TW201946952A - 聚醯亞胺樹脂組成物 - Google Patents

聚醯亞胺樹脂組成物 Download PDF

Info

Publication number
TW201946952A
TW201946952A TW108116141A TW108116141A TW201946952A TW 201946952 A TW201946952 A TW 201946952A TW 108116141 A TW108116141 A TW 108116141A TW 108116141 A TW108116141 A TW 108116141A TW 201946952 A TW201946952 A TW 201946952A
Authority
TW
Taiwan
Prior art keywords
polyimide resin
resin composition
formula
group
carbon atoms
Prior art date
Application number
TW108116141A
Other languages
English (en)
Inventor
佐藤勇希
酒井敦史
Original Assignee
日商三菱瓦斯化學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商三菱瓦斯化學股份有限公司 filed Critical 日商三菱瓦斯化學股份有限公司
Publication of TW201946952A publication Critical patent/TW201946952A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1082Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/101Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents
    • C08G73/1017Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents in the form of (mono)amine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本發明係一種聚醯亞胺樹脂組成物,摻合有:
聚醯亞胺樹脂(A),含有下式(1)表示之重複構成單元及下式(2)表示之重複構成單元,且該式(1)之重複構成單元相對於該式(1)之重複構成單元與該式(2)之重複構成單元之合計之含有比為20~70莫耳%,及
玻璃纖維(B)。

R1係至少含有1個脂環族烴結構之碳數6~22之2價基。R2係碳數5~16之2價鏈狀脂肪族基。X1及X2係分別獨立地為至少含有1個芳香環之碳數6~22之4價基。

Description

聚醯亞胺樹脂組成物
本發明關於聚醯亞胺樹脂組成物。
聚醯亞胺樹脂由於分子鏈的剛性、共振穩定化、強化學鍵,而為具有高熱安定性、高強度、高耐溶劑性之有效用的工程塑膠,並應用在廣泛的領域。又,具有結晶性之聚醯亞胺樹脂由於可使其耐熱性、強度、耐藥品性更進一步改善,故期待作為金屬之替代品等之利用。但是,聚醯亞胺樹脂具高耐熱性的反面,則有不展現熱塑性而成形加工性低的問題。
就聚醯亞胺成形材料而言,已知有高耐熱樹脂VESPEL(註冊商標)等(專利文獻1),但即使在高溫下,流動性仍極低,故成形加工困難,需要在高溫、高壓條件下實施長時間成形,因而在成本上較不利。相對於此,若為如結晶性樹脂般具有熔點,且於高溫具有流動性之樹脂,則可輕易且以低價進行成形加工。
於是,近年已報告具有熱塑性之聚醯亞胺樹脂。熱塑性聚醯亞胺樹脂除了聚醯亞胺樹脂本身具有的耐熱性之外,成形加工性亦優良。因此,熱塑性聚醯亞胺樹脂亦可適用到在通用的熱塑性樹脂即尼龍、聚酯所無法適用之嚴苛的環境下使用的成形體。
例如專利文獻2揭示使至少含有1個芳香環之四羧酸及/或其衍生物、至少含有1個脂環族烴結構之二胺、及鏈狀脂肪族二胺反應而得之含有預定重複構成單元之熱塑性聚醯亞胺樹脂。
[先前技術文獻]
[專利文獻]
[專利文獻1]日本特開2005-28524號公報
[專利文獻2]國際公開第2013/118704號
[發明所欲解決之課題]
但是,含有脂肪族結構之熱塑性聚醯亞胺樹脂雖然成形加工性優良,但比起全芳香族聚醯亞胺樹脂,有耐熱性、強度方面不良的傾向。
本發明之課題係提供具有成形加工性,且耐熱性與機械性強度之平衡亦優良的聚醯亞胺樹脂組成物。
[解決課題之手段]
本發明人們發現摻合以特定的比率組合特定之不同的聚醯亞胺構成單元而成的聚醯亞胺樹脂與玻璃纖維而得的聚醯亞胺樹脂組成物可解決上述課題。
亦即,本發明提供一種聚醯亞胺樹脂組成物,摻合有:
聚醯亞胺樹脂(A),含有下式(1)表示之重複構成單元及下式(2)表示之重複構成單元,且該式(1)之重複構成單元相對於該式(1)之重複構成單元與該式(2)之重複構成單元之合計之含有比為20~70莫耳%,及
玻璃纖維(B)。
[化1]

R1 係至少含有1個脂環族烴結構之碳數6~22之2價基。R2 係碳數5~16之2價鏈狀脂肪族基。X1 及X2 係分別獨立地為至少含有1個芳香環之碳數6~22之4價基。
[發明之效果]
本發明之聚醯亞胺樹脂組成物之成形加工性優良,同時耐熱性與機械性強度之平衡亦良好。本發明之聚醯亞胺樹脂組成物例如可使用於汽車、鐵道、航空等各種產業構件;家電產品用構件;或它們的框體等。具體而言,可使用於齒輪、軸承、切削構件、螺絲釘、螺帽、密封墊料、檢查用IC插槽、帶(belt)、電線等的被覆材、覆蓋薄膜、半導體製造裝置用構件、醫療用器具、釣竿及捲線器等的被覆材、文具等。又,該成形體之耐熱性及機械性強度優良,故也可用來替代以鋁合金、鎂合金為代表之各種金屬。
[聚醯亞胺樹脂組成物]
本發明之聚醯亞胺樹脂組成物,係摻合有如下成分之樹脂組成物:
聚醯亞胺樹脂(A),含有下式(1)表示之重複構成單元及下式(2)表示之重複構成單元,且該式(1)之重複構成單元相對於該式(1)之重複構成單元與該式(2)之重複構成單元之合計之含有比為20~70莫耳%,及
玻璃纖維(B)。
[化2]

R1 係至少含有1個脂環族烴結構之碳數6~22之2價基。R2 係碳數5~16之2價鏈狀脂肪族基。X1 及X2 係分別獨立地為至少含有1個芳香環之碳數6~22之4價基。
本發明之聚醯亞胺樹脂組成物係摻合以上述特定比率組合特定不同的聚醯亞胺構成單元而成的聚醯亞胺樹脂(A)及玻璃纖維(B)而得者。聚醯亞胺樹脂(A)藉由為上述特定結構,而展現熱塑性,故包含聚醯亞胺樹脂(A)之樹脂組成物,其成形加工性優良。此外,聚醯亞胺樹脂(A)藉由為上述特定結構,而結晶性亦高,故摻合玻璃纖維(B)所獲得的強化效果高,耐熱性及機械性強度會顯著地改善。因此,本發明之聚醯亞胺樹脂組成物係成形加工性優良,同時耐熱性與機械性強度之平衡亦良好。此外,藉由摻合玻璃纖維(B),滑動特性也變良好。
>聚醯亞胺樹脂(A)> 本發明所使用的聚醯亞胺樹脂(A),其含有下式(1)表示之重複構成單元及下式(2)表示之重複構成單元,且該式(1)之重複構成單元相對於該式(1)之重複構成單元與該式(2)之重複構成單元之合計之含有比為20~70莫耳%。
[化3]

R1 係至少含有1個脂環族烴結構之碳數6~22之2價基。R2 係碳數5~16之2價鏈狀脂肪族基。X1 及X2 係分別獨立地為至少含有1個芳香環之碳數6~22之4價基。
本發明所使用的聚醯亞胺樹脂(A)係熱塑性樹脂,就其形態而言,宜為粉末或丸粒。熱塑性聚醯亞胺樹脂區分為例如以聚醯胺酸等聚醯亞胺前驅體之狀態進行成形後再將醯亞胺環予以閉環而形成之不具有玻璃轉移溫度(Tg)之聚醯亞胺樹脂、或在比起玻璃轉移溫度更低之溫度會分解的聚醯亞胺樹脂。
針對式(1)之重複構成單元詳述如下。
R1 係至少含有1個脂環族烴結構之碳數6~22之2價基。在此,脂環族烴結構係指從脂環族烴化合物衍生的環,該脂環族烴化合物可為飽和也可為不飽和,可為單環也可為多環。
脂環族烴結構可列舉環己烷環等環烷環、環己烯等環烯環、降莰烷環等雙環烷環、及降莰烯等雙環烯環,但不限於此等。該等之中,為環烷環較佳,為碳數4~7之環烷環更佳,為環己烷環更佳。
R1 之碳數為6~22,為8~17較佳。
R1 至少含有1個脂環族烴結構,為含有1~3個較佳。
R1 為下式(R1-1)或(R1-2)表示之2價基較佳。
[化4]

m11 及m12 各自獨立地為0~2之整數,為0或1較佳。m13 ~m15 各自獨立地為0~2之整數,為0或1較佳。
R1 為下式(R1-3)表示之2價基尤佳。
[化5]

又,上述式(R1-3)表示之2價基中,2個亞甲基相對於環己烷環之位置關係可為順式也可為反式,順式與反式之比可為任意值。
X1 為包括至少1個芳香環之碳數6~22之4價基。前述芳香環可為單環也可為縮合環,可列舉苯環、萘環、蒽環、及稠四苯環,但不限於此等。該等之中,為苯環及萘環較佳,為苯環更佳。
X1 之碳數為6~22,為6~18較佳。
X1 至少含有1個芳香環,為含有1~3個較佳。
X1 為下式(X-1)~(X-4)中之任一者表示之4價基較佳。
[化6]

R11 ~R18 各自獨立地為碳數1~4之烷基。p11 ~p13 各自獨立地為0~2之整數,為0較佳。p14 、p15 、p16 及p18 各自獨立地為0~3之整數,為0較佳。p17 為0~4之整數,為0較佳。L11 ~L13 各自獨立地為單鍵、醚基、羰基或碳數1~4之伸烷基。
又,X1 為包括至少1個芳香環之碳數6~22之4價基,所以式(X-2)之R12 、R13 、p12 及p13 係以使式(X-2)表示之4價基之碳數落在10~22之範圍內之方式來選擇。
同樣,式(X-3)之L11 、R14 、R15 、p14 及p15 係以使式(X-3)表示之4價基之碳數落於12~22之範圍內之方式來選擇,式(X-4)之L12 、L13 、R16 、R17 、R18 、p16 、p17 及p18 係以使式(X-4)表示之4價基之碳數落於18~22之範圍內的方式來選擇。
X1 為下式(X-5)或(X-6)表示之4價基尤佳。
[化7]
其次,針對式(2)之重複構成單元詳述如下。
R2 為碳數5~16之2價鏈狀脂肪族基,為碳數6~14較佳,為碳數7~12更佳,為碳數8~10又更佳。在此,鏈狀脂肪族基係指從鏈狀脂肪族化合物衍生之基,該鏈狀脂肪族化合物可以為飽和也可為不飽和,可為直鏈狀也可為分支狀,也可以含有氧原子等雜原子。
R2 為碳數5~16之伸烷基較佳,為碳數6~14更佳,為碳數7~12之伸烷基又更佳,其中,為碳數8~10之伸烷基較佳。前述伸烷基可為直鏈伸烷基也可為分支伸烷基,為直鏈伸烷基較佳。
R2 較佳為選自於由八亞甲基及十亞甲基構成之群組中之至少1種,尤佳為八亞甲基。
又,R2 之另一理想態樣可列舉含醚基之碳數5~16之2價鏈狀脂肪族基。該碳數為碳數6~14較佳,為碳數7~12更佳,為碳數8~10又更佳。其中較佳為下式(R2-1)或(R2-2)表示之2價基。
[化8]

m21 及m22 各自獨立地為1~15之整數,為1~13較佳,為1~11更佳,為1~9又更佳。m23 ~m25 各自獨立地為1~14之整數,為1~12較佳,為1~10更佳,為1~8又更佳。
又,R2 為碳數5~16(為碳數6~14較佳,為碳數7~12更佳,為碳數8~10又更佳)之2價鏈狀脂肪族基,所以式(R2-1)之m21 及m22 係以使式(R2-1)表示之2價基之碳數落於5~16(為碳數6~14較佳,為碳數7~12更佳,為碳數8~10又更佳)之範圍內的方式來選擇。亦即,m21 +m22 為5~16(為6~14較佳,為7~12更佳,為8~10又更佳)。
同樣,式(R2-2)之m23 ~m25 係以使式(R2-2)表示之2價基之碳數落於5~16(為碳數6~14較佳,為碳數7~12更佳,為碳數8~10又更佳)之範圍內之方式來選擇。亦即,m23 +m24 +m25 為5~16(為碳數6~14較佳,為碳數7~12更佳,為碳數8~10又更佳)。
X2 和式(1)之X1 的定義相同,理想態樣亦同。
式(1)之重複構成單元相對於式(1)之重複構成單元與式(2)之重複構成單元之合計之含有比為20~70莫耳%。式(1)之重複構成單元之含有比落在上述範圍時,即使在通常的射出成型循環仍可使聚醯亞胺樹脂能充分地結晶化。該含量比未達20莫耳%的話,成形加工性會降低,超過70莫耳%的話,會因結晶性降低而導致耐熱性降低。
考慮展現高結晶性之觀點,式(1)之重複構成單元相對於式(1)之重複構成單元與式(2)之重複構成單元之合計之含有比宜為65莫耳%以下,為60莫耳%以下更佳,為50莫耳%以下再更佳。
其中,式(1)之重複構成單元相對於式(1)之重複構成單元與式(2)之重複構成單元之合計之含有比宜為20莫耳%以上且未達40莫耳%。落在此範圍內的話,聚醯亞胺樹脂(A)之結晶性會變高,摻合後述玻璃纖維(B)所得的物性改善效果較顯著,可獲得耐熱性更優良的樹脂組成物。
考慮成形加工性之觀點,上述含有比宜為25莫耳%以上,為30莫耳%以上更佳,為32莫耳%以上再更佳,且考慮展現高結晶性之觀點,為35莫耳%以下又更佳。
式(1)之重複構成單元與式(2)之重複構成單元之合計相對於構成聚醯亞胺樹脂(A)之全部重複構成單元之含有比宜為50~100莫耳%,為75~100莫耳%更佳,為80~100莫耳%再更佳,為85~100莫耳%又更佳。
聚醯亞胺樹脂(A)也可更含有下式(3)之重複構成單元。於此情形,式(3)之重複構成單元相對於式(1)之重複構成單元與式(2)之重複構成單元之合計之含有比較佳為25莫耳%以下。下限不特別限定,只要超過0莫耳%即可。
考量改善耐熱性之觀點,前述含有比為5莫耳%以上較佳,為10莫耳%以上更佳,另一方面考量維持結晶性之觀點,為20莫耳%以下較佳,為15莫耳%以下更佳。
[化9]

R3 為至少含有1個芳香環之碳數6~22之2價基。X3 為包括至少1個芳香環之碳數6~22之4價基。
R3 為至少含有1個芳香環之碳數6~22之2價基。前述芳香環可為單環也可為縮合環,可列舉苯環、萘環、蒽環、及稠四苯環,但不限於此等。該等之中,為苯環及萘環較佳,為苯環更佳。
R3 之碳數為6~22,為6~18較佳。
R3 至少含有1個芳香環,為含有1~3個較佳。
又,於前述芳香環也可鍵結1價或2價拉電子基。1價拉電子基可列舉硝基、氰基、對甲苯磺醯基、鹵素、鹵化烷基、苯基、醯基等。2價拉電子基除了如氟化伸烷基(例如-C(CF3 )2 -、-(CF2 )p -(在此,p為1~10之整數))之鹵化伸烷基,尚可列舉-CO-、-SO2 -、-SO-、-CONH-、-COO-等。
R3 較佳為下式(R3-1)或(R3-2)表示之2價基。
[化10]

m31 及m32 各自獨立地為0~2之整數,為0或1較佳。m33 及m34 各自獨立地為0~2之整數,為0或1較佳。R21 、R22 、及R23 各自獨立地為碳數1~4之烷基、碳數2~4之烯基、或碳數2~4之炔基。p21 、p22 及p23 為0~4之整數,為0較佳。L21 為單鍵、醚基、羰基或碳數1~4之伸烷基。
又,R3 為至少含有1個芳香環之碳數6~22之2價基,故式(R3-1)之m31 、m32 、R21 及p21 係以使式(R3-1)表示之2價基之碳數落入6~22之範圍內之方式來選擇。
同樣,式(R3-2)之L21 、m33 、m34 、R22 、R23 、p22 及p23 係以使式(R3-2)表示之2價基之碳數落入12~22之範圍內之方式來選擇。
X3 和式(1)之X1 為同樣定義,理想樣態亦同。
聚醯亞胺樹脂(A)也可更含有下式(4)表示之重複構成單元。
[化11]

R4 為包括-SO2 -或-Si(Rx )(Ry )O-之2價基,Rx 及Ry 各自獨立地表示碳數1~3之鏈狀脂肪族基或苯基。X4 為包括至少1個芳香環之碳數6~22之4價基。
X4 和式(1)之X1 之定義相同,理想的態樣亦同。
聚醯亞胺樹脂(A)之末端結構無特殊限制,於末端具有碳數5~14之鏈狀脂肪族基較佳。
該鏈狀脂肪族基可為飽和也可為不飽和,可為直鏈狀也可為分支狀。聚醯亞胺樹脂(A)於末端具有上述特定基的話,可獲得耐熱老化性優良的樹脂組成物。
就碳數5~14之飽和鏈狀脂肪族基而言,可列舉:正戊基、正己基、正庚基、正辛基、正壬基、正癸基、正十一基、月桂基、正十三基、正十四基、異戊基、新戊基、2-甲基戊基、2-甲基己基、2-乙基戊基、3-乙基戊基、異辛基、2-乙基己基、3-乙基己基、異壬基、2-乙基辛基、異癸基、異十二基、異十三基、異十四基等。
就碳數5~14之不飽和鏈狀脂肪族基而言,可列舉:1-戊烯基、2-戊烯基、1-己烯基、2-己烯基、1-庚烯基、2-庚烯基、1-辛烯基、2-辛烯基、壬烯基、癸烯基、十二烯基、十三烯基、十四烯基等。
其中,上述鏈狀脂肪族基宜為飽和鏈狀脂肪族基較佳,飽和直鏈狀脂肪族基更佳。又,考量獲得耐熱老化性之觀點,上述鏈狀脂肪族基為碳數6以上較佳,為碳數7以上更佳,為碳數8以上又更佳,且為碳數12以下較佳,為碳數10以下更佳,為碳數9以下又更佳。上述鏈狀脂肪族基可只有1種也可以有2種以上。
上述鏈狀脂肪族基為選自於由正辛基、異辛基、2-乙基己基、正壬基、異壬基、正癸基及異癸基構成之群組中至少1種特佳,為選自於由正辛基、異辛基、2-乙基己基、正壬基及異壬基構成之群組中至少1種再更佳,為選自於由正辛基、異辛基及2-乙基己基構成之群組中至少1種最佳。
又,考慮耐熱老化性之觀點,聚醯亞胺樹脂(A)宜除了末端胺基及末端羧基以外,在末端只有碳數5~14之鏈狀脂肪族基較佳。於末端具有上述以外之基時,其含量相對於碳數5~14之鏈狀脂肪族基宜為10莫耳%以下,為5莫耳%以下更佳。
聚醯亞胺樹脂(A)中之上述碳數5~14之鏈狀脂肪族基之含量,考量展現優良之耐熱老化性之觀點,相對於構成聚醯亞胺樹脂(A)之全部重複構成單元之合計100莫耳%,為0.01莫耳%以上較佳,為0.1莫耳%以上更佳,為0.2莫耳%以上又更佳。又,為了確保充分分子量並獲得良好之機械物性,聚醯亞胺樹脂(A)中之上述碳數5~14之鏈狀脂肪族基之含量,相對於構成聚醯亞胺樹脂(A)之全部重複構成單元之合計100莫耳%較佳為10莫耳%以下,為6莫耳%以下更佳,為3.5莫耳%以下又更佳。
聚醯亞胺樹脂(A)中之上述碳數5~14之鏈狀脂肪族基之含量,可利用將聚醯亞胺樹脂(A)進行解聚合而求出。
聚醯亞胺樹脂(A)宜具有360℃以下之熔點且具有150℃以上之玻璃轉移溫度。聚醯亞胺樹脂之熔點,考慮耐熱性之觀點,為280℃以上更佳,為290℃以上再更佳,考慮展現高成形加工性之觀點,宜為345℃以下,為340℃以下更佳,為335℃以下再更佳。又,聚醯亞胺樹脂(A)之玻璃轉移溫度,考慮耐熱性之觀點,為160℃以上更佳,為170℃以上再更佳,考慮展現高成形加工性之觀點,宜為250℃以下,為230℃以下更佳,為200℃以下再更佳。
聚醯亞胺樹脂之熔點、玻璃轉移溫度均可利用差示掃描型熱量計進行測定。
又,聚醯亞胺樹脂(A)考慮使結晶性、耐熱性、機械性強度、耐藥品性改善之觀點,利用差示掃描型熱量計測定,將該聚醯亞胺樹脂熔融後,以降溫速度20℃/分鐘進行冷卻時所觀測到的結晶化放熱峰部之熱量(以下也簡稱為「結晶化放熱量」)宜為5.0mJ/mg以上,為10.0mJ/mg以上更佳,為17.0mJ/mg以上再更佳。結晶化放熱量之上限值並無特別限制,通常為45.0mJ/mg以下。
聚醯亞胺樹脂之熔點、玻璃轉移溫度、結晶化放熱量,具體而言可利用實施例所記載之方法進行測定。
聚醯亞胺樹脂(A)之5質量%濃硫酸溶液,於30℃之對數黏度為0.2~2.0dL/g較佳,更佳為0.3~1.8dL/g之範圍。對數黏度若為0.2dL/g以上,則將得到的聚醯亞胺樹脂組成物製成成形體時可獲充分機械強度,若為2.0dL/g以下,成形加工性及操作性良好。對數黏度μ係使用佳能-芬斯克(Cannon-Fenske)黏度計,分別測定於30℃時濃硫酸及上述聚醯亞胺樹脂溶液之流動時間,並由下式求出。
μ=ln(ts/t0 )/C
t0 :濃硫酸之流動時間
ts:聚醯亞胺樹脂溶液之流動時間
C:0.5(g/dL)
聚醯亞胺樹脂(A)之重量平均分子量Mw宜為10,000~150,000,為15,000~100,000更佳,為20,000~80,000再更佳,為30,000~70,000又更佳,為35,000~65,000之範圍再更佳。又,聚醯亞胺樹脂(A)之重量平均分子量Mw若為10,000以上,則得到的成形體之機械性強度會變良好,若為40,000以上,則機械性強度安定性會變良好,若為150,000以下,則成形加工性會變良好。
聚醯亞胺樹脂(A)之重量平均分子量Mw可將聚甲基丙烯酸甲酯(PMMA)作為標準樣本,並利用凝膠過濾層析(GPC)法進行測定。
(聚醯亞胺樹脂(A)之製造方法)
可藉由使四羧酸成分與二胺成分反應以製造聚醯亞胺樹脂(A)。該四羧酸成分包括至少含1個芳香環之四羧酸及/或其衍生物,該二胺成分包括至少含1個脂環族烴結構之二胺及鏈狀脂肪族二胺。
至少含1個芳香環之四羧酸宜為4個羧基直接鍵結在芳香環之化合物較佳,結構中也可含有烷基。又,前述四羧酸宜為碳數6~26者較佳。前述四羧酸宜為均苯四甲酸、2,3,5,6-甲苯四甲酸、3,3’,4,4’-二苯甲酮四甲酸、3,3’,4,4’-聯苯四甲酸、1,4,5,8-萘四甲酸等。該等之中,均苯四甲酸更理想。
作為至少含1個芳香環之四羧酸之衍生物,可列舉至少含1個芳香環之四羧酸之酸酐或烷酯體。前述四羧酸衍生物宜為碳數6~38者較佳。四羧酸之酸酐可列舉均苯四甲酸一酐、均苯四甲酸二酐、2,3,5,6-甲苯四甲酸二酐、3,3’,4,4’-二苯基碸四甲酸二酐、3,3’,4,4’-二苯甲酮四甲酸二酐、3,3’,4,4’-聯苯四甲酸二酐、1,4,5,8-萘四羧酸二酐等。四羧酸之烷基酯體可列舉均苯四甲酸二甲酯、均苯四甲酸二乙酯、均苯四甲酸二丙酯、均苯四甲酸二異丙酯、2,3,5,6-甲苯四甲酸二甲酯、3,3’,4,4’-二苯基碸四甲酸二甲酯、3,3’,4,4’-二苯甲酮四甲酸二甲酯、3,3’,4,4’-聯苯四甲酸二甲酯、1,4,5,8-萘四甲酸二甲酯等。上述四羧酸之烷基酯體中,烷基的碳數宜為1~3。
至少含1個芳香環之四羧酸及/或其衍生物,可單獨使用從上述選出之至少1個化合物,也可組合使用2種以上之化合物。
至少含1個脂環族烴結構之二胺之碳數宜為6~22,例如:1,2-雙(胺基甲基)環己烷、1,3-雙(胺基甲基)環己烷、1,4-雙(胺基甲基)環己烷、1,2-環己烷二胺、1,3-環己烷二胺、1,4-環己烷二胺、4,4’-二胺基二環己基甲烷、4,4’-亞甲基雙(2-甲基環己胺)、香芹酮二胺、檸檬烯二胺、異佛酮二胺、降莰烷二胺、雙(胺基甲基)三環[5.2.1.02,6 ]癸烷、3,3’-二甲基-4,4’-二胺基二環己基甲烷、4,4’-二胺基二環己基丙烷等為較佳。該等化合物可單獨使用,亦可將從該等選出的2種以上的化合物組合使用。其中,1,3-雙(胺基甲基)環己烷較理想。又,含脂環族烴結構之二胺一般會具有結構異構物,順式體/反式體之比率不限定。
鏈狀脂肪族二胺可為直鏈狀也可為分支狀,碳數宜為5~16,6~14更佳,7~12更理想。又,鏈部分之碳數若為5~16,在其間也可含有醚鍵。鏈狀脂肪族二胺可列舉例如1,5-五亞甲基二胺、2-甲基戊烷-1,5-二胺、3-甲基戊烷-1,5-二胺、1,6-六亞甲基二胺、1,7-七亞甲基二胺、1,8-八亞甲基二胺、1,9-九亞甲基二胺、1,10-十亞甲基二胺、1,11-十一亞甲基二胺、1,12-十二亞甲基二胺、1,13-十三亞甲基二胺、1,14-十四亞甲基二胺、1,16-十六亞甲基二胺、2,2’-(伸乙基二氧)雙(乙烯胺)等為較佳。
鏈狀脂肪族二胺可使用1種或將多種混合使用。它們之中,可理想地使用碳數為8~10之鏈狀脂肪族二胺,使用選自於由1,8-八亞甲基二胺及1,10-十亞甲基二胺構成之群組中至少1種特佳。
製造聚醯亞胺樹脂(A)時,相對於至少含1個脂環族烴結構之二胺與鏈狀脂肪族二胺之合計量,至少含1個脂環族烴結構之二胺之進料量之莫耳比宜為20~70莫耳%。該莫耳量宜為25莫耳%以上,為30莫耳%以上更佳,為32莫耳%以上再更佳,考慮顯現高結晶性之觀點,宜為60莫耳%以下,為50莫耳%以下更佳,未達40莫耳%再更佳,為35莫耳%以下再更佳。
又,上述二胺成分中也可包括至少含1個芳香環之二胺。至少含1個芳香環之二胺之碳數宜為6~22,例如:鄰苯二甲胺、間苯二甲胺、對苯二甲胺、1,2-二乙炔基苯二胺、1,3-二乙炔基苯二胺、1,4-二乙炔基苯二胺、1,2-二胺基苯、1,3-二胺基苯、1,4-二胺基苯、4,4’-二胺基二苯醚、3,4’-二胺基二苯醚、4,4’-二胺基二苯基甲烷、α,α’-雙(4-胺基苯基)1,4-二異丙基苯、α,α’-雙(3-胺基苯基)-1,4-二異丙基苯、2,2-雙[4-(4-胺基苯氧基)苯基]丙烷、2,6-二胺基萘、1,5-二胺基萘等。
上述中,相對於至少含1個脂環族烴結構之二胺與鏈狀脂肪族二胺之合計量,至少含1個芳香環之二胺之進料量之莫耳比宜為25莫耳%以下較佳。下限不特別限定,只要超過0莫耳%即可。
前述莫耳比,考量改善耐熱性之觀點,為5莫耳%以上較佳,為10莫耳%以上更佳,而考量維持結晶性之觀點,較佳為20莫耳%以下,為15莫耳%以下更佳。
又,前述莫耳比,考量減少聚醯亞胺樹脂之著色之觀點,較佳為12莫耳%以下,為10莫耳%以下更佳,為5莫耳%以下又更佳,為0莫耳%再更佳。
製造聚醯亞胺樹脂(A)時,前述四羧酸成分與前述二胺成分之進料量比,相對於四羧酸成分1莫耳,二胺成分宜為0.9~1.1莫耳較佳。
又,製造聚醯亞胺樹脂(A)時,除混合前述四羧酸成分、前述二胺成分以外,也可混合封端劑。封端劑宜選自於由單胺類及二羧酸類構成之群組中之至少1種較佳。封端劑之使用量只要是可對於聚醯亞胺樹脂(A)中導入所期望量之末端基之量即可,相對於前述四羧酸及/或其衍生物1莫耳為0.0001~0.1莫耳較理想,0.001~0.06莫耳更佳,0.002~0.035莫耳更理想。
單胺類封端劑,例如:甲胺、乙胺、丙胺、丁胺、正戊胺、正己胺、正庚胺、正辛胺、正壬胺、正癸胺、正十一胺、月桂胺、正十三胺、正十四胺、異戊胺、新戊胺、2-甲基戊胺、2-甲基己胺、2-乙基戊胺、3-乙基戊胺、異辛胺、2-乙基己胺、3-乙基己胺、異壬胺、2-乙基辛胺、異癸胺、異十二胺、異十三胺、異十四胺、苄胺、4-甲基苄胺、4-乙基苄胺、4-十二基苄胺、3-甲基苄胺、3-乙基苄胺、苯胺、3-甲基苯胺、4-甲基苯胺等。
二羧酸類封端劑宜為二羧酸類,其一部分也可以閉環。例如:鄰苯二甲酸、鄰苯二甲酸酐、4-氯鄰苯二甲酸、四氟鄰苯二甲酸、2,3-二苯基酮二羧酸、3,4-二苯基酮二羧酸、環己烷-1,2-二羧酸、環戊烷-1,2-二羧酸、4-環己烯-1,2-二羧酸等。其中,鄰苯二甲酸、鄰苯二甲酸酐為較佳。
該等封端劑可只使用1種,也可使用2種以上。
其中,單胺類封端劑較理想,考量對於聚醯亞胺樹脂(A)之末端導入前述碳數5~14之鏈狀脂肪族基而改善耐熱老化性之觀點,具有碳數5~14之鏈狀脂肪族基之單胺更佳,具有碳數5~14之飽和直鏈狀脂肪族基之單胺更理想。上述鏈狀脂肪族基為碳數6以上較佳,為碳數7以上更佳,為碳數8以上又更佳,且為碳數12以下較佳,為碳數10以下更佳,為碳數9以下又更佳。單胺擁有之鏈狀脂肪族基之碳數若為5以上,聚醯亞胺樹脂(A)製造時該單胺不易揮發,故較理想。
封端劑為選自於由正辛胺、異辛胺、2-乙基己胺、正壬胺、異壬胺、正癸胺、及異癸胺構成之群組中的至少1種尤佳,為選自於由正辛胺、異辛胺、2-乙基己胺、正壬胺、及異壬胺構成之群組中之至少1種又更佳,為選自於由正辛胺、異辛胺、及2-乙基己胺構成之群組中之至少1種最佳。
就用以製造聚醯亞胺樹脂(A)之聚合方法而言,可使用公知的聚合方法,並無特別限制,例如溶液聚合、熔融聚合、固相聚合、懸浮聚合法等。其中,特別以使用有機溶劑之高溫條件下之懸浮聚合較佳。在高溫條件下進行懸浮聚合時,宜在150℃以上進行聚合,在180~250℃進行更理想。聚合時間可依使用之單體適當變更,但進行約0.1~6小時較佳。
聚醯亞胺樹脂(A)之製造方法宜包括以下步驟:使前述四羧酸成分與前述二胺成分在包括下式(I)表示之伸烷基二醇系溶劑之溶劑之存在下進行反應。藉此,可獲得操作性優良的粉末狀之聚醯亞胺樹脂。
[化12]

Ra1 為氫原子或碳數1~4之烷基,Ra2 為碳數2~6之直鏈之伸烷基,n為1~3之整數。
為了獲得均勻粉末狀之聚醯亞胺樹脂,希望在單一鍋反應之溶劑具備以下2個特性:(1)使聚醯胺酸均勻溶解、或使尼龍鹽均勻分散、(2)使聚醯亞胺樹脂完全不溶解、膨潤。含上式(I)表示之伸烷基二醇系溶劑之溶劑大致符合此2個特性。
前述伸烷基二醇系溶劑,考量可於常壓在高溫條件進行聚合反應之觀點,較佳為具有140℃以上之沸點,具有160℃以上之沸點更佳,具有180℃以上之沸點更佳。
式(I)中之Ra1 為氫原子或碳數1~4之烷基,較佳為碳數1~4之烷基,為甲基或乙基更佳。
式(I)中之Ra2 為碳數2~6之直鏈之伸烷基,較佳為碳數2~3之直鏈之伸烷基,為伸乙基更佳。
式(I)中之n為1~3之整數,較佳為2或3。
前述伸烷基二醇系溶劑之具體例可列舉:乙二醇單甲醚、二乙二醇單甲醚(別名:2-(2-甲氧基乙氧基)乙醇)、三乙二醇單甲醚、乙二醇單乙醚、二乙二醇單乙醚(別名:2-(2-乙氧基乙氧基)乙醇)、乙二醇單異丙醚、二乙二醇單異丙醚、三乙二醇單異丙醚、乙二醇單丁醚、二乙二醇單丁醚、三乙二醇單丁醚、乙二醇單異丁醚、二乙二醇單異丁醚、乙二醇單異丁醚、乙二醇、1,3-丙二醇等。此等溶劑可單獨使用,也可將從其中選出的2種以上的溶劑組合使用。此等溶劑之中,較佳為2-(2-甲氧基乙氧基)乙醇、三乙二醇單甲醚、2-(2-乙氧基乙氧基)乙醇及1,3-丙二醇,為2-(2-甲氧基乙氧基)乙醇及2-(2-乙氧基乙氧基)乙醇更佳。
溶劑中,前述伸烷基二醇系溶劑之含量較佳為30質量%以上,為50質量%以上更佳,為75質量%以上更佳,為90質量%以上尤佳。溶劑也可只由前述伸烷基二醇系溶劑構成。
溶劑含有前述伸烷基二醇系溶劑及除前述伸烷基二醇系溶劑以外之溶劑時,該「除前述伸烷基二醇系溶劑以外之溶劑」之具體例可列舉:水、苯、甲苯、二甲苯、丙酮、己烷、庚烷、氯苯、甲醇、乙醇、正丙醇、異丙醇、丁醇、戊醇、己醇、庚醇、辛醇、N-甲基-2-吡咯烷酮、N,N-二甲基乙醯胺、N,N-二乙基乙醯胺、N,N-二甲基甲醯胺、N,N-二乙基甲醯胺、N-甲基己內醯胺、六甲基磷醯胺、四亞甲基碸、二甲基亞碸、鄰甲酚、間甲酚、對甲酚、苯酚、對氯苯酚、2-氯-4-羥基甲苯、二甘二甲醚、三甘二甲醚、四甘二甲醚、二㗁烷、γ-丁內酯、二氧雜環戊烷(dioxolane)、環己酮、環戊酮、二氯甲烷、氯仿、1,2-二氯乙烷、1,1,2-三氯乙烷、二溴甲烷、三溴甲烷、1,2-二溴乙烷、1,1,2-三溴乙烷等。此等溶劑可單獨使用,也可將從其中選出的2種以上的溶劑組合使用。
聚醯亞胺樹脂(A)之理想製造方法,可列舉例如:分別製備在使含上述伸烷基二醇系溶劑之溶劑中含有四羧酸成分而成之溶液(a)、及使在含前述伸烷基二醇系溶劑之溶劑中含有二胺成分而成之溶液(b)後,對於溶液(a)添加溶液(b)或對於溶液(b)添加溶液(a),製備成含有聚醯胺酸之溶液(c),然後藉由將前述溶液(c)加熱,以使前述聚醯胺酸進行醯亞胺化,同時在該溶液(c)中使聚醯亞胺樹脂粉末析出,而合成聚醯亞胺樹脂(A)之方法。
四羧酸成分與二胺成分之反應可於常壓下或加壓下進行,若為常壓下,不需耐壓性容器,於此觀點,於常壓下進行較佳。
使用封端劑時,宜將溶液(a)與溶液(b)混合,並於此混合液中混入封端劑,製備成含有聚醯胺酸之溶液(c),然後將前述溶液(c)加熱較佳,為在溶液(a)添加溶液(b)的步驟結束後添加封端劑,製備成含有聚醯胺酸之溶液(c),然後將前述溶液(c)加熱更佳。
又,考慮減少聚醯亞胺樹脂(A)中之副產物之量之觀點,聚醯亞胺樹脂(A)之製造方法宜為:四羧酸成分含有四羧酸二酐;使前述四羧酸成分與二胺成分反應之步驟包括以下步驟:步驟(i),在含有前述四羧酸成分與前述伸烷基二醇系溶劑之溶液(a),添加含有前述二胺成分與前述伸烷基二醇系溶劑之溶液(b)以製備含有聚醯胺酸之溶液(c);及步驟(ii),將前述溶液(c)加熱並使前述聚醯胺酸進行醯亞胺化,同時在該溶液(c)中使聚醯亞胺樹脂粉末析出,而獲得聚醯亞胺樹脂粉末;前述步驟(i)中,對於前述溶液(a)將前述溶液(b)以前述二胺成分相對於前述四羧酸成分1mol之每單位時間之添加量成為0.1mol/min以下之方式添加。
>玻璃纖維(B)> 本發明之聚醯亞胺樹脂組成物摻合有前述聚醯亞胺樹脂(A)與玻璃纖維(B)。藉由在熱塑性及具有結晶性之聚醯亞胺樹脂(A)中摻合玻璃纖維(B),可顯著地改善耐熱性及機械性強度,並獲得成形加工性優良同時耐熱性及機械性強度的平衡亦良好之聚醯亞胺樹脂組成物。此外,藉由摻合玻璃纖維(B),滑動特性也會變良好。
構成玻璃纖維(B)之玻璃組成並無特別限制,可因應用途、要求性能而適當地選擇。
玻璃纖維(B)之平均纖維徑宜為1~100μm,為3~50μm更佳,為4~20μm再更佳。平均纖維徑落在上述範圍的話,聚醯亞胺樹脂組成物之成形加工容易且機械性強度亦優良。玻璃纖維(B)之平均纖維徑可藉由利用掃描型電子顯微鏡(SEM)進行觀察,並隨機選擇50支以上之纖維測定長度,並計算個數平均之平均纖維徑而求得。
玻璃纖維(B)之形狀只要為纖維狀則無特別限制,考慮操作性、得到的聚醯亞胺樹脂組成物之成形加工性及機械性強度之觀點,宜製成短切股線來使用。
考慮操作性、成形加工之容易性的觀點,摻合到聚醯亞胺樹脂組成物前之原料形式之玻璃纖維(B)的平均纖維長(裁切長度)宜為0.5~15mm,為1~10mm更佳,為1~6mm再更佳。
考慮聚醯亞胺樹脂組成物之成形加工性及機械性強度的觀點,存在於聚醯亞胺樹脂組成物中之玻璃纖維(B)的平均纖維長宜為0.3~10mm,為0.5~6mm更佳,為0.8~5mm再更佳。
存在於聚醯亞胺樹脂組成物中之玻璃纖維(B)的平均纖維長之測定方法,例如將聚醯亞胺樹脂組成物或其成形體放入六氟異丙醇(HFIP)或濃硫酸中,並測量使聚醯亞胺樹脂(A)溶解後所殘留的纖維之長度即可,能利用目視進行測定,取決於不同情況,也可利用光學顯微鏡、掃描型電子顯微鏡(SEM)等所為之觀察進行測定。可隨機選擇100支纖維測定長度,並計算個數平均之平均纖維長。
玻璃纖維(B)之剖面形狀並無特別限制,可為同形剖面形狀及異形剖面形狀中之任一者,考慮得到的聚醯亞胺樹脂組成物之機械性強度的觀點,也可選擇異形剖面形狀。在此,玻璃纖維之剖面係指與玻璃纖維之纖維長方向垂直之橫剖面。
就異形剖面形狀而言,可列舉扁平形(長圓形)、眉形、橢圓形、半圓、圓弧形、矩形或它們的類似形狀,其中,考慮機械性強度改善的觀點,宜為扁平形(長圓形)之剖面形狀。
玻璃纖維(B)之剖面為異形剖面形狀時,長徑(剖面之最長的直線距離)與短徑(和長徑呈直角方向之最長的直線距離)之比(異形比)宜為1.3~10,為1.5~8更佳,為1.7~6再更佳。
摻合到聚醯亞胺樹脂組成物前之原料形式之玻璃纖維(B)的剖面形狀可利用光學顯微鏡、掃描型電子顯微鏡(SEM)等所為之觀察來判別其為同形剖面形狀或異形剖面形狀,為異形剖面形狀時再判別具體為何種形狀。異形比可隨機選擇100支纖維測定纖維的剖面之長徑及短徑,並計算成個數平均之平均異形比。
另一方面,存在於聚醯亞胺樹脂組成物中之玻璃纖維(B),例如可將聚醯亞胺樹脂組成物或其成形體放入六氟異丙醇(HFIP)或濃硫酸中,並以使聚醯亞胺樹脂(A)溶解後所殘留的纖維作為對象,再和前述摻合到聚醯亞胺樹脂組成物前之原料形式之玻璃纖維(B)同樣地實施剖面形狀之判別、異形比之測定。
為了使和聚醯亞胺樹脂(A)之界面黏合性改善,並使得到的聚醯亞胺樹脂組成物之機械性強度改善,玻璃纖維(B)宜為利用上漿劑(sizing agent)進行表面處理而成者。
就該上漿劑而言,可列舉例如:胺甲酸酯系上漿劑、環氧系上漿劑、丙烯酸系上漿劑、聚酯系上漿劑、乙烯酯系上漿劑、聚烯烴系上漿劑、聚醚系上漿劑、及羧酸系上漿劑等。
上述上漿劑可使用1種或將2種以上組合使用。組合2種以上而成的上漿劑可列舉例如:胺甲酸酯系/環氧系上漿劑、胺甲酸酯系/丙烯酸系上漿劑、胺甲酸酯系/羧酸系上漿劑等。
胺甲酸酯系上漿劑可列舉利用多元醇與多異氰酸酯之反應而獲得的胺甲酸酯系樹脂。
多元醇可列舉例如:聚己二酸乙二酯二醇、聚己二酸丁二酯二醇、聚己二酸乙二丁二酯二醇、聚己二酸新戊二酯二醇、聚對苯二甲酸新戊二酯二醇、聚己內酯二醇、聚戊內酯二醇、聚碳酸六亞甲酯二醇等聚酯多元醇;聚乙二醇、聚丙二醇、聚氧乙烯氧基丙二醇、聚氧四亞甲基二醇、雙酚類之環氧乙烷及/或環氧丙烷加成物等聚醚多元醇等。
多異氰酸酯可列舉例如2,4’-二苯基甲烷二異氰酸酯或4,4’-二苯基甲烷二異氰酸酯(MDI)、2,4-甲苯二異氰酸酯或2,6-甲苯二異氰酸酯(TDI)、4,4’-二苄基二異氰酸酯、1,3-伸苯基二異氰酸酯或1,4-伸苯基二異氰酸酯、1,5-伸萘基二異氰酸酯、伸二甲苯基二異氰酸酯等芳香族多異氰酸酯;伸乙基二異氰酸酯、六亞甲基二異氰酸酯(HDI)、離胺酸二異氰酸酯等脂肪族多異氰酸酯;異佛爾酮二異氰酸酯(IPDI)、4,4’-二環己基甲烷二異氰酸酯(H12MDI)等脂環族多異氰酸酯等。
上述多元醇及多異氰酸酯可使用1種或將2種以上組合使用。
環氧系上漿劑可列舉分子內具有2個以上之環氧基之環氧樹脂。具體而言,可列舉雙酚A酚醛清漆型環氧樹脂、雙酚F酚醛清漆型環氧樹脂、聯苯型雙官能環氧樹脂、聯苯改性酚醛清漆型環氧樹脂、雙酚A型環氧樹脂、雙酚F型環氧樹脂、萘酚-甲酚共縮合酚醛清漆型環氧樹脂、萘酚-苯酚共縮合酚醛清漆型環氧樹脂、雙環戊二烯-苯酚加成反應型環氧樹脂、三苯甲烷型環氧樹脂、苯酚酚醛清漆型環氧樹脂、甲酚酚醛清漆型環氧樹脂、四苯基乙烷型環氧樹脂、萘酚酚醛清漆型環氧樹脂等。其中,該環氧樹脂宜為具有雙酚A、雙酚F等雙酚結構之環氧樹脂。考慮玻璃纖維(B)之上漿性的觀點,該環氧樹脂之環氧當量宜為180g/當量以上,為200~1900g/當量更佳。
丙烯酸系上漿劑可列舉丙烯酸系樹脂,具體而言,可例示(甲基)丙烯酸、(甲基)丙烯酸酯等丙烯酸系單體之均聚物或它們的共聚物、以及上述丙烯酸系單體與能和該丙烯酸系單體共聚合之其他單體之共聚物等。
聚酯系上漿劑可列舉利用多元醇與多元羧酸之聚縮合反應而得的聚酯樹脂,該多元醇例如脂肪族二醇、芳香族二醇、3元以上之多元醇等;該多元羧酸例如脂肪族二羧酸、芳香族二羧酸、3元以上之多元羧酸等。
乙烯酯系上漿劑可列舉乙酸乙烯酯樹脂,具體而言,可例示乙酸乙烯酯之均聚物、或乙酸乙烯酯與能和乙酸乙烯酯共聚合之其他單體之共聚物等。
聚烯烴系上漿劑可列舉例如超高分子量聚乙烯樹脂、高密度聚乙烯樹脂、低密度聚乙烯樹脂、超低密度聚乙烯樹脂、聚丙烯樹脂、聚苯乙烯樹脂及聚乙烯共聚物等聚烯烴樹脂。就聚乙烯共聚物而言,可列舉:乙烯與能和乙烯共聚合之其他單體的共聚物,該能和乙烯共聚合之其他單體例如丙烯、丁烯-1、異戊二烯、丁二烯等α-烯烴類等。
又,也可使用將上述聚烯烴樹脂利用不飽和羧酸或羧酸酐等酸性化合物進行改性而成的酸改性聚烯烴樹脂。
聚醚系上漿劑可列舉例如聚伸烷基二醇、雙酚A-環氧烷加成物等具有聚氧伸烷基結構之聚醚樹脂。
又,羧酸系上漿劑可列舉含有羧酸酐之不飽和乙烯系單體與其他不飽和乙烯系單體之共聚物,該含有羧酸酐之不飽和乙烯系單體例如馬來酸酐、伊康酸酐、檸康酸酐等;該其他不飽和乙烯系單體例如苯乙烯、α-甲基苯乙烯、乙烯、丁二烯等。
上述上漿劑之中,考慮和聚醯亞胺樹脂(A)之界面黏合性良好,且可使聚醯亞胺樹脂組成物之機械性強度更為改善的觀點,宜為選自於由胺甲酸酯系上漿劑及胺甲酸酯系/環氧系上漿劑構成之群組中之1種以上,考慮獲得機械性強度及良好的色調之觀點,為胺甲酸酯系上漿劑更佳。
玻璃纖維(B)中的上漿劑之使用量並無特別限制,通常為玻璃纖維(B)的0.005~5質量%,宜落在0.01~2質量%之範圍。
考慮構成玻璃纖維(B)之玻璃成分與上漿劑之黏合性改善、以及使聚醯亞胺樹脂(A)與玻璃纖維(B)之界面黏合性改善的觀點,玻璃纖維(B)也可更利用除上述上漿劑以外之表面處理劑進行表面處理。就該表面處理劑而言,可列舉矽烷偶聯劑等矽烷系化合物、鈦酸酯偶聯劑等鈦系化合物、及鉻系化合物等。它們之中,宜為矽烷偶聯劑等矽烷系化合物。
就矽烷偶聯劑而言,可列舉例如:具有烷基之矽烷偶聯劑、具有芳基之矽烷偶聯劑、具有乙烯基之矽烷偶聯劑、具有胺基之矽烷偶聯劑、具有環氧基之矽烷偶聯劑、具有(甲基)丙烯酸基之矽烷偶聯劑、具有巰基之矽烷偶聯劑等。
它們之中,考慮聚醯亞胺樹脂(A)與玻璃纖維(B)之黏合性改善的觀點,宜為具有胺基之矽烷偶聯劑。具有胺基之矽烷偶聯劑之具體例可列舉:3-胺基丙基三甲氧基矽烷、3-胺基丙基甲基二甲氧基矽烷、3-胺基丙基三乙氧基矽烷、3-胺基丙基甲基二乙氧基矽烷、N-(β-胺基乙基)-γ-胺基丙基三甲氧基矽烷、N-(β-胺基乙基)-γ-胺基丙基甲基二甲氧基矽烷、N-(β-胺基乙基)-γ-胺基丙基三乙氧基矽烷、N-(β-胺基乙基)-γ-胺基丙基甲基二乙氧基矽烷、N-苯基-3-胺基丙基三甲氧基矽烷、N-苯基-3-胺基丙基甲基二甲氧基矽烷等。它們可使用1種或將2種以上組合使用。
玻璃纖維(B)中的除上述上漿劑以外之表面處理劑的使用量並無特別限制,通常為玻璃纖維(B)的0.005~5質量%,宜落在0.01~2質量%之範圍。
玻璃纖維(B)可利用公知的方法製造。又,也可使用市售之玻璃纖維作為玻璃纖維(B)。市售之玻璃纖維可列舉例如:Nippon Electric Glass(股)製之「ECS 03 T-786H」、「ECS 03 T-781DE」、「ECS 03 T-747H」等。
聚醯亞胺樹脂組成物中之玻璃纖維(B)的摻合量宜為15~80質量%,為20~70質量%更佳。玻璃纖維(B)之摻合量若為15質量%以上,則可獲得充分的物性改善效果,若為80質量%以下,則可維持良好的成形加工性。
其中,考慮藉由玻璃纖維(B)之物性改善效果來同時使聚醯亞胺樹脂組成物之耐熱性及機械性強度改善的觀點,聚醯亞胺樹脂組成物中之玻璃纖維(B)的摻合量為20~65質量%再更佳,為20~60質量%又更佳,為30~60質量%再更佳。
>除玻璃纖維(B)以外之無機填充材> 聚醯亞胺樹脂組成物中可更摻合除玻璃纖維(B)以外之無機填充材(以下有時簡稱為「無機填充材」)。摻合該無機填充材的話,可使聚醯亞胺樹脂組成物之耐熱性及機械性強度更為改善。此據認為係該無機填充材在聚醯亞胺樹脂組成物中作為結晶成核劑而發揮作用。
無機填充材的形狀並無特別限制,可為粒狀、板狀及纖維狀中之任一者。考慮在聚醯亞胺樹脂組成物中作為結晶成核劑而發揮作用並使耐熱性、機械性強度改善的觀點,宜為粒狀或板狀之無機填充材。
例如為粒狀或板狀之無機填充材時,其平均粒徑宜為0.01~50μm,為0.1~20μm更佳,為0.2~10μm再更佳,為0.2~3μm又更佳。無機填充材之平均粒徑落在上述範圍的話,可更容易展現在聚醯亞胺樹脂組成物中作為結晶成核劑之效果。該平均粒徑例如可利用雷射繞射式粒度分布計進行測定。
就粒狀或板狀之無機填充材而言,可列舉:二氧化矽、氧化鋁、高嶺石、矽灰石、雲母、滑石、黏土、絹雲母、碳酸鎂、硫酸鎂、氧化鈣、氧化鈦、碳化矽、三硫化銻、硫化錫、硫化銅、硫化鐵、硫化鉍、硫化鋅、金屬粉末、玻璃粉末、玻璃薄片、玻璃珠粒等。
就除玻璃纖維(B)以外之纖維狀無機填充材而言,可列舉:碳纖維、金屬纖維、石墨纖維、二氧化矽纖維、二氧化矽-氧化鋁纖維、氧化鋁纖維、氧化鋯纖維、氮化硼纖維、氮化矽纖維、硼纖維、鈦酸鉀晶鬚、硼酸鋁晶鬚、鎂系晶鬚、矽系晶鬚等。碳纖維可列舉聚丙烯腈系碳纖維、瀝青系碳纖維等。這些無機填充材可使用1種或將2種以上組合使用。
上述之中,考慮使聚醯亞胺樹脂組成物之耐熱性及機械性強度改善的觀點,宜摻合滑石作為除玻璃纖維(B)以外之無機填充材。
使用除玻璃纖維(B)以外之無機填充材時,聚醯亞胺樹脂組成物中之該無機填充材的摻合量宜為0.05~15質量%,為0.1~10質量%更佳,為0.2~5質量%再更佳。無機填充材之摻合量落在上述範圍的話,可在不損及來自聚醯亞胺樹脂(A)之特性及玻璃纖維(B)所致之物性改善效果的情況下,使耐熱性及機械性強度更為改善。
又,考慮兼具物性改善效果與良好的成形加工性之觀點,聚醯亞胺樹脂組成物中的玻璃纖維(B)及無機填充材之合計摻合量宜為15~85質量%,為20~80質量%更佳,為20~70質量%再更佳,為30~65質量%又更佳,為30~60質量%再更佳。
本發明之聚醯亞胺樹脂組成物中使用聚醯亞胺樹脂(A)作為熱塑性樹脂成分,故即使在該樹脂組成物中摻合例如70質量%以上之玻璃纖維(B)、無機填充材,仍可無損射出成形等的成形時之流動性,並維持良好的成形加工性。
另外,聚醯亞胺樹脂組成物中的玻璃纖維(B)及無機填充材之摻合量(質量%),例如藉由將約5g之聚醯亞胺樹脂組成物於灰化爐以625℃煅燒3小時,並測定煅燒後之殘留物的質量相對於煅燒前之聚醯亞胺樹脂組成物的全部質量之比例來求得。
>添加劑> 本發明之聚醯亞胺樹脂組成物中,可因應需要摻合消光劑、成核劑、塑化劑、抗靜電劑、抗著色劑、抗凝膠化劑、阻燃劑、著色劑、滑動性改良劑、抗氧化劑、導電劑、樹脂改質劑等添加劑。
上述添加劑之摻合量並無特別限制,考慮維持來自聚醯亞胺樹脂(A)之物性,同時展現添加劑的效果之觀點,在聚醯亞胺樹脂組成物中通常為50質量%以下,宜為0.0001~30質量%,為0.0001~15質量%更佳,為0.001~10質量%再更佳,為0.01~8質量%又更佳。
又,本發明之聚醯亞胺樹脂組成物中,在不妨礙其特性之範圍內,可摻合除聚醯亞胺樹脂(A)以外之其他樹脂。就該其他樹脂而言,宜為高耐熱性之熱塑性樹脂,可列舉例如:聚醯胺樹脂、聚酯樹脂、除聚醯亞胺樹脂(A)以外之聚醯亞胺樹脂、聚碳酸酯樹脂、聚醚醯亞胺樹脂、聚醯胺醯亞胺樹脂、聚苯醚醯亞胺樹脂、聚苯硫醚樹脂、聚碸樹脂、聚醚碸樹脂、聚芳酯樹脂、液晶聚合物、聚醚醚酮樹脂、聚醚酮樹脂、聚醚酮酮樹脂、聚醚醚酮酮樹脂、聚苯并咪唑樹脂等。它們之中,考慮耐熱性、成形加工性、強度及耐溶劑性之觀點,宜為選自於由聚醚醯亞胺樹脂、聚苯硫醚樹脂及聚醚醚酮樹脂構成之群組中之1種以上。
合併使用聚醯亞胺樹脂(A)與其他樹脂時,若在不妨礙聚醯亞胺樹脂組成物之特性的範圍內,則其摻合比率無特別限制。
惟,考慮獲得本發明之效果的觀點,本發明之聚醯亞胺樹脂組成物中之聚醯亞胺樹脂(A)及玻璃纖維(B)之合計含量宜為50質量%以上,為70質量%以上更佳,為80質量%以上再更佳,為90質量%以上又更佳。又,上限為100質量%。
本發明之聚醯亞胺樹脂組成物或成形體的比重取決於用途而理想範圍也不同,通常為1.1~2.5g/cm3 ,宜落在1.2~2.0g/cm3 之範圍。
[成形體] 本發明提供含有前述聚醯亞胺樹脂組成物之成形體。
本發明之聚醯亞胺樹脂組成物具有熱塑性,故可藉由熱成形而輕易地製造成形體。熱成形方法可列舉射出成形、擠壓成形、吹塑成形、熱壓製成形、真空成形、壓空成形、雷射成形、銲接、熔接等,若為經過熱熔融步驟之成形方法,則無論任一方法均可成形。熱成形之成形溫度不需設定為例如超過400℃之高溫即可成形,故較理想。其中,實施射出成形時,成形溫度及成形時的模具溫度不需設定為高溫即可成形,故較理想。例如在射出成形中,可在下列條件成形:成形溫度宜設定在400℃以下,設定在360℃以下更佳,模具溫度宜設定在260℃以下,設定在220℃以下更佳。
就製造成形體之方法而言,宜具有將聚醯亞胺樹脂組成物於290~350℃進行熱成形之步驟。也可為超過350℃~390℃之熱成形,但考慮抑制聚醯亞胺樹脂(A)、或其他樹脂成分及各種填充材之劣化之觀點,宜在350℃以下之溫度進行熱成形。
具體的程序例如可列舉如下之方法。
首先,於聚醯亞胺樹脂(A)因應需要添加各種任意成分並予以乾燥摻混後,將其導入到擠壓機內,理想為於290~350℃進行熔融,此時從側進料器(side feeder)導入玻璃纖維(B)並於擠壓機內進行熔融混練及擠壓,製得丸粒。或也可將聚醯亞胺樹脂(A)導入到擠壓機內,理想為於290~350℃進行熔融,此時從側進料器導入玻璃纖維(B)及因應需要導入各種任意成分並於擠壓機內和聚醯亞胺樹脂(A)進行熔融混練、擠壓,藉此製得前述丸粒。
可使上述丸粒乾燥後,導入到各種成形機,理想為於290~350℃進行熱成形,並製得具有期望的形狀之成形體。
本發明之聚醯亞胺樹脂組成物能在290~350℃之較低溫度實施擠壓成形等熱成形,故成形加工性優良,可輕易地製造具有期望的形狀之成形品。熱成形時的溫度宜為310~350℃。
本發明之聚醯亞胺樹脂組成物為熱塑性故具有成形加工性,且耐熱性與機械性強度之平衡亦優良。又,滑動特性亦良好,故例如可使用於汽車、鐵道、航空等各種產業構件;家電產品用構件;或它們的框體等。具體而言,可使用於齒輪、軸承、切削構件、螺絲釘、螺帽、密封墊料、檢查用IC插槽、帶(belt)、電線等的被覆材、覆蓋薄膜、半導體製造裝置用構件、醫療用器具、釣竿及捲線器等的被覆材、文具等。又,該成形體之耐熱性及機械性強度優良,故也可用來替代以鋁合金、鎂合金為代表之各種金屬。
[實施例]
然後舉實施例更詳細地說明本發明,但本發明並不限於此。又,各製造例、實施例及參考例中的各種測定及評價係如下般實施。
>紅外線分光分析(IR測定)> 聚醯亞胺樹脂之IR測定係使用日本電子(股)製「JIR-WINSPEC50」實施。
>對數黏度μ> 將聚醯亞胺樹脂於190~200℃乾燥2小時後,將該聚醯亞胺樹脂0.100g溶解於濃硫酸(96%,關東化學(股)製)20mL而成的聚醯亞胺樹脂溶液作為測定樣本,使用佳能-芬斯克黏度計於30℃實施測定。對數黏度μ係利用下式求得。
μ=ln(ts/t0 )/C
t0 :濃硫酸之流動時間
ts:聚醯亞胺樹脂溶液之流動時間
C:0.5g/dL
>熔點、玻璃轉移溫度、結晶化溫度、結晶化放熱量> 聚醯亞胺樹脂之熔點Tm、玻璃轉移溫度Tg、結晶化溫度Tc、及結晶化放熱量ΔHm係使用差示掃描熱量計裝置(SII NanoTechnology(股)製「DSC-6220」)進行測定。
於氮氣環境下,對聚醯亞胺樹脂施加下述條件之熱歷程。熱歷程之條件係:第1次昇溫(昇溫速度10℃/分鐘),其後冷卻(降溫速度20℃/分鐘),其後第2次昇溫2(昇溫速度10℃/分鐘)。
熔點Tm係讀取於第2次昇溫所觀測到的吸熱峰部之峰頂值而決定。玻璃轉移溫度Tg係讀取於第2次昇溫所觀測到的值而決定。結晶化溫度Tc係讀取於冷卻時所觀測到的放熱峰部之峰頂值而決定。
又,結晶化放熱量ΔHm(mJ/mg)係由冷卻時所觀測到的放熱峰部之面積計算而得。
>半結晶化時間> 聚醯亞胺樹脂之半結晶化時間係使用差示掃描熱量計裝置(SII NanoTechnology(股)製「DSC-6220」)進行測定。
半結晶化時間為20秒以下之聚醯亞胺樹脂的測定條件係在氮氣環境下,於420℃保持10分鐘,使聚醯亞胺樹脂完全地熔融後,在實施冷卻速度為70℃/分鐘之急速冷卻操作時,計算從觀測到結晶化峰部出現時至到達峰頂為止所需時間並決定。
>重量平均分子量> 聚醯亞胺樹脂之重量平均分子量(Mw)係使用昭和電工(股)製之凝膠過濾層析(GPC)測定裝置「Shodex GPC-101」並以下述條件進行測定。
管柱:Shodex HFIP-806M
移動相溶劑:含有三氟乙酸鈉2mM之HFIP
管柱溫度:40℃
移動相流速:1.0mL/min
樣本濃度:約0.1質量%
檢測器:IR檢測器
注射量:100μm
檢量線:標準PMMA
>熱變形溫度(HDT)> 使用於各例得到的聚醯亞胺樹脂組成物製作80mm×10mm×厚度4mm之成形體並使用於測定。使用HDT試驗裝置「Auto-HDT3D-2」(東洋精機製作所(股)製),以支點間距離64mm、荷重1.80MPa、昇溫速度120℃/小時之條件測定熱變形溫度。
>彎曲強度及彎曲彈性模量> 使用於各例得到的聚醯亞胺樹脂組成物製作ISO316所規定之80mm×10mm×厚度4mm之成形體並使用於測定。使用BENDOGRAPH(東洋精機製作所(股)製),依據ISO178,於溫度23℃、試驗速度2mm/分鐘之條件實施彎曲試驗,並測得彎曲強度及彎曲彈性模量。
>比重> 使用於各例得到的聚醯亞胺樹脂組成物製作80mm×10mm×厚度4mm之成形體,並利用真比重計求得真比重。
[製造例1]聚醯亞胺樹脂1之製造 將2-(2-甲氧基乙氧基)乙醇(日本乳化劑(股)製)500g與均苯四甲酸二酐(三菱瓦斯化學(股)製)218.12g(1.00mol)導入到設置有迪安-斯塔克(Dean-Stark)裝置、李必氏冷凝管(Liebig condenser)、熱電偶、4片槳葉之2L可分離式燒瓶中,流通氮氣後,以150rpm進行攪拌使其成為均勻的懸浮溶液。另一方面,使用500mL燒杯,使1,3-雙(胺基甲基)環己烷(三菱瓦斯化學(股)製,順式/反式比=7/3)49.79g(0.35mol)、1,8-八亞甲基二胺(關東化學(股)製)93.77g(0.65mol)溶解於2-(2-甲氧基乙氧基)乙醇250g,製得混合二胺溶液。使用柱塞泵緩緩地添加此混合二胺溶液。由於滴加會造成放熱,將內溫調整為落在40~80℃之範圍內。將混合二胺溶液的滴加全程設定為氮氣流通狀態,攪拌葉片轉速設定在250rpm。滴加結束後,添加2-(2-甲氧基乙氧基)乙醇130g與係封端劑之正辛胺(關東化學(股)製)1.284g(0.0100mol),再進行攪拌。於此階段可獲得淡黃色的聚醯胺酸溶液。然後,將攪拌速度設定為200rpm後,將2L可分離式燒瓶中的聚醯胺酸溶液昇溫到190℃。在進行昇溫的過程中,當液體溫度在120~140℃之間可觀察到聚醯亞胺樹脂粉末的析出以及伴隨醯亞胺化之脫水。於190℃保持30分鐘後,實施放置冷卻至到室溫為止,並進行過濾。得到的聚醯亞胺樹脂粉末利用2-(2-甲氧基乙氧基)乙醇300g與甲醇300g進行清洗並過濾後,以乾燥機實施180℃、10小時之乾燥,獲得317g之聚醯亞胺樹脂1之粉末。
測定聚醯亞胺樹脂1之IR光譜時,可在ν(C=O)1768、1697(cm-1 )觀察到醯亞胺環之特性吸收。對數黏度為1.30dL/g,Tm為323℃,Tg為184℃,Tc為266℃,結晶化放熱量ΔHm為21.0mJ/mg,半結晶化時間為20秒以下,Mw為55,000。
製造例1中的聚醯亞胺樹脂之組成及評價結果如表1所示。另外,表1中之四羧酸成分及二胺成分之莫耳%係由聚醯亞胺樹脂製造時之各成分的進料量計算而得的值。
[表1]
表1中的縮寫如下所述。
・PMDA;均苯四甲酸二酐
・1,3-BAC;1,3-雙(胺基甲基)環己烷
・OMDA;1,8-八亞甲基二胺
[聚醯亞胺樹脂組成物之製造及評價1:耐熱性、機械性強度] 實施例1 於製造例1得到的聚醯亞胺樹脂1之粉末中,以表2所示之摻合比率添加係無機填充材之滑石(Nippon Talc(股)製「NANO ACE D-800」,平均粒徑0.8μm),並利用乾燥摻混充分混合。使用同方向雙軸擠壓機(東芝機械(股)製「TEM37BS」)將得到的混合粉末以料筒溫度350℃、螺桿轉速200rpm進行擠壓。此時,使用側進料器將玻璃纖維(Nippon Electric Glass(股)製「ECS 03 T-786H」,平均纖維徑:10.5μm,平均纖維長:3mm,上漿劑:胺甲酸酯系)導入到擠壓機內,並於熔融時進行混合、擠壓。以相對於聚醯亞胺樹脂組成物之總量為20質量%的方式摻合玻璃纖維。
將從擠壓機擠壓得到的股線進行水冷後,利用造粒機(ISUZU化工機製「SCF-150」)進行造粒。得到的丸粒(聚醯亞胺樹脂組成物)於150℃實施10小時乾燥後,使用於射出成形。
射出成形使用射出成形機(FANUC(股)製「ROBOSHOT α-S30iA」),以料筒溫度355℃、模具溫度210℃、成形週期50秒實施,製得用於各種評價之預定形狀之成形體。
使用製得的成形體,利用前述方法實施各種評價。結果如表2所示。
實施例2~10 將聚醯亞胺樹脂1之摻合量、玻璃纖維之種類及摻合量、以及滑石之摻合量如表2所示般進行變更,除此之外,以和實施例1同樣的方法製造聚醯亞胺樹脂組成物,並實施各種評價。結果如表2所示。
[表2]
表2所示之各成分的詳細內容如下所述。
>玻璃纖維(B)>
・「T-786H」;Nippon Electric Glass(股)製「ECS 03 T-786H」,平均纖維徑:10.5μm,平均纖維長:3mm,上漿劑:胺甲酸酯系
・「T-781DE」;Nippon Electric Glass(股)製「ECS 03 T-781DE」,平均纖維徑:6.5μm,平均纖維長:3mm,上漿劑:胺甲酸酯系
・「T-747H」;Nippon Electric Glass(股)製「ECS 03 T-747H」,平均纖維徑:10.5μm,平均纖維長:3mm,上漿劑:胺甲酸酯系/環氧系
>滑石>
・Nippon Talc(股)製「NANO ACE D-800」,平均粒徑0.8μm
由表2可得知如下結果。
實施例1~10之聚醯亞胺樹脂組成物由於摻合了以特定比率組合特定不同的聚醯亞胺構成單元而成的聚醯亞胺樹脂及玻璃纖維,其成形加工性優良同時耐熱性與機械性強度之平衡亦良好。
由實施例2~4、6~7之結果可知,聚醯亞胺樹脂組成物中之玻璃纖維(B)之摻合量為30質量%以上的話,熱變形溫度(HDT)會顯著地改善,耐熱性優良。其中,聚醯亞胺樹脂組成物中之玻璃纖維(B)之摻合量落在30~60質量%之範圍,尤其落在50質量%附近的話,HDT及彎曲強度都有變高的傾向,耐熱性及機械性強度優良。
由實施例1與2之比較、實施例4與5之比較可知,除了摻合聚醯亞胺樹脂(A)、玻璃纖維(B)之外,還摻合係無機填充材之滑石的話,HDT改善8~12℃,耐熱性變高。據推測此係滑石發揮了如結晶成核劑般的效果。
根據實施例5、8、10之比較可知,聚醯亞胺樹脂組成物所使用的玻璃纖維之上漿劑為胺甲酸酯系上漿劑(實施例5、8)的話,比起為胺甲酸酯系/環氧系上漿劑(實施例10)的情況,耐熱性及彎曲強度受到改善。
另外,在使用聚醯亞胺樹脂1作為(A)成分並使玻璃纖維(B)之摻合量增加到70質量%而得之實施例7之聚醯亞胺樹脂組成物亦顯示其可不損及射出成形時之流動性並維持良好的成形加工性。此係由於本發明揭露之聚醯亞胺樹脂(A)本來的成形加工性就極為良好。
[聚醯亞胺樹脂組成物之評價2:滑動特性] 又,針對實施例5之聚醯亞胺樹脂組成物及製造例1得到的聚醯亞胺樹脂1(作為參考例1),利用如下方法評價滑動特性。
>極限PV值> 依據JIS K7218(1986)-A法,測定於常溫(25℃)下,對象材料為SUS304,試驗速度為0.5m/s、0.9m/s、及2.0m/s時的極限PV值(MPa・m/s)。
>比磨損量、動摩擦係數> 依據JIS K7218(1986)-A法,以常溫(25℃)下,對象材料為SUS304,試驗荷重:50N、試驗速度:0.5m/s、滑動距離:3km之條件實施滑動試驗,測定比磨損量及動摩擦係數。
[表3]
由表3可知,摻合了預定的聚醯亞胺樹脂(A)及玻璃纖維之本發明之聚醯亞胺樹脂組成物其滑動特性也優良。
[產業上利用性]
本發明之聚醯亞胺樹脂組成物之成形加工性優良,同時耐熱性與機械性強度之平衡亦良好。本發明之聚醯亞胺樹脂組成物例如可使用於汽車、鐵道、航空等各種產業構件;家電產品用構件;或它們的框體等。具體而言,可使用於齒輪、軸承、切削構件、螺絲釘、螺帽、密封墊料、檢查用IC插槽、帶(belt)、電線等的被覆材、覆蓋薄膜、半導體製造裝置用構件、醫療用器具、釣竿及捲線器等的被覆材、文具等。又,該成形體之耐熱性及機械性強度優良,故也可用來替代以鋁合金、鎂合金為代表之各種金屬。

Claims (7)

  1. 一種聚醯亞胺樹脂組成物,摻合有: 聚醯亞胺樹脂(A),含有下式(1)表示之重複構成單元及下式(2)表示之重複構成單元,且該式(1)之重複構成單元相對於該式(1)之重複構成單元與該式(2)之重複構成單元之合計之含有比為20~70莫耳%,及 玻璃纖維(B); R1 係至少含有1個脂環族烴結構之碳數6~22之2價基;R2 係碳數5~16之2價鏈狀脂肪族基;X1 及X2 係分別獨立地為至少含有1個芳香環之碳數6~22之4價基。
  2. 如申請專利範圍第1項之聚醯亞胺樹脂組成物,其中,該玻璃纖維(B)係用胺甲酸酯系上漿劑(sizing agent)予以表面處理而成。
  3. 如申請專利範圍第1或2項之聚醯亞胺樹脂組成物,其中,該聚醯亞胺樹脂(A)中,該式(1)之重複構成單元相對於該式(1)之重複構成單元與該式(2)之重複構成單元之合計之含有比為20莫耳%以上且未達40莫耳%。
  4. 如申請專利範圍第1至3項中任一項之聚醯亞胺樹脂組成物,其中,該玻璃纖維(B)之摻合量為20~65質量%。
  5. 如申請專利範圍第1至4項中任一項之聚醯亞胺樹脂組成物,更摻合有玻璃纖維(B)以外的無機填充材。
  6. 如申請專利範圍第5項之聚醯亞胺樹脂組成物,其中,該無機填充材之摻合量為0.05~15質量%。
  7. 一種成形體,含有如申請專利範圍第1至6項中任一項之聚醯亞胺樹脂組成物。
TW108116141A 2018-05-17 2019-05-10 聚醯亞胺樹脂組成物 TW201946952A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018095744 2018-05-17
JP2018-095744 2018-05-17

Publications (1)

Publication Number Publication Date
TW201946952A true TW201946952A (zh) 2019-12-16

Family

ID=68539942

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108116141A TW201946952A (zh) 2018-05-17 2019-05-10 聚醯亞胺樹脂組成物

Country Status (7)

Country Link
US (1) US20210139701A1 (zh)
EP (1) EP3795638A4 (zh)
JP (1) JP7259852B2 (zh)
KR (1) KR20210010846A (zh)
CN (1) CN112119124A (zh)
TW (1) TW201946952A (zh)
WO (1) WO2019220966A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113429118B (zh) * 2021-06-17 2022-05-24 贵州航天电器股份有限公司 一种玻璃坯粉末注射成型工艺

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179913A (ja) 2000-10-04 2002-06-26 Hitachi Cable Ltd ポリイミド樹脂組成物
JP4443870B2 (ja) 2003-07-07 2010-03-31 克雄 庄司 超砥粒ホイール及びその製造方法
US7259201B2 (en) * 2003-08-28 2007-08-21 General Electric Company Flame retardant thermoplastic films and methods of making the same
US20100120972A1 (en) * 2008-11-11 2010-05-13 E. I. Du Pont De Nemours And Company Composite compositions including semi-aromatic polyamides and carbon fiber, and articles thereof
US8927678B2 (en) * 2012-02-08 2015-01-06 Mitsubishi Gas Chemical Company, Inc. Crystalline thermoplastic polyimide resin
CN105392842B (zh) * 2013-08-06 2018-06-26 三菱瓦斯化学株式会社 聚酰亚胺树脂组合物和聚酰亚胺树脂-纤维复合材料
EP3031843B1 (en) * 2013-08-06 2018-03-21 Mitsubishi Gas Chemical Company, Inc. Polyimide resin
JP6565676B2 (ja) * 2013-08-06 2019-08-28 三菱瓦斯化学株式会社 ポリイミド樹脂粉末の製造方法及び熱可塑性ポリイミド樹脂粉末
WO2016147996A1 (ja) * 2015-03-19 2016-09-22 三菱瓦斯化学株式会社 ポリイミド樹脂
WO2016147997A1 (ja) * 2015-03-19 2016-09-22 三菱瓦斯化学株式会社 ポリイミド樹脂

Also Published As

Publication number Publication date
WO2019220966A1 (ja) 2019-11-21
US20210139701A1 (en) 2021-05-13
EP3795638A1 (en) 2021-03-24
CN112119124A (zh) 2020-12-22
EP3795638A4 (en) 2021-07-28
JPWO2019220966A1 (ja) 2021-06-10
KR20210010846A (ko) 2021-01-28
JP7259852B2 (ja) 2023-04-18

Similar Documents

Publication Publication Date Title
TWI601761B (zh) 聚醯亞胺樹脂
TWI591099B (zh) 聚醯亞胺樹脂
CN112135880B (zh) 聚酰亚胺粉末组合物
JP7347415B2 (ja) 樹脂成形体
CN114207042A (zh) 阻燃性聚酰亚胺成形材料及成形体
WO2020179391A1 (ja) ポリイミド樹脂組成物
CN112088188B (zh) 聚酰亚胺树脂组合物
TW201946952A (zh) 聚醯亞胺樹脂組成物
WO2020179532A1 (ja) 難燃性ポリイミド成形材料及び成形体
TW202225267A (zh) 聚醯亞胺樹脂組成物及成形體
CN114207041A (zh) 聚酰亚胺树脂组合物及成形体
CN117178025A (zh) 热塑性聚酰亚胺树脂组合物和成形品
WO2020241185A1 (ja) ポリイミド樹脂組成物