TW201946147A - 達成側壁蝕刻的方法 - Google Patents

達成側壁蝕刻的方法 Download PDF

Info

Publication number
TW201946147A
TW201946147A TW108105592A TW108105592A TW201946147A TW 201946147 A TW201946147 A TW 201946147A TW 108105592 A TW108105592 A TW 108105592A TW 108105592 A TW108105592 A TW 108105592A TW 201946147 A TW201946147 A TW 201946147A
Authority
TW
Taiwan
Prior art keywords
etching
stop layer
etch stop
sidewall
silicon
Prior art date
Application number
TW108105592A
Other languages
English (en)
Other versions
TWI778226B (zh
Inventor
希亞姆 斯里德哈蘭
裴那榮
謝爾蓋 沃羅寧
艾洛克 蘭傑
Original Assignee
日商東京威力科創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東京威力科創股份有限公司 filed Critical 日商東京威力科創股份有限公司
Publication of TW201946147A publication Critical patent/TW201946147A/zh
Application granted granted Critical
Publication of TWI778226B publication Critical patent/TWI778226B/zh

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Weting (AREA)

Abstract

基板特徵部之側壁蝕刻可透過採用形成於特徵部上的一蝕刻停止層而達成。相較於特徵部底部,該蝕刻停止層在特徵部側壁上係較薄的。特徵部之橫向蝕刻係藉由利用過蝕刻(over etch)而達成,過蝕刻貫穿特徵部側壁上之蝕刻停止層,而不會貫穿形成於特徵部底部處之蝕刻停止層。蝕刻停止層之使用促成橫向蝕刻,同時避免不樂見的垂直蝕刻。可能期望將橫向蝕刻用於許多結構中,包括(但不限於)3D結構。橫向蝕刻亦可用以透過使側壁錐角減小而提供垂直側壁。

Description

達成側壁蝕刻的方法
本發明係關於電漿處理設備中之基板處理。尤其,其提供用於基板蝕刻的方法。
〔相關申請案的交互參照〕
本申請案主張2018年02月02日提交的案名為 「Method To Achieve A Vertical Etch Profile」 之臨時專利申請案第62/632,934號、以及2018年05月02日提交的案名為 「Method To Achieve A Sidewall Etch」 之臨時專利申請案第 62/665,785 號的優先權,在此明確地將其揭示內容全文引入以供參照。
使用電漿系統以處理基板早已為人所知。例如,半導體晶圓之電漿蝕刻處理係公知的。歷史上,電漿蝕刻系統已被用以提供選擇性異向性蝕刻技術。然而,在基板處理中,橫向地蝕刻特徵部正變得更為重要,包括例如用以形成三維(3D)裝置。當橫向地蝕刻特徵部時,通常期望能在不會於垂直方向上進一步蝕刻結構的情況下達成橫向蝕刻。
再者,隨著形成於基板上之特徵部的臨界尺寸持續縮小,在無錐形側壁之情況下垂直地蝕刻並同時形成平坦底部已變得更為重要。許多因素影響特徵部輪廓,包括離子能量及角分布、自由基及離子通率、蝕刻副產物再沉積、遮罩侵蝕等。所產生之蝕刻輪廓可能係非理想的。因此,蝕刻輪廓可能由錐形側壁所組成。達成理想輪廓(亦即,垂直側壁及平坦底部)需要各種電漿參數(例如離子角分布、離子及自由基通率等)之精確控制。通常,所產生之蝕刻輪廓可能具有錐形的側壁並有平坦的底部、或者具有垂直的側壁並有弧形的底部。
側壁中可能期望被蝕刻的材料可為範圍廣大的,包括矽、矽氮化物、矽氧化物、其他介電質、導電材料等,以上皆為基板處理技術中所公知。例如,各種材料及膜層之任一者可用於基板處理(例如半導體處理)中,並且在製程中的許多時候,可能期望藉由使用蝕刻處理而在材料或膜層中橫向地蝕刻一結構及/或形成一垂直側壁。
在一實施例中,期望提供一蝕刻處理,其提供經改善之膜層側壁蝕刻,例如(但不限於)經改善之膜層橫向蝕刻。例如,可能期望執行矽或矽氮化物層之橫向蝕刻。在另一實施例中,期望提供一蝕刻處理,其提供經改善之膜層側壁蝕刻俾提供垂直側壁,例如(但不限於)矽或矽氮化物層之橫向蝕刻。
基板特徵部之側壁蝕刻可透過採用形成於特徵部上的一蝕刻停止層而達成。相較於特徵部底部,該蝕刻停止層在特徵部側壁上係較薄的。特徵部之橫向蝕刻係藉由利用過蝕刻(或附加蝕刻)而達成,過蝕刻貫穿特徵部側壁上之蝕刻停止層,而不會貫穿形成於特徵部底部處之蝕刻停止層。蝕刻停止層之使用促成橫向蝕刻,同時避免不樂見的垂直蝕刻。可能期望將橫向蝕刻用於許多結構中,包括(但不限於)3D結構。橫向蝕刻亦可用以透過使側壁錐角減小而提供垂直側壁。
該方法可包含第一蝕刻步驟,其在結構中提供錐形的側壁輪廓。可以如下方式透過電漿而形成蝕刻停止層:使得相較於在結構底部上,蝕刻停止層在結構側壁上較薄。接著,可使用一過蝕刻步驟,其會貫穿在結構側壁上的蝕刻停止層(蝕刻停止層的較薄區域),而不會貫穿在結構底部處的蝕刻停止層(蝕刻停止層的較厚區域)。依此方式,過蝕刻步驟可用以將錐形側壁蝕刻成垂直側壁,而不會進一步蝕刻結構底部。
在另一實施例中,第一蝕刻步驟可在結構中提供垂直或錐形的側壁輪廓。如先前的實施例,可以如下方式透過電漿而形成蝕刻停止層:使得相較於在結構底部上,蝕刻停止層在結構側壁上較薄。接著,可使用一過蝕刻步驟,其會貫穿在結構側壁上的蝕刻停止層(蝕刻停止層的較薄區域),而不會貫穿在結構底部處的蝕刻停止層(蝕刻停止層的較厚區域)。依此方式,過蝕刻步驟可用以橫向地蝕刻結構側壁,而不會進一步蝕刻結構底部。
在一實施例中,提供一種蝕刻基板之方法。該方法可包含在該基板上提供第一特徵部,該等第一特徵部具有側壁表面及底部表面,該等側壁表面係由側壁材料所形成,且該等底部表面係由底部材料所形成。該方法可更包含利用一電漿處理以在該等側壁表面及該等底部表面上形成一蝕刻停止層,該蝕刻停止層之厚度有所變化,其中該蝕刻停止層在該等底部表面上較厚,而在該等側壁表面上較薄。該方法更包含使該蝕刻停止層經受一蝕刻停止層電漿蝕刻步驟,其中將該蝕刻停止層從該等側壁表面移除,同時在該等底部表面上留下該蝕刻停止層之至少一部分,俾保護該等底部表面以免於該蝕刻停止層電漿蝕刻步驟的影響,其中該蝕刻停止層電漿蝕刻步驟透過橫向地蝕刻該等第一特徵部的該等側壁表面而蝕刻該等第一特徵部。
在另一實施例中,提供一種蝕刻基板之方法。該方法包含在該基板上電漿蝕刻第一特徵部,該等第一特徵部具有側壁表面及底部表面,該等側壁表面係由側壁材料所形成,且該等底部表面係由底部材料所形成。該方法更包含利用一電漿處理以在該等側壁表面及該等底部表面上形成一蝕刻停止層,該蝕刻停止層之厚度有所變化,其中離子通率及能量係由來源及偏壓射頻(RF)功率所控制,俾使得該蝕刻停止層在該等底部表面上較厚,而在該等側壁表面上較薄。該方法亦包含使該蝕刻停止層經受一蝕刻停止層電漿蝕刻步驟,其中將該蝕刻停止層從該等側壁表面移除,同時在該等底部表面上留下該蝕刻停止層之至少一部分,俾保護該等底部表面以免於該蝕刻停止層電漿蝕刻步驟的影響,其中該蝕刻停止層電漿蝕刻步驟蝕刻該等第一特徵部的該等側壁表面之至少一部分,而不蝕刻該等第一特徵部的該等底部表面。
在又另一實施例中,提供一種蝕刻基板之矽特徵部的方法。該方法包含利用一遮罩層以在該基板上形成該等矽特徵部,該等矽特徵部具有側壁表面及底部表面。該方法更包含利用一電漿處理以在該等側壁表面及該等底部表面上形成一蝕刻停止層,該蝕刻停止層之厚度有所變化,其中控制該電漿處理俾使得該蝕刻停止層在該等底部表面上較厚,而在該等側壁表面上較薄。該方法更包含使該蝕刻停止層經受一氟電漿蝕刻步驟,其中將該蝕刻停止層從該等側壁表面移除,同時在該等底部表面上留下該蝕刻停止層之至少一部分,俾保護該等底部表面以免於該氟電漿蝕刻步驟的影響,其中該氟電漿蝕刻步驟蝕刻該等矽特徵部的該等側壁表面之至少一部分,而不蝕刻該等矽特徵部的該等底部表面。
在一實施例中,基板之橫向蝕刻可透過使用電漿處理以形成蝕刻停止層而達成。或者,蝕刻停止層之形成可透過其他處理而加以形成,因為本文所述技術並不限於使用電漿處理以形成蝕刻停止層。該方法可包含三步驟處理。首先,一蝕刻步驟係用以界定結構外形,該結構具有側壁及底部。此步驟未必需要產生垂直側壁輪廓,因為本文所述技術可與提供錐形側壁之第一步驟、或提供垂直側壁之第一步驟一起利用。第二步驟可包含用以形成蝕刻停止層的處理。在一實施例中,該處理可為一電漿處理。在另一實施例中,該處理可為一電漿氧化或電漿氮化處理。第三步驟可為一過蝕刻(或附加蝕刻)步驟。過蝕刻步驟可用以提供橫向蝕刻。橫向蝕刻可用以對遮罩進行底切(undercut)(例如用於3D結構中)、及/或為結構提供更垂直的側壁。在底切之範例中,形成於基板上之特徵部的臨界尺寸可小於覆蓋特徵部之遮罩層的臨界尺寸。
蝕刻停止層形成步驟可為一電漿處理,其中離子通率及能量可由來源及偏壓RF功率所控制。因此,例如,蝕刻停止層成長可由離子而非自由基所驅動。由此蝕刻停止層形成步驟所形成之蝕刻停止層的厚度取決於離子的穿透深度,離子的穿透深度係隨著離子能量增加而增加。由於離子的方向性本質,因此所形成之蝕刻停止層的厚度在水平表面上會比在垂直或錐形表面上更高,其中蝕刻停止層為自由基所主導的。在足夠高的離子能量下,蝕刻停止層可為足夠厚(若干奈米),使其能用作一蝕刻停止層。在一實施例中,電漿處理為一氧化處理,其形成氧化物蝕刻停止層,例如矽氧化物。在另一實施例中,電漿處理為一氮化處理,其形成氮化物蝕刻停止層,例如矽氮化物。應理解,其他材料可用作蝕刻停止層,且蝕刻停止層之選擇可取決於被蝕刻之結構的材料。
在形成蝕刻停止層之後,可使用過蝕刻步驟。然而,由於形成於側壁(其為錐形或垂直的)上的蝕刻停止層係相對薄且更易於貫穿,因此側壁在側壁蝕刻停止層被貫穿時可能受到蝕刻,而同時蝕刻停止層仍保護其他區域(例如結構的底部區域)。為過蝕刻步驟選擇適當的蝕刻氣體化學品可促成橫向蝕刻,且在結構底部處不會有進一步的蝕刻,因為蝕刻停止層在結構底部處係較厚的。如上所述,過蝕刻步驟亦可用於橫向蝕刻(例如在產生3D結構期間可能需要),因為貫穿側壁(而非底部)上之蝕刻停止層能達成橫向蝕刻,而不會進一步垂直蝕刻結構底部處的結構。
如上所述,本文所述技術的一個例示性用途可為矽結構蝕刻之用途。再者,蝕刻停止層可為矽氧化物層。接著描述用於蝕刻矽結構的處理及矽氧化物蝕刻停止層之使用(然而,如上所述,本文所述技術可與其他材料一起使用)。在此範例中,於第一蝕刻步驟中蝕刻矽結構之後,透過使試樣暴露於氧(O2 )電漿而形成原位的矽氧化物蝕刻停止層。亦使該試樣受偏壓,俾促成O+離子轟擊,而致使其植入。針對一給定的離子能量,正交地入射至一給定表面(例如在特徵部底部處的表面)的離子之離子植入深度高許多。對於近切線入射角(例如特徵部側壁表面),離子植入深度係較淺的。因此,相較於在垂直表面(切線離子入射)上,在水平表面上(近正交離子入射)之氧化物層的厚度係較大的,其中該氧化物層係藉由離子植入而形成。較厚的氧化物層容許過蝕刻步驟之使用,其具足夠侵襲性以貫穿形成於側壁上的氧化物,但不使垂直蝕刻深度增加(因為在底部表面處的氧化物較厚,其保護底部表面免於過蝕刻步驟的影響)。在與氧化物蝕刻停止層一起使用之一實施例中,過蝕刻化學品可為一氟基(fluorine based)蝕刻化學品。一旦側壁上之相對薄的氧化物層被蝕刻穿過,便使側壁上的矽暴露。藉由蝕刻化學品之適當選擇,可相對於形成於特徵部底部處之原位氧化物層而選擇性地蝕刻側壁,從而減少矽之底部蝕刻。側壁蝕刻可用於,例如,形成3D結構或調整矽的錐角。依此方式,氟電漿蝕刻步驟橫向地蝕刻矽,而不會蝕刻特徵部底部。
蝕刻停止層可由基板處理技術中所公知的提供蝕刻選擇性之各種材料之任一者所形成。在一實施例中,蝕刻停止層可為一氧化物層。在一特定實施例中,該氧化物層可為一矽氧化物層。在另一實施例中,蝕刻停止層可為一氮化物層。在一特定實施例中,該氮化物層可為一矽氮化物層。應理解,蝕刻停止層可由許多材料所形成,且所用之特定材料可取決於欲蝕刻之結構係由何種材料所形成。經受蝕刻之結構可由用於基板處理中的各種材料之任一者所形成。在一範例中,該結構可由矽所形成。然而,應理解,經受蝕刻之結構可為矽、矽氧化物、矽氮化物、其他介電質、導體材料等。
本文所提供之圖式顯示了本文所揭示之技術使用於橫向蝕刻。在一實施例中,橫向蝕刻使被蝕刻之材料的側壁錐角減小。在一實施例中,橫向蝕刻提供蝕刻底切(undercut)。
如圖1之步驟中所示,可使具有錐形輪廓的蝕刻結構(在此例示性實施例中為矽)更為垂直。如圖1A-1C中所示,利用遮罩層110以在基板上形成特徵部105。在一實施例中,特徵部105可為一半導體晶圓之特徵部。然而,應理解,本文所述技術與其他基板相關。遮罩層110可為基板處理技術中所公知的各種遮罩層之任一者。例如,遮罩層110可為一微影層,例如光阻。遮罩層110亦可為硬遮罩層。或者,遮罩層110可為其他類型的遮罩層。如圖1A-1C中所示,特徵部105可包含側壁表面115及底部表面120。在所示範例中,將特徵部105顯示為單一材料,然而,應理解,基板之特徵部105可由複數材料或複數層的材料所形成。例如,在一實施例中,特徵部105之上部(例如形成側壁表面115的部分)可為一種類型的材料,而特徵部105之底部(例如形成底部表面120的部分)可為另一種類型的材料。此外,應理解,特徵部105形成於其上之基板可包含未顯示的許多層及其他特徵部,以上皆為熟習本技藝者所理解。在圖1A-1C之實施例中,側壁表面115並非垂直,而係具有錐形側壁,因此提供如圖所示的非垂直側壁。
如圖1A中所示,已依據由遮罩層110所界定之圖案而形成特徵部105。在一範例中,特徵部係透過各種遮罩及蝕刻技術之任一者而形成,如基板處理技術中所公知。因此,在一實施例中,第一特徵部電漿蝕刻處理可用以形成圖1A之特徵部105。本文所述技術並不限於用於提供如圖1A所示之結構的特定方法。在形成圖1A所示之特徵部105之後,該處理包含形成如圖1B所示之蝕刻停止層125。如圖所示,沿側壁表面115之蝕刻停止層125厚度比沿底部表面120之蝕刻停止層125厚度更薄。
接著,在圖1B之處理步驟之後,基板經受蝕刻,該蝕刻足以貫穿側壁表面115上之較薄的蝕刻停止層125,而不會貫穿底部表面120上之較厚的蝕刻停止層125。在一實施例中,利用一蝕刻停止層電漿蝕刻步驟。因此,如圖1C中所示,蝕刻停止層125餘留於底部表面120上。藉由在側壁區域中貫穿而未在底部區域中貫穿,特徵部105之底部受保護而免於進一步的蝕刻。然而,特徵部105之側壁部分經受進一步的蝕刻。在圖1A-1C之範例中,此進一步蝕刻以如下方式提供特徵部105之側壁表面115的橫向蝕刻:使側壁表面115變為比蝕刻之前更加垂直,如圖1C之所得結構所示。依此方式,形成蝕刻停止層之後的電漿蝕刻步驟橫向地蝕刻特徵部105,而不提供底部表面120的進一步蝕刻。
圖2A-2C提供相似於圖1A-1C所示之程序流程的相應程序流程。然而,在圖2A-2C中,圖2A-2C之側壁表面115比圖1A-1C之側壁表面115更垂直,且利用橫向蝕刻以提供遮罩層110之底切(undercutting)。如圖1B一般,圖2B顯示以如下方式形成蝕刻停止層125:使蝕刻停止層125在側壁表面115上較薄而在底部表面120上較厚。圖2C顯示用以貫穿蝕刻停止層125之附加蝕刻的效應,其中蝕刻停止層125在側壁上係較薄的。圖2C之範例中之附加蝕刻的效應為提供底切側壁220。如圖2C中所示,由附加蝕刻所產生的橫向蝕刻提供底切側壁220,其使遮罩層110底切。圖2A-2C之程序流程中所示之橫向蝕刻對於在基板上形成3D結構可為特別有用。
在一實施例中,圖1A-1C及圖2A-2C之特徵部105係由矽所形成。在一特定實施例中,蝕刻停止層125為藉由電漿氧化處理而形成的矽氧化物層。在另一特定實施例中,蝕刻停止層125為藉由電漿氮化處理而形成的矽氮化物層。然而,如上所提及,其他材料可用於特徵部及蝕刻停止層,而仍獲得本文所述技術之優點。在一實施例中,用以貫穿側壁區域中之蝕刻停止層的蝕刻步驟為一氟基(fluorine based)電漿蝕刻。然而,再次說明,應理解,可利用其他的蝕刻技術。
在圖3中可看到蝕刻停止層125之形成的更詳細視圖(在此範例中沿著如圖1B所示之錐形側壁)。如圖3中所示,蝕刻停止層125之厚度在特徵部105之側壁表面115上比在特徵部105之底部表面120處更薄。蝕刻停止層125在側壁表面115與底部表面120上的相對厚度可取決於植入離子的通量(離子通率 x 處理時間)及離子穿透深度。植入離子的通量係取決於離子/自由基(ni /nn )密度,其係受電漿源功率、壓力、及氣體之定量所影響。離子穿透深度係取決於離子能量Ei ,其係受電漿偏壓功率及壓力所影響。
具體而言,如圖3中所示,特徵部105具有側壁表面115及底部表面120。可使電漿受偏壓以提供離子315及320,其會轟擊基板(在一範例中,O+離子轟擊以形成氧化物),致使離子植入。針對一給定的離子能量,正交地入射至一給定表面的離子(例如轟擊特徵部105之底部表面120的離子320)之離子植入深度高許多,而對於近切線入射角(例如轟擊特徵部105之側壁表面115的離子315),離子植入深度係較淺的。蝕刻停止層厚度會大致跟隨離子植入深度。因此,相較於在諸如側壁表面115之垂直表面上(切線離子入射)的蝕刻停止層125之側壁厚度305,在諸如底部表面120之水平表面上(近正交離子入射)之蝕刻停止層125的底部厚度310係較大的,其中蝕刻停止層125係藉由離子植入而形成。
在一實施例中,蝕刻停止層形成處理可為一RF電漿氧化步驟,其具有以下處理條件:約150瓦的RF功率、介於25-150瓦的RF偏壓功率、50毫托的壓力、以及分別為每分鐘20標準立方公分(sccm)與60 sccm或分別為80 sccm與240 sccm的氧氣與氬氣。在一例示性處理中,針對大約500 eV的離子能量,側壁厚度305可為在2.5 nm至3 nm之範圍內的氧化物,且底部厚度310可在大約5 nm之範圍內。在另一例示性處理中,針對大約100 eV的離子能量,側壁厚度305可為在1 nm之範圍內的氧化物,且底部厚度310可在大約2 nm之範圍內。應理解,此等厚度僅為例示性的。相對地,在一例示性實施例中,在特徵部底部處的蝕刻停止層厚度可為在特徵部側壁上的蝕刻停止層厚度之二至三倍的範圍內。再次說明,應理解,此等範例僅為說明性的,且可使用其他的相對厚度。在一例示性處理中,用於氧化物蝕刻停止層之附加的過蝕刻(over etch)步驟可為氟基(fluorine based)電漿蝕刻或氯基(chlorine based)電漿蝕刻。一例示性處理(用於圖1C之實施例中)可具有約0-2000瓦的電漿源功率、0-200瓦的RF偏壓功率、100毫托的壓力、以及50%氯與50%氬的氣體混合物。在另一例示性處理(用於圖2C之實施例中)中,該處理可具有如上述的相似處理條件,而不同之處在於三氟化氮/氯/氬之氣體混合物。應理解,該等處理僅為例示性的。
如本文所述,提供用以提供側壁橫向蝕刻之處理。應理解,肇因於常態的製程變動、公差、及不準確度,故可能無法達成完全垂直的側壁。因此,雖然可能無法達成完全垂直的側壁,然而相對於未使用本文所述技術之側壁,使用本文所述技術可改善側壁的傾斜度。圖4所示者為高度大約59 nm的結構之側壁傾斜度的例示性資料。如圖表中所示,將結構的高度與結構的臨界尺寸(CD)進行比較。具體而言,該圖表在第一繪圖405中繪示形成蝕刻停止層之後(在此範例中,在形成氧化物層之後)的結構高度與結構CD的關係,而過蝕刻(例如圖1C的附加蝕刻)之後的結構高度與結構CD的關係如第二繪圖410中所示。可看出,在過蝕刻之後的結構中CDs顯示出較小的傾斜度。
相似地,圖5顯示使用橫向蝕刻以形成橫向底切(undercut)蝕刻結構的例示性資料。在圖5之範例中,遮罩具有大約20 nm的CD,且蝕刻結構具有大約31 nm的高度。如圖5之圖表中所示,將結構的高度與結構的臨界尺寸(CD)進行比較。具體而言,該圖表在第一繪圖505中繪示形成蝕刻停止層之後(在此範例中,在形成氧化物層之後)的結構高度與結構CD的關係,而過蝕刻(例如圖2C的附加蝕刻)之後的結構高度與結構CD的關係如繪圖510所示。可看出,CDs顯示出橫向蝕刻對約20 nm之遮罩CD進行底切。
因此,提供一處理,其中RF電漿可用以在水平表面上產生可控的較厚蝕刻停止層(相較於側壁表面)。該處理可與標準電漿蝕刻處理一起應用,俾使蝕刻停止層可在進行蝕刻處理的原處加以形成。再者,特徵部105之初始蝕刻、蝕刻停止層之形成、及特徵部105之附加蝕刻(在蝕刻停止層形成之後)皆可在處理工具中的一個多步驟處理中原位地執行。所揭示之處理可用以提供橫向蝕刻。橫向蝕刻可用以改善側壁的傾斜度特性、及/或提供蝕刻底切。該處理可與各種蝕刻處理工具一起使用、可與各種欲蝕刻之材料及各種蝕刻停止材料一起使用。
應理解,上述應用僅為例示性的,且許多其他的處理及應用可有利地利用本文所揭示之技術。圖6-8顯示使用本文所述處理技術之例示性方法。應理解,圖6-8之實施例僅為例示性的,且另外的方法可利用本文所述技術。再者,可將額外的處理步驟加入圖6-8所示之方法中,因為所述步驟不應被視為專屬的。此外,步驟的順序並不限於圖中所示順序,因為不同的順序可能發生、及/或可同時或以組合的方式執行各種步驟。
圖6中,顯示一種蝕刻基板之方法。該方法包含步驟605,其在該基板上提供第一特徵部,該等第一特徵部具有側壁表面及底部表面,側壁表面係由側壁材料所形成,且底部表面係由底部材料所形成。該方法更包含步驟610,其利用一電漿處理以在側壁表面及底部表面上形成一蝕刻停止層,該蝕刻停止層之厚度有所變化,其中該蝕刻停止層在底部表面上較厚,而在側壁表面上較薄。最後,該方法包含步驟615,其使該蝕刻停止層經受一蝕刻停止層電漿蝕刻步驟,其中將該蝕刻停止層從側壁表面移除,同時在底部表面上留下該蝕刻停止層之至少一部分,俾保護底部表面以免於該蝕刻停止層電漿蝕刻步驟的影響,其中該蝕刻停止層電漿蝕刻步驟透過橫向地蝕刻第一特徵部的側壁表面而蝕刻第一特徵部。
圖7中,顯示蝕刻基板之另一方法。該方法包含步驟705,其在該基板上電漿蝕刻第一特徵部,該等第一特徵部具有側壁表面及底部表面,側壁表面係由側壁材料所形成,且底部表面係由底部材料所形成。該方法更包含步驟710,俾利用一電漿處理以在側壁表面及底部表面上形成一蝕刻停止層,該蝕刻停止層之厚度有所變化,其中離子通率及能量係由來源及偏壓RF功率所控制,俾使得該蝕刻停止層在底部表面上較厚,而在側壁表面上較薄。該方法亦包含步驟715,用以使該蝕刻停止層經受一蝕刻停止層電漿蝕刻步驟,其中將該蝕刻停止層從側壁表面移除,同時在底部表面上留下該蝕刻停止層之至少一部分,俾保護底部表面以免於該蝕刻停止層電漿蝕刻步驟的影響,其中該蝕刻停止層電漿蝕刻步驟蝕刻第一特徵部的側壁表面之至少一部分,而不蝕刻第一特徵部的底部表面。
圖8中,顯示一種蝕刻基板之矽特徵部的方法。該方法包含步驟805,其利用一遮罩層以在該基板上形成該等矽特徵部,該等矽特徵部具有側壁表面及底部表面。該方法亦包含步驟810,其利用一電漿處理以在側壁表面及底部表面上形成一蝕刻停止層,該蝕刻停止層之厚度有所變化,其中控制該電漿處理俾使得該蝕刻停止層在該等底部表面上較厚,而在該等側壁表面上較薄。該方法更包含步驟815,其使該蝕刻停止層經受一氟電漿蝕刻步驟,其中將該蝕刻停止層從側壁表面移除,同時在底部表面上留下該蝕刻停止層之至少一部分,俾保護底部表面以免於該氟電漿蝕刻步驟的影響,其中該氟電漿蝕刻步驟蝕刻矽特徵部的側壁表面之至少一部分,而不蝕刻矽特徵部的底部表面。
基於此說明,本發明之進一步修改及替代性實施例對於熟習本技藝者係顯而易見的。因此,此說明應理解成僅為說明性的,且係為了教示熟習本技藝者實施本發明之方式。應理解,本文所顯示及描述之發明形式及方法係視為當前較佳實施例。等效技術可代替本文所顯示及描述的技術,且可獨立於其他特徵之使用而利用本發明的某些特徵,以上對於擁有本發明實施方式之優點後之熟習本技藝者係顯而易見的。
105‧‧‧特徵部
110‧‧‧遮罩層
115‧‧‧側壁表面
120‧‧‧底部表面
125‧‧‧蝕刻停止層
220‧‧‧底切側壁
305‧‧‧側壁厚度
310‧‧‧底部厚度
315‧‧‧離子
320‧‧‧離子
605‧‧‧步驟
610‧‧‧步驟
615‧‧‧步驟
705‧‧‧步驟
710‧‧‧步驟
715‧‧‧步驟
805‧‧‧步驟
810‧‧‧步驟
815‧‧‧步驟
透過結合附圖而參照以下說明,可獲得本發明及其優點之更完整理解,在附圖中相似的參考符號表示相似的特徵。然而,應注意,附圖僅顯示所揭示之概念的例示性實施例,且因此並非視為對範圍的限制,所揭示之概念可允許其他的等效實施例。
圖1A-1C顯示利用本文所述之蝕刻停止層及橫向蝕刻技術的一例示性程序流程。
圖2A-2C顯示利用本文所述之蝕刻停止層及橫向蝕刻技術的另一例示性程序流程。
圖3顯示離子轟擊掠射角對蝕刻停止層厚度的影響。
圖4顯示利用本文所揭示技術之臨界尺寸的例示性變化。
圖5顯示利用本文所揭示技術之臨界尺寸的例示性變化。
圖6-8顯示使用蝕刻停止層之例示性方法,用以利用本文所述技術而達成基板特徵部之橫向蝕刻。

Claims (20)

  1. 一種蝕刻基板之方法,該方法包含: 在該基板上提供第一特徵部,該等第一特徵部具有側壁表面及底部表面,該等側壁表面係由側壁材料所形成,且該等底部表面係由底部材料所形成; 利用一電漿處理以在該等側壁表面及該等底部表面上形成一蝕刻停止層,該蝕刻停止層之厚度有所變化,其中該蝕刻停止層在該等底部表面上較厚,而在該等側壁表面上較薄;以及 使該蝕刻停止層經受一蝕刻停止層電漿蝕刻步驟,其中將該蝕刻停止層從該等側壁表面移除,同時在該等底部表面上留下該蝕刻停止層之至少一部分,俾保護該等底部表面以免於該蝕刻停止層電漿蝕刻步驟的影響; 其中該蝕刻停止層電漿蝕刻步驟透過橫向地蝕刻該等第一特徵部的該等側壁表面而蝕刻該等第一特徵部。
  2. 如申請專利範圍第1項之蝕刻基板之方法,其中該電漿處理係藉由離子之穿透深度而驅動,而非藉由自由基之穿透深度而驅動。
  3. 如申請專利範圍第1項之蝕刻基板之方法,其中在該基板上提供該等第一特徵部之步驟係利用第一特徵部電漿蝕刻處理而完成。
  4. 如申請專利範圍第3項之蝕刻基板之方法,其中該第一特徵部電漿蝕刻處理、該電漿處理、及該蝕刻停止層電漿蝕刻步驟係在一個多步驟處理中原位地(in-situ)執行。
  5. 如申請專利範圍第4項之蝕刻基板之方法,其中該側壁材料為矽,且該底部材料為矽。
  6. 如申請專利範圍第5項之蝕刻基板之方法,其中該蝕刻停止層為一氧化物層。
  7. 如申請專利範圍第5項之蝕刻基板之方法,其中該蝕刻停止層為一氮化物層。
  8. 一種蝕刻基板之方法,該方法包含: 在該基板上電漿蝕刻第一特徵部,該等第一特徵部具有側壁表面及底部表面,該等側壁表面係由側壁材料所形成,且該等底部表面係由底部材料所形成; 利用一電漿處理以在該等側壁表面及該等底部表面上形成一蝕刻停止層,該蝕刻停止層之厚度有所變化,其中離子通率及能量係由來源及偏壓RF功率所控制,俾使得該蝕刻停止層在該等底部表面上較厚,而在該等側壁表面上較薄;以及 使該蝕刻停止層經受一蝕刻停止層電漿蝕刻步驟,其中將該蝕刻停止層從該等側壁表面移除,同時在該等底部表面上留下該蝕刻停止層之至少一部分,俾保護該等底部表面以免於該蝕刻停止層電漿蝕刻步驟的影響; 其中該蝕刻停止層電漿蝕刻步驟蝕刻該等第一特徵部的該等側壁表面之至少一部分,而不蝕刻該等第一特徵部的該等底部表面。
  9. 如申請專利範圍第8項之蝕刻基板之方法,其中,相較於該蝕刻停止層電漿蝕刻步驟之前,該蝕刻停止層電漿蝕刻步驟使得該等第一特徵部之該等側壁表面更加垂直。
  10. 如申請專利範圍第9項之蝕刻基板之方法,其中該側壁材料為矽,且該底部材料為矽。
  11. 如申請專利範圍第10項之蝕刻基板之方法,其中該蝕刻停止層為一氧化物層。
  12. 如申請專利範圍第10項之蝕刻基板之方法,其中該蝕刻停止層為一氮化物層。
  13. 如申請專利範圍第8項之蝕刻基板之方法,其中該蝕刻停止層電漿蝕刻步驟橫向地蝕刻該等第一特徵部,俾提供比覆蓋該等第一特徵部之遮罩的臨界尺寸更小的該等第一特徵部之臨界尺寸。
  14. 如申請專利範圍第13項之蝕刻基板之方法,其中該側壁材料為矽,且該底部材料為矽。
  15. 如申請專利範圍第14項之蝕刻基板之方法,其中該蝕刻停止層為一氧化物層。
  16. 如申請專利範圍第14項之蝕刻基板之方法,其中該蝕刻停止層為一氮化物層。
  17. 一種蝕刻基板之矽特徵部的方法,該方法包含: 利用一遮罩層以在該基板上形成該等矽特徵部,該等矽特徵部具有側壁表面及底部表面; 利用一電漿處理以在該等側壁表面及該等底部表面上形成一蝕刻停止層,該蝕刻停止層之厚度有所變化,其中控制該電漿處理俾使得該蝕刻停止層在該等底部表面上較厚,而在該等側壁表面上較薄;以及 使該蝕刻停止層經受一氟電漿蝕刻步驟,其中將該蝕刻停止層從該等側壁表面移除,同時在該等底部表面上留下該蝕刻停止層之至少一部分,俾保護該等底部表面以免於該氟電漿蝕刻步驟的影響; 其中該氟電漿蝕刻步驟蝕刻該等矽特徵部的該等側壁表面之至少一部分,而不蝕刻該等矽特徵部的該等底部表面。
  18. 如申請專利範圍第17項之蝕刻基板之矽特徵部的方法,其中該電漿處理及該氟電漿蝕刻步驟係藉由利用一個多步驟處理而在一處理工具中原位地(in-situ)執行。
  19. 如申請專利範圍第18項之蝕刻基板之矽特徵部的方法,其中該蝕刻停止層為一矽氧化物或矽氮化物層。
  20. 如申請專利範圍第19項之蝕刻基板之矽特徵部的方法,其中該氟電漿蝕刻步驟橫向地蝕刻該等矽特徵部,俾提供比覆蓋該等矽特徵部之該遮罩層的臨界尺寸更小的該等矽特徵部之臨界尺寸。
TW108105592A 2018-02-20 2019-02-20 達成側壁蝕刻的方法 TWI778226B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862632934P 2018-02-20 2018-02-20
US62/632,934 2018-02-20
US201862665785P 2018-05-02 2018-05-02
US62/665,785 2018-05-02

Publications (2)

Publication Number Publication Date
TW201946147A true TW201946147A (zh) 2019-12-01
TWI778226B TWI778226B (zh) 2022-09-21

Family

ID=69582909

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108105592A TWI778226B (zh) 2018-02-20 2019-02-20 達成側壁蝕刻的方法

Country Status (1)

Country Link
TW (1) TWI778226B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906727B2 (en) * 2011-06-16 2014-12-09 Varian Semiconductor Equipment Associates, Inc. Heteroepitaxial growth using ion implantation
US9515166B2 (en) * 2014-04-10 2016-12-06 Applied Materials, Inc. Selective atomic layer deposition process utilizing patterned self assembled monolayers for 3D structure semiconductor applications
JP6418794B2 (ja) * 2014-06-09 2018-11-07 東京エレクトロン株式会社 改質処理方法及び半導体装置の製造方法
US9576811B2 (en) * 2015-01-12 2017-02-21 Lam Research Corporation Integrating atomic scale processes: ALD (atomic layer deposition) and ALE (atomic layer etch)
TWI637514B (zh) * 2015-04-24 2018-10-01 聯華電子股份有限公司 半導體結構及其製作方法

Also Published As

Publication number Publication date
TWI778226B (zh) 2022-09-21

Similar Documents

Publication Publication Date Title
US9570317B2 (en) Microelectronic method for etching a layer
JP2915807B2 (ja) 六弗化イオウ、臭化水素及び酸素を用いる珪化モリブデンのエッチング
US20070199922A1 (en) Etch methods to form anisotropic features for high aspect ratio applications
TW419740B (en) Method for etching silicon layer
US20070202700A1 (en) Etch methods to form anisotropic features for high aspect ratio applications
JPH1092798A (ja) 単結晶シリコンのエッチング方法
KR101399181B1 (ko) 플라즈마 프로세싱 시스템에 대한 마스크 언더컷 및 노치를최소화시키는 방법
US7091104B2 (en) Shallow trench isolation
KR100607326B1 (ko) 반도체 소자의 제조방법
US5651856A (en) Selective etch process
KR20190029755A (ko) 각진 이온 빔 증착을 사용하는 복합 패턴화 마스크
KR102462052B1 (ko) 측벽 에칭을 달성하기 위한 방법
US5756216A (en) Highly selective nitride spacer etch
KR20080083160A (ko) 플라즈마 처리 시스템의 노치 스탑 펄싱 공정
US5767017A (en) Selective removal of vertical portions of a film
KR100555366B1 (ko) 폴리실리콘 에칭 방법 및 반도체 메모리 제조 방법
KR100549204B1 (ko) 실리콘 이방성 식각 방법
TWI778226B (zh) 達成側壁蝕刻的方法
US11232954B2 (en) Sidewall protection layer formation for substrate processing
Ahn et al. Etch challenges for 1xnm NAND flash
JP4360393B2 (ja) ポリシリコンエッチング方法
JP3376348B2 (ja) 半導体装置の製造方法、及び半導体装置
JPH0485928A (ja) ドライエッチング方法
US20200273992A1 (en) Method for gate stack formation and etching
JP2006086295A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent