TW202002734A - Manufacturing method of metal-based high-thermal-conduction substrate - Google Patents
Manufacturing method of metal-based high-thermal-conduction substrate Download PDFInfo
- Publication number
- TW202002734A TW202002734A TW107120950A TW107120950A TW202002734A TW 202002734 A TW202002734 A TW 202002734A TW 107120950 A TW107120950 A TW 107120950A TW 107120950 A TW107120950 A TW 107120950A TW 202002734 A TW202002734 A TW 202002734A
- Authority
- TW
- Taiwan
- Prior art keywords
- metal
- thermally conductive
- insulating layer
- conductive insulating
- substrate
- Prior art date
Links
Images
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Insulated Metal Substrates For Printed Circuits (AREA)
Abstract
Description
本發明涉及一種高熱傳導基板及其製造方法,特別是涉及一種金屬基高熱傳導基板以及製造方法。 The invention relates to a high thermal conductivity substrate and a manufacturing method thereof, in particular to a metal-based high thermal conductivity substrate and a manufacturing method.
隨著全球電子科技產業的蓬勃發展,印刷電路板的需求量成長極為快速,電路基板因此而成為現今消費性電子產品和相關資訊、通訊週邊產品以及LED照明,LED車用照明的關鍵組件。然而,電子產品的電路基板始終維持一貫的平面型式。 With the vigorous development of the global electronic technology industry, the demand for printed circuit boards has grown extremely fast. As a result, circuit substrates have become a key component of today's consumer electronic products and related information, communication peripheral products, and LED lighting and LED automotive lighting. However, the circuit board of electronic products always maintains a consistent planar pattern.
隨著對於電子產品的效能、速度與外觀要求的提高,無庸置疑的,外型與熱管理是需要被滿足的二大課題,身處關鍵組件位置的電路板,自然也被要求需要具備更多的功能性,包含非平面型式與更高的熱傳導性能。 With the increasing requirements for the efficiency, speed and appearance of electronic products, there is no doubt that appearance and thermal management are the two major topics that need to be met. Circuit boards in key component positions are naturally required to have more The functionality, including non-planar type and higher thermal conductivity.
現行的電路基板製作工藝是採取熱壓法,在一基材上藉由絕緣膠膜將金屬層與之貼合,再在金屬層上製作線路圖案。這樣的方式僅能製作平面電路板,如若需要製作非平面電路板,則需以後加工彎折的方式達到目的,並且,以此種方式只適用可彎折的基材,而依據不同基材的剛性與韌性規格,此時的電路板的線路圖案極可能因此產生斷裂的情況。 The current manufacturing process of the circuit board adopts the hot pressing method, and the metal layer is pasted on the substrate by an insulating adhesive film, and then the circuit pattern is made on the metal layer. This method can only produce planar circuit boards. If non-planar circuit boards need to be produced, the bending method needs to be processed later to achieve the purpose, and in this way, only flexible substrates can be used, depending on the different substrates. Rigidity and toughness specifications, the circuit pattern of the circuit board at this time is likely to be broken.
對於熱管理問題上的貢獻,受限於現行電路基板的製作工藝的熱壓法,貼合基材與金屬層的絕緣膠膜,在必須達到絕緣的要求下,只能捨棄熱傳導的能力,即使在所謂的金屬基電路基板上, 也以2~3W/M.K的熱傳導係數居多,極難滿足電子產品日益增加的熱能傳遞,尤其在高功率與車用LED照明的應用上特別明顯。 The contribution to thermal management issues is limited by the hot pressing method of the current circuit board manufacturing process, and the insulating adhesive film that bonds the base material and the metal layer can only abandon the ability of thermal conduction under the requirement of insulation, even On the so-called metal-based circuit board, the thermal conductivity of 2~3W/MK is also the most, which is extremely difficult to meet the increasing heat transfer of electronic products, especially in high-power and automotive LED lighting applications.
本發明所欲解決的技術問題在於,如何將導熱效果更好的材料作為製作平板狀與非平板狀電路板的基材,用以製作線路化元件。 The technical problem to be solved by the present invention is how to use a material with better thermal conductivity as the base material for making flat and non-flat circuit boards to make circuitized components.
為了解決上述的技術問題,本發明所採用的其中一技術方案是,提供一種金屬基高熱傳導基板的製造方法。前述的製造方法包括:提供一金屬基材,金屬基材可為平板狀或非平板狀;製作一高導熱絕緣層於所述基材上,其中,所述高導熱絕緣層的材料包括一高分子母材以及一導熱摻雜物,且導熱絕緣層的熱傳導係數介於100至400W/m.K;對導熱絕緣層的表面執行一表面處理,以粗糙化導熱絕緣層的表面,以及在表面形成具有原子鍵結的官能基,以和金屬原子鍵結;以及通過無電鍍與電鍍工藝,製作一金屬層在經過表面處理的導熱絕緣層上,供作製作電路之用。 In order to solve the above technical problems, one of the technical solutions adopted by the present invention is to provide a method for manufacturing a metal-based high thermal conductivity substrate. The foregoing manufacturing method includes: providing a metal substrate, which may be flat or non-flat; making a high thermal conductivity insulating layer on the substrate, wherein the material of the high thermal conductivity insulating layer includes a high Molecular base material and a thermally conductive dopant, and the thermal conductivity of the thermally conductive insulating layer is between 100 and 400W/m. K; perform a surface treatment on the surface of the thermally conductive insulating layer to roughen the surface of the thermally conductive insulating layer and form a functional group with atomic bonding on the surface to bond with metal atoms; and through electroless plating and electroplating processes A metal layer is on the surface-treated thermally conductive insulating layer, which is used for making circuits.
本發明所採用的另一技術方案是提供一種金屬機高熱傳導基板,其包括:金屬基材、導熱絕緣層以及金屬層。導熱絕緣層設置於金屬基材上,並包括高分子母材及導熱摻雜物,導熱絕緣層的熱傳導係數介於100至400W/m.K。金屬層設置於導熱絕緣層上,且包括一無電電鍍金屬層以及一有電電鍍金屬層。無電電鍍金屬層設置於導熱絕緣層與有電電鍍金屬層之間。 Another technical solution adopted by the present invention is to provide a metal machine high thermal conductivity substrate, which includes a metal substrate, a thermally conductive insulating layer, and a metal layer. The thermally conductive insulating layer is provided on the metal substrate and includes a polymer base material and a thermally conductive dopant. The thermal conductivity of the thermally conductive insulating layer is between 100 and 400 W/m. K. The metal layer is disposed on the thermally conductive insulating layer, and includes an electroless metal plating layer and an electroplated metal layer. The electroless metal plating layer is disposed between the thermally conductive insulating layer and the electroplated metal layer.
本發明的有益效果在於,在本發明技術方案所提供的金屬基高熱傳導基板及其製造方法中,在金屬基材上製作具有高熱傳導係數的導熱絕緣層,並採用具有粗糙化與金屬原子鍵結效能的表面處理工藝,再藉由無電電鍍與有電電鍍工藝,在具有高熱傳導係數的絕緣層上製作一金屬層,以製作電路。採用本發明製作的金屬基高熱傳導基板,能夠將電子元件所產生的熱能,直接、快速的傳遞出去,可以有效的降低電子產品元件的工作溫度,進而 增加產品使用壽命。 The beneficial effect of the present invention is that in the metal-based high thermal conductivity substrate and the manufacturing method thereof provided by the technical solution of the present invention, a thermally conductive insulating layer with a high thermal conductivity coefficient is fabricated on a metal substrate, and roughening and metal atomic bonding are used. For the surface treatment process of junction efficiency, a metal layer is formed on the insulating layer with high thermal conductivity by electroless plating and electroplating process to make a circuit. The metal-based high thermal conductivity substrate manufactured by the invention can directly and quickly transfer the heat energy generated by the electronic component, and can effectively reduce the working temperature of the electronic product component, thereby increasing the service life of the product.
導熱絕緣層的熱傳導係數,可以透過製作絕緣層時採用的高分子母才與參雜物的種類與比例做調整,常規下的導熱絕緣層的熱傳導係數介於100~400w/mk的範圍。 The thermal conductivity of the thermally conductive insulating layer can be adjusted by the types and proportions of the polymer matrix and impurities used in the production of the insulating layer. The thermal conductivity of the conventional thermally conductive insulating layer is in the range of 100~400w/mk.
為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與附圖,然而所提供的附圖僅用於提供參考與說明,並非用來對本發明加以限制。 In order to further understand the features and technical content of the present invention, please refer to the following detailed description and drawings of the present invention. However, the drawings provided are for reference and description only, and are not intended to limit the present invention.
P1‧‧‧金屬基高熱傳導基板 P1‧‧‧Metal-based high thermal conductivity substrate
10‧‧‧金屬基材 10‧‧‧Metal substrate
10a‧‧‧第一表面 10a‧‧‧First surface
10b‧‧‧第二表面 10b‧‧‧Second surface
11、11’‧‧‧導熱絕緣層 11, 11’‧‧‧ thermal insulation layer
11s‧‧‧表面 11s‧‧‧Surface
12‧‧‧保護層 12‧‧‧Protective layer
13’、13‧‧‧金屬層 13’、13‧‧‧Metal layer
130’、130‧‧‧無電電鍍金屬層 130’、130‧‧‧electroless plating metal layer
131、131’‧‧‧有電電鍍金屬層 131, 131’‧‧‧ with electroplated metal layer
S100~S400‧‧‧流程步驟 S100~S400‧‧‧Process steps
13h‧‧‧開口圖案 13h‧‧‧ opening pattern
圖1為本發明一實施例的金屬基高熱傳導基板的製造方法的流程圖。 FIG. 1 is a flowchart of a method for manufacturing a metal-based high thermal conductivity substrate according to an embodiment of the invention.
圖2A為本發明一實施例的金屬基高熱傳導基板在製造流程中的局部剖面示意圖。 FIG. 2A is a partial cross-sectional schematic diagram of a metal-based high thermal conductivity substrate in a manufacturing process according to an embodiment of the invention.
圖2B為本發明一實施例的金屬基高熱傳導基板在製造流程中的局部剖面示意圖。 2B is a partial cross-sectional schematic diagram of a metal-based high thermal conductivity substrate in the manufacturing process according to an embodiment of the invention.
圖2C為本發明一實施例的金屬基高熱傳導基板在製造流程中的局部剖面示意圖。 2C is a partial cross-sectional schematic diagram of a metal-based high thermal conductivity substrate in the manufacturing process according to an embodiment of the invention.
圖2D為本發明一實施例的金屬基高熱傳導基板在製造流程中的局部剖面示意圖。 FIG. 2D is a partial cross-sectional view of a metal-based high thermal conductivity substrate in the manufacturing process according to an embodiment of the invention.
圖2E為本發明一實施例的金屬基高熱傳導基板在製造流程中的局部剖面示意圖。 2E is a partial cross-sectional schematic diagram of a metal-based high thermal conductivity substrate in the manufacturing process according to an embodiment of the invention.
圖2F為本發明一實施例的金屬基高熱傳導基板在製造流程中的局部剖面示意圖。 FIG. 2F is a partial cross-sectional schematic diagram of a metal-based high thermal conductivity substrate in a manufacturing process according to an embodiment of the invention.
圖2G為本發明一實施例的金屬基高熱傳導基板在製造流程中的局部剖面示意圖。 FIG. 2G is a partial cross-sectional schematic diagram of a metal-based high thermal conductivity substrate in the manufacturing process according to an embodiment of the invention.
圖2H為本發明一實施例的金屬基高熱傳導基板在製造流程中的局部剖面示意圖。 2H is a partial cross-sectional schematic diagram of a metal-based high thermal conductivity substrate in the manufacturing process according to an embodiment of the invention.
請參閱圖1。圖1為本發明一實施例的金屬基高熱傳導基板的 製造方法的流程圖。 Please refer to Figure 1. FIG. 1 is a flowchart of a method for manufacturing a metal-based high thermal conductivity substrate according to an embodiment of the invention.
在步驟S100中,提供一金屬基材。接著,在步驟S200中,形成一導熱絕緣層於金屬基材上。在步驟S300中,對導熱絕緣層執行一表面處理。之後,在步驟S400中,形成一金屬層於導熱絕緣層上。 In step S100, a metal substrate is provided. Next, in step S200, a thermally conductive insulating layer is formed on the metal substrate. In step S300, a surface treatment is performed on the thermally conductive insulating layer. Then, in step S400, a metal layer is formed on the thermally conductive insulating layer.
詳細的製程步驟請參照圖2A至圖2H。圖2A至圖2H分別顯示本發明實施例的金屬基高熱傳導基板在不同的製造步驟中的局部剖面示意圖。 For detailed process steps, please refer to FIGS. 2A to 2H. FIG. 2A to FIG. 2H respectively show partial cross-sectional schematic diagrams of the metal-based high thermal conductivity substrate in different manufacturing steps of the embodiment of the present invention.
首先,如圖2A所示,提供一金屬基材10。金屬基材10可以平板狀基材或者是非平板狀基材。非平板狀基材例如是電子產品的散熱件、半導體元件的承載座等具有不規則形狀或者凹凸結構的基材。 First, as shown in FIG. 2A, a
在本實施例中,金屬基材10是非平板狀基材,並具有一第一表面10a以及一第二表面10b。須說明的是,本實施例中第一表面10a與第二表面10b都是凹凸表面。前述的凹凸表面是泛指非平坦的表面,也就是說,凹凸表面可以包括曲面、斜面、階梯面、凹陷表面、凸起表面或前述任意組合。根據基材10形狀的不同,凹凸表面的最高點和最低點之間的垂直差距(高低差)可能由0.01公分(cm)至5公分(cm)。在另一實施例中,第一表面10a為凹凸表面,而第二表面10b為平坦表面。 In this embodiment, the
另外,金屬基材10的材料可以是金屬或者是合金,其例如是鋁、銅、鐵、錫、鎳、不鏽鋼等等。 In addition, the material of the
接著,如圖2B所示,在金屬基材10上形成導熱絕緣層11’。須說明的是,導熱絕緣層11’至少會覆蓋金屬基材10預定要形成金屬層的區域。 Next, as shown in FIG. 2B, a thermally conductive insulating layer 11' is formed on the
舉例而言,當金屬基材10為散熱件時,前述的第一表面10a可以是散熱件的上表面,而第二表面10b是散熱件的底表面。因此,導熱絕緣層11’是覆蓋在第一表面10a上,而基材10的第二 表面10b沒有覆蓋導熱絕緣層11’。 For example, when the
在另一實施例中,導熱絕緣層11’可以覆蓋基材10的所有表面(包括第一表面10a、第二表面10b以及側表面),但是後續製程中所形成的金屬層只設置在其中一部分表面(例如是第一表面10a)上。 In another embodiment, the thermally conductive insulating layer 11' may cover all surfaces of the substrate 10 (including the
另外,在一實施例中,導熱絕緣層11’可以利用噴塗法、塗佈法或者是浸塗法來形成於金屬基材10上,其中,噴塗法例如是靜電噴塗法、熱噴塗法、電漿噴塗法等等,塗佈法例如是旋塗法、刮塗法、刷塗法等等。利用噴塗法可以在第一表面10上形成較均勻的導熱絕緣層11’,且噴塗法也適合應用於自動化及批量生產金屬基高熱傳導基板。 In addition, in an embodiment, the thermally conductive insulating
在本實施例中,導熱絕緣層11’的熱傳導係數介於100至400W/m.K,以提供較好的散熱效果。具體而言,導熱絕緣層11’的材料包括一高分子母材以及一導熱摻雜物。導熱絕緣層11’的熱傳導係數可以透過調整高分子母材與導熱摻雜物的種類與比例來進行調整。 In this embodiment, the thermal conductivity of the thermally conductive insulating layer 11' is between 100 and 400 W/m.K to provide better heat dissipation. Specifically, the material of the thermally conductive insulating layer 11' includes a polymer base material and a thermally conductive dopant. The thermal conductivity of the thermally conductive insulating layer 11' can be adjusted by adjusting the types and ratios of the polymer base material and the thermally conductive dopant.
高分子母材可以是熱塑性或熱固性之材料。高分子母材包含,但不限於,聚乙烯(Polyethylene)、聚丙烯(Polypropylene)、環氧樹脂(Epoxy)、壓克力樹酯、聚氯乙烯(PVC)或其任意組合。導熱摻雜物可以選擇熱傳導係數至少大於100W/m.K的材料,導熱摻雜物包含,但不限於,石墨烯、石墨烯衍生物、氮化鋁、氮化鋁衍生物、氧化鋁、金屬粉(包含合金粉)或其任意組合。在一實施例中,導熱摻雜物的重量是佔導熱絕緣層的總重量的40至70%。 The polymer base material may be a thermoplastic or thermosetting material. The polymer base material includes, but is not limited to, polyethylene (Polyethylene), polypropylene (Polypropylene), epoxy resin (Epoxy), acrylic resin, polyvinyl chloride (PVC), or any combination thereof. The thermally conductive dopant can be selected from materials with a thermal conductivity coefficient of at least 100 W/mK. The thermally conductive dopant includes, but is not limited to, graphene, graphene derivatives, aluminum nitride, aluminum nitride derivatives, aluminum oxide, and metal powder ( Contains alloy powder) or any combination thereof. In an embodiment, the weight of the thermally conductive dopant is 40 to 70% of the total weight of the thermally conductive insulating layer.
在本實施例中,導熱絕緣層11’是形成在金屬基材10的其中一部份表面上,而沒有覆蓋基材10的全部表面。也就是說,在本實施例中,在金屬基材10的另一部分表面10b並沒有形成導熱絕緣層11’。另外,導熱絕緣層11’的厚度大約是介於100微米(μm)至200微米(μm)之間。在一實施例中,第一表面10a的高低差至 少大於0.1公分(cm),因此,導熱絕緣層11’的表面具有和第一表面10a相符的輪廓。 In this embodiment, the thermally conductive insulating layer 11' is formed on a part of the surface of the
請參照圖2C,為了避免金屬基材10的第二表面10b因未被導熱絕緣層11’所覆蓋,而在後續製程中接觸到無電電鍍液以及電鍍液。本發明實施例的金屬基高熱傳導基板的製造方法還可進一步包括,形成保護層12覆蓋金屬基材10的另一部分表面,也就是第二表面10b。 Referring to FIG. 2C, in order to avoid the
保護層12的材料可為高分子材料。高分子材料可以是熱塑性或者熱固性高分子材料,例如:聚乙烯(Polyethylene)、聚丙烯(Polypropylene)、環氧樹脂(Epoxy)、聚氯乙烯(PVC)、壓克力樹酯或者其任意組合。只要可用以保護金屬基材10,本發明並不限制保護層12的材料。 The material of the
保護層12可以通過塗佈方式形成於金屬基材10上。另外,先說明的是,在此步驟中形成於金屬基材10上的保護層12,可以在後續步驟中被移除。 The
在一實施例中,保護層12和導熱絕緣層11’是彼此互不重疊。在另一實施例中,保護層12和導熱絕緣層11’會相互重疊於二者的交界處。也就是說,保護層12的邊緣部分可和導熱絕緣層11’的邊緣部分相互重疊(圖未示)。 In one embodiment, the
須說明的是,當導熱絕緣層11’完全覆蓋金屬基材10的所有表面時,形成保護層12的步驟也可以被省略。 It should be noted that when the thermally conductive insulating layer 11' completely covers all surfaces of the
接著,如圖2D所示,對導熱絕緣層11’執行一表面處理,以粗糙化導熱絕緣層11的一表面11s,以及在表面形成具有原子鍵結的官能基,用以和金屬原子鍵結。 Next, as shown in FIG. 2D, a surface treatment is performed on the thermally conductive insulating layer 11' to roughen a
具體而言,在本實施例中,是通過一表面處理液,以粗糙化導熱絕緣層11的表面11s,並且對表面11s進行改質。據此,經過表面前處理之後,表面11s的表面粗糙度是介於0.1微米至1微米。 Specifically, in this embodiment, a surface treatment liquid is used to roughen the
進一步而言,在一實施例中,在執行表面前處理的步驟之後,表面11s會具有多個微孔洞。另外,在本實施例中,微孔洞的孔徑尺寸介於0.01微米(μm)至5微米(μm)。 Further, in one embodiment, after performing the surface pretreatment step, the
另外,利用表面處理液也可對表面11s進行改質,而在表面11s形成可和金屬原子鍵結的官能基。前述的官能基形成於多個微孔洞內,且官能基可含有陰離子以及陽離子至少其中一種,例如是含有:氯離子(Cl-)、亞硫酸根離子(SO3 -)、硝酸根離子(NO3 -)、溴離子(Br-)、鈉離子(Na+)、鉀離子(K+)或其任意組合。在一實施例中,是利用具有界面活性劑的表面處理液來對表面11s進行表面改質,且界面活性劑含有前文中所列舉的官能基。須說明的是,表面11s是在後續製程中預定要形成金屬層的區域。也就是說,被粗糙化的表面11s可以是導熱絕緣層11’的所有外表面或者是導熱絕緣層11’的外表面的其中一部分。 In addition, the surface treatment liquid can also be used to modify the
舉例而言,當導熱絕緣層11形成於金屬基材10的所有表面(包括第一表面10a、第二表面10b以及側表面),且在後續製程中,只有在第一表面10a上形成金屬層時,會將只有覆蓋第一表面11a的一部分導熱絕緣層11’的外表面定義為待鍍的表面11s。也就是說,只有導熱絕緣層11的其中一部分外表面(待鍍的表面11s)會被粗糙化,而另一部分外表面則不會特別進行表面處理。因此,在進行表面處理之後,導熱絕緣層11的外表面在不同的區域會具有不同的表面粗糙度。導熱絕緣層11沒有進行表面前處理的部分在後續步驟中並不會形成金屬層,因而可用來保護金屬基材10。 For example, when the thermally conductive insulating
接著,如圖2E至圖2H所示,形成金屬層於導熱絕緣層11上,以製作電路。具體而言,如圖2E所示,先形成一無電電鍍金屬層130’於導熱絕緣層11的待鍍表面11s上。也就是說,先通過一無電電鍍法來形成前述的無電電鍍金屬層130’。無電電鍍金屬層130’的材料可以是銅、鋁、鎳、金等導電材料。另外,無電電鍍金屬層130’的厚度大約是介於0.3至0.6微米(μm)。 Next, as shown in FIGS. 2E to 2H, a metal layer is formed on the thermally conductive insulating
隨後,如圖2F所示,在無電電鍍金屬層130’上形成一有電電鍍金屬層131’,有電電鍍金屬層131’的厚度至少超過20微米(μm)。也就是說,在進行無電電鍍法之後,再執行有電電鍍法來增加金屬層的總厚度。無電電鍍金屬層130’與有電電鍍金屬層131’共同形成一金屬層13’。在本實施例中,金屬層13’會覆蓋導熱絕緣層11的整個表面11s。 Subsequently, as shown in FIG. 2F, an electroplated metal layer 131' is formed on the electroless plated metal layer 130', and the thickness of the electroplated metal layer 131' exceeds at least 20 micrometers (µm). That is, after the electroless plating method is performed, the electroplating method is performed to increase the total thickness of the metal layer. The electroless plated metal layer 130' and the electroplated metal layer 131' together form a metal layer 13'. In this embodiment, the metal layer 13' covers the
須說明的是,在本實施例中,在形成無電電鍍金屬層130’之前,先對導熱絕緣層11進行表面處理,以形成粗糙的表面11s,以及在粗糙的表面11s形成具有原子鍵結的官能基,用以和金屬原子鍵結。粗糙的表面11s可以進一步增加形成官能基的表面積,且粗糙的表面11s也可增加金屬與導熱絕緣層11之間的結合力。 It should be noted that, in this embodiment, before forming the electroless plating metal layer 130', the thermally conductive insulating
因此,金屬層13’與導熱絕緣層11之間的附著力可以進一步提升。如此,可降低金屬層13’由金屬基材10上脫落的機率,而可提高產品良率。在一實施例中,金屬層13’的附著力至少1.2Kg,而可符合目前電路板的檢驗規範。 Therefore, the adhesion between the metal layer 13' and the thermally conductive insulating
另外,在通過有電電鍍法形成有電電鍍金屬層131’時,須將金屬基材10整個浸入電鍍液中。由於本實施例的金屬基材10的材料是金屬材料,因此先前步驟中(圖2C)所形成的保護層12,可以使金屬基材10和電鍍液隔絕。 In addition, when the electroplated metal layer 131' is formed by the electroplating method, the
接著,請參照圖2G,在完成有電電鍍金屬層131’的製作之後,去除保護層12。在一實施例中,可以直接從金屬基材10剝離保護層12。在其他實施例中,也可以通過化學溶液將保護層12去除。 Next, referring to FIG. 2G, after the preparation of the electroplated metal layer 131' is completed, the
請參照圖2H,圖案化無電電鍍金屬層130’與有電電鍍金屬層131’,以形成線路化的金屬層13。通過上述步驟,可形成本發明其中一實施例的金屬基高熱傳導基板P1。 Referring to FIG. 2H, the electroless plated metal layer 130' and the electroplated metal layer 131' are patterned to form a
在一實施例中,圖案化無電電鍍金屬層130’與有電電鍍金屬層131’可以利用現有的塗布光阻、微影、蝕刻等步驟來實現,以使線路化的金屬層13具有預定的圖案。在另一實施例中,可以利 用雷射雕刻來圖案化無電電鍍金屬層130’與有電電鍍金屬層131’。 In one embodiment, the patterned electroless plated metal layer 130' and the electroplated metal layer 131' can be implemented using existing steps of coating photoresist, lithography, etching, etc., so that the
在本實施例中,圖案化的無電電鍍金屬層130以及圖案化的有電電鍍金屬層131共同形成線路化的金屬層13。線路化的金屬層13具有一開口圖案13h,而使導熱絕緣層11的其中一部份表面由開口圖案13h中被暴露出來。 In this embodiment, the patterned electroless plated
在完成金屬層13’、13的製作後,後續還可進一步在金屬基高熱傳導基板P1上形成防焊層(solder mask)、形成多個用以連接外部線路的端子以及分板(de-panel)等製程。 After the metal layers 13' and 13 are completed, a solder mask, a plurality of terminals for connecting external circuits, and a de-panel can be further formed on the metal-based high thermal conductivity substrate P1 ) And other processes.
綜合上述,本發明的有益效果在於本發明技術方案所提供的金屬基高熱傳導基板及其製造方法,其通過“在金屬基材10上形成熱傳導係數介於100至400W/m.K的導熱絕緣層11,對導熱絕緣層11執行一表面前處理,再於導熱絕緣層11上形成金屬層13’、13”的技術手段,可直接在立體狀金屬基材10的表面上形成金屬層13’、13,並且使金屬基高熱傳導基板P1具有良好的導熱效果。 In summary, the beneficial effect of the present invention lies in the metal-based high thermal conductivity substrate and the manufacturing method thereof provided by the technical solution of the present invention, by "forming a thermally conductive insulating
須說明的是,現有技術手段中,通過壓合所形成的電路板主體只能形成平板狀,而無法具有立體結構。相較於先前的技術手段,本發明實施例所提供的製造方法可以在具有任意形狀的基材上形成金屬層13’、13。 It should be noted that in the prior art means, the circuit board body formed by pressing can only be formed into a flat plate shape, and cannot have a three-dimensional structure. Compared with the previous technical means, the manufacturing method provided in the embodiments of the present invention can form
據此,通過本發明實施例所提供的製造方法,可以利用電子產品散熱件、零組件、半導體元件的承載座、連接器等具有不規則形狀的零件直接做為金屬基材10,並將金屬層13’直接形成在金屬基材10上,以供製作電路。如此,電子元件可以直接焊接在金屬層13’、13上,而可省略現有的平板狀電路板或軟性電路板,進而可縮減電子產品的體積。 Accordingly, through the manufacturing method provided by the embodiments of the present invention, heat dissipation parts of electronic products, components, semiconductor component carriers, connectors, and other parts with irregular shapes can be directly used as the
另外,相較於現有的電路板所使用的絕緣材料(玻璃纖維膠膜板),本發明實施例中的導熱絕緣層11的熱傳導係數更高。當本實 施例的金屬基高熱傳導基板P1配合裝設於其上的電子元件操作時,導熱絕緣層11可以提供更好的導熱效果。 In addition, the thermal conductivity of the thermally conductive insulating
進一步而言,當金屬基材10的材料為鋁時,已塗佈導熱絕緣層11的金屬基材10整體的熱傳導係數(K值)可高達150W/m.K,是市售鋁基板的75倍。當金屬基材10的材料為銅時,已塗佈導熱絕緣層11的金屬基材10整體的熱傳導係數(K值)更可高達350W/m.K。 Further, when the material of the
採用本發明製作的金屬基高熱傳導基板P1,能夠將電子元件所產生的熱能,直接、快速的傳遞出去,可以有效的降低電子產品元件的工作溫度,進而增加產品使用壽命。 The metal-based high thermal conductivity substrate P1 manufactured by the invention can directly and quickly transfer the heat energy generated by the electronic components, and can effectively reduce the working temperature of the electronic product components, thereby increasing the service life of the products.
另外,導熱絕緣層11的熱傳導係數,可以透過調整高分子母材與摻雜物的種類與比例來調整。常規下的導熱絕緣層11的熱傳導係數介於100~400w/mk的範圍。 In addition, the thermal conductivity of the thermally conductive insulating
以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及附圖內容所做的等效技術變化,均包含於本發明的申請專利範圍內。 The content disclosed above is only a preferred and feasible embodiment of the present invention, and does not limit the scope of the patent application of the present invention, so all equivalent technical changes made by using the description and drawings of the present invention are included in the application of the present invention. Within the scope of the patent.
S100~S400‧‧‧流程步驟 S100~S400‧‧‧Process steps
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107120950A TWI674824B (en) | 2018-06-19 | 2018-06-19 | Manufacturing method thereof metal-based high-thermal-conduction substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107120950A TWI674824B (en) | 2018-06-19 | 2018-06-19 | Manufacturing method thereof metal-based high-thermal-conduction substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI674824B TWI674824B (en) | 2019-10-11 |
TW202002734A true TW202002734A (en) | 2020-01-01 |
Family
ID=69023727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107120950A TWI674824B (en) | 2018-06-19 | 2018-06-19 | Manufacturing method thereof metal-based high-thermal-conduction substrate |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI674824B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI745072B (en) * | 2020-09-07 | 2021-11-01 | 鈺橋半導體股份有限公司 | Wiring board with buffer layer and thermally conductive admixture |
CN114158178A (en) * | 2020-09-08 | 2022-03-08 | 钰桥半导体股份有限公司 | Circuit board with buffer layer and heat-conducting admixture |
TWI782477B (en) * | 2021-04-09 | 2022-11-01 | 艾姆勒科技股份有限公司 | Insulated metal substrate structure |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0473995A (en) * | 1990-07-16 | 1992-03-09 | Showa Aircraft Ind Co Ltd | Manufacture of electronic board and electronic board |
CN103002655A (en) * | 2012-08-23 | 2013-03-27 | 苏州金科信汇光电科技有限公司 | Ultrahigh-thermal-conductivity metal substrate and manufacturing process thereof |
-
2018
- 2018-06-19 TW TW107120950A patent/TWI674824B/en not_active IP Right Cessation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI745072B (en) * | 2020-09-07 | 2021-11-01 | 鈺橋半導體股份有限公司 | Wiring board with buffer layer and thermally conductive admixture |
CN114158178A (en) * | 2020-09-08 | 2022-03-08 | 钰桥半导体股份有限公司 | Circuit board with buffer layer and heat-conducting admixture |
CN114158178B (en) * | 2020-09-08 | 2023-11-07 | 钰桥半导体股份有限公司 | Circuit board with buffer layer and heat conducting admixture |
TWI782477B (en) * | 2021-04-09 | 2022-11-01 | 艾姆勒科技股份有限公司 | Insulated metal substrate structure |
Also Published As
Publication number | Publication date |
---|---|
TWI674824B (en) | 2019-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9504165B2 (en) | Method of forming conductive traces on insulated substrate | |
TW202002734A (en) | Manufacturing method of metal-based high-thermal-conduction substrate | |
TW201408153A (en) | Ceramic substrate and method for reducing surface roughness of metal filled via holes thereon | |
WO2011041934A1 (en) | Semiconductor carrier structure | |
KR20140145870A (en) | A heat-radiation complex sheet | |
US20110123930A1 (en) | Ceramic substrate preparation process | |
JP2006324542A (en) | Printed wiring board and its manufacturing method | |
US20140268619A1 (en) | Method of Manufacturing Substrate for Chip Packages and Method of Manufacturing Chip Package | |
JP2009064806A (en) | Circuit board and method of manufacturing the same, and semiconductor module | |
JP4411720B2 (en) | Thermally conductive substrate and manufacturing method thereof | |
TW201143569A (en) | Manufacturing method of metal ceramics multi-layer circuit heat-dissipation substrate | |
TWI581697B (en) | Method for manufacturing heat dissipation structure of ceramic substrate | |
TWI391039B (en) | Circuit board with metal heat sink and manufacturing method thereof | |
US11665859B2 (en) | Heat dissipation conductive flexible board | |
CN109378302B (en) | Heat dissipation conformal circuit and manufacturing method thereof | |
KR102119142B1 (en) | Method for fabriating Wafer Level Package's Carrier using lead frame | |
TWM593131U (en) | Heat dissipation structure of bare crystal (die) | |
TWM536989U (en) | Large area ceramic substrate structure | |
CN109243984A (en) | A kind of welding resistance method of IGBT aluminium silicon carbide heat-radiating substrate | |
TWI429115B (en) | Semiconductor bearing structure | |
CN111954368A (en) | Thermoelectric separation filling electroplated double-sided metal substrate and manufacturing method thereof | |
KR20100099475A (en) | Printed circuit board and method of manufacturing the same | |
JP2003332503A (en) | Circuit board having heat sink and its manufacturing method | |
JP2011082269A (en) | Light emitting diode substrate and method of manufacturing the same | |
US20110232950A1 (en) | Substrate and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |