,以及允許最大性能的無線電性能狀態可被配置成與頻寬相對寬的頻寬部分相關聯。
在一些實施例中,無線電性能狀態可以與所配置的許可或指配相關聯。一旦傳輸或接收了所配置的許可或指配,則WTRU可以切換到該無線電性能狀態。
圖8是在兩個無線電性能狀態之間切換的範例的圖示800。在圖8所示的範例中,WTRU可以在兩種無線電性能狀態之間切換,第一無線電性能狀態需要使用四個Rx鏈,而第二無線電性能狀態則只需要使用兩個Rx鏈。在圖8所示的範例中,藉由WTRU排程(例如接收DL指配或UL許可),可以觸發WTRU切換到第一無線電性能狀態。藉由計時器到期,可以觸發WTRU切換到第二無線電性能狀態。舉個例子,在(a)中,WTRU可以禁用4個Rx,只使用2個Rx以及嘗試偵測有效的PDCCH。在(b)中,WTRU可以被排程,可以開始計時器,並且可以賦能或重新賦能4個Rx的處理。當計時器到期時,WTRU可以停止執行監視。在(c)中,WTRU恢復到2個Rx,並且會嘗試偵測有效的PDCCH。
在一些實施例中,無線電性能狀態可以基於排程資訊或是已解碼的PDCCH的性質來確定(例如以隱性的方式)。該方法的好處在於避免需要用於在狀態之間切換的附加DCI格式。作為範例,該排程資訊可以包括時序資訊,例如PDCCH與PDSCH(或PUSCH)之間的時槽的數量(例如k0或k2)或是PDSCH或PUSCH的持續時間。舉例來說,如果所指示的時槽數量k0低於第一配置臨界值或者對應於配置的值或碼點,那麼處於第一狀態的WTRU可以切換到第二狀態。此類第一臨界值可以對應於為第一狀態配置的最小數量時槽k0min。如果所指示的時槽數量k0高於第二配置臨界值,或者如果所指示的時槽數量k0對應於某個值或碼點,那麼處於第二狀態的WTRU可以切換到第一狀態。
作為性能狀態行為的一部分,舉例來說,被提供了k0min(或k2min)且接收到包含或指示k0>k0min(或k2>k2min)的資料排程DCI的WTRU可以將新的k0min(或k2min)值設定成是所接收的k0(或k2),或者它也可以將k0min(或k2min)的值設定成預設值,例如零個時槽。
在接收到隱性指示新的k0min(k2min)值的排程DCI的時間與該資訊可供WTRU使用的時間之間有可能會存在時間間隙。該延遲有可能歸因於各種接收操作,例如解碼和解調。在實施例中,WTRU在PDCCH之後的時間間隙期間不會緩衝任何潛在的PDSCH,並且PDSCH中的資料有可能會丟失。在一些實施例中,不同於回饋丟失資料的NACK,即使在DCI中提供了PUCCH資源,WTRU預計也不會發送任何應答回饋。在其他實施例中,DCI可以指示不傳輸ACK/NACK(例如藉由將PUCCH資源欄位(或別的預定欄位)設定成已知值)。在將WTRU性能狀態隱性地切換到別的性能狀態且在切換期間發生臨時資料丟失時,這些方法通常可以是適用的。
作為補充或替換,排程資訊可以包含時序資訊,例如介於觸發非週期性參考信號(例如CSI-RS或SRS)的許可(DL或UL許可)與接收和/或傳輸非週期性參考信號之間的時槽數量(表示為X)。舉例來說,如果所指示的時槽數量低於第一配置臨界值或者對應於配置的值或碼點,那麼處於第一狀態的WTRU可以切換到第二狀態。如果所指示的時槽數量高於第二配置臨界值或者對應於配置的值或碼點,那麼處於第二狀態的WTRU可以切換到第一狀態。作為性能狀態行為的一部分,已被提供Xmin且接收到包含X>Xmin的資料排程DCI的WTRU可以將新的Xmin值設定成所接收的X。作為替換,它可以將Xmin值設定成預設值,例如零個時槽。這種處理同樣可以應用於其他可能的參數,例如SRS觸發偏移。
作為補充或替換,排程資訊可以包括頻率分配,例如RB數量、RB集合或頻寬部分。舉例來說,如果所指示的RB的數量高於配置臨界值或者如果所指示的RB集合包含為第一狀態配置的RB子集之外的RB,那麼處於第一狀態的WTRU可以切換到第二狀態。作為補充或替換,該排程資訊可以包括關於PDSCH或PUSCH的資源在時間或頻率上是否與所配置的指配或許可的資源或是別的許可或指配指示的資源相重疊的資訊。作為補充或替換,該排程資訊可以包括BWP指示。舉例來說,那麼WTRU可以切換到為所指示的頻寬部分配置的無線電性能狀態(如果不同於活動頻寬部分)。
在實施例中,作為補充或替換,排程資訊可以包括MCS或MCS表格。舉例來說,如果所指示的MCS高於所配置的MCS臨界值,或者如果所指示的MCS表格不是為第一狀態配置的可能的MCS表格的集合的一部分,那麼處於第一狀態的WTRU可以切換到第二狀態。作為補充或替換,排程資訊可以包括層數(秩)。舉例來說,如果所指示的層數高於配置臨界值,那麼處於第一狀態的WTRU可以切換到第二狀態。作為補充或替換,該排程資訊可以包括TBS。作為範例,如果從DCI中確定的傳輸塊大小高於配置臨界值,那麼處於第一狀態的WTRU可以切換到第二狀態。
在實施例中,作為補充或替換,排程資訊可以包括PDSCH至HARQ的回饋時序。舉例來說,如果所指示的PDSCH至HARQ的回饋潛時低於臨界值,那麼處於第一狀態的WTRU可以切換到第二狀態。此類臨界值可以對應於為第一狀態配置的k1的最小值。作為補充或替換,排程資訊可以包括傳輸配置指示(TCI)。作為範例,如果所指示的TCI不是為第一狀態配置的可能的TCI集合的一部分,那麼處於第一狀態的WTRU可以切換到第二狀態。作為補充或替換,排程資訊可以包括關於補充上鏈(SUL)或普通UL(NUL)上的排程的資訊。舉例來說,如果在SUL上排程PUSCH,那麼處於第一狀態的WTRU可以切換到第二狀態。作為範例,第二狀態可以對應於參考靈敏度等級較低或是天線數量較大的無線電性能狀態。
在實施例中,作為補充或替換,排程資訊可以包括傳輸簡檔指示,該指示可以指示與傳輸相關聯的優先順序(例如用於在eMBB與URLLC服務之間執行優先排序)。舉例來說,如果所指示的傳輸簡檔不是為第一狀態配置的可能的傳輸簡檔集合的一部分,那麼處於第一狀態的WTRU可以切換到第二狀態。作為補充或替換,排程資訊可以包括關於資料被包含在傳輸塊中的邏輯通道的資訊。作為範例,如果傳輸塊包含來自邏輯通道的資料,並且該邏輯通道不是為第一狀態配置的可能的邏輯通道集合的一部分,那麼處於第一狀態的WTRU可以切換到第二狀態。此類配置可以從為邏輯通道配置的邏輯通道優先順序(LCP)限制而為隱性。作為範例,該配置可以隱性地包含受最大PUSCH持續時間(其中該持續時間可以低於某個臨界值)限制影響的任何邏輯通道,或可以包括受胞元限制影響的邏輯通道,或映射到配置或啟動了複製所針對的承載的邏輯通道。
在一些實施例中,作為補充或替換,排程資訊可以包括PDSCH映射類型。舉例來說,如果所指示的PDSCH映射類型不是為第一狀態配置的映射類型子集的一部分,那麼處於第一狀態的WTRU可以切換到第二狀態。作為補充或替換,排程資訊可以包含用於解碼PDCCH的無線電網路臨時識別符(RNTI)。作為範例,如果所指示的RNTI不是為第一狀態配置的RNTI子集的一部分,那麼處於第一狀態的WTRU可以切換到第二狀態。
在實施例中,在DRX啟動持續時間之前,基於PDCCH的WUS可被傳輸至WTRU,由此喚醒該WTRU,以使其可以在啟動持續時間期間開始監視PDCCH。該WUS的RNTI可以指示在啟動持續時間監視的搜尋空間、CORESET和監視週期。作為範例,對於第一RNTI來說,WTRU可以監視第一搜尋空間集合,並且對第二RNTI來說,WTRU可以監視第二搜尋空間集合。RNTI與相關聯的搜尋空間之間的關聯可以由gNB配置。
在其他實施例中,沒有用RNTI加擾的CRC位元可以用R-ID加擾,並且作為範例,該R-ID可與在啟動持續時間期間監視的搜尋空間集合、CORESET或監視週期相關聯。舉例來說,當WTRU偵測到第一R-ID時,它預計會監視相關聯的搜尋空間。R-ID與相關聯的搜尋空間之間的關聯可以由gNB配置。在其他實施例中,R-ID可以是在啟動持續時間期間要被監視的搜尋空間的確切ID,或者它也可以從具有已知關係的相關聯的搜尋空間中得出。
在實施例中,作為補充或替換,排程資訊可以包括DCI格式。作為範例,一旦接收到搶佔指示(格式2_1)或TPC命令(格式2_2),則處於第一狀態的WTRU可以切換到第二狀態。作為補充或替換,排程資訊可以包括被解碼的PDCCH的性質,例如CORESET、搜尋空間或時序。舉例來說,一旦在某個被配置的搜尋空間中接收到DCI,或者依照該搜尋空間是共同還是特定搜尋空間,處於第一狀態的WTRU可以切換到第二狀態。作為補充或替換,排程資訊可以以成功解碼PDCCH為基礎,由此,PDCCH排程特定類型的傳輸。舉例來說,WTRU可以在第一功率狀態中監視和偵測PDCCH,並且如果其被排程用於半持久性資料傳輸,那麼它可以切換到第二功率狀態。作為範例,WTRU可以使用數量較少的RF鏈來監視PDCCH,並且在其接收和解碼排程PDCCH時,如果其以半持久性資料被排程,那麼它可以切換到數量較高的RF鏈。在實施例中,作為補充或替換,排程資訊可以包括在某個時段以內接收的指配、許可和/或DCI的數量。作為範例,如果該數量在適用於第二狀態的配置時段以內超出配置臨界值,那麼處於第一狀態的WTRU可以切換到第二狀態。
與圖8所示的範例相似,對於以上任意基於排程的可能觸發來說,當滿足將導致確定使用第二狀態的條件時,計時器可被開始或重新開始。當計時器到期時,WTRU可以切回到第一狀態。
作為圖8所示的實施例的替換方案,在一些實施例中,WTRU可以配置和使用一個或複數DRX週期和/或配置。每一個DRX週期或配置都可以與功率模式相關聯。如上所述,功率模式可以是由gNB和/或WTRU預先確定、配置、定義和/或使用的。功率模式可以具有一個或複數屬性,例如功率、能量預算和/或所使用、啟動或去啟動的傳輸RF鏈。在一些實施例中,功率模式可以基於WTRU提供的資訊而被啟動或去啟動,作為範例,其可以包括覆蓋等級、通道狀態資訊、電池電量和/或WTRU能力(例如支援複數RF鏈或開啟/關閉一個或複數RF鏈的能力)。圖9、圖10和圖11以及相應的描述提供了使用DRX週期來實現不同功率模式的不同方法的範例。
圖9是基於功率模式的複數DRX配置的範例的信號圖900。在圖9所示的範例中配置了兩個DRX週期902和904。第二DRX週期904可以長於第一DRX週期902。第一DRX週期902可以與較低的功率或省電模式相關聯,並且第二DRX週期904可以與高功率或正常功率模式相關聯。在第一DRX週期的啟動持續時間906中,WTRU可以在較低功率模式中操作。例如,WTRU可以只開啟其電路系統的一部分(例如RF鏈子集),或者它可以關閉或者不使用其電路系統中的至少一些。在啟動持續時間908a、908b期間,WTRU可以在正常功率模式中操作。舉例來說,與第一DRX週期902相比,它可以開啟和/或使用其所有的RF鏈或是更大的RF鏈子集。如圖9所示,由於第二DRX週期904長於第一DRX週期902,因此第二DRX週期904可以包括一個以上的啟動持續時間908a、908b。
當使用一個或複數DRX配置時,對於每一個DRX配置來說,至少一個DRX參數有可能是不同的。使用DRX週期可以與基於DRX週期來監視或者不監視PDCCH相對應。舉例來說,使用DRX週期可以對應於基於至少一個參數、時間、持續時間、計時器或是DRX週期或配置方面(例如啟動持續時間,啟動持續時間計時器,活動時間,關閉持續時間,關閉持續時間計時器以及重傳)來監視或者不監視PDCCH。
WTRU可以一次使用一個DRX配置(或DRX週期)。作為替換,WTRU可以同時使用一個或複數DRX配置(或DRX週期)。每一個DRX配置都可以與功率模式相關聯。舉例來說,高功率模式可以與第一Rx配置(例如較大數量的RF鏈或較大數量的被啟動或被使用的RF鏈)相關聯,並且低功率或較低功率模式可以與第二Rx配置(例如較小數量的RF鏈或較小數量的被啟動或被使用的RF鏈)相關聯。
由gNB傳輸和/或由WTRU接收的PDCCH可以與功率模式相關聯,或者可以攜帶相關聯的功率模式資訊。該功率模式資訊可以指示功率模式。
在可以與功率模式相關聯的相應DRX週期的啟動持續時間期間,可以監視或接收可以與功率模式相關聯的PDCCH。
PDDCH通道或PDCCH監視的一個或複數參數或方面可以基於在監視PDCCH時使用的功率模式。當WTRU監視PDCCH時,WTRU可以基於該WTRU正在使用的功率模式來確定和/或使用PDCCH通道或PDCCH監視的參數或方面。參數或方面可以是聚合等級、聚合等級集合和/或REG束大小中的至少一個。
舉例來說,對於低功率或節能模式來說,有可能需要和/或使用一個或複數更高的聚合等級來監視PDCCH(因為在使用較少RF鏈的時候會出現覆蓋損耗)。在另一個範例中,對於低功率或節能模式來說,有可能需要和/或使用較大的REG束大小來監視PDCCH。
在實施例中,第一聚合等級集合可被用於在與第一DRX週期相關聯的啟動持續時間或活動時間監視PDCCH。第二聚合等級集合可被用於在與第二DRX週期相關聯的啟動持續時間或活動時間監視PDCCH。在範例中,第一聚合等級集合可以包括較小的聚合等級,並且第二聚合等級集合可以包括較大的聚合等級。在另一個範例中,第二聚合等級集合可以包括至少一個聚合等級,該至少一個聚合等級大於第一聚合等級集合中的聚合等級(例如所有聚合等級)。在實施例中,第一REG束大小可被用於在與高功率模式相關聯的啟動持續時間監視PDCCH,並且第二REG束大小可被用於在與低功率模式相關聯的啟動持續時間監視PDCCH。
當WTRU在處於啟動持續時間或活動時間的同時接收PDCCH時,該WTRU可以在功率模式中操作(例如用於接收可以由PDCCH排程或許可的PDSCH中的資料)。舉例來說,如果在某個DRX週期的啟動持續時間或活動時間偵測到PDCCH,那麼WTRU可以在接收相關聯的PDSCH和/或使用者資料的同時停留在某個功率模式中。當在啟動持續時間或活動時間期間偵測到PDCCH之後,WTRU可以開始計時器,並且可以監視或繼續監視PDCCH(舉例來說,直至計時器到期)。在這個監視期間,所使用的可以是與偵測到的PDCCH、啟動持續時間或活動時間相關聯的功率模式。
關於PDSCH通道或PDSCH傳輸或接收的一個或複數參數或方面可以基於功率模式(例如在監視相關聯的PDCCH的時候)。WTRU可以基於該WTRU正在使用的功率模式來確定和/或使用關於PDSCH通道或PDSCH傳輸或接收的參數或方面(例如在WTRU監視相關聯的PDCCH的時候)。參數或方面可以是秩、最大秩、DM-RS參數(例如DM-RS密度)、MCS等級和/或最大MCS等級中的至少一個。
用於PDSCH接收的最大秩可以由與PDSCH相關聯或是與排程PDSCH的PDCCH相關聯的功率模式來確定或限制。與PDCCH相關聯的功率模式可以是與偵測到PDCCH期間所在的DRX週期、啟動持續時間和/或活動時間相關聯的功率模式。秩可以與層數、資料串流數、空間層數以及在相同時間/頻率上同時傳輸的資料符號的數量交換使用。當WTRU在與第一功率模式相關聯的啟動持續時間或活動時間監視PDCCH或接收DCI時,所使用的可以是第一最大秩(例如4),以及當WTRU在與第二功率模式相關聯的啟動持續時間或活動時間監視PDCCH時,所使用的可以是第二最大秩(例如1)。第n個最大秩可被用於在與第n個功率模式相關聯的啟動持續時間或活動時間接收PDCCH排程的PDSCH。較低的最大秩可被用於較低功率模式。舉例來說,與正常模式相比,較低的最大秩可用於省電模式。
用於PDSCH接收的DM-RS密度可以基於與PDSCH相關聯的功率模式來確定。當WTRU在與第一功率模式相關聯的DRX週期、啟動持續時間或活動時間中監視一個或複數PDCCH或接收用於PDSCH的DCI時,所使用的可以是關於或用於PDSCH的第一DM-RS密度。當WTRU在與第二功率模式相關聯的DRX週期、啟動持續時間或活動時間中監視一個或複數PDCCH或者接收用於PDSCH的DCI時,所使用的可以是關於或用於PDSCH的第二DM-RS密度。關於或用於PDSCH的DM-RS密度可以基於或者對應於在時槽內部使用的DM-RS符號的數量。舉例來說,第一DM-RS密度可以在用於PDSCH的時槽中使用第一數量的DM-RS符號(例如4個DM-RS符號),以及第二DM-RS密度可以在用於PDSCH的時槽中使用第二數量的DM-RS符號(例如2個DM-RS符號)。
最大MCS等級可以基於與PDSCH相關聯的功率模式來確定。當WTRU在與第一功率模式相關聯的DRX週期、啟動持續時間或活動時間中監視一個或複數PDCCH或者接收用於PDSCH的DCI時,所使用的可以是第一最大MCS等級(例如256QAM)。當WTRU在與第二功率模式相關聯的DRX週期、啟動持續時間或活動時間中監視一個或複數PDCCH或者接收用於PDSCH的DCI時,所使用的可以是第二最大MCS等級(例如QPSK)。
低功率模式可以是省電模式。高功率模式可以是正常或非節能模式。在這裡描述的實施例和範例中,活動時間可以取代啟動持續時間,並且仍然與本揭露相一致。啟動持續時間或活動時間可以與DRX週期和/或功率模式相關聯。
在這裡,啟動持續時間或活動時間可以用PDCCH監視的持續時間、PDCCH監視時機和/或搜尋空間來替換。啟動持續時間或活動時間可以包括一個或複數PDCCH監視時機。啟動持續時間和/或活動時間可以包括一個或複數搜尋空間(例如用於監視PDCCH)。WTRU可以在PDCCH監視時機或其期間監視PDCCH。在這裡,PDCCH時機和PDCCH監視時機是可以互換使用的。
圖10是在不同DRX週期的啟動持續時間之間執行功率模式切換的範例的信號圖1000。在圖10所示的範例中,WTRU可以在DRX週期的啟動持續時間1002a或是PDCCH監視時機中使用相關聯的功率模式來監視PDCCH。當在啟動持續時間1002a期間偵測到PDCCH 1004時(1004),WTRU可以在相同的功率模式中操作或繼續操作(1006),作為範例,這其中可以包括監視PDCCH、接收PDSCH以及傳輸PUSCH中的至少一項。WTRU可以接收改變功率模式的指示。該指示可以在目前的啟動持續時間中和/或在下一個啟動持續時間1002b之前被接收。該消息可以在PDCCH中的DCI中傳輸,或者可以作為MAC CE或其他格式來傳輸。WTRU可以基於所接收的指示來切換功率模式(1008)。WTRU可以在啟動持續時間之開始(例如下一個啟動持續時間1002b或是接收到切換指示之後的k個(或者至少k個)監視時機)執行或應用切換。然後,WTRU可以在啟動持續時間1002b期間繼續資料接收(1110)。
在實施例中,WTRU可以基於計時器來確定接收器組件、接收器組件集合或功率模式。舉例來說,當計時器運行時,WTRU可以在啟動持續時間或活動時間中使用第一接收器組件、接收器組件集合或功率模式來監視PDCCH。當計時器到期時,WTRU可以切換到第二或後備接收器組件、接收器組件集合或功率模式。與第一接收器組件、接收器組件集合或功率模式相比,第二或後備接收器組件、接收器組件集合或功率模式可能具有更好的覆蓋範圍。如果第一接收器組件、接收器組件集合或功率模式已經是後備接收器組件、接收器組件集合或功率模式,那麼無活動計時器可以停止或重設。
第一接收器組件、接收器組件集合或功率模式可以具有第一數量的活動RF鏈。後備接收器組件、接收器組件集合或功率模式可以具有第二數量的活動RF鏈,其中第一數量可以小於第二數量。第二數量可以是較大的數量或是WTRU基於該WTRU的能力所能支援的最大數量。與第一接收器組件、接收器組件集合或功率模式支援的最大調變階數相比,後備接收器組件、接收器組件集合或功率模式可以支援更高的最大調變階數。後備接收器組件、接收器組件集合或功率模式可以支援WTRU基於該WTRU的能力所能支援的最高的最大調變階數。
在實施例中,WUS可以與DRX一起使用,以便節省功率。作為範例,WUS可以先於DRX週期的啟動持續時間。當偵測到WUS時,WTRU可以在啟動持續時間或活動時間(例如在一個或複數PDCCH時機或監視時機)期間監視一個或複數PDCCH。
在實施例中,WTRU可以基於相關聯的WUS來確定用於在啟動持續時間或活動時間監視PDCCH的接收器組件、接收器組件集合或功率模式。相關聯的WUS可以指示所要使用的接收器組件、接收器組件集合或功率模式。作為範例,一個或複數WUS可以被使用,並且如果WTRU接收到第一WUS,那麼WTRU可以使用或開啟第一接收器組件、接收器組件集合或功率模式。如果WTRU接收到第二WUS,那麼WTRU可以使用或開啟第二接收器組件、接收器組件集合或功率模式。
一個或複數WUS可以基於前序碼,並且WTRU可以盲偵測前序碼。如果偵測到第一前序碼,那麼WTRU可以使用第一接收器組件、接收器組件集合或功率模式,並且如果偵測到第二前序碼,那麼WTRU可以使用第二接收器組件、接收器組件集合或功率模式。
圖11是關於WUS確定相關聯的PDCCH監視時機的功率模式以及用於PDCCH監視的聚合等級集合的範例的信號圖1100。在圖11所示的範例中,WUS可以指示所要開啟的RF鏈的數量或是所要使用的功率模式。舉例來說,WUS 1102可被用於喚醒處於第一功率模式的WTRU,而第二WUS 1104則可被用於喚醒處於第二功率模式的WTRU。
在某個搜尋空間中監視的聚合等級集合可以基於WUS指示的功率模式來確定。舉例來說,搜尋空間可以一個或複數聚合等級集合被配置。每一個聚合等級集合都可以與功率模式相關聯。基於所指示的功率模式,WTRU可以確定用於搜尋空間中的PDCCH監視的聚合等級集合。對於第一功率模式來說,所使用的可以是較大的聚合等級(例如大於第二功率模式所使用的)。作為範例,由於使用較少的活動RF鏈可能會限制接收器能力,因此可以為低功率模式使用較大的等級。作為範例,對於第二功率模式來說,由於可以支援完整的接收器能力,因此可以使用較小的聚合等級(例如較小的最大聚合等級)。
在其他實施例中,WUS可以確定用於PDCCH監視的第一接收器組件、接收器組件集合或功率模式(例如在相關聯的啟動持續時間、活動時間或是一個或複數相關聯的PDCCH監視時機或PDCCH時機)。作為範例,WTRU可以在相關聯的啟動持續時間、活動時間或PDCCH監視時機偵測或接收PDCCH。該PDCCH可以指示用於相關聯的PDSCH接收的第二接收器組件、接收器組件集合或功率模式。
第一接收器組件、接收器組件集合或功率模式與第二接收器組件、接收器組件集合或功率模式可以是相同的,例如在第一接收器組件、接收器組件集合或功率模式是高功率或正常功率模式的時候。在實施例中,WUS可以包括一個序列或是兩個或複數序列的組合。如果使用兩個或複數序列,那麼可以使用以下的至少一項來產生WUS:加擾該序列,對序列執行分時多工,以及對序列執行分頻多工。WUS的構成序列的至少一個可以指示功率模式。舉例來說,如果藉由加擾兩個序列來產生WUS,那麼序列的其中一個可以指示功率模式。
在一些實施例,當WTRU接收到用於指示該WTRU基於目前的無線電性能狀態或能力無法遵從的DL指配或UL許可的下鏈控制資訊時,可以隱性地確定無線電性能狀態。舉例來說,一旦接收到用於指示活動頻寬部分的改變的DCI(例如指示的BWP索引不同於活動BWP),那麼,如果該DCI指示的是在允許的切換間隙結束之前開始的PDSCH或PUSCH,則WTRU可以切換到配置的無線電性能狀態。另舉一例,一旦接收到具有不與任意配置的載波相對應的載波指示符欄位的DCI,則可以隱性地確定無線電性能狀態。在這種情況下,該欄位的值可以映射到無線電性能狀態的索引。作為另一個範例,一旦接收到具有與保留值或無效值相對應的碼點的指配或許可(例如針對天線埠欄位),則可以隱性地確定無線電性能狀態。作為另一個範例,一旦接收到具有無效HARQ資訊的指配或許可(例如在接收到比所配置的HARQ處理數量更大的HARQ處理索引時),則可以隱性地確定無線電性能狀態。作為另一個範例,一旦接收到指示無效資源的指配或許可,則可以隱性地確定無線電性能狀態。
在基於以上的一個範例確定無線電性能狀態時,無論DCI的內容如何,WTRU都可以切換到預設無線電性能狀態。作為替換,WTRU可以切換到由至少一個欄位的一個或複數值指示的無線電性能狀態。
在一些實施例中,WTRU的性能狀態可能會與資料排程DCI中攜帶的資訊發生矛盾,由此導致失配。作為範例,如果WTRU遺漏確定性能狀態的傳訊,那麼有可能會發生這種失配。舉例來說,在一些實施例中,WTRU可以被配置成去啟動TDRA表中的某些條目。作為範例,具有低於臨界值k0min(k2min)的k0(k2)的條目可被去啟動。在這種情況下,去啟動有可能意味著WTRU應不期望以去啟動的條目而被排程。假設k0min(k2min)是經由L1、L2或較高層傳訊提供給WTRU的。同樣,WTRU可以被配置成去啟動CSI報告觸發狀態清單的某些條目。舉例來說,具有低於臨界值Xmin的X(X是非週期性CSI-RS觸發偏移)之條目可被去啟動。在這種情況下,去啟動有可能意味著WTRU不期望接收與去啟動的條目相對應的CSI-RS。
舉例來說,如果WTRU期望用k0(k2)>0個時槽以及X>0個時槽來排程,則那麼一旦接收到目前時槽中的PDCCH(除非其被先前時槽的PDCCH排程以執行某個其他操作),否則它會進入微休眠模式。如果WTRU被配置了k0min,但是接收到了指示k0(其中k0<k0min)的資料排程DCI,那麼有可能發生失配。同樣,如果WTRU被配置了k2min,但是接收到指示k2的資料排程DCI(其中k2<k2min),那麼有可能發生失配。如果WTRU被配置了Xmin,但是接收到指示X的資料排程DCI(其中X<Xmin),那麼同樣會發生失配。
在發生失配時,在一些實施例中,WTRU預計會從目前性能狀態切換到與資料排程DCI中指示的k0/k2/X值相關聯的性能狀態。舉個例子,被配置了k0min = k2min = Xmin = 1個時槽且在節能狀態中操作的WTRU(如果其接收到指示k0/k2/X中的至少一個是0個時槽的資料排程DCI)會切換到另一種性能狀態(例如非節能狀態)。作為性能狀態行為的一部分,舉例來說,已被提供了k0min/k2min/Xmin且接收包含k0>k0min和/或k2>k2min和/或X>Xmin的資料排程DCI的WTRU可以將新的k0min/k2min/Xmin值設定成是所接收的k0/k2/X。作為替換,它可以將k0min/k2min/X的值設定成預設值,例如零個時槽。
在發生失配時,在一些實施例中,WTRU可以向gNB發送指示發生了失配的輔助資訊。此類資訊可以用MAC-CE來傳輸。
在另一個實施例中,WTRU可以k0min(k2min)被配置,但其接收到了指示k0(k2)的資料排程DCI(其中k0>k0min(k2>k2min))。這種情況的發生有可能是因為排程決定或失配。如果每一個排程DCI在某個時段連續指示k0>k0min(k2>k2min),那麼WTRU可以向gNB發送用於指示有可能發生失配的輔助資訊。這種情況對於X來說也是適用的。
在實施例中,當處於被配置了某個MIMO秩和/或Tx/RX RF鏈數量的第一性能狀態的WTRU接收到指示相矛盾的秩和/或RF鏈數量的資料排程DCI時,有可能會發生失配。舉例來說,WTRU可以Kmax(Kmax是最大秩)和/或Rmax(Rmax是活動的Tx和/或Rx RF鏈的最大數量)被配置,但是接收到了指示K>Kmax和/或R>Rmax的資料排程DCI。在發生這種失配時,WTRU預計會從目前性能狀態切換到與DCI中攜帶的資訊相關聯的狀態。WTRU還會將指示發生失配的輔助資訊發送至gNB。可以用MAC-CE來傳輸此類資訊。在其他實施例中,如果WTRU在某個時段被連續地排程以小於Kmin(Rmin)的K(R),那麼它會向gNB發送指示有可能發生失配的輔助資訊。
通常,當資料排程DCI具有與WTRU的性能狀態相矛盾的資訊時,WTRU可以將其性能狀態切換成與DCI中包含的資訊相關聯的狀態,並且如果發生過單次矛盾即足以確定失配,那麼WTRU會向gNB發送指示該失配的輔助資訊。作為替換或補充,如果發生單次矛盾不足以確定失配,但在特定時段中連續發生此類矛盾,那麼WTRU可以向gNB發送用於指示可能的失配的輔助資訊。
在一些實施例中,WTRU可以發送無線電性能狀態已經改變的應答或通知(例如因為應用了上文中描述的一種方法)。WTRU可以使用實體層、MAC或RRC傳訊來傳輸應答。舉例來說,應答可以作為可與其他HARQ-ACK和/或其他UCI多工的單個位元(例如HARQ-ACK)藉由PUCCH(或是作為在PUSCH上多工的上鏈控制資訊(UCI))來傳輸。在另一個範例中,在MAC控制元素或RRC消息中可以傳輸通知。
該狀態改變可以使用會被一個以上的WTRU解碼的傳輸來用信號通告。舉例來說,該狀態改變可以使用從群組共同搜尋空間接收的PDCCH以及指配給WTRU群組的C-RNTI來用信號通告。此類傳輸可以是在上文中舉例描述的節能信號。WTRU可以使用以下的至少一個實施例來確定傳輸應答所藉由的PUCCH資源。除了節能傳訊之外,此類實施例還可以用於使用群組傳訊來用信號通告狀態改變的場景。
在一些實施例中,節能信號的酬載可以指示用於群組中的每一個WTRU的PUCCH資源(例如在該節能信號為WTRU群組特定的情況下)。WTRU可以先在DCI內部識別出指示該WTRU將會用來傳輸ACK/NACK的PUCCH資源的位元群組的位置。每一組位元都可以指示表中的一列,並且該列可以包含與PUCCH資源相關的資訊。該位元群組可以指示未傳輸ACK/NACK(例如藉由將這些位元設定成預定值)以及PUCCH資源的位置。舉例來說,如果假設有2個位元,那麼00可以指示未傳輸ACK/NACK,而01、10和11中的每一個可以指示特定的PUCCH資源。
位元群組的位置可以由WTRU使用對DCI酬載內部的別的位元的引用來確定。作為範例,如果群組中有3個WTRU,那麼前3個位元中的每一個位元可以指示是否對特定WTRU甦醒,並且如果假設將2個位元用於PUCCH資源指示,那麼隨後的2個位元可以指示用於第一WTRU的PUCCH資源,隨後的2個位元可以指示用於第二WTRU的PUCCH資源,依此類推。WTRU索引(即第一、第二等等)可以依照WTRU ID來配置或導出。
在一些實施例中,WTRU可以每BWP的預設無線電性能狀態被配置。在每一個啟動持續時間,WTRU初始可以監視一個或複數活動的BWP的預設無線電性能狀態。舉例來說,WTRU可以每BWP的預設搜尋空間或預設CORESET被配置。在每一個啟動持續時間,WTRU初始可以監視一個或複數活動BWP的預設搜尋空間或預設CORESET。
一旦在指定啟動持續時間或DCI格式中接收到PDCCH,則WTRU可以改變省電方面或無線電性能狀態(例如在不改變其活動BWP的情況下)。舉例來說,一旦在指定啟動持續時間期間解碼了用於WTRU的PDCCH,則該WTRU可以增加在活動BWP中監視的搜尋空間或CORESET的數量。這種增加可以是二進位的,例如對所有的搜尋空間或CORESET進行監視,也可以是漸進的,例如依照RRC配置。
一旦計時器(例如DRX無活動計時器)到期,則WTRU可以改變省電方面或無線電性能狀態(例如在不改變其活動BWP的情況下)。舉例來說,一旦DRX無活動計時器或BWP無活動計時器到期,則WTRU可以減小被監視的CORESET的數量或是被監視的搜尋空間的數量,例如減小到僅僅是一個或複數活動BWP的預設搜尋空間或預設CORSET。
在其他實施例中,一旦在指定啟動持續時間接收到WUS,則WTRU可以改變省電方面或無線電性能狀態(在一些實施例中不會改變其活動的BWP)。舉例來說,一旦在指定持續時間接收到WUS,則WTRU可以增加在活動BWP中被監視的搜尋空間或CORESET的數量。這種增加可以是二進位的,例如對所有搜尋空間或CORESET進行監視,或是漸進的。
在改變無線電性能狀態(例如被監視的搜尋空間或CORESET的數量)之前,WTRU可以進一步考慮PDCCH排程資訊內容。舉例來說,在改變無線電性能狀態之前,WTRU可以考慮以下的一項或多項:被排程的TB的大小,排程資料所在的邏輯通道或DRB,所排程的資料的QoS方面(例如所涉及的服務類型或潛時),以及所提供的被排程UL許可的特性。在實施例中,WTRU可以考慮UL許可的大小和/或被緩衝的資料量。在其他實施例中,WTRU可以考慮針對被緩存的UL資料的UL許可的LCP映射限制。
WTRU可以進一步考慮以上的一個或複數度量,以便漸進地改變無線電性能狀態。舉例來說,WTRU可以藉由考慮以上的一個或複數度量來確定所要進行監視的附加搜尋空間的數量(例如依照RRC配置)。
在實施例中,用於CSI報告的一個或複數CSI報告值、範圍或索引可以基於接收器組件、接收器組件集合或功率模式來確定。該確定可以由WTRU來做出。
CQI表可以基於功率模式來確定。舉例來說,第一CQI表可被用於第一功率模式,並且第二CQI表可被用於第二功率模式。調變階數集合可以基於CQI表而存在差異。用於第一功率模式的CQI表可以包括調變階數子集(例如僅QPSK),並且用於第二功率模式的CQI表可以包括調變階數的全部集合(例如QPSK、16QAM和64QAM)。CQI表的條目數量可以基於相關聯的功率模式而存在差異。舉例來說,對第一功率模式使用的可以是3位元的CQI表(8個條目),而對第二功率模式使用的則可以是4位元的CQI表(16個條目)。
可以基於功率模式使用CQI表中的CQI條目的全部集合或子集。表2示出了基於相關聯的功率模式來確定CQI條目的全部集合或子集的範例。在該範例中,功率模式1使用的是帶有QPSK的CQI條目,而功率模式2使用的是具有所有調變階數的CQI條目。
用於CQI報告的CQI位元的數量可以基於為功率模式確定的集合或子集中的CQI條目的數量來確定。作為替換,用於CQI報告的CQI位元數量可以基於功率模式而不變,並且可以基於CQI表中的CQI條目的全部集合來確定。CQI條目、CQI索引和CQI值是可以互換使用的。 表2
Figure 108129787-A0304-0002
最大報告秩可以基於功率模式來限制。舉例來說,在為CSI報告確定了第一功率模式時,所使用的可以是第一最大報告秩(例如4)。在為CSI報告確定了第二功率模式時,所使用的可以是第二最大報告秩(例如1)。最大報告秩、最大秩索引(RI)值以及最大RI是可以互換使用的。
碼本子集限制等級可以基於功率模式來確定。用於指定CSI報告設置或CSI報告配置的最小必需CSI計算時間可以基於功率模式而不同。較短的最小必需CSI計算時間可被用於高功率模式,並且較長的最小必需CSI計算時間可被用於低功率模式。
在一些實施例中,一個或複數配置的CSI報告設置、資源設置和/或CSI報告配置可以基於所使用的功率模式而被啟動或去啟動。舉例來說,CSI報告設置可以在滿足一個或複數條件的時候被去啟動。啟動和/或去啟動可以由WTRU執行。該條件可以是以下的一個或複數:所確定的接收器組件或組件集合是或者對應於低功率模式,用於CSI報告的相關聯的NZP-CSI-RS的天線埠數量大於臨界值(例如8),相關聯的碼本類型是類型II,為L1-RSRP測量的波束數量大於臨界值(例如64),以及CSI報告是週期性報告或半持久性報告。
在一些實施例中,針對每一個接收器組件、接收器組件集合或功率模式,可配置CSI報告設置、資源設置和CSI報告配置的集合。舉例來說,第一CSI報告設置、資源設置和CSI報告配置的集合可被配置給或者用於第一接收器組件、接收器組件集合或功率模式。第二CSI報告設置、資源設置和CSI報告配置的集合可被配置給第二接收器組件、接收器組件集合或功率模式。
WTRU可以基於與所確定或目前的功率模式相關聯的CSI報告設置、資源設置和CSI報告配置的集合來報告CSI。WTRU可以基於與所指示的功率模式相關聯的CSI報告設置、資源設置和CSI報告配置的集合來報告CSI。該功率模式可以在非週期性CSI報告觸發中指示,或者該功率模式可以隱性地由非週期性報告請求索引來指示。
在一些實施例中,對一些或所有所支援的功率模式可被配置相同的CSI報告設置、資源設置和CSI報告配置的集合。WTRU可被要求以一種或多種功率模式來報告所配置的CSI。例如,WTRU可被要求基於功率模式來報告CSI。WTRU可被要求基於該WTRU支援的功率模式集合來報告CSI。如果所指示的用於CSI報告的功率模式不同於目前功率模式,那麼可以為CSI測量提供或使用測量間隙。在測量間隙期間,WTRU可以或者可被允許略過對於PDCCH的監視。
當CSI報告基於多種功率模式時,這時可以跨功率模式地使用CSI測量的增量偏移。例如,參考CQI值可以基於最高CQI值或是以多種功率模式的CQI值中的最高功率模式為基礎的CQI值來測量,並且剩餘功率模式的增量CQI值也是可以報告的。
在一些實施例中,WTRU可以在測量資源可用時基於所確定的功率模式來測量和報告CSI。WTRU可以指示每一個CSI報告的關聯功率模式或是與每一個CSI報告相關聯的功率模式。WTRU可以指示功率模式的身份。
一個或複數PUCCH資源可以被配置,並且可以基於相關聯的功率模式來確定PUCCH資源的其中之一。WTRU可以使用所確定的PUCCH資源,例如用於CSI報告。
在一些實施例中,CSI報告設置、資源設置或配置可以包括與接收器組件、資源組件集合或功率模式相關聯的屬性。舉例來說,藉由配置第一CSI資源,可以第一數量的RF鏈來測量在該資源中傳輸的CSI-RS。藉由配置另一個CSI資源,可以第二數量的RF鏈來測量在該資源中傳輸的CSI-RS。
圖12是具有相關聯的功率模式指示的非週期性CSI報告觸發範例的信號圖1200。在圖12所示的範例中,DCI 1202包括功率模式指示。CSI-RS 1206可以在從DCI啟動時起經過了偏移時間1204之後傳輸。CSI-RS可以與特定功率模式相關聯。在實施例中,DCI有可能不需要包含功率模式指示,例如在CSI-RS資源與功率模式相關聯的時候。這種關聯可以由較高層來配置。WTRU有可能使用CSI-RS參考信號和所指示的功率模式來執行CSI測量。WTRU可以在相關聯的CSI報告1210中報告測量結果,例如在CS IRS 1206後之報告偏移1208。
圖13是週期性CSI-RS和非週期性CSI報告的範例的信號圖1300。在圖13所示的範例中,當CSI-RS具有週期性並且CSI報告具有非週期性時,每一個CSI資源都可以與特定的功率模式相關聯。啟動消息或觸發消息1302可以(例如經由DCI或較高層)指示可供WTRU用來確定用於測量的CSI-RS資源的功率模式。WTRU可以使用在啟動或觸發消息1302中指示的一個或複數功率模式來對CSI參考信號1304和1308進行測量。在圖13所示的範例中,WTRU使用第一功率模式來測量CSI-RS 1304,以及使用第二功率模式來測量CSI-RS 1308。DCI 1306可以觸發WTRU報告與一個或複數特定功率模式相對應的CSI。在DCI 1306後之報告偏移1310,WTRU可以發送可針對一種或兩種功率模式的CSI報告1312。
圖14是關於週期性CSI-RS和週期性CSI報告的範例的信號圖1400。當CSI-RS具有週期性且CSI報告同樣具有週期性時,CSI-RS資源可以與特定功率模式相關聯。在圖14所示的範例中,舉例來說,啟動消息1402指示第一功率模式與CSI-RS 1406相關聯,並且第二功率模式與CSI-RS 1410相關聯。當WTRU接收到啟動消息1402時,該WTRU可以啟動1404,並且可以使用第一功率模式測量CSI-RS 1406,以及使用第二功率模式來測量CSI-RS 1410。該啟動消息1402可以請求或命令WTRU報告與所指示的功率模式相對應的CSI。相應地,在測量了CSI-RS 1406之後,WTRU會發送CSI報告1408,以及在測量了CSI-RS 1410之後,WTRU會發送CSI報告1412,而不需要任何其他傳訊來觸發CSI報告。
WTRU執行的測量未必限於CSI。舉例來說,WTRU可以測量RSRP或別的參量。WTRU可以使用CSI-RS或一些其他參考信號來執行測量。例如,WTRU可以使用SS-PBCH塊來執行測量。每一個SS/PBCH塊可以與特定的功率模式相關聯。WTRU可以在以關聯的功率模式操作的同時執行關於SS/PBCH塊的測量。WTRU測量可以包括覆蓋等級。
功率模式可以確定WTRU可以接收的資料串流的最大數量。可被開啟或使用的RF鏈的最大或最小數量或者可以使用的功率模式可被指示給WTRU。該指示可以基於在上文中詳細描述的顯性指示或隱性指示。該指示可以在PDCCH中的DCI格式中、在MAC CE中或者在來自較高層的配置消息中攜帶。WTRU可以使用所指示的RF鏈數量或功率模式來操作,例如回應於或基於所述指示,或者基於接收到該指示。
在實施例中,計時器可被用於功率模式確定。WTRU可以在該功率模式操作,直至修改或去啟動了該功率模式(例如經由後續指示或者基於計時器到期)。該後續指示可以覆寫或取代先前指示。WTRU可以在功率模式中操作,直到啟動了另一個功率模式(例如經由後續指示或者基於計時器到期)。該後續指示可以覆寫或取代先前指示。
計時器可以在配置、啟動或使用功率模式的時候被配置(例如由gNB)和/或被WTRU使用。計時器可被用於功率模式子集。舉例來說,計時器可被用於除了正常功率模式之外的其他功率模式。該正常功率模式可被認為是後備功率模式。當計時器到期時,WTRU可以切換到正常功率模式。
在由WTRU接收或確定和/或由gNB指示或配置最大秩或功率模式時,WTRU可以開始或重新開始計時器。計時器值可以在指示最大秩或功率模式時和/或在開始或重新開始計時器時被指示或確定。該指示可以包括或者識別計時器值。作為替換,計時器值可以與最大秩或功率模式相關聯。基於該關聯,關於最大秩或功率模式的指示可以隱性地指示計時器值。在使用最大秩或功率模式時,WTRU可以使用與該最大秩或功率模式相關聯的計時器值。
當計時器到期時,WTRU可以停止使用與該計時器相關聯的最大秩限制或功率模式。WTRU可以使用可被配置或以其他方式獲知的不同的最大秩或功率模式。當計時器正在運行或未被開始時,WTRU可以使用第一組秩,以及當計時器到期或未運行時,WTRU可以使用第二組秩。第一組秩中的最大秩可以低於第二組秩中的最大秩。當計時器到期時,WTRU可以使用、恢復或切換到預設、後備、預定或其他操作模式(例如正常功率模式)。
圖15是使用計時器的範例的最大秩限制的信號圖1500。在圖15所示的範例中,基地台(例如gNB)提供了包含最大秩的消息1502。在消息1502之後之觸發偏移1504,基地台可以開始使用最大秩限制(1506),並且WTRU可以設置計時器。當該計時器到期時(1508),最大秩限制可結束(1510)。
在其他實施例中,WTRU可以接收包含或識別第一最大秩或功率模式的第一指示或消息。WTRU可以第一最大秩或功率模式來操作(例如在接收到第一指示或消息之後)。WTRU可以接收包含或識別第二最大秩或功率模式的第二指示或消息。第二指示或消息可以覆寫或取代第一指示或消息。第二最大秩或功率模式可以覆寫或取代第一最大秩或功率模式。WTRU可以第二最大秩或功率模式來操作,例如在接收到第二指示或消息之後。
在其他實施例中,WTRU可以在PDCCH中接收關於資源分配的DCI,並且該DCI中的秩資訊有可能高於先前發送、配置或接收的最大秩。當WTRU接收到的秩高於先前發送、配置或接收的最大秩時,WTRU可以假設現有的最大秩限制已經無效,並且可以開始或恢復預設模式。作為範例,該預設模式可以是正常功率模式,啟動了所有RF鏈的模式和/或將最大秩設置成是WTRU能力或WTRU硬體允許的最大可能的模式。在這裡,限制和約束是可以互換使用的。在實施例中,以下各項之一可以基於最大秩來確定:DM-RS配置以及RS功率等級。
BWP可以基於最大秩來確定。至少一個BWP可以被配置,並且每一個BWP都可以與最大秩、RF鏈的最大數量、功率模式和/或與WTRU功耗相關的別的參數中的至少一個相關聯。在啟動BWP時,WTRU可以假設在該BWP內部的傳輸和/或接收的持續時間會有一個、多個或所有相關聯的參數有效。該假設未必適用於被覆寫或再配置(例如由gNB經由諸如DCI、MAC或較高層傳訊進行配置)的參數。當參數以新值覆蓋或再配置時, WTRU可以使用該新值。
CORESET配置可以基於最大秩來確定。至少一個CORESET配置有可能會存在,並且每一個配置都可能與以下參數的至少一個相關聯:最大秩,最大RF鏈數量,功率模式;和/或與WTRU功耗相關的別的參數。在配置了CORSET時,WTRU可以假設在傳輸的持續時間或者在監視和/或接收CORESET時有一個、多個或所有相關聯的參數有效。該假設未必適用於被覆寫或再配置(例如由gNB經由諸如DCI、MAC或較高層傳訊)的參數。當參數被新值覆寫或再配置時,WTRU可以使用該新值。
在CORESET內部可能會有複數WTRU監視PDCCH所在的搜索空間。每一個搜索空間都可以與這裡描述的一個或多個參數(例如與WTRU功耗有關的一個或多個參數)相關聯。當監視搜索空間或者當在搜索空間中監視或接收PDCCH時,WTRU可以使用與WTRU功耗相關的一個或多個關聯參數。
WTRU可以一個或複數節能等級被配置。舉例來說,WTRU可以深度休眠模式(例如第一功率模式)和/或局部休眠節能模式(例如第二功率模式)被配置。在深度休眠節能模式中,一個或多個完整的RF鏈有可能會被關閉。在局部休眠模式中,一個或複數RF鏈中的某些功能有可能會被停用。作為範例,在局部休眠模式中會保持啟動可能需要或使用較長預熱時間的RF功能。
在C-DRX操作期間中,WTRU可以在DRX啟動時段使用其所有可用的接收天線(NRX )來執行無線電鏈路監視(RLM)。WTRU可以依靠無線電鏈路測量來依據鏈路品質調適RX RF鏈大小。在這裡,RF鏈可以指代實際的RF信號鏈,或是實際RF鏈的一些特定功能或天線子系統整體或某些部分。
在實施例中,處於C-DRX模式的WTRU可以用於無線電鏈路監視的最小允許接收天線數(NRLM_min )被配置,其中NRX ≥NRLM_min ≥1。最小允許接收天線數(NRLM_min )可以基於一個或複數準則(例如訊務類型、可靠性或下鏈傳輸秩)來定義。在實施例中,如果對指定時段(Tin_Ant )測得的下鏈無線電鏈路品質大於臨界值(Qin_Ant_K ),那麼可以應用以下的一項或多項:WTRU可以將活動的Rx RF功能、鏈和/或Rx天線的數量從NRX 減小到K,其中K≥NRLM_min ,或者WTRU可以將其功率模式從較高功率模式改成較低功率模式。在實施例中,與較低功率模式相比,該功率模式會消耗更多的功率/能量。
圖16是示出了基於RLM測量的Rx RF鏈數量遞減的範例的曲線圖1600。在圖16所示的範例中,當RLM測量超出臨界值Qin_Ant_K 時,Rx RF鏈的數量將會減少。如圖16所示,藉由減少天線數量,RLM測量會停止越過Qin_Ant_K 等級。然而,它仍舊會處於保持同步所需要的Qout 臨界值之上。
Qin_Ant_K 臨界值可被定義成是與Qin 或Qout 的相對偏移,其中Qin 和Qout 分別是同步臨界值和不同步臨界值。在範例中,Qin_Ant_K 可被定義成是Qin_Ant_K =Qin +ΔQ或者可替換的Qin_Ant_K =Qout –ΔQ。WTRU可以基於一個或複數準則(例如訊務類型、可靠性或下鏈傳輸秩)來預期將被定義相對偏移ΔQ。舉例來說,與期望具有較長電池壽命的mMTC WTRU相比,處理高可靠性傳輸的URLLC WTRU可以選擇更大的Qin_Ant_K 值或以更大的Qin_Ant_K 值被配置。
在實施例中,如果測量下鏈無線電鏈路品質在指定時段(Tout_Ant )低於臨界值(Qout_Ant_K ),那麼WTRU可以將活動的Rx RF功能、鏈和/或Rx天線的數量增回到預設的NRX 大小。
圖17是示出了基於RLM測量的Rx RF鏈數量遞增的圖示1700。如圖17所示的範例,由於RLM測量指示向下變化,因此,活動RF鏈的數量被反轉成預設大小的NRX 。如圖17所示,RLM測量增強。在實施例中,Tout_Ant 可被選定成短於Tint_Ant ,以便適應RF組件的上電時間。在一些實施例中,隨著用於RLM測量的T310計時器的到期或開始,可以重設計時器Tin_Ant 和Tout_Ant
在實施例中,WTRU可以向gNB指示該WTRU使用的Rx RF鏈的數量變化。依照該指示,WTRU可以預期PDCCH聚合等級變化。PDCCH聚合中的變化可以是明確的或不明確的。WTRU可以預期PDCCH聚合等級變化會在n+k 時槽有效,其中nk 分別是目前時槽和偏移索引。在PDCCH聚合中存在明確變化的實施例中,WTRU可以使用一個或兩個特定的較大聚合等級來嘗試執行PDCCH解碼。舉例來說,WTRU有可能僅僅預期將最高可用聚合等級中的一個或兩個用於其PDCCH解碼。作為替換,在PDCCH中存在不明確的變化的實施例中,WTRU可以只對用於PDCCH盲解碼的較大的聚合等級進行優先排序。
在其他實施例中,WTRU可以向gNB指示RxRF鏈數量變化的可能性。依照該指示,該WTRU可被提供繼續進行變化的指示。如果WTRU沒有接收到改變或是關於其建議的改變的確認,那麼WTRU可以保持其目前的Rx RF配置。
如果允許WTRU繼續進行改變,那麼它還可以假設接收與PDCCH解碼相關的進一步資訊(例如PDCCH聚合等級)。舉例來說,WTRU可被提供關於聚合等級不會改變的指示。作為替換,WTRU可被提供關於為其PDCCH解碼使用更大的聚合等級的指示。
在其他實施例中,功率模式可以與一個或複數測量參數或需求的集合相關聯。舉例來說,功率模式可以與用於特別測量的以下的至少一個測量參數相關聯:測量報告時段(例如用於週期性測量)、計時器、計數器,可用於確定何時觸發測量報告的測量臨界值,精度需求,可以滿足精度需求所在的持續時間和/或測量採樣需求(例如要在一段時間進行的測量採樣的最小數量,例如由此取平均值以確定測量值)。
第一功率模式可以與用於測量的第一測量參數或第一測量參數集合相關聯。第二功率模式可以與用於測量的第二測量參數或的第二測量參數集合相關聯。當在第一功率模式中操作時,WTRU可以使用第一測量參數或第一測量參數集合。當在第二功率模式中操作時,WTRU可以使用第二測量參數或第二測量參數集合。第一測量參數和第二測量參數可以是具有不同值、規則或需求的相同參數。第一和第二測量參數集合可以包括相同的參數類型集合,其中第一集合中的至少一個參數類型與第二集合中的相同參數類型可以具有不同的值、規則或需求。
可以存在休眠或省電模式之複數等級(例如等級1、等級2、等級3),例如無休眠、完全休眠、正常或常規休眠、深度休眠或局部休眠。功率模式可以與休眠等級相對應。
對於某個測量而言,用於第二功率模式的測量參數與用於第一功率模式的測量參數相比可以相對寬鬆或者較不嚴格。舉例來說,與第一功率模式相比,對於第二功率模式來說,滿足測量精度需求所在的持續時間有可能相對較長。
用於功率模式的一個或複數測量參數可以藉由規範來設置。用於功率模式的一個或複數測量參數可以被配置。用於功率模式的一個或複數測量參數可以取決於該功率模式。WTRU可以基於該WTRU正在使用的功率模式來確定用於測量的測量參數。WTRU可以使用或遵從所確定的功率模式來執行和/或報告測量。
測量可以是CQI、SINR、L1-RSRP、RSRP、RSRQ或路徑損耗中的至少一個。測量可以是參考信號或同步信號(例如CSI-RS,ZP-CSI-RS,NZP CSI-RS,SSS或DM-RS)的測量。測量可以是SS/PBCH塊測量。
功率模式可以與可與同步和/或不同步確定有關的一個或複數計時器、計數器、測量參數和/或臨界值相關聯。WTRU可以基於該WTRU正在使用的功率模式來藉由使用可與同步和/或不同步確定相關的一個或複數計時器、計數器、測量參數和/或/臨界值來做出同步和/或不同步確定。
在其他實施例中,作為使用功率模式來執行功率控制的補充或替換,高功效的追蹤也是可以使用的。在一些實施例中,WTRU可以結合DRX啟動持續時間間隔來處理基地台(例如gNB)傳輸的再同步信號(RSS)。RSS可被用於AFC、時間同步、波束管理或CSI測量中的至少一項的目的。
在一些實施例中,RSS由gNB傳輸並在識別的視窗中由WTRU處理。RSS接收時間視窗可以藉由配置或藉由應用處理規則而與WTRU的DRX啟動持續時間相連結。舉例來說,RSS接收時間視窗可被設置成是DRX啟動持續時間視窗的第一個時槽開始之前N1個OFDM符號開始,以及被設置成是在此之前的N2個OFDM符號結束。作為替換,RSS接收時間視窗在裝置的DRX啟動持續時間之前的N1個時槽開始,以及在裝置的DRX啟動持續時間之前的N2個時槽結束。在實施例中,N2可被設置成零。作為替換,RSS接收視窗可被配置或應用於DRX啟動持續時間的第一個或前多個時槽。RSS不必佔用整個RSS接收時間視窗。RSS有可能會在整個時間間隔[N1,N2]出現,或其可能僅僅開始於該時間間隔期間。與所配置或應用的RSS接收時間視窗所提供的時間相比,RSS有可能需要較少的時間來進行傳輸。供WTRU使用的RSS接收時間視窗的配置可以與所配置的DRX參數相連結。在配置了DRX計數器和/或計時器時,RSS接收時間視窗有可能具有更大的最小尺寸。
在其他實施例中,RSS是由gNB傳輸並在識別的頻率資源集合中由WTRU處理。在WTRU中,供WTRU使用的RSS接收頻寬視窗可以藉由配置或者藉由應用處理規則來獲知。
舉例來說,RSS接收頻寬視窗可被設置成與WTRU在DRX啟動持續時間視窗處理傳入的PDCCH所針對的目前活動的DL BWP相對應。作為替換,其可以對應於連結到WTRU的活動DL BWP的識別的頻域資源子集。作為替換,RSS接收頻寬視窗可以與確定的頻率資源之子集相對應,其中所述子集是連續的或不連續的,並且是由藉由RRC的配置確定的。在實施例中,對WTRU可配置複數RSS接收頻寬視窗。
當RSS由gNB傳輸並在識別的時間視窗中由WTRU處理時(例如以上文中描述的方式),在WTRU中可以在招致最小的甦醒負擔的同時實施粗略頻率/定時跟蹤功能。與傳統的NR技術不同,即使離下一個DRX啟動持續時間時段還有數十或數百毫秒,WTRU也不需要出於AFC的目的甦醒和為其RF和BB接收器鏈的重要部分電力開啟。藉由提供被排程成剛好在DRX啟動持續時間視窗開始之前或與之重合的幾個OFDM符號或時槽開始的RSS,WTRU可以只在需要的時候才為其RF和BB部分電力開啟。同樣,藉由在連結到活動的DL BWP的頻率資源中處理被傳輸的RSS,WTRU可以避免頻率重新調諧,以便接收和處理通常不與活動的DL BWP相重合的一個或複數SSB。重新調諧WTRU接收頻寬會消耗功率,從而招致用於BWP切換的接收器開啟時間變長的懲罰性後果。此外,RSS也可用於波束管理目的。
在其他實施例中,WTRU可以在RSS接收時間和頻率視窗中的被識別的RE集合中處理再同步信號。在實施例中,RSS可以作為被配置成CSI-RS資源集合的一個或一組RE來傳輸。例如,RSS可以被配置成CSI-RS資源集合。RSS可以被配置成CSi_RS資源集合,其中一個或複數時槽的可配置傳輸間隔上的每第四個OFDM符號可以與每一個由RSS攜帶的OFDM符號一起使用,所述OFDM符號攜帶了3個RSS子載波。在被配置成CSI-RS資源集合時,依照所配置的CSI-RS資源類型、零功率或非零功率,可以圍繞RSS資源使用DCI中的動態傳訊來將PDSCH傳輸與其他裝置進行速率匹配。同樣,用於CSI-RS的現有配置消息可被重新用於指示RSS配置。
在其他實施例中,RSS可以在佔用了一個以上的RB以及佔用了複數OFDM符號中的一個或複數OFDM符號的連續頻率頻寬上被傳輸(未必以連續的方式)。舉例來說,與PSS相似,RSS可以藉由OFDM而作為佔用了12個RB且長度127的m序列來傳輸,但其使用的是不同的m序列產生器。這些RSS攜帶的符號可以被重複,或者可以使用符號集合。在此類實施例中,在裝置中可以大量地重複使用現有實施方式,以便實現RSS功能。此外,藉由使用在RE等級定義的CSI-RE資源集合的形式的RSS,可以使用現有的R15 NR傳訊來對圍繞RSS的其他裝置的PDSCH執行速率匹配,其可以避免解碼退化和排程限制。
在其他實施例中,可以使用由gNB配置或是由WTRU確定的識別符來產生RSS序列。舉例來說,與WTRU使用的C-RNTI相連結或者相同的識別符可被用來確定RSS編碼序列。這可以包括產生RSS序列元素或是諸如使用第二序列來加擾RSS序列的操作。RSS序列可以用接收時刻參數(例如符號或時槽編號)來導出。該RSS序列可以用顯性地用信號通告的值來確定。在此類實施例中,干擾可以被隨機化,並且RSS的接收品質可以得到改善。
在WTRU接收器處理的一些實施例中,當在存在配置的RSS發生的的情況下操作時,WTRU可以確定DRX啟動持續時間,確定用於接收RSS的處理間隔,將其接收器配置成在識別的時間和頻率資源集合中接收RSS,確定存在或不存在RSS,確定振盪器和/或定時校正值,且然後應用該校正值並開始執行PDCCH接收。這些步驟中的任何一個都可以暗示若干個已知的中間步驟,例如在處理接收的CORESET的PDCCH候選時發生的通道估計。
在一些實施例中,在滿足條件時,可以確定WTRU使用RSS是適用的。舉例來說,當計時器或計數器值自從WTRU在活動時間或DRX啟動持續時間期間上一次接收資料或控制或適當的RS或SSB以來已經到期時,在DRX啟動持續時間,RSS可以是存在的,並且可以是WTRU接收器處理的一部分。計時器的持續時間可以是預先定義的,也可以由較高層配置。這樣一來,WTRU沒有甦醒以用於粗略AFC所招致的最大時間量和最大振盪器漂移可以受到控制,以免超出某個可接受的值。在知曉WTRU的DRX啟動持續時間或活動時間的情況下,如果計數器或計時器自從上一次資料/控制接收以來超出了指定值,那麼gNB可以向WTRU傳輸RSS。如果低於指定值,那麼其不會傳輸RSS。從網路的角度來看,這樣做可以將負擔最小化。
在另一個範例中,WTRU可以基於信號等級接收臨界值來確定需要或存在連結到DRX啟動持續時間的RSS。舉例來說,如果WTRU經歷的DL路徑損耗超出臨界值(其可以包括偏移值),那麼RSS有可能存在,並且會是WTRU接收器處理的一部分。eNB可以配置信號臨界值,其中在高於該信號臨界值時不會傳輸RSS,並且在低於該信號臨界值時,RSS會被連結到確定的DRX啟動持續時間。
在另一個範例中,RSS僅僅會在其未處於活動時間或者一個或複數DRX計時器(例如無活動計時器、UL或DL重傳計時器以及DL或UL HARQ RTT計時器中的至少一個)沒有運行的情況下存在。在另一個範例中,RSS可被配置成僅僅在活動BWP是配置的BWP的子集之一的時候存在。
圖18是結合DRX啟動持續時間間隔來處理RSS的範例的信號圖1800。在圖18所示的範例中,WTRU可以在識別的時間視窗或是連結到DRX週期1808的DRX啟動持續時間1806的頻率資源集合中的一個接收RSS 1802。該RSS可被用於AFC、時間同步、波束管理和/或CSI測量(在啟動持續時間1806開始前)。WTRU可以在啟動持續時間1806期間監視PDCCH監視時機1804。WTRU還可於就在DRX週期1824的啟動持續時間1820之前的RSS接收視窗1822期間接收RSS 1812。此外,針對RSS接收視窗1822,詳細顯示了RSS非週期性NZP-CSI-RS資源集合1826。在PDCCH監視時機1814期間可以對裝置進行排程,並且可以開始或重新開始計時器。該計時器可以到期(1816),並且裝置可以回應於計時器到期而停止監視PDCCH時機。
雖然在上文中描述了採用特定組合或順序的特徵和元件,但是本領域普通技術人員將會認識到,每一個特徵既可以單獨使用,也可以以與其他特徵和元件進行任何組合的方式使用。此外,這裡描述的方法可以在引入到電腦可讀媒體中以供電腦或處理器運行的電腦程式、軟體或韌體中實施。關於電腦可讀媒體的範例包括電信號(藉由有線或無線連接傳輸)和電腦可讀儲存媒體。關於電腦可讀儲存媒體的範例包括但不侷限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶裝置、磁性媒體(例如內部硬碟和可移磁片)、磁光媒體以及光學媒體(例如CD-ROM光碟片以及數位多功能光碟(DVD))。與軟體相關聯的處理器可以用於實施在WTRU、UE、終端、基地台、RNC或任何電腦主機中使用的射頻收發器。
AP:存取點 BWP:頻寬部分 CSI:通道狀態資訊 DCI、1202:下鏈控制資訊 DL:高速下鏈 DRX:不連續接收 MCS:最大調變階數和最大調變編碼方案 N2、N3、N4、N6、N11、S1、X2、Xn:介面 NZP-CSI-RS:非零功率CSI參考信號 PDCCH:實體下鏈控制通道 RB:資源塊 RF:射頻 RLM:無線電鏈路監視 TDRA:時域資源分配 WUS、1102、1104:甦醒信號 100:通信系統 102、102a、102b、102c、102d、600、708、710、712:無線傳輸/接收單元(WTRU) 104:無線電存取網路(RAN) 106:核心網路(CN) 108:公共交換電話網路(PSTN) 110:網際網路 112:其他網路 114a、114b:基地台 116:空中介面 118:處理器 120:收發器 122:傳輸/接收元件 124:揚聲器/麥克風 126:小鍵盤 128:顯示器/觸控板 130:非可移記憶體 132:可移記憶體 134:電源 136:全球定位系統(GPS)晶片組 138:週邊設備 160a、160b、160c:e節點B 162:移動性管理閘道(MME) 164:服務閘道(SGW) 166:封包資料網路(PDN)閘道(或PGW) 180a、180b、180c:g節點B(gNB) 182a、182b:存取和移動性管理功能(AMF) 183a、183b:對話管理功能(SMF) 184a、184b:使用者平面功能(UPF) 185a、185b:資料網路(DN) 200、300、400、700、800、1700:圖示 202a、202b、902、904、1808、1824:DRX週期 204a、204b、906、908a、908b、1002a、1002b、1806、1820:啟動(ON)持續時間 206a、206b:關閉(OFF)持續時間 401、402、403、404、405、406、407、408:NZP-CSI-RS資源 410、411、412、413:資源集合 420、421、422:CSI資源配置 430、431、432、433、434、435:CSI報告配置 500:無線傳輸/接收單元(WTRU)節能方法 502、504、506、508、510、512、514、516、518:流程 604、606、608:接收器組件 610、612:天線 900、1000、1100、1200、1300、1400、1500、1800:信號圖 1008:切換功率模式 1110:資料接收 1204:偏移時間 1206、1304、1308、1406、1410: CSI參考信號(CSI-RS) 1208、1310:報告偏移 1210、1312、1408、1412:CSI報告 1302:啟動消息或觸發消息 1402:啟動消息 1404:啟動 1502:消息 1504:觸發偏移 1506:開始使用最大秩限制 1508:計時器到期 1510:最大秩限制可結束 1600:曲線圖 1802、1812:再同步信號(RSS)
更詳細的理解可以從以結合附圖舉例的方式給出的以下描述中得到,其中附圖中的相同參考數字指示的是相同的元件,並且其中: 圖1A是示出了可以在其中實施所揭露的一個或複數實施例的範例通信系統的系統圖式; 圖1B是示出了根據實施例的可以在圖1A所示的通信系統內部使用的範例無線傳輸/接收單元(WTRU)的系統圖式; 圖1C是示出了根據實施例的可以在圖1A所示的通信系統內部使用的範例無線電存取網路(RAN)和範例核心網路(CN)的系統圖式; 圖1D是示出了根據實施例的可以在圖1A所示的通信系統內部使用的另一個範例RAN和另一個範例CN的系統圖式; 圖2是關於不連續接收(DRX)的範例的圖式; 圖3是關於具有甦醒和轉入睡眠傳訊的範例DRX週期(cycle)的圖式; 圖4是關於範例通道狀態資訊(CSI)資源和CSI報告配置的圖式; 圖5是關於WTRU功率控制的範例方法的流程圖; 圖6是關於被配置具有可以與不同功率模式相對應的複數接收器組件的範例WTRU的圖式; 圖7是顯示了低功率模式的接收器在不同覆蓋場景中的範例用法的系統圖式; 圖8是關於在兩種無線電性能狀態之間進行切換的範例的圖式; 圖9是基於功率模式的複數DRX配置的範例的信號圖; 圖10是關於在不同DRX週期中的啟動(ON)持續時間之間執行的功率模式切換的範例的信號圖; 圖11是用於確定相關聯的PDCCH監視時機的功率模式以及實體下鏈控制通道(PDCCH)監視的聚合等級集合的甦醒信號(WUS)的範例的信號圖; 圖12是具有相關聯的功率模式指示的非週期性CSI報告觸發的範例的信號圖; 圖13是關於週期性CSI參考信號(CSI-RS)和非週期性CSI報告的範例的信號圖; 圖14是關於週期性CSI-RS和週期性CSI報告的範例的信號圖; 圖15是具有計時器的範例最大秩限制的信號圖; 圖16是顯示了基於無線電鏈路監視(RLM)測量的接收射頻(Rx RF)鏈數量遞減的範例的圖式; 圖17是顯示了基於RLM測量的Rx RF鏈數量遞增的圖式;以及 圖18是結合了DRX啟動持續時間間隔來處理再同步信號(RSS)的範例的信號圖。
DCI:下鏈控制資訊
PDCCH:實體下鏈控制通道
TDRA:時域資源分配
500:無線傳輸/接收單元(WTRU)節能方法
502、504、506、508、510、512、514、516、518:流程

Claims (20)

  1. 一種在一無線傳輸/接收單元(WTRU)中實施的方法,該方法包括: 接收包含複數條目的一時域資源分配(TDRA)清單配置,該複數條目中的每一個包括含有一時槽偏移值的一資源分配; 接收指示一最小時槽偏移值的層1(L1)傳訊; 在一時槽中,在一實體下鏈控制通道(PDCCH)上解碼一第一下鏈控制資訊(DCI); 從該所解碼的第一DCI中獲得識別該TDRA清單中的該複數條目中的一個條目的一索引; 從該TDRA清單中檢索該索引識別的一特別時槽偏移值; 將該特別時槽偏移值與該最小時槽偏移值相比較; 在該特別時槽偏移值小於該最小時槽偏移值的一情況下,確定該索引識別的該條目無效;以及 在該特別時槽偏移值大於或等於該最小時槽偏移值的一情況下,在從解碼該第一DCI所在的該時槽偏移該特定時槽偏移值的一時槽中接收實體下鏈共用通道(PDSCH)。
  2. 如請求項1所述的方法,該方法進一步包括: 在確定該索引識別的該條目無效的一情況下,不在從解碼該第一DCI所在的該時槽偏移該特別時槽偏移值的該時槽中接收該PDSCH。
  3. 如請求項1所述的方法,該方法進一步包括: 在該特別時槽偏移值小於該最小時槽偏移值的一情況下,將該最小時槽偏移值的一新值設定成等於一預設值和該特別時槽偏移值中的一者。
  4. 如請求項3所述的方法,其中該預設值是零個時槽。
  5. 如請求項1所述的方法,該方法進一步包括: 確定與非週期性CSI報告相關聯的非零功率CSI參考信號(NZP-CSI-RS)資源集合的一最小非週期性通道狀態資訊(CSI)偏移等於在針對一頻寬部分(BWP)的該L1傳訊中接收的該最小時槽偏移值。
  6. 如請求項5所述的方法,該方法進一步包括: 解碼一第二DCI,以及從該所解碼的第二DCI中獲得一CSI報告觸發,該CSI報告觸發識別一NZP-CSI-RS資源集合,該NZP-CSI-RS資源集合被配置以針對該NZP-CSI-RS資源集合的一特別觸發偏移; 將該特別觸發偏移與該最小非週期性CSI偏移相比較; 在該特別觸發偏移小於該最小非週期性CSI偏移的一情況下,不報告與回應於該CSI報告觸發之該所識別的NZP-CSI-RS資源集合相關聯的CSI;以及 在該特別觸發偏移大於或等於該最小非週期性CSI偏移的情況下,報告與回應於該CSI報告觸發所識別的NZP-CSI-RS資源集合相關聯的CSI。
  7. 如請求項6所述的方法,其中該WTRU以一CSI報告觸發狀態清單被配置,該CSI報告觸發狀態清單包含一個或複數條目,該一個或複數條目中的每一個包含一個或複數NZP-CSI-RS資源集合,以及該一個或複數NZP-CSI-RS資源集合中的每一個包括時頻資源之一集合的識別以及針對該NZP-CSI-RS資源集合的一觸發偏移。
  8. 如請求項7所述的方法,其中該L1傳訊指示與該最小時槽偏移值相對應的且該WTRU將操作所在的一功率模式。
  9. 如請求項8所述的方法,其中該功率模式是一省電模式。
  10. 如請求項8所述的方法,該方法進一步包括: 接收指示一正常功率模式的L1傳訊; 啟動該正常功率模式;以及 在啟動了該正常功率模式的一情況下,確定該TDRA列表和該CSI報告觸發狀態清單中的所有條目有效。
  11. 一種無線傳輸/接收單元(WTRU),包括: 一收發器;以及 一處理器, 該收發器和該處理器被配置成接收包含複數條目的一時域資源分配(TDRA)清單配置,其中該複數條目中的每一個包括含有一時槽偏移值的一資源分配; 該收發器和該處理器進一步被配置成接收指示一最小時槽偏移值的層1(L1)傳訊; 該收發器和該處理器進一步被配置成在一時槽中在一實體下鏈控制通道(PDCCH)上解碼一第一下鏈控制資訊(DCI); 該收發器和該處理器進一步被配置成從該所解碼的第一DCI中獲得識別該TDRA清單中的該複數條目中的一個條目的一索引; 該收發器和該處理器進一步被配置成從該TDRA清單中檢索該索引識別的一特定時槽偏移值; 該收發器和該處理器進一步被配置成將該特別時槽偏移值與該最小時槽偏移值相比較; 該收發器和該處理器進一步被配置成在該特別時槽偏移值小於該最小時槽偏移值的一情況下,確定該索引識別的該條目無效;以及 該收發器和該處理器進一步被配置成在該特定時槽偏移值大於或等於該最小時槽偏移值的一情況下,在從解碼該第一DCI所在的該時槽偏移該特別時槽偏移值的一時槽中接收一實體下鏈共用通道(PDSCH)。
  12. 如請求項11所述的WTRU,其中該收發器和該處理器進一步被配置成在確定該索引識別的該條目無效的一情況下,不在從解碼該第一DCI所在的該時槽偏移該特別時槽偏移值的該時槽中接收該PDSCH。
  13. 如請求項11所述的WTRU,其中該收發器和該處理器進一步被配置成在該特別時槽偏移值小於該最小時槽偏移值的一情況下,將該最小時槽偏移值的一新值設定成等於一預設值和該特別時槽偏移值中的一者。
  14. 如請求項13所述的WTRU,其中該預設值是零個時槽。
  15. 如請求項11所述的WTRU,其中該收發器和該處理器進一步被配置成確定與非週期性CSI報告相關聯的非零功率CSI參考信號(NZP-CSI-RS)資源集合的一最小非週期性通道狀態資訊(CSI)偏移等於在針對一頻寬部分(BWP)的該L1傳訊中接收的該最小時槽偏移值。
  16. 如請求項15所述的WTRU,其中: 該收發器和該處理器進一步被配置成解碼一第二DCI,以及從該所解碼的第二DCI中獲得一CSI報告觸發,該CSI報告觸發識別一NZP-CSI-RS資源集合,該NZP-CSI-RS資源集合被配置以針對該NZP-CSI-RS資源集合的一特別觸發偏移, 該收發器和該處理器進一步被配置成將該特別觸發偏移與該最小非週期性CSI偏移相比較; 該收發器和該處理器進一步被配置成在該特別觸發偏移小於該最小非週期性CSI偏移的一情況下,不報告與回應於該CSI報告觸發之該所識別的NZP-CSI-RS資源集合相關聯的CSI,以及 該收發器和該處理器進一步被配置成在該特別觸發偏移大於或等於該最小非週期性CSI偏移的一情況下,報告與回應於該CSI報告觸發之該所識別的NZP-CSI-RS資源集合相關聯的CSI。
  17. 如請求項16所述的WTRU,其中該WTRU以一CSI報告觸發狀態清單被配置,該CSI報告觸發狀態清單包含一個或複數條目,該一個或複數條目中的每一個包含一個或複數NZP-CSI-RS資源集合,以及該一個或複數NZP-CSI-RS資源集合中的每一個包括時頻資源之一集合的識別以及針對該NZP-CSI-RS資源集合的一觸發偏移。
  18. 如請求項17所述的WTRU,其中該L1傳訊指示與該最小時槽偏移值相對應且該WTRU將操作所在的一功率模式。
  19. 如請求項18所述的WTRU,其中該功率模式是一省電模式。
  20. 如請求項18所述的WTRU,其中: 該收發器和該處理器進一步被配置成接收指示一正常功率模式的L1傳訊, 該收發器和該處理器進一步被配置成啟動該正常功率模式,以及 該收發器和該處理器進一步被配置成在啟動了該正常功率模式的一情況下,確定該TDRA列表和該CSI報告觸發狀態清單中的所有條目有效。
TW108129787A 2018-08-21 2019-08-21 無線傳輸/接收單元(wtru)功率控制方法及裝置 TWI750499B (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US201862720547P 2018-08-21 2018-08-21
US62/720,547 2018-08-21
US201862735939P 2018-09-25 2018-09-25
US62/735,939 2018-09-25
US201862752797P 2018-10-30 2018-10-30
US62/752,797 2018-10-30
US201862753597P 2018-10-31 2018-10-31
US62/753,597 2018-10-31
US201962840935P 2019-04-30 2019-04-30
US62/840,935 2019-04-30
US201962886083P 2019-08-13 2019-08-13
US62/886,083 2019-08-13

Publications (2)

Publication Number Publication Date
TW202021393A true TW202021393A (zh) 2020-06-01
TWI750499B TWI750499B (zh) 2021-12-21

Family

ID=69591442

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108129787A TWI750499B (zh) 2018-08-21 2019-08-21 無線傳輸/接收單元(wtru)功率控制方法及裝置

Country Status (10)

Country Link
US (2) US20210321446A1 (zh)
EP (1) EP3841811A1 (zh)
JP (2) JP7332685B2 (zh)
KR (1) KR20210061335A (zh)
CN (1) CN112640557B (zh)
CA (1) CA3110097C (zh)
SG (1) SG11202101657SA (zh)
TW (1) TWI750499B (zh)
WO (1) WO2020041421A1 (zh)
ZA (1) ZA202101187B (zh)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110912663B (zh) * 2018-09-15 2021-06-01 华为技术有限公司 一种通信方法及装置
US20200107319A1 (en) * 2018-09-28 2020-04-02 Lenovo (Singapore) Pte. Ltd. Method and apparatus for generating a csi report
US11382118B2 (en) * 2018-09-28 2022-07-05 Qualcomm Incorporated Minimum scheduling delay signaling
EP3866517B1 (en) * 2018-10-19 2023-11-29 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for monitoring power-saving signal
JP7292386B2 (ja) * 2018-10-26 2023-06-16 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて端末が下りリンク信号を受信する方法及びそのための端末
WO2020034440A1 (en) * 2018-11-02 2020-02-20 Zte Corporation Power saving schemes in wireless communication
US11864111B2 (en) * 2018-12-05 2024-01-02 Beijing Xiaomi Mobile Software Co., Ltd. Downlink channel monitoring method, terminal, and storage medium
CN111356211B (zh) * 2018-12-20 2021-07-13 大唐移动通信设备有限公司 一种终端节能控制方法、装置及设备
EP3909295A4 (en) * 2019-01-11 2022-11-30 FG Innovation Company Limited PLANNING A POWER-SAVING STATE IN NEXT-GENERATION WIRELESS NETWORKS
EP3927023A4 (en) * 2019-02-13 2022-02-09 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND APPARATUS FOR USING A POWER-SAVING SIGNALING MODE AND TERMINAL
WO2020164118A1 (zh) * 2019-02-15 2020-08-20 Oppo广东移动通信有限公司 物理下行控制信道的检测方法、装置及终端
WO2020204495A1 (ko) * 2019-03-29 2020-10-08 엘지전자 주식회사 무선 통신 시스템에서 파워 세이빙 시그널의 오감지에 대한 에러 핸들링 방법 및 상기 방법을 이용하는 단말
US11553471B2 (en) * 2019-03-29 2023-01-10 Samsung Electronics Co., Ltd. Method and apparatus for transmitting data
CN111757497B (zh) * 2019-03-29 2024-01-19 华为技术有限公司 控制信息的传输方法和装置
US11564167B2 (en) * 2019-04-01 2023-01-24 Apple Inc. Configurable power saving signal with multiple functionalities in 5G NR
CN113940022A (zh) * 2019-04-02 2022-01-14 苹果公司 跨时隙调度功率节省技术
EP3720029A1 (en) * 2019-04-03 2020-10-07 Acer Incorporated Hybrid automatic repeat request enhancements
CN111278092B (zh) * 2019-04-26 2021-06-08 维沃移动通信有限公司 一种信道监听方法、终端及网络设备
US11438775B2 (en) * 2019-05-02 2022-09-06 Ofinno, Llc Radio link monitoring in new radio
US11395283B2 (en) 2019-06-06 2022-07-19 Samsung Electronics Co., Ltd. Determination of search space sets for physical downlink control channel (PDCCH) monitoring
WO2020248102A1 (zh) * 2019-06-10 2020-12-17 北京小米移动软件有限公司 Harq反馈方法、装置及可读存储介质
EP4010992A1 (en) * 2019-08-07 2022-06-15 Telefonaktiebolaget LM Ericsson (publ.) Codebook subset restriction for frequency-parameterized linear combination codebooks
US11588595B2 (en) * 2019-08-23 2023-02-21 Qualcomm Incorporated Sounding reference signal and downlink reference signal association in a power saving mode
US11457464B2 (en) * 2019-09-20 2022-09-27 Qualcomm Incorporated Carrier-group based cross-slot scheduling adaptation
CN112714486A (zh) * 2019-10-25 2021-04-27 北京三星通信技术研究有限公司 Pdcch的检测方法、drx配置方法、终端、基站
US20210143869A1 (en) * 2019-11-07 2021-05-13 Qualcomm Incorporated Signaling for multi-transmit-receive point (multi-trp) schemes
US11729717B2 (en) * 2019-11-19 2023-08-15 Qualcomm Incorporated Wakeup signal monitoring window
EP4122284A1 (en) * 2020-03-18 2023-01-25 Telefonaktiebolaget LM ERICSSON (PUBL) Determination of operational state
CN113453354B (zh) * 2020-03-27 2022-12-13 展讯通信(上海)有限公司 物理下行控制信道监听方法、用户终端及可读存储介质
US11849500B2 (en) * 2020-04-13 2023-12-19 Qualcomm Incorporated Flexible discontinuous reception configuration
KR20230011391A (ko) * 2020-05-15 2023-01-20 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 무선 통신 네트워크에서의 능력 시그널링
CN115398985A (zh) * 2020-05-29 2022-11-25 中兴通讯股份有限公司 跳过控制信道信息的接收
US11844098B2 (en) * 2020-07-25 2023-12-12 Charter Communications Operating, Llc Methods and apparatus for managing downlink channels and/or bandwidth in wireless sytems
WO2022021162A1 (zh) * 2020-07-29 2022-02-03 北京小米移动软件有限公司 自动重传的指示方法及装置、网络设备、ue及存储介质
US20240014870A1 (en) * 2020-09-04 2024-01-11 Lenovo (Singapore) Pte. Ltd. Apparatus and method of transmitting a csi report on a transmission occasion
WO2022080922A1 (ko) * 2020-10-15 2022-04-21 엘지전자 주식회사 무선 통신 시스템에서 물리 하향링크 공유 채널을 송수신하는 방법 및 이를 위한 장치
US11930532B2 (en) 2020-10-16 2024-03-12 Samsung Electronics Co., Ltd Beam management and beam failure recovery in new radio-unlicensed at 60 Gigahertz
US20220272740A1 (en) * 2021-02-23 2022-08-25 Samsung Electronics Co., Ltd. Mechanisms for determination of acknowledgment information reports
US11770773B2 (en) * 2021-04-09 2023-09-26 Qualcomm Incorporated Duty cycle configuration for power saving
US12010638B2 (en) * 2021-06-29 2024-06-11 Qualcomm Incorporated Sparse transmission of discovery signals for network energy saving
CN113708905A (zh) * 2021-08-18 2021-11-26 Oppo广东移动通信有限公司 射频前端的控制方法和装置、终端及芯片
US20230124729A1 (en) * 2021-10-18 2023-04-20 Mediatek Inc. Timing change and new radio mobility procedure
WO2023102841A1 (en) * 2021-12-09 2023-06-15 Nec Corporation Method, device and computer storage medium of communication
WO2023152991A1 (ja) * 2022-02-14 2023-08-17 株式会社Nttドコモ 端末、無線通信方法及び基地局

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2502274B (en) 2012-05-21 2017-04-19 Sony Corp Telecommunications systems and methods
CN113891474A (zh) * 2016-03-31 2022-01-04 三星电子株式会社 无线通信系统中的资源分配方法、基于所述方法的数据接收方法以及用于所述方法的装置
US20190150007A1 (en) * 2016-04-20 2019-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Delaying Transmission Depending on Transmission Type and UE Processing Capabilities
WO2018063463A1 (en) * 2016-09-30 2018-04-05 Intel IP Corporation Dynamic resource allocation of scheduling requests
US11456839B2 (en) * 2017-02-03 2022-09-27 Ntt Docomo, Inc. User equipment and wireless communication method
US10887842B2 (en) * 2017-04-17 2021-01-05 Samsung Electronics Co., Ltd. Method and device for uplink power control
KR102383385B1 (ko) * 2017-04-17 2022-04-08 삼성전자 주식회사 업링크 전력 제어를 위한 방법 및 장치
WO2019031879A1 (ko) * 2017-08-09 2019-02-14 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
WO2019069296A1 (en) * 2017-10-02 2019-04-11 Telefonaktiebolaget Lm Ericsson (Publ) ORDERING OF CSI IN UCI
WO2019084570A1 (en) * 2017-10-26 2019-05-02 Hyoungsuk Jeon BANDWIDTH PART INACTIVITY TIMER
US11025456B2 (en) * 2018-01-12 2021-06-01 Apple Inc. Time domain resource allocation for mobile communication
US11259237B2 (en) * 2018-01-15 2022-02-22 Qualcomm Incorporated System and method for locating a downlink data channel
EP3780444A1 (en) * 2018-04-05 2021-02-17 Ntt Docomo, Inc. Transmission device and reception device
US11330575B2 (en) * 2018-07-17 2022-05-10 Samsung Electronics Co., Ltd. Adaptation of communication parameters for a user equipment
CN112753258B (zh) * 2018-07-20 2024-03-26 株式会社Ntt都科摩 用户终端
US10778318B2 (en) * 2018-08-03 2020-09-15 Ofinno, Llc Bandwidth parts switching in beam failure recovery procedure
CA3051139A1 (en) * 2018-08-03 2020-02-03 Comcast Cable Communications, Llc Uplink and downlink synchronization procedures
EP3627721A1 (en) * 2018-09-24 2020-03-25 Comcast Cable Communications LLC Beam failure recovery procedures
EP3629492A1 (en) * 2018-09-25 2020-04-01 Comcast Cable Communications LLC Beam configuration for secondary cells
US20220039009A1 (en) * 2018-09-27 2022-02-03 Mohamed Awadin Power saving mechanisms in nr

Also Published As

Publication number Publication date
JP2023145795A (ja) 2023-10-11
KR20210061335A (ko) 2021-05-27
TWI750499B (zh) 2021-12-21
JP2022501874A (ja) 2022-01-06
CN112640557A (zh) 2021-04-09
US20210321446A1 (en) 2021-10-14
CN112640557B (zh) 2024-06-18
JP7332685B2 (ja) 2023-08-23
SG11202101657SA (en) 2021-03-30
ZA202101187B (en) 2022-08-31
EP3841811A1 (en) 2021-06-30
US20240196409A1 (en) 2024-06-13
CA3110097C (en) 2023-09-26
WO2020041421A1 (en) 2020-02-27
CA3110097A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
TWI750499B (zh) 無線傳輸/接收單元(wtru)功率控制方法及裝置
JP7482275B2 (ja) 無線通信における省電力信号
US11895584B2 (en) Power saving operations for communication systems
TWI758351B (zh) 無線傳輸/接收單元及由其實施的方法
JP6467761B2 (ja) 追加のウェイクアップ機会を有する改良された不連続受信動作
US20230388931A1 (en) Wireless transmit receive unit (wtru) reachability
JP2022516601A (ja) 省電力メカニズム
JP2022529889A (ja) 省電力コマンドの送受信
JP2022549513A (ja) 省電力およびセル休止動作
CN115669098A (zh) 用于无线通信的暴露检测和报告
TW202402080A (zh) 頻寬部分操作系統及方法
US11647464B2 (en) Wake-up dci for wireless devices in connected mode
CN115702598A (zh) 用于休眠辅助小区组(scg)的功率节省的方法和装置
TW202123740A (zh) 省電信號操作
WO2021097743A1 (en) Secondary cell timer for fallback to dormant bandwidth part
TW202408274A (zh) 節能網路中之wtru行動及胞元重選
WO2024030989A1 (en) Wtru reachability in energy saving networks
TW202408283A (zh) 在具有可變功率之網路中操作
WO2023196223A1 (en) Discontinuous network access