TW202008737A - 能夠抵銷內部訊號洩漏的無線收發機 - Google Patents

能夠抵銷內部訊號洩漏的無線收發機 Download PDF

Info

Publication number
TW202008737A
TW202008737A TW107127215A TW107127215A TW202008737A TW 202008737 A TW202008737 A TW 202008737A TW 107127215 A TW107127215 A TW 107127215A TW 107127215 A TW107127215 A TW 107127215A TW 202008737 A TW202008737 A TW 202008737A
Authority
TW
Taiwan
Prior art keywords
signal
circuit
transmission
mode
receiving
Prior art date
Application number
TW107127215A
Other languages
English (en)
Other versions
TWI677202B (zh
Inventor
王至詰
Original Assignee
瑞昱半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞昱半導體股份有限公司 filed Critical 瑞昱半導體股份有限公司
Priority to TW107127215A priority Critical patent/TWI677202B/zh
Priority to US16/443,116 priority patent/US10715203B2/en
Application granted granted Critical
Publication of TWI677202B publication Critical patent/TWI677202B/zh
Publication of TW202008737A publication Critical patent/TW202008737A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/14Monitoring; Testing of transmitters for calibration of the whole transmission and reception path, e.g. self-test loop-back
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/0082Monitoring; Testing using service channels; using auxiliary channels
    • H04B17/0085Monitoring; Testing using service channels; using auxiliary channels using test signal generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/364Delay profiles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0066Requirements on out-of-channel emissions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Transceivers (AREA)

Abstract

本發明揭露了一種能夠抵銷內部訊號洩漏的無線收發機,該無線收發機包含一傳送電路、一接收電路與一校正電路。該校正電路依據測試訊號與行經一標準路徑之接收數位訊號的差異產生第一估計訊號,並依據該測試訊號與行經一洩漏路徑之接收數位訊號的差異產生第二估計訊號,接著,該校正電路再依據該第一估計訊號與該第二估計訊號的差異決定一校正濾波器之N個係數,因此,包含該校正濾波器的該校正電路得以輸出一校正訊號給該接收電路,以抵銷該傳送電路洩漏至該接收電路的訊號洩漏的至少一部分。

Description

能夠抵銷內部訊號洩漏的無線收發機
本發明是關於無線收發機,尤其是關於能夠抵銷內部訊號洩漏的無線收發機。
對一無線通訊系統晶片而言,若收發機需要高發射功率以達到好的信號品質,收發機通常需要利用外部功率放大器來放大傳送信號以及利用數位預失真(digital predistortion, DPD)補償電路來補償傳送訊號的線性度。當收發機之傳送電路與接收電路同時運作時(例如:頻分雙工模式(Frequency-Division Duplexing mode)),若收發機要評估DPD補償電路的濾波器係數,為了節省成本,收發機可藉由已存在的接收電路來得到行經傳送電路且受到非線性影響的信號耦合到接收電路之信號,從而評估DPD補償電路的濾波器係數。相關先前技術可見於下列文獻:Mahmoud Abdelaziz, Lauri Anttila, and Mikko Valkama, “DIGITAL PREDISTORTION FOR MITIGATING TRANSMITTER-INDUCED RECEIVER DESENSITIZATION IN CARRIER AGGREGATION FDD TRANSCEIVERS”, 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP).
然而,當接收電路抓取前述耦合到接收電路的信號時,接收電路會同時收到傳送電路之各級放大器電路的信號洩漏以及傳送電路之封裝引腳(Package Pin)的信號洩漏等等,這些內部電路間的信號洩漏會使接收電路所抓取的訊號受到干擾,此干擾會導致DPD補償電路的濾波器係數的評估不準確,並使DPD補償電路在補償線性度方面的效能變差。
本發明之一目的在於提供一種能夠抵銷內部訊號洩漏的無線收發機,以避免先前技術的問題。
本發明之能夠抵銷內部訊號洩漏的無線收發機的一實施例包含一傳送電路、一接收電路以及一校正電路。該傳送電路包含一傳送前端電路與一傳送後端電路,該傳送前端電路包含一數位至類比轉換器用來依據一傳送數位訊號產生一傳送類比訊號,該傳送後端電路包含一傳送射頻電路用來依據該傳送類比訊號產生一射頻傳送訊號。該接收電路包含一接收前端電路與一接收後端電路;該接收前端電路包含一接收射頻電路,該接收射頻電路用來於一第一模式與一第二模式下,依據該射頻傳送訊號產生一類比接收訊號,該接收射頻電路另用來於一工作模式下,依據一接收訊號與一傳送訊號產生該類比接收訊號,其中該類比接收訊號包含來自該傳送射頻電路之訊號洩漏,該傳送訊號為該射頻傳送訊號或其放大訊號;該接收後端電路包含一類比至數位轉換器用來依據該類比接收訊號產生一接收數位訊號。該校正電路包含一第一連接路徑、一第二連接路徑、一測試訊號產生電路、一估計電路以及一校正訊號產生電路。該第一連接路徑用來於該第一模式下導通以及於該第二模式下不導通,以於該第一模式下電性連接該傳送前端電路與該接收後端電路,從而形成一標準路徑包含該傳送前端電路、該第一連接路徑與該接收後端電路。該第二連接路徑用來於該第二模式下導通以及於該第一模式下不導通,以於該第二模式下電性連接該傳送後端電路與該接收前端電路,從而形成一洩漏路徑包含該傳送前端電路、該傳送後端電路、該第二連接路徑、該接收前端電路與該接收後端電路。該測試訊號產生電路用來於該第一模式與該第二模式下,輸出一測試訊號至該傳送前端電路,以供該傳送前端電路產生該傳送類比訊號。該估計電路用來執行至少下列步驟:於該第一模式下,依據該測試訊號與行經該標準路徑之該接收數位訊號的差異產生一第一估計訊號;於該第二模式下,依據該測試訊號與行經該洩漏路徑之該接收數位訊號的差異產生一第二估計訊號;以及依據該第一估計訊號與該第二估計訊號之差異決定一校正濾波器之N個係數,其中該N為正整數。該校正訊號產生電路包含該校正濾波器,用來於該工作模式下提供一校正訊號給該接收電路,從而抵銷該訊號洩漏之至少一部分。
有關本發明的特徵、實作與功效,茲配合圖式作較佳實施例詳細說明如下。
圖1顯示本發明之能夠抵銷內部訊號洩漏的無線收發機的一實施例。圖1之無線收發機100包含一傳送電路110、一接收電路120以及一校正電路130。傳送電路110包含一傳送前端電路112與一傳送後端電路114,傳送前端電路112包含一數位至類比轉換器(digital-to-analog converter, DAC)(例如:圖2之DAC 212)用來依據一傳送數位訊號產生一傳送類比訊號,傳送後端電路114包含一傳送射頻電路(例如:圖2之電路包含傳送混波器222、前級推動級放大器224以及功率放大器226)用來依據該傳送類比訊號產生一射頻傳送訊號。接收電路120包含一接收前端電路122與一接收後端電路124;接收前端電路122包含一接收射頻電路(例如:圖2之電路包含第一低雜訊放大器232、第二低雜訊放大器234、耦接元件236以及接收混波器238),該接收射頻電路用來於一第一模式與一第二模式下,依據該射頻傳送訊號產生一類比接收訊號,該接收射頻電路另用來於一工作模式下,依據一接收訊號與一傳送訊號產生該類比接收訊號,其中該類比接收訊號包含來自該傳送射頻電路之訊號洩漏,該傳送訊號為該射頻傳送訊號或其放大訊號(例如:圖2之外部功率放大器270之輸出訊號);接收後端電路124包含一類比至數位轉換器(analog-to-digital converter, ADC)(例如:圖2之ADC 242)用來依據該類比接收訊號產生一接收數位訊號。圖1之傳送電路110與接收電路120可為已知或自行開發的電路。
請參閱圖1。校正電路130包含一第一連接路徑131、一第二連接路徑132、一測試訊號產生電路134、一估計電路136以及一校正訊號產生電路138。第一連接路徑131用來於該第一模式下導通以及於該第二模式下不導通,以於該第一模式下電性連接傳送前端電路112與接收後端電路124,從而形成一標準路徑包含傳送前端電路112、第一連接路徑131與接收後端電路124,其中第一連接路徑131可包含開關或其等效電路以實現導通與不導通的功能。第二連接路徑132用來於該第二模式下導通以及於該第一模式下不導通,以於該第二模式下電性連接傳送後端電路114與接收前端電路122,從而形成一洩漏路徑包含傳送前端電路112、傳送後端電路114、第二連接路徑132、接收前端電路122與接收後端電路124,其中第二連接路徑132可包含開關或其等效電路以實現導通與不導通的功能。測試訊號產生電路134用來於該第一模式與該第二模式下,輸出一測試訊號(例如:複數個頻率相異的單頻(single tone)訊號)至傳送前端電路112,以供傳送前端電路112產生該傳送類比訊號。
請參閱圖1。估計電路136用來執行至少下列步驟:於該第一模式下,依據該測試訊號與行經該標準路徑之該接收數位訊號的差異產生一第一估計訊號;於該第二模式下,依據該測試訊號與行經該洩漏路徑之該接收數位訊號的差異產生一第二估計訊號;以及依據該第一估計訊號與該第二估計訊號之差異設定一校正濾波器(例如:N個抽頭(tap(s))的有限脈衝響應(finite impulse response, FIR)濾波器)之N個係數,其中該N為正整數。校正訊號產生電路138包含該校正濾波器(例如:圖2之校正濾波器1382)、一等效傳送前端電路(例如:圖2之等效傳送前端電路1384)包含等效於傳送前端電路112的電路以及包含等效於後述之傳送混波器222的混波電路,校正訊號產生電路138用來於一工作模式下依據一來源訊號(例如:圖2之傳送基頻電路252之輸出訊號)提供一校正訊號(例如:一訊號等於/近似於前述傳送射頻電路之訊號洩漏的反相訊號)給接收電路120,由於校正訊號產生電路138之校正濾波器的係數是相關於該標準路徑與該洩漏路徑的差異,因此,藉由該校正濾波器以及該等效傳送前端電路的作用,校正訊號產生電路138得以提供該校正訊號以抵銷該訊號洩漏之至少一部分。
承上所述,於本發明之一實施例中,該第一估計訊號包含第一估計訊號振幅變化與第一估計訊號相角變化,該第二估計訊號包含第二估計訊號振幅變化與第二估計訊號相角變化;若該測試訊號是一預定頻率間隔(例如:可調整/不可調整的固定/非固定頻率間隔)的複數個單頻訊號,該第一/第二估計訊號振幅變化包含對應每該單頻訊號之頻率的振幅變化,該第一/第二估計訊號相角變化包含對應每該單頻訊號之頻率的相角變化;因此,該第一估計訊號與該第二估計訊號在每該單頻訊號之頻率上的振幅與相角差異(後稱估計訊號之頻率響應值)可被求得。上述估計訊號之頻率響應值可轉換為時域係數(time domain coefficient),以設定前述校正濾波器之N個係數。舉例而言,令該測試訊號為一預定頻率間隔的k根單頻訊號,取得該校正濾波器之係數的流程如下: (1) 設定k個複數矩陣(complex matrix)等於k個洩漏,其中每一矩陣命名為M(K),K=0, 1, 2, 3, …, (k-1)。進一步而言,由於k根單頻訊號對應k個不同頻率(w 0w 1w 2 、…、w k-2w k-1 ),若一FIR濾波器(具有n個係數)用來處理每根單頻訊號,可以得到k個頻率響應矩陣,若將矩陣M(K)從頻域(frequency domain)轉換至時域(time domain),轉換後的矩陣為m(K)。 (2) 將M(K)乘以傳送路徑之頻率響應矩陣H(
Figure 02_image001
)後,將該相乘結果中代表振幅與相角的變化的值補為0,其中M(K)等於
Figure 02_image003
Figure 02_image005
),w Kw 0 ,w 1 ,w 2 , …,wk -2 ,wk -1 )為該k根單頻訊號的頻率,τ為固定延遲(constant delay)係數(例如:傳送路徑的等效延遲係數及/或校正濾波器的延遲係數)。 (3) 比較洩漏路徑與標準路徑之頻率響應後,得到所述k根單頻訊號的複數頻率響應(complex frequency response)如下:
Figure 02_image007
(4) 再從求得的複數頻率響應得到時域係數。 (5) 每個頻率點(即:該k根單頻訊號的頻率w 0 ,w 1 ,…,w k-1 的每一個)的頻譜響應(spectrum response)是n個抽頭的FIR濾波器的轉換(transform)如下式:
Figure 02_image009
Figure 02_image011
依據上述可以得到下式:
Figure 02_image013
Figure 02_image015
上式的結果可以設為補償洩漏路徑所使用的該有限響應脈衝濾波器的係數。
圖2顯示圖1之無線收發機100的電路細節範例。請參閱圖2。傳送前端電路112包含一DAC 212以及一濾波器214,其中濾波器214用來依據前述傳送類比訊號產生一傳送濾波訊號,從而前述傳送射頻電路依據該傳送濾波訊號產生該射頻傳送訊號。傳送後端電路114包含一傳送混波器(圖中之標示為TX-Mixer)222、一前級推動級放大器(preamplifier driver, PAD)224以及一功率放大器(圖中之標示為PA)226。接收前端電路122包含至少一低雜訊放大器(例如:圖2之第一低雜訊放大器(圖中之標示為LNA1)232與第二低雜訊放大器(圖中之標示為LNA2)234)、一耦接元件(coupler)236(例如:加法器/減法器)以及一接收混波器(圖中之標示為RX-Mixer)238,其中耦接元件236用來於該工作模式下接收該校正訊號,並可在實施為可能的前提下設於其它位置(例如:接收混波器238與後述之ADC 242之間的位置)。接收後端電路124包含一ADC 242。值得注意的是,圖2之實施例中,來自傳送後端電路114之訊號洩漏包含:前級推動級放大器224之輸出端與該至少一低雜訊放大器之各輸入端之間的洩漏;前級推動級放大器224之輸出端與該至少一低雜訊放大器之各輸出端之間的洩漏;功率放大器226之輸出端與該至少一低雜訊放大器之各輸入端之間的洩漏;以及功率放大器226之輸出端與該至少一低雜訊放大器之各輸出端之間的洩漏。
請參閱圖2。傳送電路110進一步包含一傳送基頻電路(圖中之標示為TX-BB)252與一數位預失真(digital predistortion, DPD)電路254,接收電路120進一步包含一接收基頻電路(圖中之標示為RX-BB)262,其中接收基頻電路262用來處理該接收數位訊號,傳送基頻電路252用來輸出一傳送基頻訊號,DPD電路254用來於該工作模式下依據該傳送基頻訊號輸出該傳送數位訊號,因此,校正訊號產生電路138可於該工作模式下依據該傳送基頻訊號輸出該校正訊號給接收電路120。
請參閱圖2。傳送電路110進一步包含一外部功率放大器(圖中之標示為EX-PA)270電性連接功率放大器226,且外部功率放大器270之輸出端經由一外部耦合路徑280電性連接至接收電路120之輸出端,其中外部功率放大器270之輸出端在此為傳送電路110之輸出端。圖2亦顯示傳送電路110包含一傳送開關280耦接於功率放大器226與外部功率放大器270之間,以及顯示接收電路120包含一接收開關290耦接於第一低雜訊放大器232與接收電路120之輸出端之間,其中傳送開關280與接收開關290於該第一模式與該第二模式下不導通,而於該工作模式下導通。
值得注意的是,圖2中,除了傳送開關280與接收開關290之設置,傳送電路110與其中的電路以及接收電路120與其中的電路為習知電路,因此其細節在此省略。
於本發明之一實施例中,前述工作模式是一全雙工模式,亦即傳送電路110與接收電路120同時運作的模式。於本發明之一實施例中,傳送前端電路112之運作頻率低於傳送後端電路114之運作頻率,且接收前端電路122之運作頻率高於接收後端電路124之運作頻率;進一步而言,由於高頻電路較易產生訊號洩漏,前述標準路徑可以是一不包含高頻電路的路徑,前述洩漏路徑可以是一包含高頻電路的路徑,因此,行經該標準路徑之訊號與行經該洩漏路徑之訊號的差異可以反映出訊號洩漏的情形。於本發明之一實施例中,前述傳送訊號與前述接收訊號之載波頻率相同,且在同一操作頻帶內。於本發明之一實施例中,上述操作頻帶之頻寬不小於40MHz。
請參閱圖2。為了確定抵銷內部訊號洩漏的效果,估計電路136可進一步執行下列步驟: 步驟一:依據該第一估計訊號與該第二估計訊號之差異得到一當前頻率響應(亦即前述估計訊號之頻率響應值),並求出該當前頻率響應與一先前頻率響應的頻率響應差異,其中該先前頻率響應可由先前求得的時域係數轉換而得,或等於先前求得並儲存下來的頻率響應值。上述先前求得並儲存下來的頻率響應值的求法與該估計訊號之頻率響應值的求法相同,上述先前求得的時域係數是藉由轉換(頻域至時域的轉換)該先前求得的頻率響應值而得,該轉換在本領域為已知。步驟一可選擇性地被省略。 步驟二:於該工作模式下,利用一功率頻譜密度功能(power spectrum density (PSD) function)以依據該接收數位訊號得到一洩漏抵銷後的能量。上述PSD功能之利用屬於先前技術。 步驟三:依據該洩漏抵銷後的能量調整一延遲係數,以縮小該洩漏抵銷後的能量以及及選擇性地縮小該頻率響應差異,該延遲係數相關於在同一訊號源底下,行經校正訊號產生電路138之訊號傳輸與行經外部耦合路徑280之訊號傳輸之間的延遲差異;換言之,藉由調整該延遲係數,傳送基頻電路252之輸出訊號經由校正訊號產生電路138到達耦接元件236的時間與該輸出訊號經由外部耦合路徑280到達耦接元件236的時間的差異得以縮小。舉例而言,該延遲係數是前述校正濾波器中至少一延遲電路的參數。 步驟四:重複步驟一至步驟三達M次,直到滿足一預設條件(例如:該洩漏抵銷後的能量小於預設能量值及/或該頻率響應差異小於預設差異值)其中M為不小於零的整數。
請參閱圖2。校正訊號產生電路138包含一校正濾波器1382與一等效傳送前端電路1384,其功能與作用如前所述。由於校正濾波器1382與等效傳送前端電路1384的每一個單獨而言可為已知或自行開發的電路,因此細節在此省略。
值得注意的是,在實施為可能的前提下,本技術領域具有通常知識者可選擇性地實施前述任一實施例中部分或全部技術特徵,或選擇性地實施前述複數個實施例中部分或全部技術特徵的組合,藉此增加本發明實施時的彈性。
綜上所述,本發明之無線收發機能夠抵銷內部訊號洩漏,並能選擇性地利用PSD功能來得到洩漏抵銷後的能量,以依據該洩漏抵銷後的能量做進一步的調整。
雖然本發明之實施例如上所述,然而該些實施例並非用來限定本發明,本技術領域具有通常知識者可依據本發明之明示或隱含之內容對本發明之技術特徵施以變化,凡此種種變化均可能屬於本發明所尋求之專利保護範疇,換言之,本發明之專利保護範圍須視本說明書之申請專利範圍所界定者為準。
100‧‧‧無線收發機110‧‧‧傳送電路112‧‧‧傳送前端電路114‧‧‧傳送後端電路120‧‧‧接收電路122‧‧‧接收前端電路124‧‧‧接收後端電路130‧‧‧校正電路131‧‧‧第一連接路徑132‧‧‧第二連接路徑134‧‧‧測試訊號產生電路136‧‧‧估計電路138‧‧‧校正訊號產生電路1382‧‧‧校正濾波器1384‧‧‧等效傳送前端電路212‧‧‧DAC(數位至類比轉換器)214‧‧‧濾波器222‧‧‧TX-Mixer(傳送混波器)224‧‧‧PAD(前級推動級放大器)226‧‧‧PA(功率放大器)232‧‧‧LNA1(第一低雜訊放大器)234‧‧‧LNA2(第二低雜訊放大器)236‧‧‧耦接元件238‧‧‧RX-Mixer(接收混波器)242‧‧‧ADC(類比至數位轉換器)252‧‧‧TX-BB(傳送基頻電路)254‧‧‧DPD(數位預失真電路)262‧‧‧RX-BB(接收基頻電路)270‧‧‧EX-PA(外部功率放大器)280‧‧‧外部耦合路徑
[圖1]顯示本發明之能夠抵銷內部訊號洩漏的無線收發機的一實施例;以及 [圖2]顯示圖1之無線收發機的電路細節範例。
100‧‧‧無線收發機
110‧‧‧傳送電路
112‧‧‧傳送前端電路
114‧‧‧傳送後端電路
120‧‧‧接收電路
122‧‧‧接收前端電路
124‧‧‧接收後端電路
130‧‧‧校正電路
131‧‧‧第一連接路徑
132‧‧‧第二連接路徑
134‧‧‧測試訊號產生電路
136‧‧‧估計電路
138‧‧‧校正訊號產生電路

Claims (10)

  1. 一種能夠抵銷內部訊號洩漏的無線收發機,包含: 一傳送電路,包含: 一傳送前端電路,包含一數位至類比轉換器,該數位至類比轉換器用來依據一傳送數位訊號產生一傳送類比訊號;以及 一傳送後端電路,包含一傳送射頻電路,該傳送射頻電路用來依據該傳送類比訊號產生一射頻傳送訊號; 一接收電路,包含: 一接收前端電路,包含一接收射頻電路,該接收射頻電路用來於一第一模式與一第二模式下,依據該射頻傳送訊號產生一類比接收訊號,該接收射頻電路另用來於一工作模式下,依據一接收訊號與一傳送訊號產生該類比接收訊號,其中該類比接收訊號包含來自該傳送射頻電路之訊號洩漏,該傳送訊號為該射頻傳送訊號或其放大訊號;以及 一接收後端電路,包含一類比至數位轉換器,該類比至數位轉換器用來依據該類比接收訊號產生一接收數位訊號;以及 一校正電路,包含: 一第一連接路徑,用來於該第一模式下導通以及於該第二模式下不導通,以於該第一模式下電性連接該傳送前端電路與該接收後端電路,從而形成一標準路徑包含該傳送前端電路、該第一連接路徑與該接收後端電路; 一第二連接路徑,用來於該第二模式下導通以及於該第一模式下不導通,以於該第二模式下電性連接該傳送後端電路與該接收前端電路,從而形成一洩漏路徑包含該傳送前端電路、該傳送後端電路、該第二連接路徑、該接收前端電路與該接收後端電路; 一測試訊號產生電路,用來於該第一模式與該第二模式下,輸出一測試訊號至該傳送前端電路,以供該傳送前端電路產生該傳送類比訊號; 一估計電路,用來執行至少下列步驟: 於該第一模式下,依據該測試訊號與行經該標準路徑之該接收數位訊號的差異產生一第一估計訊號; 於該第二模式下,依據該測試訊號與行經該洩漏路徑之該接收數位訊號的差異產生一第二估計訊號;以及 依據該第一估計訊號與該第二估計訊號之差異決定一校正濾波器之N個係數,其中該N為正整數;以及 一校正訊號產生電路,包含該校正濾波器,該校正訊號產生電路用來於該工作模式下提供一校正訊號給該接收電路,從而抵銷該訊號洩漏之至少一部分。
  2. 如申請專利範圍第1項所述之無線收發機,其中該工作模式是一全雙工模式。
  3. 如申請專利範圍第1項所述之無線收發機,其中該傳送前端電路之運作頻率低於該傳送後端電路之運作頻率,且該接收前端電路之運作頻率高於該接收後端電路之運作頻率。
  4. 如申請專利範圍第1項所述之無線收發機,其中該傳送前端電路包含一濾波器,該濾波器用來依據該傳送類比訊號產生一傳送濾波訊號,從而該傳送射頻電路依據該傳送濾波訊號產生該射頻傳送訊號。
  5. 如申請專利範圍第1項或第4項所述之無線收發機,其中該傳送後端電路包含一傳送混波器、一前級推動級放大器(preamplifier driver, PAD)以及一功率放大器,該接收前端電路包含至少一低雜訊放大器、一耦接元件(coupler)以及一接收混波器,該耦接元件用來於該工作模式下接收該校正訊號。
  6. 如申請專利範圍第1項所述之無線收發機,其中該第一估計訊號包含第一估計訊號振幅變化與第一估計訊號相角變化,該第二估計訊號包含第二估計訊號振幅變化與第二估計訊號相角變化。
  7. 如申請專利範圍第1項所述之無線收發機,其中該估計電路進一步執行下列步驟: 依據該第一估計訊號與該第二估計訊號之差異得到一當前頻率響應,並求出該當前頻率響應與一先前頻率響應的頻率響應差異; 於該工作模式下,利用一功率頻譜密度功能以依據該接收數位訊號得到一洩漏抵銷後的能量;以及 依據該洩漏抵銷後的能量調整一延遲係數,以縮小該頻率響應差異以及該洩漏抵銷後的能量,該延遲係數相關於經由該校正訊號產生電路之訊號傳輸與經由一外部耦合路徑之訊號傳輸之間的傳輸延遲,該外部耦合路徑電性連接該傳送電路之輸出端與該接收電路之輸出端。
  8. 如申請專利範圍第1項所述之無線收發機,其中該估計電路進一步執行下列步驟: 利用一功率頻譜密度功能以依據該接收數位訊號得到一洩漏抵銷後的能量;以及 依據該洩漏抵銷後的能量調整一延遲係數,以進一步縮小該洩漏抵銷後的能量,該延遲係數相關於經由該校正訊號產生電路之訊號傳輸與經由一外部耦合路徑之訊號傳輸之間的延遲差異,該外部耦合路徑電性連接該傳送電路之輸出端與該接收電路之輸出端。
  9. 如申請專利範圍第1項所述之無線收發機,其中該傳送前端電路進一步包含一傳送基頻電路與一數位預失真電路,該傳送基頻電路用來輸出一傳送基頻訊號,該數位預失真電路用來於該工作模式下依據該傳送基頻訊號輸出該傳送數位訊號,該校正訊號產生電路用來於該工作模式下依據該傳送基頻訊號輸出該校正訊號給該接收電路。
  10. 如申請專利範圍第1項所述之無線收發機,其中該傳送電路進一步包含一傳送開關耦接於該傳送後端電路與一外部功率放大器之間,該接收電路進一步包含一接收開關耦接於該接收前端電路與該接收電路之輸出端之間,該傳送開關與該接收開關於該第一模式與該第二模式下不導通,而於該工作模式下導通,一外部耦合路徑電性連接於該傳送電路之輸出端與該接收電路之輸出端之間,該外部功率放大器之輸出端為該傳送電路之輸出端。
TW107127215A 2018-08-06 2018-08-06 能夠抵銷內部訊號洩漏的無線收發機 TWI677202B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107127215A TWI677202B (zh) 2018-08-06 2018-08-06 能夠抵銷內部訊號洩漏的無線收發機
US16/443,116 US10715203B2 (en) 2018-08-06 2019-06-17 Wireless transceiver capable of offsetting internal signal leakage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107127215A TWI677202B (zh) 2018-08-06 2018-08-06 能夠抵銷內部訊號洩漏的無線收發機

Publications (2)

Publication Number Publication Date
TWI677202B TWI677202B (zh) 2019-11-11
TW202008737A true TW202008737A (zh) 2020-02-16

Family

ID=69189084

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107127215A TWI677202B (zh) 2018-08-06 2018-08-06 能夠抵銷內部訊號洩漏的無線收發機

Country Status (2)

Country Link
US (1) US10715203B2 (zh)
TW (1) TWI677202B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11411662B2 (en) 2020-12-18 2022-08-09 Rohde & Schwarz Gmbh & Co. Kg Calibration system
US11489536B1 (en) * 2021-06-25 2022-11-01 Intel Corporation Input circuitry for an analog-to-digital converter, receiver, base station and method for operating an input circuitry for an analog-to-digital converter
CN113746568B (zh) * 2021-07-29 2022-10-28 北京工业大学 一种基于正频率频带复信号的mwc系统传感矩阵系数校准方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5524281A (en) * 1988-03-31 1996-06-04 Wiltron Company Apparatus and method for measuring the phase and magnitude of microwave signals
US5999008A (en) * 1997-04-30 1999-12-07 Credence Systems Corporation Integrated circuit tester with compensation for leakage current
US9077440B2 (en) * 2013-01-04 2015-07-07 Telefonaktiebolaget L M Ericsson (Publ) Digital suppression of transmitter intermodulation in receiver
EP3300259A1 (en) * 2016-09-21 2018-03-28 Intel IP Corporation Method for calculating a leakage between a transmit path and a receive path and wireless communication circuit

Also Published As

Publication number Publication date
TWI677202B (zh) 2019-11-11
US20200044684A1 (en) 2020-02-06
US10715203B2 (en) 2020-07-14

Similar Documents

Publication Publication Date Title
US8615204B2 (en) Adaptive interference cancellation for transmitter distortion calibration in multi-antenna transmitters
CA2953636C (en) Interference cancellation apparatus and method
RU2664392C2 (ru) Способ и устройство подавления помех
JP5864176B2 (ja) スプリアス放射打ち消しのためのシステムおよび方法
US8521090B2 (en) Systems, methods, and apparatuses for reducing interference at the front-end of a communications receiving device
US8982995B1 (en) Communication device and method of multipath compensation for digital predistortion linearization
US9577689B2 (en) Apparatus and methods for wide bandwidth analog-to-digital conversion of quadrature receive signals
WO2020215893A1 (zh) 一种全双工自干扰消除方法和装置
TWI677202B (zh) 能夠抵銷內部訊號洩漏的無線收發機
TW201603482A (zh) 用以放大傳輸信號或用以判定延遲控制參數之值的設備及方法
WO2020248584A1 (zh) 一种收发信机的增益平坦度补偿方法
WO2010034834A1 (en) Technique for suppressing noise in a transmitter device
CN110830076B (zh) 能够抵销内部信号泄漏的无线收发机
US20160036471A1 (en) Methods for Computing Predistortion Values for Wireless Systems
JP2019169938A (ja) 信号を二重化するための装置、ワイヤレス通信デバイス、および信号を二重化する方法
WO2015127610A1 (zh) 一种功率放大的方法及功率放大器
Korpi et al. Advanced architectures for self-interference cancellation in full-duplex radios: Algorithms and measurements
TWI779974B (zh) 射頻收發裝置
JP2007525086A (ja) 可変データレート無線トランスミッタの歪み/効率の適応化
TWI462537B (zh) 通訊裝置與射頻等化器
US20080317165A1 (en) Systems and methods of calibrating a transmitter
TW200939651A (en) Apparatus with tunable filter and related adjusting method
Madhuwantha et al. N-way digitally driven doherty power amplifier design and analysis for ku band applications
US10623034B2 (en) Receiver circuit for determining whether to discard I/Q mismatch compensation parameters according to signal-to-interference ratio
TWI779762B (zh) 通道不匹配補償的控制方法及控制電路