TW202016027A - 水處理方法及水處理裝置 - Google Patents

水處理方法及水處理裝置 Download PDF

Info

Publication number
TW202016027A
TW202016027A TW108121694A TW108121694A TW202016027A TW 202016027 A TW202016027 A TW 202016027A TW 108121694 A TW108121694 A TW 108121694A TW 108121694 A TW108121694 A TW 108121694A TW 202016027 A TW202016027 A TW 202016027A
Authority
TW
Taiwan
Prior art keywords
water
nitrification
denitrification
nitrogen
concentration
Prior art date
Application number
TW108121694A
Other languages
English (en)
Other versions
TWI846706B (zh
Inventor
三宅將貴
長谷部吉昭
Original Assignee
日商奧璐佳瑙股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018118619A external-priority patent/JP6535125B1/ja
Priority claimed from JP2019080199A external-priority patent/JP6667030B2/ja
Priority claimed from JP2019080200A external-priority patent/JP6754863B1/ja
Application filed by 日商奧璐佳瑙股份有限公司 filed Critical 日商奧璐佳瑙股份有限公司
Publication of TW202016027A publication Critical patent/TW202016027A/zh
Application granted granted Critical
Publication of TWI846706B publication Critical patent/TWI846706B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/303Nitrification and denitrification treatment characterised by the nitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/14NH3-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本發明提供一種水處理方法及水處理裝置,於包含氨態氮的被處理水之生物處理中,即便被處理水中之氮濃度為高濃度,仍能夠以快速的處理速度穩定處理。本發明之水處理裝置1(水處理方法),將包含氨態氮的被處理水予以生物處理,具備:硝化裝置10(硝化步驟),藉由微生物活性汚泥中所含之包含自營性的氨氧化菌與亞硝酸氧化菌之硝化菌,將氨態氮氧化至亞硝酸或硝酸態氮;以及進行下述控制之硝化速度控制手段:於硝化裝置10中,對被處理水,以使鉬濃度成為0.025mgMo/gN以上之方式使鉬化合物存在,並使每單位汚泥的硝化速度成為0.11[kgN/(kgVSS・日)]以上。

Description

水處理方法及水處理裝置
本發明係關於一種將被處理水中所含之氨態氮生物性地氧化、還原至氮氣的水處理方法及水處理裝置。
排水中所含之氮成分,係湖沼或封閉性海域等的優養化之原因物質的一種,故尤其在排水中包含高濃度氮成分之情況,必須在排水處理步驟將其除去。一般而言,多運用使用微生物活性汚泥之生物處理,例如,於包含氨態氮的被處理水中,藉由如下兩步驟施行硝化脫氮處理:硝化步驟,於好氧條件中,將氨態氮氧化至亞硝酸或硝酸態氮;以及脫氮步驟,於無氧條件下,在氫供體存在下,將亞硝酸、硝酸態氮還原至氮氣。此外,在被處理水中含有大量有機物的情況,亦有藉由下述循環式硝化脫氮法施行處理之情形:將被處理水供給至脫氮槽,並使在硝化槽產生之包含亞硝酸、硝酸態氮的混合液往脫氮槽循環,將被處理水中的有機物作為氫供體利用而予以脫氮。
在任一處理方法中,皆利用微生物活性汚泥中之硝化菌及脫氮菌,但脫氮菌係可同化有機物之異營性細菌,相對於此,硝化菌係以無機碳為碳源之自營性細菌,故繁殖速度相較於脫氮菌非常緩慢。在使用微生物活性汚泥之處理方法的情況,由於活性汚泥中混雜有硝化菌與脫氮菌,故繁殖速度慢之自營性細菌即硝化菌在汚泥中的存在比例可說非常小。對含氮排水的處理利用硝化脫氮法之情況,排水中之氮的除去效率,其關鍵要素為硝化步驟中之硝化菌的活性。此外,硝化菌強烈受到水溫的影響,水溫降低則有招致活性大幅度降低之疑慮。因此,為了使處理水質不惡化,必須使硝化步驟中之每單位汚泥的的硝化速度(氨氧化比活性),較其在脫氮步驟中更低。例如,於非專利文獻1報導,氨氧化比活性為0.113mgN/(mgVSS・日),亞硝酸氧化比活性為0.056mgN/(mgVSS・日)。於實際處理中,在水溫20℃之條件中,多以在每單位汚泥的處理速度為0.05~0.1kgN/(kgVSS・日)程度下運轉之方式,設定硝化槽的容積負荷。
另一方面,在藉由包含硝化菌及脫氮菌的微生物活性汚泥,將被處理水中之氮濃度例如為100mgN/L般的含有高濃度氮之被處理水施行處理的情況中,有硝化步驟中之硝化活性降低的情形。若硝化活性降低則最終處理水質亦惡化,故必須將硝化步驟之每單位汚泥的硝化速度設定為較上述0.05~0.1kgN/(kgMLVSS・日)更低,其結果,有不易將處理速度保持為高速之情況。 [習知技術文獻] [專利文獻]
專利文獻1:日本特開第2006-272287號公報 [非專利文獻]
非專利文獻1:荒木等人(1999),應用FISH法之生物膜內硝化細菌的菌數量測與空間分布之解析;水環境學會誌第22卷,第2號,pp.152-159 非專利文獻2:Microbiology nitrate respiration - Genes, enzymes, and environmental distribution, Journal of Biotechnology, 155(2011), pp. 104-117 非專利文獻3:Molybdenum as a micronutrient for Nitrobacter, Journal of Bacteriology, 89(1965), pp.123-128 非專利文獻4:Molecular analysis of ammonia oxidation and denitrification in natural environments, FEMS Microbiology Reviews, 24(2000), pp.673-690
[本發明所欲解決的問題]
本發明之目的在於提供一種水處理方法及水處理裝置,於包含氨態氮的被處理水之生物處理中,即便被處理水中之氮濃度為高濃度仍能夠以快速的處理速度穩定處理。 [解決問題之技術手段]
本發明為一種水處理方法,將包含氨態氮的被處理水予以生物處理;該方法包含硝化步驟:藉由微生物活性汚泥中所含之包含自營性的氨氧化菌與亞硝酸氧化菌之硝化菌,將該氨態氮氧化至亞硝酸或硝酸態氮;於該硝化步驟中,對該被處理水,以使鉬濃度成為0.025mgMo/gN以上之方式使鉬化合物存在;每單位汚泥的硝化速度為0.11[kgN/(kgVSS・日)]以上。
於該水處理方法中,宜使該硝化步驟中之鉬濃度,相對於該被處理水成為2mgMo/L以下。
於該水處理方法中,該被處理水中之氮濃度宜為100mgN/L以上。
於該水處理方法中,宜更包含脫氮步驟:藉由該微生物活性汚泥中所含之脫氮菌,將在該硝化步驟產生之亞硝酸或硝酸態氮還原至氮氣。
於該水處理方法的該脫氮步驟中,宜對該氫供體之添加量給予時間變動,俾使處理水之水力停留時間中的氫供體之最大濃度與最小濃度的差,成為50mgTOC/L以上,藉以使包含該硝化菌與脫氮菌的微生物活性汚泥粒化。
於該水處理方法中,該脫氮步驟,宜至少包含第一脫氮步驟與第二脫氮步驟;於該脫氮步驟中,至少在該第一脫氮步驟中供給氫供體,俾使該第二脫氮步驟之處理水的水力停留時間中之該第一脫氮步驟的氫供體之最大濃度與該第二脫氮步驟的氫供體之最小濃度的差,成為50mgTOC/L以上。
本發明係水處理裝置,將包含氨態氮的被處理水予以生物處理,具備:硝化手段,藉由微生物活性汚泥中所含之包含自營性的氨氧化菌與亞硝酸氧化菌之硝化菌,將該氨態氮氧化至亞硝酸或硝酸態氮;以及進行下述控制之硝化速度控制手段:於該硝化手段中,對該被處理水,以使鉬濃度成為0.025mgMo/gN以上之方式使鉬化合物存在,並使每單位汚泥的硝化速度,成為0.11[kgN/(kgVSS・日)]以上。
於該水處理裝置中,該硝化速度控制手段,宜控制使該硝化手段中之鉬濃度,相對於該被處理水成為2mgMo/L以下。
於該水處理裝置中,該被處理水中之鉬濃度,宜為0.0001mgMo/L以下。
於該水處理裝置中,該被處理水中之氮濃度,宜為100mgN/L以上。
於該水處理裝置中,宜進一步具備脫氮手段:藉由該微生物活性汚泥中所含之脫氮菌,將在該硝化手段產生之亞硝酸或硝酸態氮還原至氮氣。
於該水處理裝置中,宜進一步具備進行下述控制之氫供體濃度控制手段:於該脫氮手段中,對該氫供體之添加量給予時間變動,俾使處理水之水力停留時間中的氫供體之最大濃度與最小濃度的差,成為50mgTOC/L以上,藉以使包含該硝化菌與脫氮菌的微生物活性汚泥粒化。
於該水處理裝置中,該脫氮手段,宜至少具備第一脫氮手段與第二脫氮手段;該氫供體濃度控制手段,進行下述控制:於該脫氮手段中,至少在該第一脫氮手段中供給氫供體,俾使該第二脫氮手段之處理水的水力停留時間中之該第一脫氮手段的氫供體之最大濃度與該第二脫氮手段的氫供體之最小濃度的差,成為50mgTOC/L以上。 [本發明之效果]
藉由本發明,於包含氨態氮的被處理水之生物處理中,即便被處理水中之氮濃度為高濃度仍能夠以快速的處理速度穩定處理。
以下針對本發明的實施形態予以說明。本實施形態係實施本發明之一例,但本發明並未限定於本實施形態。
於圖1顯示本發明的實施形態之水處理裝置的一例之概略,對其構成予以說明。
水處理裝置1,係將包含氨態氮的被處理水予以生物處理之水處理裝置,具備:硝化裝置10,作為硝化手段,藉由微生物活性汚泥中所含之包含自營性的氨氧化菌與亞硝酸氧化菌之硝化菌,將氨態氮氧化至亞硝酸或硝酸態氮;以及進行下述控制之硝化速度控制手段:於硝化裝置10中,對被處理水,以使鉬濃度成為0.025mgMo/gN以上之方式使鉬化合物存在,並使每單位汚泥的硝化速 度,成為0.11[kgN/(kgVSS・日)]以上。水處理裝置1,可進一步具備脫氮裝置12,其作為脫氮手段,藉由微生物活性汚泥中所含之脫氮菌,將在硝化裝置10產生之亞硝酸或硝酸態氮還原至氮氣。
水處理裝置1,可進一步具備:固液分離裝置14,作為固液分離手段,將處理水從微生物活性汚泥分離而獲得處理水;以及汚泥返送配管24,作為返送手段,將以固液分離裝置14分離的汚泥往固液分離裝置14之前段返送。此外,水處理裝置1,可具備儲存被處理水之被處理水調整槽15。
於圖1之水處理裝置1中,被處理水調整槽15的出口與硝化裝置10的入口,經由作為被處理水供給量調整手段之被處理水供給泵17,藉由配管16而相連接;硝化裝置10的出口與脫氮裝置12的入口,藉由配管18而相連接;脫氮裝置12的出口與固液分離裝置14的入口,藉由配管20而相連接;於固液分離裝置14的處理水出口,連接配管22;固液分離裝置14的汚泥出口與配管16,經由汚泥返送泵25,藉由汚泥返送配管24而相連接。於配管16,在被處理水供給泵17之下游側,設置流量測定裝置19以作為用於測定被處理水的流量之被處理水流量測定手段;在流量測定裝置19之下游側、汚泥返送配管24的連接點之上游側,經由作為鉬化合物供給量調整手段之鉬化合物供給泵21,而與鉬化合物供給配管26相連接;於脫氮裝置12,經由作為氫供體供給量調整手段之氫供體供給泵23,而與氫供體供給配管28相連接。
針對本實施形態之水處理方法及水處理裝置1的運作予以說明。
將包含氨態氮的被處理水,藉由被處理水供給泵17,從被處理水調整槽15,通過配管16往硝化裝置10送液。於硝化裝置10中,藉由微生物活性汚泥中所含之包含自營性的氨氧化菌與亞硝酸氧化菌之硝化菌,將被處理水所含之氨態氮氧化至亞硝酸或硝酸態氮(硝化步驟)。此處,於配管16中,藉由鉬化合物供給泵21,通過鉬化合物供給配管26對被處理水供給鉬化合物,以使鉬濃度成為0.025mgMo/gN以上之方式使鉬化合物存在(鉬化合物供給步驟)。將硝化液,通過配管18,往脫氮裝置12送液。
於脫氮裝置12中,藉由氫供體供給泵23,通過氫供體供給配管28供給氫供體,藉由微生物活性汚泥中所含之異營性的脫氮菌,將在硝化裝置10(硝化步驟)產生之亞硝酸或硝酸態氮還原至氮氣(脫氮步驟)。脫氮液,通過配管20,往固液分離裝置14送液。
於固液分離裝置14中,將處理水從脫氮液的微生物活性汚泥分離,獲得處理水(固液分離步驟)。將藉由固液分離所獲得之處理水,通過配管22而排出。另一方面,將藉由固液分離所獲得之汚泥的至少一部分,藉由汚泥返送泵25,通過汚泥返送配管24往配管16返送,與被處理水混合。汚泥,往固液分離裝置14(固液分離步驟)之前段返送即可,例如可往硝化裝置10、脫氮裝置12返送,亦可往配管18、20返送。可將藉由固液分離所獲得之汚泥的至少一部分,從固液分離裝置14往系統外排出。
本案發明人等,發現在利用含有包含自營性的氨氧化菌與亞硝酸氧化菌之硝化菌的微生物活性汚泥,處理包含氨態氮之含氮被處理水,尤其是被處理水中之氮濃度為例如100mgN/L以上的高濃度之含氮被處理水的方法中,於微生物之代謝活性降低,處理速度降低的情況中,藉由對被處理水,以使鉬濃度成為0.025mgMo/gN以上之方式使鉬化合物存在,並使每單位汚泥的硝化速度成為0.11[kgN/(kgVSS・日)]以上地控制,而使硝化菌之代謝活性大幅恢復,進一步改善,可獲得穩定快速的處理速度。此外,本案發明人等,發現在利用含有包含自營性的氨氧化菌與亞硝酸氧化菌之硝化菌、及異營性的脫氮菌之微生物活性汚泥,處理包含氨態氮之含氮被處理水,尤其是被處理水中之氮濃度為例如100mgN/L以上的高濃度之含氮被處理水的方法中,於微生物之代謝活性降低,處理速度降低的情況中,藉由對被處理水,以使鉬濃度成為0.025mgMo/gN以上之方式使鉬化合物存在,並使每單位汚泥的硝化速度成為0.11[kgN/(kgVSS・日)]以上地控制,而使硝化菌及脫氮菌之代謝活性大幅恢復,進一步改善,可獲得穩定快速的處理速度。
在含氮被處理水,尤其高濃度的含氮被處理水之生物處理中,藉由以鉬化合物,改善微生物活性汚泥中的包含氨氧化菌及亞硝酸氧化菌之硝化菌的活性,因而即便被處理水中之氮濃度為高濃度,仍能夠以快速的處理速度穩定處理。此外,在含氮被處理水,尤其高濃度的含氮被處理水之生物處理中,藉由以鉬化合物,不僅改善微生物活性汚泥中之脫氮菌的活性,亦改善包含氨氧化菌與亞硝酸氧化菌之硝化菌的活性,因而即便被處理水中之氮濃度為高濃度,仍能夠以快速的處理速度穩定處理。
控制使每單位汚泥的硝化速度成為0.11[kgN/(kgVSS・日)]以上即可,宜控制為0.24[kgN/(kgVSS・日)]以下。若每單位汚泥的硝化速度未滿0.11[kgN/(kgVSS・日)],則鉬的添加效果不明顯。此外,若每單位汚泥的硝化速度超過0.24[kgN/(kgVSS・日)],則氨態氮殘留在硝化槽內,槽內依pH而有因游離之氨濃度的上升而招致氨氧化細菌或亞硝酸氧化細菌之活性降低,處理性能惡化的情況。
每單位汚泥的硝化速度,係以處理量((被處理水氨態氮濃度-處理水氨態氮濃度[mg/L])×流量[m3 /日])、及槽內汚泥量(MLSS[mg/L]×水槽容積[m3 ])決定。測定被處理水氨態氮濃度、處理水氨態氮濃度、硝化裝置10內之汚泥濃度,調整被處理水供給泵17的流量,使其成為既定之每單位汚泥的處理速度即可。此外,將對於流入氨態氮量之鉬添加量的控制,藉由鉬化合物供給泵21施行即可。此一情況,被處理水供給泵17、流量測定裝置19、鉬化合物供給泵21,作為進行下述控制之硝化速度控制手段而作用:於硝化裝置10中,對被處理水,以使鉬濃度成為0.025mgMo/gN以上之方式使鉬化合物存在,並使每單位汚泥的硝化速度成為0.11[kgN/(kgVSS・日)]以上。可將被處理水供給泵17、流量測定裝置19、鉬化合物供給泵21藉由電性連接等而與控制裝置連接,施行自動控制。
一般而言,在施行排水之生物處理的情況中,為了維持微生物的繁殖及代謝反應,必須保持被處理水中之營養素平衡。作為細胞構成成分之營養素,被稱作「親生物元素」的碳(C)、氧(O)、氮(N)、氫(H)、磷(P)成為必要成分。其他,相較於親生物元素需求量較少,但硫(S)、鉀(K)、鈉(Na)、鈣(Ca)、鎂(Mg)、氯(Cl)、鐵(Fe),作為細胞構成要素亦為必要成分,故在被處理水中之各種元素的含有量少之情況,宜將其等添加補給。另一方面,需求量少,但使參與微生物的酵素代謝之微量元素亦存在較佳,例如可列舉氟(F)、矽(Si)、釩(V)、鉻(Cr)、錳(Mn)、鈷(Co)、鎳(Ni)、銅(Cu)、鋅(Zn)、砷(As)、硒(Se)、鉬(Mo)、碘(I)等。然則,此等包含重金屬類之微量元素類,需求量非常微少,假定為在被處理水中存在所需的足夠量,故一般並未從外部往被處理水或處理系統內添加。另一方面,在將從半導體產業等之使用超純水的工廠排出之排水予以生物處理時,在假定為如上述等微量元素類不足的情況,有將自來水、工業用水、井水等混合至被處理水藉以補給之情況。然則,在被處理水中之氮濃度較高(例如100mgN/L以上)的情況,有硝化速度降低之情形。即便為此等狀態,本實施形態之水處理方法及水處理裝置,藉由將既定量之鉬化合物供給至處理系統內,仍可使處理穩定化、高速處理。
關於被處理水中之氮成分的處理之反應,主要分為以下反應: 1、NH4 →NO2 (氨氧化菌) 2、NO2 →NO3 (亞硝酸氧化菌) 3、NO3 →N2 (脫氮菌)
關於脫氮菌所進行之,無氧條件下的硝酸之異化的還原反應(硝酸呼吸),正在進行生物化學的檢討。例如,依非專利文獻2,明瞭從硝酸至氮氣之反應,細分為[NO3 →NO2 →NO→N2 O→N2 ],而催化[NO3 →NO2 ]之還原反應的酵素,鉬元素參與其中。亦即,關於排水處理系統中的脫氮反應,雖尚不明瞭必要量之程度,但假定藉由添加鉬化合物而改善其活性。
此外,藉由研究,闡明在亞硝酸氧化菌將亞硝酸氧化時需要鉬。例如,非專利文獻3中,檢討亞硝酸氧化菌即Nitrobacter之培養條件,顯示藉由添加至少10 9 M之鉬,而使Nitrobacter所進行之亞硝酸的利用及細胞繁殖上升11倍。亦即,關於排水處理系統中的亞硝酸氧化反應,假定藉由添加鉬化合物而改善其活性。
另一方面,作為參與氨氧化菌的氨氧化代謝之酵素,雖使將氨予以氧化,產生羥胺之ammonium monooxygenase (AMO)、及從產生的羥胺進一步產生亞硝酸之hydroxylamine oxidoreductase(HAO)此2種酵素參與,但其等並非鉬所參與之酵素反應的報告(參考非專利文獻4)。
於專利文獻1記載,為了使硝化反應有效率地進展,使鈷與被處理水共存,並進一步使鉬、鈣、鎂成分共存的方法。在專利文獻1之實施例,將氮濃度為70mgN/L的較低濃度之被處理水的硝化脫氮處理測試,在鉬濃度1mgMo/L共存下(14.3mgMo/gN)驗證,在硝化的汚泥負荷為2.5gN/(kgMLSS・小時)[=0.06kgN/(kgMLSS・日)]之條件下,獲得氮的除去率成為90%之結果,但難以認為其獲得明顯的效果。
本案發明人等,發現在利用氨氧化菌及亞硝酸氧化菌共存的微生物活性汚泥,處理尤其是含有高濃度的氮之被處理水的方法中,藉由供給既定量之鉬,不僅可改善亞硝酸氧化反應,亦大幅改善氨氧化菌的活性。此外,本案發明人等,發現在利用含有氨氧化菌、亞硝酸氧化菌、脫氮菌之各式各樣的細菌類所共存的微生物活性汚泥,處理尤其是含有高濃度的氮之被處理水的方法中,藉由供給既定量之鉬,不僅可改善亞硝酸氧化或脫氮(硝酸還原)反應,亦大幅改善氨氧化菌的活性。在氨氧化菌及亞硝酸氧化菌等自營性細菌、可同化有機物之脫氮菌等異營性細菌所共存的微生物活性汚泥中,包含繁殖速度較硝化菌更快之脫氮菌的異營性細菌,在汚泥中占主導地位。一般而言,假定各細菌之代謝反應獨立,但在複數種機能性微生物所存在的微生物活性汚泥中,各細菌處於共存關係。鉬化合物的添加使氨氧化活性改善之機制尚不明瞭,但由於藉由鉬的供給可增加脫氮菌等異營性細菌之代謝活性,故推測鉬的供給相對地亦與氨氧化的活性改善有所連結。
於本實施形態中,成為處理對象之被處理水,係包含氨態氮之含氮水,尤其是包含高濃度氨態氮之含氮水,進一步亦可包含有機態氮。作為被處理水,例如可列舉電子工業排水、金屬精煉工廠排水、發電廠排水等工業排水,或包含在汚泥處理過程排出之消化分離水的排水等。此處,電子工業排水,包含各式各樣的藥品,此外,依製造之製品,排水中的成分亦有巨大差異,而作為含氮水,例如可列舉晶圓清洗排水等。在此排水中,除了含有氨以外,多含有四甲基氫氧化銨(TMAH)、過氧化氫、氟離子、異丙醇(IPA)等。
被處理水中之鉬濃度,例如為0.0001mgMo/L以下。此外,在被處理水中之氮濃度,宜為100mgN/L以上的情況,更宜為400mgN/L以上的情況,適合應用本實施形態之水處理方法及水處理裝置。
在將此等含氮水予以生物處理時,過氧化氫或氟離子等阻礙性物質對生物具有阻礙性,故宜預先除去。作為此等阻礙性物質的處理方法,可使用既有技術,例如,於過氧化氫之處理中,可列舉添加酵素的方法、注入還原劑的方法、接觸活性碳的方法等。此外,於氟離子之處理中,可列舉添加鈣使其成為氟化鈣而將其除去的方法、藉由離子交換樹脂予以處理的方法等。
宜將除去過氧化氫或氟離子等阻礙性物質之含氮水,在施行生物處理步驟所進行的處理前,先貯存於水槽,於生物處理步驟使其流量與水質穩定,並藉由鹼或酸等pH調整劑調整為適當的pH(例如pH6.5~8.0)。而後,將調整過流量、水質、pH等之含氮水(被處理水),送往生物處理步驟。
硝化裝置10中之硝化步驟,係將被處理水供給至硝化部(例如硝化槽),將被處理水中的銨離子等氨態氮以好氧方式(例如在氧的存在下)氧化至亞硝酸或硝酸態氮之步驟。將硝化部例如與空氣導入管連接,成為可將空氣等含氧氣體供給至硝化部內之被處理水的構造。而後,在硝化部內,藉由硝化菌的作用,將被處理水中的銨離子等氨態氮硝化為亞硝酸或硝酸態氮。此處,硝化菌,係指將銨離子等氨態氮氧化為亞硝酸離子之自營性的氨氧化菌、及將亞硝酸離子氧化為硝酸離子之自營性的亞硝酸氧化菌之總稱。
在被處理水中所含之鉬不足的情況,外部添加鉬化合物即可。使鉬化合物,例如作為鉬化合物溶液,通過鉬化合物供給配管26對被處理水供給,於被處理水混合鉬化合物藉以將其供給至系統內。鉬化合物,例如與處理之氮量成正比地供給即可。藉由供給既定量之鉬化合物,而可高度維持硝化菌(氨氧化菌及亞硝酸氧化菌)及脫氮菌的活性,可穩定運轉或高速處理。
作為鉬化合物,例如可列舉鉬酸鈉、鉬酸鉀、鉬酸銨等鉬酸化合物等。鉬化合物之形態並無特別限定,例如若為溶液狀態則容易利用微生物活性汚泥中之細菌,例如宜預先調製鉬酸鈉或鉬酸鉀等之水溶液而添加。
關於鉬化合物的添加處,可供給至施行硝化處理前之配管16,亦可供給至將被處理水與微生物活性汚泥混合之硝化裝置10。此外,若考慮到將添加之鉬化合物作為返送汚泥往較固液分離步驟更前段返送,在系統內循環,則亦可在配管18或脫氮裝置12連接鉬化合物供給配管,供給鉬化合物。
於硝化裝置10(硝化步驟)中,對被處理水,以使鉬濃度成為0.025mgMo/gN以上之方式使鉬化合物存在,宜以使鉬濃度成為0.1mgMo/gN以上之方式使鉬化合物存在。作為鉬濃度的上限,並無特別限制,例如為0.25mgMo/gN以下。於硝化裝置10(硝化步驟)中,若相對於被處理水,鉬濃度成為未滿0.025mgMo/gN,則有未展現硝化菌(氨氧化菌及亞硝酸氧化菌)及脫氮菌的活性維持效果之情況。
於硝化裝置10(硝化步驟)中,宜使鉬濃度,相對於被處理水成為2mgMo/L以下。若鉬濃度相對於被處理水超過2mgMo/L,則有硝化反應受到阻礙之情況。
可於硝化部內,設置載持微生物之載體。作為載持微生物之載體,雖無特別限定,但例如宜利用塑膠或聚胺酯等之樹脂製等載體。
脫氮裝置12中之脫氮步驟,例如係將氫供體供給至完全混合式的脫氮部(例如脫氮槽),將在硝化部產生之亞硝酸或硝酸態氮於無氧條件下還原至氮氣之步驟。在脫氮部(例如脫氮槽)內,藉由異營性細菌即脫氮菌的作用,將亞硝酸或硝酸態氮還原至氮氣。在脫氮部,為了有效率地施行處理,宜設置攪拌裝置,用於將硝化液與微生物活性汚泥在無氧條件下混合。
可於脫氮部內,設置載持微生物之載體。作為載持微生物之載體,雖無特別限定,但宜利用塑膠或聚胺酯等之樹脂製等載體。
本實施形態所用之供脫氮使用的氫供體,例如可列舉甲醇、乙醇、異丙醇等醇類;醋酸等有機酸類;氫氣;丙酮;葡萄糖;甲基乙基酮;四甲基氫氧化銨(TMAH)等之中的一或複數種,但並未限定為其等,作為氫供體,過去已知者全部皆可使用。作為氫供體,亦可利用被處理水中所包含的有機物等。
固液分離裝置14中之固液分離步驟,係將把氮成分,藉由微生物活性汚泥內之硝化菌及脫氮菌予以硝化及脫氮處理的脫氮液,分離為處理水與微生物活性汚泥,而獲得處理水之步驟。
作為固液分離裝置14,並無特別限定,但例如可列舉沉降分離、加壓浮起、過濾、膜分離等分離裝置。在固液分離步驟,獲得處理水,且亦獲得分離後的微生物活性汚泥,微生物活性汚泥一部分作為剩餘汚泥抽出至系統外,一部分往例如硝化裝置10(硝化步驟)返送,藉而可維持系統內的微生物活性汚泥量。
在脫氮裝置12添加氫供體,但脫氮處理後有氫供體殘留,處理水質惡化之疑慮的情況,可在脫氮裝置12(脫氮步驟)與固液分離裝置14(固液分離步驟)之間設置氧化裝置,其作為氧化手段,將氫供體以好氧方式處理。
於圖2顯示此等形態之水處理裝置的例子。於圖2之水處理裝置3中,在脫氮裝置12(脫氮步驟)與固液分離裝置14(固液分離步驟)之間具備氧化裝置30。脫氮裝置12的出口與氧化裝置30的入口,藉由配管32而相連接;氧化裝置30的出口與固液分離裝置14的入口,藉由配管34而相連接。
將在脫氮裝置12(脫氮步驟)獲得之脫氮液,通過配管32,往氧化裝置30送液。氧化裝置30中之氧化步驟,在氧化部(例如氧化槽)將氫供體以好氧方式處理。於氧化部(例如氧化槽),例如與硝化部同樣地連接空氣導入管,成為可將空氣等含氧氣體供給至氧化部內之被處理水的構造。
將於氧化裝置30中氧化處理之氧化處理液,通過配管34往固液分離裝置14送液,其後,與圖1之水處理裝置1同樣地施行處理。
在被處理水包含有機物與氮之情況,亦可不從外部添加供脫氮反應使用的氫供體,而使被處理水中之有機物作為氫供體引起脫氮反應。
於圖3顯示此等形態之水處理裝置的例子。於圖3之水處理裝置5中,被處理水調整槽15的出口與脫氮裝置12的入口,經由被處理水供給泵17,藉由配管36而相連接;脫氮裝置12的出口與硝化裝置10的入口,藉由配管38而相連接;硝化裝置10的出口與固液分離裝置14的入口,藉由配管40而相連接;在固液分離裝置14的處理水出口,連接配管42;固液分離裝置14的汚泥出口與配管36,經由汚泥返送泵25,藉由汚泥返送配管44而相連接。於配管36,在被處理水供給泵17之下游側設置流量測定裝置19,用於測定被處理水的流量;在流量測定裝置19之下游側、汚泥返送配管44的連接點之上游側,經由鉬化合物供給泵21而與鉬化合物供給配管26相連接。配管40與脫氮裝置12,藉由硝化液返送配管46而相連接。
於水處理裝置5中,將包含氨態氮的被處理水,藉由被處理水供給泵17,從被處理水調整槽15,通過配管36往脫氮裝置12送液。另一方面,從後段之硝化裝置10,將硝化液的至少一部分,通過硝化液返送配管46往脫氮裝置12送液。此處,於配管36中,藉由鉬化合物供給泵21,通過鉬化合物供給配管26對被處理水供給鉬化合物,以使鉬濃度成為0.025mgMo/gN以上之方式使鉬化合物存在(鉬化合物供給步驟)。
於硝化裝置10中,藉由微生物活性汚泥中所含之包含自營性的氨氧化菌與亞硝酸氧化菌之硝化菌,將被處理水所含之氨態氮氧化至亞硝酸或硝酸態氮(硝化步驟)。於脫氮裝置12中,藉由微生物活性汚泥中所含之異營性的脫氮菌,將在硝化裝置10(硝化步驟)產生之亞硝酸或硝酸態氮,還原至氮氣(脫氮步驟)。將脫氮液,通過配管38,往硝化裝置10送液;將硝化液的至少一部分,通過配管40,往固液分離裝置14送液。其後,與圖1之水處理裝置1同樣地施行處理。
進一步降低處理水之氮濃度的情況,亦可在圖3之水處理裝置5的硝化裝置10與固液分離裝置14之間,進一步具備作為後脫氮手段之後脫氮裝置、及作為氧化手段之氧化裝置。
於圖4顯示此等形態之水處理裝置的例子。圖4之水處理裝置7,具進一步備作為後脫氮手段之後脫氮裝置48、及作為氧化手段之氧化裝置30。硝化裝置10的出口與後脫氮裝置48的入口,藉由配管50而相連接;後脫氮裝置48的出口與氧化裝置30的入口,藉由配管52而相連接;氧化裝置30的出口與固液分離裝置14的入口,藉由配管54而相連接。於後脫氮裝置48,經由氫供體供給泵23,而連接氫供體供給配管28。配管50與脫氮裝置12,藉由硝化液返送配管46而相連接。
於水處理裝置7中,將包含氨態氮之被處理水,藉由被處理水供給泵17,從被處理水調整槽15,通過配管36往脫氮裝置12送液。另一方面,從後段之硝化裝置10,將硝化液的至少一部分,通過硝化液返送配管46往脫氮裝置12送液。此處,於配管36中,藉由鉬化合物供給泵21,通過鉬化合物供給配管26對被處理水供給鉬化合物,以使鉬濃度成為0.025mgMo/gN以上之方式使鉬化合物存在(鉬化合物供給步驟)。
於硝化裝置10中,藉由微生物活性汚泥中所含之包含自營性的氨氧化菌與亞硝酸氧化菌之硝化菌,將被處理水所含之氨態氮氧化至亞硝酸或硝酸態氮(硝化步驟)。於脫氮裝置12中,藉由微生物活性汚泥中所含之異營性的脫氮菌,將在硝化裝置10(硝化步驟)產生之亞硝酸或硝酸態氮還原至氮氣(脫氮步驟)。將脫氮液,通過配管38往硝化裝置10送液;將硝化液的至少一部分,通過配管50往後脫氮裝置48送液;於後脫氮裝置48中,藉由脫氮菌,將在硝化裝置10(硝化步驟)產生之亞硝酸或硝酸態氮還原至氮氣(脫氮步驟)。將脫氮液,通過配管52往氧化裝置30送液。其後,與圖2之水處理裝置3同樣地施行處理。將硝化液的至少一部分,通過硝化液返送配管46,往脫氮裝置12送液。
於脫氮步驟中,對氫供體之添加量給予時間變動,俾使處理水之水力停留時間(Hydraulic Retention Time)中的氫供體之最大濃度與最小濃度的差,成為50mgTOC/L以上,藉以使包含硝化菌與脫氮菌的微生物活性汚泥粒化。藉由對在脫氮反應中施行添加的氫供體之濃度給予變動,而可簡單地形成脫氮菌自造粒之顆粒。
進一步,藉由使此等顆粒,在施行硝化、脫氮之含氮水的處理系統內循環,而使硝化菌等之全部的菌群粒化,可將含氮被處理水之處理裝置全體以實質上相同的顆粒處理。
此外,在增大脫氮步驟中的氫供體之最大濃度與最小濃度的差,有效率地進行微生物活性汚泥之粒化的情況,可使脫氮步驟,為至少包含第一脫氮步驟與第二脫氮步驟之2個以上的步驟。脫氮步驟,至少包含第一脫氮步驟與第二脫氮步驟;可於脫氮步驟中,至少在第一脫氮步驟中供給氫供體,俾使第二脫氮步驟之處理水的水力停留時間中之第一脫氮步驟的氫供體之最大濃度與第二脫氮步驟的氫供體之最小濃度的差,成為50mgTOC/L以上。
於圖5顯示此等形態之水處理裝置的例子。圖5之水處理裝置9,作為脫氮手段,具備第1脫氮裝置58與第2脫氮裝置60。硝化裝置10的出口與第1脫氮裝置58的入口,藉由配管62而相連接;第1脫氮裝置58的出口與第2脫氮裝置60的入口,藉由配管64而相連接;第2脫氮裝置60的出口與氧化裝置30的入口,藉由配管66而相連接。
將在硝化裝置10獲得之硝化液,通過配管62往第1脫氮裝置58送液。於第1脫氮裝置58中,藉由氫供體供給泵23,通過氫供體供給配管28供給氫供體,與微生物活性汚泥中所含之異營性的脫氮菌接觸後,將混合液,通過配管64往第2脫氮裝置60送液,於第2脫氮裝置60中,藉由脫氮菌,將在硝化裝置10(硝化步驟)產生之亞硝酸或硝酸態氮還原至氮氣(脫氮步驟)。將脫氮液,通過配管66,往氧化裝置30送液。其後,與圖2之水處理裝置3同樣地施行處理。
可於圖1之水處理裝置1中,在被處理水調整槽及處理水槽設置測定氨態氮的濃度之氨態氮濃度測定裝置,測定被處理水及處理水的氨態氮之濃度。
於圖6顯示此等形態之水處理裝置的例子。圖6之水處理裝置2,可具備儲存處理水的處理水槽67,在處理水槽67的入口連接配管22。於被處理水調整槽15及處理水槽67,分別設置作為氨態氮濃度測定手段之氨態氮濃度測定裝置63、65。氨態氮濃度測定裝置65,亦可設置於硝化裝置10而非處理水槽67。藉此,可掌握硝化裝置10之處理量。
藉由氨態氮濃度測定裝置63測定被處理水之氨態氮濃度,藉由氨態氮濃度測定裝置65測定處理水之氨態氮濃度,測定硝化裝置10內之汚泥濃度,調整被處理水供給泵17的流量以使其成為既定之每單位汚泥的處理速度即可。此外,藉由鉬化合物供給泵21施行相對於流入氮量之鉬添加量的控制即可。此一情況,被處理水供給泵17、流量測定裝置19、鉬化合物供給泵21、及氨態氮濃度測定裝置63與65,作為進行下述控制之硝化速度控制手段而作用:於硝化裝置10中,對被處理水,以使鉬濃度成為0.025mgMo/gN以上之方式使鉬化合物存在,並使每單位汚泥的硝化速度成為0.11[kgN/(kgVSS・日)]以上。藉由本構成,可進行對被處理水之濃度變動的追蹤。可將被處理水供給泵17、流量測定裝置19、鉬化合物供給泵21、氨態氮濃度測定裝置63、65,藉由電性連接等而與控制裝置連接,施行自動控制。
可於圖1之水處理裝置1中,在硝化裝置及脫氮裝置中使用載體。
於圖7顯示此等形態之水處理裝置的例子。在圖7之水處理裝置4中,於硝化裝置10,將載體68保持在水槽內;於脫氮裝置12,將載體70保持在水槽內;於各水槽之流出口,設置抑制載體68、70的流出之篩網72、74。
硝化裝置10內之汚泥量的測定,係由浮游中之汚泥量的測定、及載體之充填量而計算。附著於每單位載體之汚泥量幾乎呈一定,故藉由預先測定每單位載體之汚泥附著量而可測定。
於圖7之水處理裝置4中,可不設置固液分離裝置,使其成為不施行汚泥返送的構成。
於圖8顯示此等形態之水處理裝置的例子。圖8之水處理裝置6,於脫氮裝置12的後段具備氧化裝置30。於氧化裝置30,在水槽內保持載體76;於水槽的流出口,設置抑制載體76的流出之篩網78。
於圖8之水處理裝置6中,脫氮裝置12的出口與氧化裝置30的入口,藉由配管80而相連接;於氧化裝置30的處理水出口,連接配管82。
將在脫氮裝置12(脫氮步驟)獲得之脫氮液,通過配管80,往氧化裝置30送液。氧化裝置30中之氧化步驟,在氧化部(例如氧化槽)將氫供體以好氧方式處理。於氧化部(例如氧化槽),例如與硝化部同樣地連接空氣導入管,成為可將空氣等含氧氣體供給至氧化部內之被處理水的構造。
雖有在脫氮裝置12添加氫供體,而脫氮處理後氫供體殘留,處理水質惡化之疑慮,但在氧化裝置30中將氫供體以好氧方式處理。 [實施例]
以下,列舉實施例及比較例,更具體而詳細地說明本發明,但本發明並未限定為下述實施例。
以下顯示利用連續通水測試機之實施例及比較例。另,以全部控制在室溫20℃之條件實施。
<實施例1> 實施例1中,利用圖5所示之水處理裝置9的構成之實驗室規模測試機。使硝化菌及脫氮菌粒化,實施模擬排水的硝化脫氮處理測試。作為模擬排水,使用將氨態氮400mgN/L溶解於純水,添加磷酸及微量元素藥液作為其他營養源者。本測試所使用之微量元素藥液,使用不包含鉬之藥液。供脫氮所使用的氫供體係使用甲醇,將其不連續地添加至第1脫氮槽,使第1脫氮槽內之最大甲醇濃度,與第2脫氮槽內之最小甲醇濃度的差,成為50mgTOC/L以上。於硝化槽、第1脫氮槽、第2脫氮槽,設置pH控制器,使用鹽酸或氫氧化鈉將槽內pH調整為7~7.5。將從固液分離槽獲得的濃縮汚泥往硝化槽返送。從第0日至第45日並未實施鉬的添加(比較例1),從第46日,對被處理水開始添加鉬化合物(鉬酸鈉),使其成為0.1mgMo/L(實施例1)。鉬添加濃度的條件為,相對於被處理水之氮濃度為0.25mgMo/gN。於圖9、10顯示結果。圖9,顯示硝化槽容積負荷[kgN/(m3 ・日)]、硝化槽之氨態氮濃度[mgN/L]的推移;圖10,顯示相對於經過日數[日]之脫氮槽容積負荷[kgN/(m3 ・日)]、處理水之總氮濃度[mgN/L]的推移。
於初期之比較例1中,在硝化槽中之容積負荷為0.2kgN/(m3 ・日)開始通水,但硝化槽中氨態氮殘留5~60mgN/L,無法使負荷上升,硝化速度停留在0.15~0.25kgN/(m3 ・日)。伴隨硝化速度的停留,脫氮速度亦停留在0.3~0.5kgN/(m3 ・日)。比較例1的期間中,可進行穩定運轉之每單位汚泥的處理速度,在硝化速度為0.05kgN/(kgVSS・日)。
接著,開始往被處理水添加鉬後,發現處理速度上升,確認到最大為1.1kgN/(m3 ・日)的硝化速度。另,實施例1的期間中,硝化槽之氨態氮始終在1mgN/L以下推移。伴隨硝化速度之上升,亦發現脫氮速度之上升,最大達到2.2kgN/(m3 ・日)。比較例1的期間中,確認到表示汚泥活性之每單位汚泥的處理速度,在硝化速度0.24kgN/(kgVSS・日),脫氮速度0.54kgN/(kgVSS・日)穩定運轉。
<比較例2> 比較例2中,利用圖5所示之水處理裝置9的構成之實驗室規模測試機,施行連續通水測試。作為模擬排水,使用調整使純水中氨態氮成為800mgN/L,其他添加磷酸及微量元素藥液(不包含鉬)者。以微量元素之補給為目的,從第120日至第215日將不含鉬之井水(鉬濃度:0.0001mgMo/L以下(檢測極限以下))添加被處理水的10%流量,從第216日至第280日將含鉬之工業用水添加被處理水的10%流量,施行補給。另,工業用水中之鉬濃度為0.0006mgMo/L。井水及工業用水中之鉬濃度,係使用ICP質量分析法(ICP-MS)測定。
於圖11顯示硝化槽容積負荷[kgN/(m3 ・日)]與硝化槽之殘留氨態氮濃度[mgN/L]的推移,於圖12顯示脫氮槽容積負荷[kgN/(m3 ・日)]與處理水之總氮濃度[mgN/L]的推移。如同自圖11所得知,硝化槽容積負荷雖上升至0.8kgN/(m3 ・日),但在第169日氨態氮濃度殘留41mgN/L,在第171日上升至130mgN/L。其後硝化性能亦不穩定,在硝化槽內殘留10至40mgN/L,無法穩定運轉。此外,測試期間中之硝化活性為0.02~0.075kgN/(kgVSS・日)。伴隨硝化的不穩定性,脫氮亦處理不穩定,處理水TN最大上升至150mgN/L程度。
<實施例2> 使用與比較例2相同條件之模擬排水、測試裝置,以連續通水測試驗證鉬化合物溶液的添加影響。相對於被處理水之氨態氮濃度800mgN/L,使鉬添加濃度為0.02mgMo/L,從第175日開始添加。鉬添加濃度的條件為,相對於被處理水之氮濃度為0.025mgMo/gN。
於圖13顯示硝化槽容積負荷[kgN/(m3 ・日)]與硝化槽之殘留氨態氮濃度[mgN/L]的推移,於圖14顯示脫氮槽容積負荷[kgN/(m3 ・日)]與處理水之總氮濃度[mgN/L]的推移。其結果,未添加鉬之期間,硝化槽容積負荷並未上升,在第175日殘留55mgN/L之氨態氮。從第175日開始添加Mo化合物後,確認氨態氮濃度的降低,即便使容積負荷上升至0.8~0.9kgN/(m3 ・日)仍可穩定運轉。鉬添加前之硝化活性最大為0.05kgN/(kgVSS・日),但鉬添加開始後之硝化活性上升至0.11kgN/(kgVSS・日)。關於脫氮,脫氮槽容積負荷亦上升至1.4kgN/(m3 ・日)。
<實施例3> 使用與實施例2相同條件之模擬排水、測試裝置,以連續通水測試驗證鉬化合物的添加影響。相對於被處理水之氨態氮濃度800mgN/L,使鉬添加濃度為0.1mgMo/L,從第343日開始添加。鉬添加濃度的條件為,相對於被處理水之氮濃度為0.125mgMo/gN。
於圖15顯示硝化槽容積負荷[kgN/(m3 ・日)]與硝化槽之殘留氨態氮濃度[mgN/L]的推移,於圖16顯示脫氮槽容積負荷[kgN/(m3 ・日)]與處理水之總氮濃度[mgN/L]的推移。其結果,未添加鉬之期間,在脫氮槽檢測到70至80mg/L程度的硝酸態氮,故負荷無法提高,硝化槽容積負荷停留在0.25kgN/(m3 ・日)程度。從第343日開始鉬溶液的添加,嘗試使負荷上升。於第346日,在硝化槽檢測到氨態氮為37mgN/L,但其後發現氨態氮濃度的降低。使硝化槽容積負荷上升至0.86kgN/(m3 ・日),但在硝化槽並未檢測到氨態氮,在脫氮槽處理水TN亦於5mgN/L以下推移。鉬添加前之硝化活性停留在0.05~0.06kgN/(kgVSS・日),但鉬添加開始後,發現活性的改善,確認到往0.2kgN/(kgVSS・日)之上升。
於圖17顯示上述結果的總結。從圖17,得知於硝化步驟中,宜對被處理水,以使鉬濃度成為0.025mgMo/gN以上之方式使鉬化合物存在。
如此地,藉由實施例之方法,於包含氨態氮的被處理水之生物處理中,即便被處理水中之氮濃度為高濃度,仍能夠以快速的處理速度穩定處理。
以下,將鉬化合物之添加濃度對氨氧化反應及脫氮反應造成的阻礙影響,藉由批次測試實施評價。
[鉬的添加對脫氮之影響測試(批次測試)] 利用硝化脫氮汚泥,將鉬的添加對脫氮反應造成之影響,藉由使用模擬排水的批次測試予以驗證。實驗方法之具體方法如同下述。
1、作為批次測試所使用之模擬排水,使用在井水添加硝酸態離子使其成為60mgN/L,添加磷酸態磷使其成為1mgP/L者。另,模擬排水中的含鉬濃度為0.0001mg/L以下。 2、將預先以作為氫供體的甲醇馴化之汚泥藉由純水清洗,使其懸浮於模擬排水,分注至5個燒杯。 3、於汚泥與模擬排水之混合液,將鉬酸鈉溶液添加至各燒杯,使其等成為0mgMo/L、1mgMo/L、5mgMo/L、10mgMo/L、20mgMo/L而予以攪拌。 4、攪拌,並逐一將作為氫供體的甲醇添加相同量至各燒杯,評價硝酸之減少速度。
脫氮活性測試的結果,從硝酸減少速度與燒杯內之汚泥量算出的脫氮活性,在未添加Mo之系列成為0.43gN/gSS/日,在Mo濃度為1mgMo/L之系列成為0.46gN/gSS/日,在5mgMo/L之系列成為0.45gN/gSS/日,在10mgMo/L之系列成為0.42gN/gSS/日,在20mgMo/L之系列成為0.41gN/gSS/日,與未添加Mo之系列相較雖微少,但在使Mo濃度為1mgMo/L之系列確認到8%的活性改善,在5mgMo/L之系列確認到5%的活性改善。另一方面,在將Mo濃度添加至20mgMo/L的高濃度之系列中,相較於脫氮活性最高的Mo濃度1mgMo/L之系列,亦僅確認到約10%的活性降低,並未確認到Mo對脫氮之明顯阻礙。
[Mo的添加對氨氧化之影響測試(批次測試)] 利用硝化脫氮汚泥,將鉬的添加對氨氧化反應造成之影響,藉由使用模擬排水的批次測試予以驗證。實驗方法之具體方法如同下述。
1、作為批次測試所使用之模擬排水,使用在井水添加氨態離子使其成為60mgN/L,添加磷酸態磷使其成為1mgP/L者。另,模擬排水中的含鉬濃度為0.0001mg/L以下。 2、使藉由純水清洗過之供試汚泥懸浮於模擬排水,分注至5個燒杯。 3、於汚泥與模擬排水之混合液,將鉬酸鈉溶液添加至各燒杯而使其成為0mgMo/L、0.1mgMo/L、0.5mgMo/L、2mgMo/L、10mgMo/L,分別開始曝氣。 4、評價各氨態氮濃度之減少速度。
氨氧化活性測試之結果,從氨減少速度與燒杯內之汚泥量算出的氨氧化活性,在未添加Mo之系列成為0.18gN/gSS/日,在Mo濃度為0.1mgMo/L之系列成為0.13gN/gSS/日,在0.5mgMo/L之系列成為0.13gN/gSS/日,在2mgMo/L之系列成為0.13gN/gSS/日,在10mgMo/L之系列成為0.10gN/gSS/日,成為未添加Mo之系列的氨氧化活性最高,10mgMo/L之系列的氨氧化活性最低之結果。由本批次測試結果,發現為了抑制鉬濃度對氨氧化反應的阻礙性,宜使其為2mgMo/L以下。
1、2、3、4、5、6、7、9:水處理裝置 10:硝化裝置 12:脫氮裝置 14:固液分離裝置 15:被處理水調整槽 16、18、20、22、32、34、36、38、40、42、50、52、54、62、64、66、80、82:配管 17:被處理水供給泵 19:流量測定裝置 21:鉬化合物供給泵 23:氫供體供給泵 24、44:汚泥返送配管 25:汚泥返送泵 26:鉬化合物供給配管 28:氫供體供給配管 30:氧化裝置 46:硝化液返送配管 48:後脫氮裝置 58:第1脫氮裝置 60:第2脫氮裝置 63、65:氨態氮濃度測定裝置 67:處理水槽 68、70、76:載體 72、74、78:篩網
圖1係顯示本發明的實施形態之水處理裝置的一例之概略構成圖。 圖2係顯示本發明的實施形態之水處理裝置的另一例之概略構成圖。 圖3係顯示本發明的實施形態之水處理裝置的另一例之概略構成圖。 圖4係顯示本發明的實施形態之水處理裝置的另一例之概略構成圖。 圖5係顯示本發明的實施形態之水處理裝置的另一例之概略構成圖。 圖6係顯示本發明的實施形態之水處理裝置的另一例之概略構成圖。 圖7係顯示本發明的實施形態之水處理裝置的另一例之概略構成圖。 圖8係顯示本發明的實施形態之水處理裝置的另一例之概略構成圖。 圖9係顯示實施例1及比較例1中之相對於經過日數[日]的硝化槽容積負荷[kgN/(m3 ・日)]、硝化槽之氨態氮濃度[mgN/L]的圖表。 圖10係顯示實施例1及比較例1中之相對於經過日數[日]的脫氮槽容積負荷[kgN/(m3 ・日)]、處理水之總氮濃度[mgN/L]的圖表。 圖11係顯示比較例2中之相對於經過日數[日]的硝化槽容積負荷[kgN/(m3 ・日)]、硝化槽之氨態氮濃度[mgN/L]的圖表。 圖12係顯示比較例2中之相對於經過日數[日]的脫氮槽容積負荷[kgN/(m3 ・日)]、處理水之總氮濃度[mgN/L]的圖表。 圖13係顯示實施例2中之相對於經過日數[日]的硝化槽容積負荷[kgN/(m3 ・日)]、硝化槽之氨態氮濃度[mgN/L]的圖表。 圖14係顯示實施例2中之相對於經過日數[日]的脫氮槽容積負荷[kgN/(m3 ・日)]、處理水之總氮濃度[mgN/L]的圖表。 圖15係顯示實施例3中之相對於經過日數[日]的硝化槽容積負荷[kgN/(m3 ・日)]、硝化槽之氨態氮濃度[mgN/L]的圖表。 圖16係顯示實施例3中之相對於經過日數[日]的脫氮槽容積負荷[kgN/(m3 ・日)]、處理水之總氮濃度[mgN/L]的圖表。 圖17係顯示實施例中的相對於鉬濃度(Mo/N[mg/g])之硝化速度[kgN/(kgVSS・日)]的圖表。
1:水處理裝置
10:硝化裝置
12:脫氮裝置
14:固液分離裝置
15:被處理水調整槽
16、18、20、22:配管
17:被處理水供給泵
19:流量測定裝置
21:鉬化合物供給泵
23:氫供體供給泵
24:汚泥返送配管
25:汚泥返送泵
26:鉬化合物供給配管
28:氫供體供給配管

Claims (13)

  1. 一種水處理方法,將包含氨態氮的被處理水,予以生物處理; 包含硝化步驟:藉由微生物活性汚泥中所含之包含自營性的氨氧化菌與亞硝酸氧化菌之硝化菌,將該氨態氮氧化至亞硝酸或硝酸態氮; 其特徵在於: 於該硝化步驟中,以使相對於該被處理水之鉬濃度成為0.025mgMo/gN以上之方式令鉬化合物存在; 每單位汚泥的硝化速度為0.11[kgN/(kgVSS・日)]以上。
  2. 如申請專利範圍第1項之水處理方法,其中, 使該硝化步驟中之鉬濃度,相對於該被處理水成為2mgMo/L以下。
  3. 如申請專利範圍第1或2項之水處理方法,其中, 該被處理水中之氮濃度為100mgN/L以上。
  4. 如申請專利範圍第1或2項之水處理方法,其中, 更包含脫氮步驟,其藉由該微生物活性汚泥中所含之脫氮菌,將在該硝化步驟產生之亞硝酸或硝酸態氮還原至氮氣。
  5. 如申請專利範圍第4項之水處理方法,其中, 於該脫氮步驟中,對該氫供體之添加量給予時間變動,俾使處理水之水力停留時間中的氫供體之最大濃度與最小濃度的差,成為50mgTOC/L以上,藉以使包含該硝化菌與脫氮菌的微生物活性汚泥粒化。
  6. 如申請專利範圍第5項之水處理方法,其中, 該脫氮步驟,至少包含第一脫氮步驟與第二脫氮步驟; 於該脫氮步驟中,至少在該第一脫氮步驟中供給氫供體,俾使該第二脫氮步驟之處理水的水力停留時間中之該第一脫氮步驟的氫供體之最大濃度與該第二脫氮步驟的氫供體之最小濃度的差,成為50mgTOC/L以上。
  7. 一種水處理裝置,將包含氨態氮的被處理水,予以生物處理,其包含: 硝化手段,藉由微生物活性汚泥中所含之包含自營性的氨氧化菌與亞硝酸氧化菌之硝化菌,將該氨態氮氧化至亞硝酸或硝酸態氮;以及 硝化速度控制手段,進行下述控制:於該硝化手段中,以使相對於該被處理水之鉬濃度成為0.025mgMo/gN以上之方式令鉬化合物存在,並使每單位汚泥的硝化速度成為0.11[kgN/(kgVSS・日)]以上。
  8. 如申請專利範圍第7項之水處理裝置,其中, 該硝化速度控制手段,控制使該硝化手段中之鉬濃度,相對於該被處理水成為2mgMo/L以下。
  9. 如申請專利範圍第7或8項之水處理裝置,其中, 該被處理水中之鉬濃度為0.0001mgMo/L以下。
  10. 如申請專利範圍第7或8項之水處理裝置,其中, 該被處理水中之氮濃度為100mgN/L以上。
  11. 如申請專利範圍第10項之水處理裝置,其中, 更包含脫氮手段,其藉由該微生物活性汚泥中所含之脫氮菌,將在該硝化手段產生之亞硝酸或硝酸態氮還原至氮氣。
  12. 如申請專利範圍第11項之水處理裝置,其中, 更包含氫供體濃度控制手段,其進行下述控制:於該脫氮手段中,對該氫供體之添加量給予時間變動,俾使處理水之水力停留時間中的氫供體之最大濃度與最小濃度的差,成為50mgTOC/L以上,藉以使包含該硝化菌與脫氮菌的微生物活性汚泥粒化。
  13. 如申請專利範圍第12項之水處理裝置,其中, 該脫氮手段,至少包含第一脫氮手段與第二脫氮手段; 該氫供體濃度控制手段,進行下述控制:於該脫氮手段中,至少在該第一脫氮手段中供給氫供體,俾使該第二脫氮手段之處理水的水力停留時間中之該第一脫氮手段的氫供體之最大濃度與該第二脫氮手段的氫供體之最小濃度的差,成為50mgTOC/L以上。
TW108121694A 2018-06-22 2019-06-21 水處理方法及水處理裝置 TWI846706B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-118619 2018-06-22
JP2018118619A JP6535125B1 (ja) 2018-06-22 2018-06-22 水処理方法
JP2019-080199 2019-04-19
JP2019080199A JP6667030B2 (ja) 2019-04-19 2019-04-19 水処理方法
JP2019080200A JP6754863B1 (ja) 2019-04-19 2019-04-19 水処理装置
JP2019-080200 2019-04-19

Publications (2)

Publication Number Publication Date
TW202016027A true TW202016027A (zh) 2020-05-01
TWI846706B TWI846706B (zh) 2024-07-01

Family

ID=

Also Published As

Publication number Publication date
US20210261449A1 (en) 2021-08-26
WO2019244964A1 (ja) 2019-12-26
CN112292355B (zh) 2023-04-07
US11603327B2 (en) 2023-03-14
CN112292355A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
JP5932639B2 (ja) 嫌気性アンモニア酸化反応を利用した生物学的窒素除去方法
JP5890374B2 (ja) 生物学的窒素除去装置及び水処理システム
EP1721870A1 (en) Method of nitrifying ammonium-nitrogen-containing water and method of treating the same
JP6210883B2 (ja) 廃水処理装置の運転方法
JP4872171B2 (ja) 生物脱窒装置
JP4453397B2 (ja) 生物学的窒素除去方法
Hei et al. Redox environment inducing strategy for enhancing biological phosphorus removal in a full-scale municipal wastewater treatment plant
JP5984137B2 (ja) 水処理装置および水処理方法
KR20140063454A (ko) 폐수 처리 방법 및 폐수 처리 장치
JP6535125B1 (ja) 水処理方法
JP2013081881A (ja) アンモニア態窒素含有排水の処理装置
CN112292355B (zh) 水处理方法和水处理装置
JP5362637B2 (ja) 窒素含有排水の生物処理方法及び処理装置
JP4867099B2 (ja) 生物脱窒処理方法
TWI846706B (zh) 水處理方法及水處理裝置
JP5325124B2 (ja) 窒素含有水の生物処理方法及び窒素含有水の生物処理装置
JP6667030B2 (ja) 水処理方法
JP2005329399A (ja) 窒素除去方法及び装置
JP6461408B1 (ja) 水処理方法および水処理装置
JP6754863B1 (ja) 水処理装置
CN113003714A (zh) 一种基于膜分离循环进水实现亚氮快速积累的方法
JP2006088057A (ja) アンモニア含有水の処理方法
JP3677811B2 (ja) 生物的脱窒方法
JP5076263B2 (ja) 生物脱窒方法
JP2006320793A (ja) 排水の処理方法および装置