TW201945380A - 有機化合物、發光元件、發光裝置、電子機器及照明裝置 - Google Patents

有機化合物、發光元件、發光裝置、電子機器及照明裝置 Download PDF

Info

Publication number
TW201945380A
TW201945380A TW108113970A TW108113970A TW201945380A TW 201945380 A TW201945380 A TW 201945380A TW 108113970 A TW108113970 A TW 108113970A TW 108113970 A TW108113970 A TW 108113970A TW 201945380 A TW201945380 A TW 201945380A
Authority
TW
Taiwan
Prior art keywords
light
group
abbreviation
layer
substituted
Prior art date
Application number
TW108113970A
Other languages
English (en)
Other versions
TWI810283B (zh
Inventor
原朋香
木戶裕允
吉住英子
瀬尾哲史
渡部剛吉
Original Assignee
日商半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商半導體能源研究所股份有限公司 filed Critical 日商半導體能源研究所股份有限公司
Publication of TW201945380A publication Critical patent/TW201945380A/zh
Application granted granted Critical
Publication of TWI810283B publication Critical patent/TWI810283B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供一種具有穩定的分子結構的新穎有機金屬錯合物。一種苯并萘并喹㗁啉(bnq)骨架的配體配位於中心金屬,該配體的bnq骨架所包括的氮中之不鍵合於中心金屬(第9族或第10族:Ir、Pt)的氮和bnq骨架的稠環的氫之間形成氫鍵合的以下述通式(G1)表示的有機金屬錯合物。

在通式中,M表示第9族元素或第10族元素,R1至R10分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為6至12的芳基、以及取代或未取代的碳原子數為3至12的雜芳基中的任一個。或者,R9及R10也可以彼此鍵合併形成取代或未取代的碳原子數為3至24的飽和環或不飽和環。此外,L表示單陰離子的配體。

Description

有機化合物、發光元件、發光裝置、電子機器及照明裝置
本發明的一個實施方式係關於一種有機化合物、發光元件、發光裝置、電子機器及照明裝置。本發明的一個實施方式不侷限於此。也就是說,本發明的一個實施方式係關於一種物體、方法、製造方法或驅動方法。另外,本發明的一個實施方式係關於一種製程(process)、機器(machine)、產品(manufacture)或組合物(composition of matter)。此外,明確而言,作為例子可以舉出半導體裝置、顯示裝置、液晶顯示裝置等。
由於在一對電極之間夾有EL層的發光元件(也稱為發光元件或有機EL元件)具有薄型輕量、對輸入信號的高速回應性及低功耗等特性,所以使用上述發光元件的顯示器被期待用作下一代平板顯示器。
發光元件藉由在一對電極之間施加電壓,從各電極注入的電子和電洞在EL層中再結合而EL層所包含的發光物質(有機化合物)成為激發態,當該激發態返回到基態時發光。另外,作為激發態的種類,可以舉出單重激發態(S )和三重激發態(T ),其中由單重激發態的發光被稱為螢光,而由三重激發態的發光被稱為磷光。另外,在發光元件中,單重激發態和三重激發態的統計學上的生成比例被認為是S :T =1:3。
此外,在上述發光物質中,能夠將單重激發態的能量轉換成發光的化合物被稱為螢光化合物(螢光材料),能夠將三重激發態的能量轉換成發光的化合物被稱為磷光化合物(磷光材料)。
因此,基於上述生成比例,使用螢光材料的發光元件的內部量子效率(所產生的光子相對於所注入的載子的比例)的理論上的極限被認為是25%,而使用磷光材料的發光元件的內部量子效率的理論上的極限被認為是75%。
換言之,與使用螢光材料的發光元件相比,使用磷光材料的發光元件可以得到更高的效率。因此,近年來對各種磷光材料進行積極的研究開發。尤其是,以銥等為中心金屬的有機金屬錯合物因其高磷光量子產率而已受到關注(例如,參照專利文獻1)。
[專利文獻1] 日本專利申請公開第2009-23938號公報
如上述專利文獻1所報告,具有優良的特性的磷光材料的開發進展,然而期待具有更優良的特性的新穎材料的開發。
於是,本發明的一個實施方式提供一種新穎有機化合物(包含有機金屬錯合物)。另外,本發明的一個實施方式提供一種具有穩定的分子結構的新穎有機金屬錯合物。另外,本發明的一個實施方式提供一種在長波長區域(700nm以上的波長的可見區域或近紅外區域)中具有發光峰值的有機金屬錯合物。另外,本發明的一個實施方式提供一種可用於發光元件的新穎有機金屬錯合物。另外,本發明的一個實施方式提供一種可用於發光元件的EL層的新穎有機金屬錯合物。另外,本發明的一個實施方式提供一種使用新穎有機金屬錯合物的可靠性高的新穎發光元件。另外,本發明的一個實施方式提供一種新穎發光裝置、新穎電子機器或新穎照明裝置。注意,這些目的的記載並不妨礙其他目的的存在。本發明的一個實施方式並不需要實現所有上述目的。另外,上述以外的目的從說明書、圖式、申請專利範圍等的記載中自然得知,可以從說明書、圖式、申請專利範圍等的記載衍生上述以外的目的。
本發明的一個實施方式是以下述通式(G1)表示的有機金屬錯合物,其中具有苯并萘并喹㗁啉(bnq)骨架的配體配位於中心金屬,該配體在bnq骨架所包括的氮中之不鍵合於中心金屬(第9族或第10族:Ir、Pt)的氮和bnq骨架的稠環的氫之間形成氫鍵合。
[化學式1]
但是,在通式(G1)中,M表示第9族元素或第10族元素,R1 至R10 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為6至12的芳基、以及取代或未取代的碳原子數為3至12的雜芳基中的任一個。或者,R9 及R10 彼此鍵合併也可以形成取代或未取代的碳原子數為3至24的飽和環或不飽和環。此外,L表示單陰離子的配體。此外,在上述M為第9族元素時,m+n=3(注意,m=0、1及2中的任一個,n=1、2及3中的任一個),在上述M為第10族元素時,m+n=2(注意,m=0或1,n=1或2)。
另外,本發明的另一個實施方式是以下述通式(G2)表示的有機金屬錯合物。
[化學式2]
但是,在通式(G2)中,R1 至R10 為分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為6至12的芳基、以及取代或未取代的碳原子數為3至12的雜芳基中的任一個。此外,R9 及R10 也可以彼此鍵合併形成取代或未取代的碳原子數為3至24的飽和環或不飽和環。此外,L表示單陰離子的配體。
另外,在上述各結構中,單陰離子的配體為含有β-二酮結構的單陰離子的雙牙螯合配體、含有羧基的單陰離子的雙牙螯合配體、含有酚式羥基的單陰離子的雙牙螯合配體、兩個配位元素都為氮的單陰離子的雙牙螯合配體、以及由於環金屬化與銥形成金屬-碳鍵合的雙牙配位體中的任一個。
另外,在上述各結構中,單陰離子的配體是下述通式(L1)至(L7)中的任一個。
[化學式3]
注意,在上述通式(L1)至(L7)中,R51 至R89 分別獨立地表示如下:氫;取代或未取代的碳原子數為1至6的烷基;鹵代基;乙烯基;取代或未取代的碳原子數為1至6的鹵代烷基;取代或未取代的碳原子數為1至6的烷氧基;取代或未取代的碳原子數為1至6的烷硫基;以及取代或未取代的碳原子數為6至13的芳基。此外,A1 至A13 分別獨立地表示氮、與氫鍵合的sp2 雜化碳或者具有取代基的sp2 雜化碳,上述取代基表示碳原子數為1至6的烷基、鹵代基、碳原子數為1至6的鹵代烷基以及苯基中的任一個。
此外,本發明的另一個實施方式是以下述通式(G3)表示的有機金屬錯合物。
[化學式4]
但是,在通式(G3)中,R1 至R13 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為6至12的芳基、以及取代或未取代的碳原子數為3至12的雜芳基中的任一個。或者,R9 及R10 也可以彼此鍵合併形成取代或未取代的碳原子數為3至24的飽和環或不飽和環。
此外,本發明的另一個實施方式是以結構式(100)或結構式(118)表示的有機金屬錯合物。
[化學式5]
本發明的另一個實施方式是一種發光元件,其中使用配位於中心金屬的苯并萘并喹㗁啉(bnq)骨架所包括的氮中之不鍵合於中心金屬(第9族或第10族:Ir、Pt)的氮和bnq骨架的稠環的氫之間形成氫鍵合的有機金屬錯合物。注意,本發明的一個實施方式還包括除了上述有機金屬錯合物之外,還包含其他有機化合物的發光元件。
本發明的另一個實施方式是一種使用上述本發明的一個實施方式的有機金屬錯合物的發光元件。注意,本發明的一個實施方式還包括一對電極之間的EL層或EL層中的發光層使用本發明的一個實施方式的有機金屬錯合物的發光元件。此外,除了發光元件之外,包括電晶體或基板等的發光裝置也包括在發明的範疇內。並且,除了上述發光裝置之外,包括麥克風、相機、操作按鈕、外部連接部、外殼、覆蓋物、支架或揚聲器等的電子機器和照明裝置也包括在發明的範疇內。
本發明的一個實施方式的有機金屬錯合物也可以以與其他的有機化合物組合的方式用於發光元件的發光層。也就是說,因為可以從發光層得到來自三重激發態的發光,可以實現發光元件的高效率化,所以是非常有效的。由此,本發明的一個實施方式包括將本發明的一個實施方式的有機金屬錯合物和其他的有機化合物的組合用於發光層的發光元件。再者,發光層除此之外還可以包含第三物質。
另外,本發明的一個實施方式不僅包括具有發光元件的發光裝置,而且還包括具有發光裝置的照明裝置。因此,本說明書中的發光裝置是指影像顯示裝置或光源(包括照明裝置)。另外,發光裝置還包括如下模組:將FPC(Flexible printed circuit:軟性印刷電路)或TCP(Tape Carrier Package:捲帶式封裝)等連接器連接到發光裝置的模組;將印刷線路板設置於TCP端部的模組;或者藉由COG(Chip On Glass:玻璃上晶片)方式將IC(積體電路)直接安裝到發光元件上的模組。
本發明的一個實施方式可以提供一種新穎有機化合物(包含有機金屬錯合物)。另外,可以提供一種具有穩定的分子結構的新穎有機金屬錯合物。另外,本發明的一個實施方式可以提供一種在長波長區域(700nm以上的波長的可見區域或近紅外區域)中具有發光峰值的有機金屬錯合物。另外,本發明的一個實施方式可以提供一種可用於發光元件的新穎有機金屬錯合物。另外,本發明的一個實施方式可以提供一種可用於發光元件的EL層的新穎有機金屬錯合物。另外,本發明的一個實施方式可以提供一種使用新穎有機金屬錯合物的可靠性高的新穎發光元件。另外,本發明的一個實施方式可以提供一種新穎發光裝置、新穎電子機器或新穎照明裝置。注意,這些效果的記載不妨礙其他效果的存在。本發明的一個實施方式並不需要實現所有上述效果。另外,從說明書、圖式、申請專利範圍等的記載中可明顯看出這些效果以外的效果,可以從說明書、圖式、申請專利範圍等的記載中衍生這些效果以外的效果。
以下利用圖式詳細地說明本發明的實施方式。注意,本發明不侷限於下述說明,其方式及詳細內容在不脫離本發明的精神及其範圍的情況下可以被變換為各種各樣的形式。因此,本發明不應該被解釋為僅侷限在以下所示的實施方式所記載的內容中。
此外,為了便於理解,有時在圖式等中示出的各結構的位置、大小及範圍等並不表示其實際的位置、大小及範圍等。因此,所公開的發明不一定侷限於圖式等所公開的位置、大小、範圍等。
注意,在本說明書等中,當利用圖式說明發明的結構時,有時在不同的圖式中共同使用表示相同的部分的符號。
實施方式1
在本實施方式中,說明本發明的一個實施方式的有機金屬錯合物。
本發明的一個實施方式的有機金屬錯合物具有以下述通式(G1)表示的結構,亦即具有苯并萘并喹㗁啉(bnq)骨架的配體配位於中心金屬,該配體的bnq骨架所包括的氮中之不鍵合於中心金屬(第9族或第10族:Ir、Pt)的氮和bnq骨架的稠環的氫之間形成氫鍵合。
[化學式6]
在通式(G1)中,M表示第9族元素或第10族元素,R1 至R10 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為6至12的芳基、以及取代或未取代的碳原子數為3至12的雜芳基中的任一個。另外,R9 及R10 彼此鍵合併也可以形成取代或未取代的碳原子數為3至24的飽和環或不飽和環,較佳為取代或未取代的碳原子數為3至12的飽和環或不飽和環。此外,L表示單陰離子的配體。另外,在上述M為第9族元素時,m+n=3(注意,m=0、1及2中的任一個,n=1、2及3中的任一個),在上述M為第10族元素時,m+n=2(注意,m=0或1,n=1或2)。
本發明的另一個實施方式是以下述通式(G2)表示的有機金屬錯合物。
[化學式7]
在通式(G2)中,R1 至R10 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為6至12的芳基、以及取代或未取代的碳原子數為3至12的雜芳基中的任一個。另外,R9 及R10 彼此鍵合併也可以形成取代或未取代的碳原子數為3至24的飽和環或不飽和環,較佳為取代或未取代的碳原子數為3至12的飽和環或不飽和環。此外,L表示單陰離子的配體。
另外,上述通式(G1)及(G2)中的單陰離子的配體為含有β-二酮結構的單陰離子的雙牙螯合配體、含有羧基的單陰離子的雙牙螯合配體、含有酚式羥基的單陰離子的雙牙螯合配體、兩個配位元素都為氮的單陰離子的雙牙螯合配體以及由於環金屬化與銥形成金屬-碳鍵合的雙牙配位體中的任一個。
另外,明確而言,上述通式(G1)及(G2)中的單陰離子的配體是下述通式(L1)至(L7)中的任一個。
[化學式8]
另外,在上述通式(L1)至(L7)中,R51 至R89 分別獨立地表示如下:氫;取代或未取代的碳原子數為1至6的烷基;鹵代基;乙烯基;取代或未取代的碳原子數為1至6的鹵代烷基;取代或未取代的碳原子數為1至6的烷氧基;取代或未取代的碳原子數為1至6的烷硫基;以及取代或未取代的碳原子數為6至13的芳基。此外,A1 至A13 分別獨立地表示氮、與氫鍵合的sp2 雜化碳或者具有取代基的sp2 雜化碳,上述取代基表示碳原子數為1至6的烷基、鹵代基、碳原子數為1至6的鹵代烷基以及苯基中的任一個。
此外,本發明的另一個實施方式的有機金屬錯合物是以下述通式(G3)表示的有機金屬錯合物。
[化學式9]
在通式(G3)中,R1 至R13 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為6至12的芳基、以及取代或未取代的碳原子數為3至12的雜芳基中的任一個。另外,R9 及R10 彼此鍵合併也可以形成取代或未取代的碳原子數為3至24,較佳為取代或未取代的碳原子數為3至12的飽和環或不飽和環。
注意,以上述通式(G1)、上述通式(G2)及上述通式(G3)表示的有機金屬錯合物中的取代較佳為由如下取代基的取代,例如,甲基、乙基、正丙基、異丙基、二級丁基、三級丁基、正戊基、正己基等碳原子數為1至6的烷基、苯基、鄰甲苯基、間甲苯基、對甲苯基、1-萘基、2-萘基、2-聯苯基、3-聯苯基及4-聯苯基等碳原子數為6至12的芳基。這些取代基也可以互相鍵合而形成環。例如,當上述芳基是在9位上具有作為取代基的兩個苯基的2-茀基時,該兩個苯基也可以互相鍵合而成為螺-9,9’-聯茀-2-基。更明確而言,例如可以舉出苯基、甲苯基、二甲苯基、聯苯基、茚基、萘基、茀基等。
另外,在以上述通式(G1)、上述通式(G2)及上述通式(G3)表示的有機金屬錯合物中,作為式中的R1 至R13 的碳原子數為1至6的烷基的具體例子,可以舉出甲基、乙基、丙基、異丙基、丁基、二級丁基、異丁基、三級丁基、戊基、異戊基、二級戊基、三級戊基、新戊基、己基、異己基、二級己基、三級己基、新己基、3-甲基戊基、2-甲基戊基、2-乙基丁基、1,2-二甲基丁基以及2,3-二甲基丁基等。
另外,在以上述通式(G1)、上述通式(G2)及上述通式(G3)表示的有機金屬錯合物中,作為式中的R1 至R13 中的形成環的碳原子數為6至12的取代或未取代的芳基的具體例子,可以舉出苯基、聯苯基、萘基以及茚基等,較佳為苯基。
另外,在以上述通式(G1)、上述通式(G2)及上述通式(G3)表示的有機金屬錯合物中,式中的R1 至R13 中的形成環的碳原子數為3至12的取代或未取代的雜芳基的具體例子,可以舉出三嗪基、吡嗪基、嘧啶基、吡啶基、喹啉基、異喹啉基、苯并噻吩基、苯并呋喃基、吲哚基、二苯并噻吩基、二苯并呋喃基以及咔唑基等。
接著,示出上述本發明的一個實施方式的有機金屬錯合物的具體結構式。
[化學式10]
[化學式11]
[化學式12]
注意,以上述結構式(100)至(125)表示的有機金屬錯合物是以上述通式(G1)、上述通式(G2)及上述通式(G3)中的任一個表示的本發明的一個實施方式的有機金屬錯合物的一個例子。但是,本發明的一個實施方式的有機金屬錯合物不侷限於此。
接著,說明以下述通式(G1)表示的本發明的一個實施方式的有機金屬錯合物的合成方法的一個例子。
[化學式13]
但是,在通式(G1)中,M表示第9族元素或第10族元素,R1 至R10 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為6至12的芳基、以及取代或未取代的碳原子數為3至12的雜芳基中的任一個。或者,R9 及R10 彼此鍵合併也可以形成取代或未取代的碳原子數為3至24的飽和環或不飽和環。此外,L表示單陰離子的配體。此外,在上述M為第9族元素時,m+n=3(注意,m=0、1及2中的任一個,n=1、2及3中的任一個),在上述M為第10族元素時,m+n=2(注意,m=0或1,n=1或2)。
<<由通式(G0)表示的苯并[f]萘并[2,1-h]喹㗁啉衍生物的合成方法>>
首先,說明以下述通式(G0)表示的苯并[f]萘并[2,1-h]喹㗁啉衍生物的合成方法的一個例子。
[化學式14]
在通式(G0)中,R1 至R10 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為6至12的芳基、以及取代或未取代的碳原子數為3至12的雜芳基中的任一個。另外,R9 及R10 彼此鍵合併也可以形成取代或未取代的碳原子數為3至24的飽和環或不飽和環。
注意,如下述合成方案(A-1)所示那樣,藉由使二酮化合物(A1)與二胺化合物(A2)起反應,由此可以得到以通式(G0)表示的苯并[f]萘并[2,1-h]喹㗁啉衍生物。
[化學式15]
此外,如下述合成方案(A-1’)所示那樣,也可以使二酮化合物(B1)與二胺化合物(B2)起反應。
[化學式16]
注意,在上述合成方案(A-1)及(A-1’)中,R1 至R10 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為6至12的芳基、以及取代或未取代的碳原子數為3至12的雜芳基中的任一個。另外,R9 及R10 彼此鍵合併也可以形成取代或未取代的碳原子數為3至24的飽和環或不飽和環。
<<以通式(G1)表示的有機金屬錯合物的合成方法>>
接著,說明以下述通式(G1)表示的有機金屬錯合物的合成方法。
首先,如下述合成方案(A-2)所示那樣,不使用溶劑、單獨使用醇類溶劑(甘油、乙二醇、2-甲氧基乙醇、2-乙氧基乙醇等)或者一種以上的醇類溶劑和水的混合溶劑且在惰性氣體氛圍下,對以通式(G0)表示的苯并[f]萘并[2,1-h]喹㗁啉衍生物或單陰離子配體L與包含鹵素的第9族或第10族的金屬化合物進行加熱,從而可以得到雙核錯合物(C1)或者包含單陰離子的配體的雙核錯合物(C2),該(C1)和(C2)都是一種作為具有由鹵素交聯的結構的有機金屬錯合物。對加熱方法沒有特別的限制,可以使用油浴、沙浴或鋁塊等。此外,還可以使用微波作為加熱單元。
[化學式17]
接著,如合成方案(A-3)所示那樣,藉由使在上述合成方案(A-2)中得到的雙核錯合物(C1)或(C2)與以通式(G0)表示的苯并[f]萘并[2,1-h]喹㗁啉衍生物或單陰離子配體L在惰性氣體氛圍下起反應,因此可以得到以通式(G1)表示的有機金屬錯合物。
[化學式18]
注意,在上述合成方案(A-2)及上述合成方案(A-3)中,M表示第9族元素或第10族元素,R1 至R10 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為6至12的芳基、以及取代或未取代的碳原子數為3至12的雜芳基中的任一個。或者,R9 及R10 彼此鍵合併也可以形成取代或未取代的碳原子數為3至24的飽和環或不飽和環。此外,L表示單陰離子的配體。此外,在上述M為第9族元素時,m+n=3(注意,m=0、1及2中的任一個,n=1、2及3中的任一個),在上述M為第10族元素時,m+n=2(注意,m=0或1,n=1或2)。
另外,如下述合成方案(A-3’)所示那樣,藉由對包含鹵素的第9族或第10族的金屬化合物和以上述通式(G0)表示的苯并[f]萘并[2,1-h]喹㗁啉衍生物或單陰離子配體L在惰性氣體氛圍下進行加熱,然後藉由添加單陰離子配體L或以上述通式(G0)表示的苯并[f]萘并[2,1-h]喹㗁啉衍生物進行加熱,因此可以得到以通式(G1)表示的有機金屬錯合物。
[化學式19]
在上述合成方案(A-3’)中,M表示第9族元素或第10族元素,R1 至R10 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為6至12的芳基、以及取代或未取代的碳原子數為3至12的雜芳基中的任一個。或者,R9 及R10 彼此鍵合併也可以形成取代或未取代的碳原子數為3至24的飽和環或不飽和環。此外,L表示單陰離子的配體。此外,在上述M為第9族元素時,m+n=3(注意,m=0、1及2中的任一個,n=1、2及3中的任一個),在上述M為第10族元素時,m+n=2(注意,m=0或1,n=1或2)。
<<以通式(G1’)表示的有機金屬錯合物的合成方法>>
接著,說明以通式(G1)表示的有機金屬錯合物中的M為第9族元素並n=3或者M為第10族元素並n=2且以下述通式(G1’)表示的有機金屬錯合物的合成方法的一個例子。在通式(G1’)中,M表示第9族元素或第10族元素,R1 至R10 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為6至12的芳基、以及取代或未取代的碳原子數為3至12的雜芳基中的任一個。或者,R9 及R10 彼此鍵合併也可以形成取代或未取代的碳原子數為3至24的飽和環或不飽和環。此外,L表示單陰離子的配體。
[化學式20]
如下述方案(A-3”)所示那樣,藉由使以通式(G0)表示的苯并[f]萘并[2,1-h]喹㗁啉衍生物與包含鹵素的第9族或第10族的金屬化合物或者第9族或第10族的有機化合物混合,然後在惰性氣體氛圍下進行加熱,因此可以得到具有以通式(G1’)表示的結構的有機金屬錯合物。
[化學式21]
在上述合成方案(A-3”)中,M表示第9族元素或第10族元素,R1 至R10 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為6至12的芳基、以及取代或未取代的碳原子數為3至12的雜芳基中的任一個。或者,R9 及R10 也可以彼此鍵合併形成取代或未取代的碳原子數為3至24的飽和環或不飽和環。此外,L表示單陰離子的配體。
以上,雖然說明了本發明的一個實施方式的有機金屬錯合物的合成方法的一個例子,但是本發明不侷限於此,也可以藉由任何其他的合成方法合成。
以上,雖然說明了以通式(G1)及通式(G1’)表示的本發明的一個實施方式的有機金屬錯合物的合成方法,但是本發明不侷限於此,也可以藉由其他的合成方法進行合成。
注意,在本發明的一個實施方式的有機金屬錯合物中,具有苯并萘并喹㗁啉(bnq)骨架的配體配位於中心金屬,該配體的bnq骨架所包括的氮中之不鍵合於中心金屬(第9族或第10族:Ir、Pt)的氮和bnq骨架的稠環的氫之間形成氫鍵合。因為具有這種結構,比在與稠環的氫之間不容易形成氫鍵合的二苯并喹㗁啉(dbq)骨架共軛較擴大,所以能夠使本發明的一個實施方式的有機金屬錯合物的極大發光波長漂移至長波長方向。並且,藉由對bnq骨架的吡嗪環稠合萘基,可以使π共軛擴張,而能夠使LUMO能階穩定化,因此將極大發光波長可以漂移至更長波長方向。因此,能夠提供在長波長區域(700nm以上的波長的可見區域或近紅外區域)中具有發光峰值的有機金屬錯合物。另外,藉由形成上述的氫鍵合,可以實現有機金屬錯合物的結構的穩定化。因此,可以提高使用有機金屬錯合物的發光元件的可靠性。
另外,藉由使用本發明的一個實施方式的有機金屬錯合物,可以實現高可靠性的發光元件、發光裝置、電子機器或照明裝置。
注意,在本實施方式中,說明本發明的一個實施方式的有機金屬錯合物,本發明的一個實施方式不侷限於此。就是說,可以與其他實施方式所示的各種發明的內容組合。
實施方式2
在本實施方式中,對本發明的一個實施方式的發光元件進行說明。可以將本發明的一個實施方式的有機金屬錯合物用於在本實施方式中說明的發光元件。
<<發光元件的基本結構>>
圖1A示出在一對電極之間夾有EL層的發光元件。明確而言,該發光元件具有包括發光層的EL層103夾在第一電極101與第二電極102之間的結構。
圖1B示出具有在一對電極之間包括多個(在圖1B中兩層)EL層(103a及103b)且在EL層之間夾有電荷產生層104的疊層結構(串聯結構)的發光元件。這樣的具有串聯結構的發光元件可以實現能夠進行低電壓驅動且功耗低的發光裝置。
電荷產生層104具有如下功能:在對第一電極101及第二電極102施加電壓時,對一個EL層(103a或103b)注入電子並對另一個EL層(103b或103a)注入電洞的功能。由此,在圖1B中,當以使第一電極101的電位比第二電極102高的方式施加電壓時,電子和電洞分別從電荷產生層104注入到EL層103a和EL層103b中。
另外,從光提取效率的觀點來看,電荷產生層104較佳為對可見光具有透光性(明確而言,電荷產生層104的可見光穿透率為40%以上)。另外,即使電荷產生層104的電導率比第一電極101或第二電極102低也能夠發揮功能。
圖1C示出EL層103的疊層結構。注意,在圖1C中,當第一電極101被用作陽極時,EL層103具有在第一電極101上依次層疊有電洞注入層111、電洞傳輸層112、發光層113、電子傳輸層114以及電子注入層115的結構。在如圖1B所示的串聯結構所示地具有多個EL層的情況下,各EL層也具有從陽極一側如上所述地依次層疊的結構。另外,在第一電極101為陰極且第二電極102為陽極的情況下,疊層順序相反。
EL層(103、103a及103b)中的發光層113適當地組合發光物質及多個物質而具有能夠獲得呈現所希望的發光顏色的螢光發光及磷光發光的結構。另外,發光層113也可以為發光顏色不同的疊層結構。在此情況下,用於層疊的各發光層的發光物質或其他物質可以分別使用不同材料。另外,也可以採用從圖1B所示的多個EL層(103a及103b)中的發光層獲得分別不同的發光顏色的結構。在此情況下,用於各發光層的發光物質或其他物質可以分別使用不同材料。
另外,在本發明的一個實施方式的發光元件中,可以採用使在EL層(103、103a、103b)中獲得的光在電極之間發生諧振,從而增強所獲得的光的結構。例如,在圖1C中,藉由使第一電極101為反射電極且使第二電極102為半透射-半反射電極,形成光學微腔諧振器(微腔)結構,從而可以增強從EL層103獲得的光。
在發光元件的第一電極101為由具有反射性的導電材料和具有透光性的導電材料(透明導電膜)的疊層結構構成的反射電極的情況下,可以藉由調整透明導電膜的厚度來進行光學調整。明確而言,較佳為以如下方式進行調整:在從發光層113獲得的光的波長為λ時,第一電極101與第二電極102的電極間距離為mλ/2(注意,m為自然數)左右。
另外,為了使從發光層113獲得的所希望的光(波長:λ)放大,較佳為調整為如下:從第一電極101到發光層113中的能夠獲得所希望的光的區域(發光區域)的光學距離及從第二電極102到發光層113中的能夠獲得所希望的光的區域(發光區域)的光學距離都成為(2m’+1)λ/4(注意,m’為自然數)左右。注意,在此說明的“發光區域”是指發光層113中的電洞與電子的再結合區域。
藉由進行上述光學調整,可以使能夠從發光層113獲得的特定的單色光的光譜變窄,由此獲得色純度良好的發光。
另外,在上述情況下,嚴格地說,第一電極101和第二電極102之間的光學距離可以說是從第一電極101中的反射區域到第二電極102中的反射區域的總厚度。但是,因為難以準確地決定第一電極101或第二電極102中的反射區域的位置,所以藉由假定第一電極101及第二電極102中的任意的位置為反射區域可以充分得到上述效果。另外,嚴密地說,第一電極101和可以獲得所希望的光的發光層之間的光學距離可以說是第一電極101中的反射區域和可以獲得所希望的光的發光層中的發光區域之間的光學距離。但是,因為難以準確地決定第一電極101中的反射區域或可以獲得所希望的光的發光層中的發光區域的位置,所以藉由假定第一電極101中的任意的位置為反射區域且可以獲得所希望的光的發光層的任意的位置為發光區域,可以充分得到上述效果。
當圖1C所示的發光元件具有微腔結構時,即使使用相同的EL層也可以提取不同波長的光(單色光)。由此,為了獲得不同的發光顏色不需要分別塗佈(例如塗佈為R、G、B),由此可以實現高解析度。另外,可以與彩色層(濾色片)組合。並且,可以增強具有特定波長的正面方向上的發光強度,從而可以實現低功耗化。
另外,在上述本發明的一個實施方式的發光元件中,第一電極101和第二電極102中的至少一個為具有透光性的電極(透明電極、半透射-半反射電極等)。在具有透光性的電極為透明電極的情況下,透明電極的可見光穿透率為40%以上。另外,在該電極為半透射-半反射電極的情況下,半透射-半反射電極的可見光反射率為20%以上且80%以下,較佳為40%以上且70%以下。另外,這些電極的電阻率較佳為1×10-2 Ωcm以下。
另外,在上述本發明的一個實施方式的發光元件中,在第一電極101和第二電極102中的一個為具有反射性的電極(反射電極)的情況下,具有反射性的電極的可見光反射率為40%以上且100%以下,較佳為70%以上且100%以下。另外,該電極的電阻率較佳為1×10-2 Ωcm以下。
<<發光元件的具體結構及製造方法>>
接著,對本發明的一個實施方式的發光元件的具體結構及製造方法進行說明。注意,在圖1A至圖1D中,在元件符號同一時,其說明也同一。
<第一電極及第二電極>
作為形成第一電極101及第二電極102的材料,如果可以滿足上述元件結構中的兩個電極的功能則可以適當地組合使用下述材料。例如,可以適當地使用金屬、合金、導電化合物以及它們的混合物等。明確而言,可以舉出In-Sn氧化物(也稱為ITO)、In-Si-Sn氧化物(也稱為ITSO)、In-Zn氧化物、In-W-Zn氧化物。除了上述以外,還可以舉出鋁(Al)、鈦(Ti)、鉻(Cr)、錳(Mn)、鐵(Fe)、鈷(Co)、鎳(Ni)、銅(Cu)、鎵(Ga)、鋅(Zn)、銦(In)、錫(Sn)、鉬(Mo)、鉭(Ta)、鎢(W)、鈀(Pd)、金(Au)、鉑(Pt)、銀(Ag)、釔(Y)、釹(Nd)等金屬以及適當地組合它們的合金。除了上述以外,可以使用屬於元素週期表中第1族或第2族的元素(例如,鋰(Li)、銫(Cs)、鈣(Ca)、鍶(Sr))、銪(Eu)、鐿(Yb)等稀土金屬、適當地組合它們的合金以及石墨烯等。
在圖1A至圖1D所示的發光元件如圖1C所示地包括具有疊層結構的EL層103且第一電極101為陽極的情況下,藉由真空蒸鍍法在第一電極101上依次層疊EL層103的電洞注入層111及電洞傳輸層112。此外,如圖1D所示,在夾著電荷產生層104層疊有具有疊層結構的多個EL層(103a、103b)且第一電極101為陽極的情況下,藉由真空蒸鍍法在第一電極101上依次層疊EL層103a的電洞注入層111a及電洞傳輸層112a,並且在依次層疊EL層103a及電荷產生層104之後,與上述同樣,在電荷產生層104上依次層疊EL層103b的電洞注入層111b及電洞傳輸層112b。
<電洞注入層及電洞傳輸層>
電洞注入層(111、111a、111b)是將電洞從陽極的第一電極101或電荷產生層(104)注入到EL層(103、103a、103b)的層,包含電洞注入性高的材料。
作為電洞注入性高的材料,可以舉出鉬氧化物、釩氧化物、釕氧化物、鎢氧化物、錳氧化物等過渡金屬氧化物。除了上述以外,可以使用酞青類化合物如酞青(簡稱:H2 Pc)、銅酞青(CuPc)等。
另外,可以使用如下低分子化合物的芳香胺化合物等,諸如4,4’,4”-三(N,N-二苯基胺基)三苯胺(簡稱:TDATA)、4,4’,4”-三[N-(3-甲基苯基)-N-苯基胺基]三苯胺(簡稱:MTDATA)、4,4’-雙[N-(4-二苯基胺基苯基)-N-苯基胺基]聯苯(簡稱:DPAB)、4,4’-雙(N-{4-[N’-(3-甲基苯基)-N’-苯基胺基]苯基}-N-苯基胺基)聯苯(簡稱:DNTPD)、1,3,5-三[N-(4-二苯基胺基苯基)-N-苯基胺基]苯(簡稱:DPA3B)、3-[N-(9-苯基咔唑-3-基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzPCA1)、3,6-雙[N-(9-苯基咔唑-3-基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzPCA2)、3-[N-(1-萘基)-N-(9-苯基咔唑-3-基)胺基]-9-苯基咔唑(簡稱:PCzPCN1)等。
另外,可以使用高分子化合物(低聚物、枝狀聚合物或聚合物),諸如聚(N-乙烯基咔唑 )(簡稱:PVK)、聚(4-乙烯基三苯胺)(簡稱:PVTPA)、聚[N-(4-{N’-[4-(4-二苯基胺基)苯基]苯基-N’-苯基胺基}苯基)甲基丙烯醯胺](簡稱:PTPDMA)、聚[N,N’-雙(4-丁基苯基)-N,N’-雙(苯基)聯苯胺](簡稱:Poly-TPD)等。或者,還可以使用添加有酸的高分子化合物,諸如聚(3,4-乙烯二氧噻吩)/聚(苯乙烯磺酸)(簡稱:PEDOT/PSS)或聚苯胺/聚(苯乙烯磺酸)(簡稱:PAni/PSS)等。
作為電洞注入性高的材料,也可以使用包含電洞傳輸性材料及受體材料(電子受體材料)的複合材料。在此情況下,由受體材料從電洞傳輸性材料抽出電子而在電洞注入層(111、111a、111b)中產生電洞,電洞藉由電洞傳輸層(112、112a、112b)注入到發光層(113、113a、113b)中。另外,電洞注入層(111、111a、111b)可以採用由包含電洞傳輸性材料及受體材料(電子受體材料)的複合材料構成的單層,也可以採用分別使用電洞傳輸性材料及受體材料(電子受體材料)形成的層的疊層。
電洞傳輸層(112、112a、112b)是將從第一電極101及電荷產生層104由電洞注入層(111、111a、111b)注入的電洞傳輸到發光層(113、113a、113b)中的層。另外,電洞傳輸層(112、112a、112b)是包含電洞傳輸性材料的層。作為用於電洞傳輸層(112、112a、112b)的電洞傳輸性材料,特別較佳為使用具有與電洞注入層(111、111a、111b)的HOMO能階相同或相近的HOMO能階的材料。
作為用於電洞注入層(111、111a、111b)的受體材料,可以使用屬於元素週期表中的第4族至第8族的金屬的氧化物。明確而言,可以舉出氧化鉬、氧化釩、氧化鈮、氧化鉭、氧化鉻、氧化鎢、氧化錳、氧化錸。特別較佳為使用氧化鉬,因為其在大氣中也穩定,吸濕性低,並且容易處理。除了上述以外,可以舉出醌二甲烷衍生物、四氯苯醌衍生物、六氮雜聯伸三苯衍生物等有機受體。明確而言,可以使用7,7,8,8-四氰基-2,3,5,6-四氟醌二甲烷(簡稱:F4 -TCNQ)、氯醌、2,3,6,7,10,11-六氰-1,4,5,8,9,12-六氮雜聯伸三苯(簡稱:HAT-CN)等。尤其是,HAT-CN這樣的具有多個雜原子的稠合芳香環與拉電子基團鍵合的化合物具有熱穩定性,所以是較佳的。另外,包括拉電子基團(尤其是如氟基等鹵基、氰基)的[3]軸烯衍生物的電子接收性非常高所以特別較佳的。明確而言,可以舉出:α,α‘,α”-1,2,3-環丙烷三亞基三[4-氰-2,3,5,6-四氟苯乙腈]、α,α‘,α”-1,2,3-環丙烷三亞基三[2,6-二氯-3,5-二氟-4-(三氟甲基)苯乙腈]、α,α‘,α”-1,2,3-環丙烷三亞基三[2,3,4,5,6-五氟苯乙腈]等。
作為用於電洞注入層(111、111a、111b)及電洞傳輸層(112、112a、112b)的電洞傳輸性材料,較佳為具有1×10-6 cm2 /Vs以上的電洞移動率的物質。另外,只要是電洞傳輸性高於電子傳輸性的物質,可以使用上述以外的物質。
電洞傳輸性材料較佳為富π電子型雜芳族化合物(例如,具有咔唑骨架的化合物或者具有呋喃骨架的化合物)或者具有芳香胺骨架的化合物等電洞傳輸性高的材料。
作為電洞傳輸性材料的具體例子,可以使用芳香胺化合物,諸如4,4’-雙[N-(1-萘基)-N-苯基胺基]聯苯(簡稱:NPB或α-NPD)、N,N’-雙(3-甲基苯基)-N,N’-二苯基-[1,1’-聯苯]-4,4’-二胺(簡稱:TPD)、4,4’-雙[N-(螺-9,9’-聯茀-2-基)-N-苯基胺基]聯苯(簡稱:BSPB)、4-苯基-4’-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP)、4-苯基-3’-(9-苯基茀-9-基)三苯基胺(簡稱:mBPAFLP)、N-(9,9-二甲基-9H-茀-2-基)-N-{9,9-二甲基-2-[N’-苯基-N’-(9,9-二甲基-9H-茀-2-基)胺基]-9H-茀-7-基}苯基胺(簡稱:DFLADFL)、N-(9,9-二甲基-2-二苯基胺基-9H-茀-7-基)二苯基胺(簡稱:DPNF)、2-[N-(4-二苯胺基苯基)-N-苯基胺基]螺-9,9’-聯茀(簡稱:DPASF)、4-苯基-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBA1BP)、3-[4-(9-菲基)-苯基]-9-苯基-9H-咔唑(簡稱:PCPPn)、N-(4-聯苯)-N-(9,9-二甲基-9H-茀-2-基)-9-苯基-9H-咔唑-3-胺(簡稱:PCBiF)、N-(1,1’-聯苯-4-基)-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9-二甲基-9H-茀-2-胺(簡稱:PCBBiF)、4,4’-二苯基-4”-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBBi1BP)、4-(1-萘基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBANB)、4,4’-二(1-萘基)-4”-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBNBB)、4-苯基二苯基-(9-苯基-9H-咔唑-3-基)胺(簡稱:PCA1BP)、N,N’-雙(9-苯基咔唑-3-基)-N,N’-二苯基苯-1,3-二胺(簡稱:PCA2B)、N,N’,N”-三苯基-N,N’,N”-三(9-苯基咔唑-3-基)苯-1,3,5-三胺(簡稱:PCA3B)、9,9-二甲基-N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]茀-2-胺(簡稱:PCBAF)、N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]螺-9,9’-聯茀-2-胺(簡稱:PCBASF)、2-[N-(9-苯基咔唑-3-基)-N-苯基胺基]螺-9,9’-聯茀(簡稱:PCASF)、2,7-雙[N-(4-二苯胺基苯基)-N-苯基胺基]螺-9,9’-聯茀(簡稱:DPA2SF)、N-[4-(9H-咔唑-9-基)苯基]-N-(4-苯基)苯基苯胺(簡稱:YGA1BP)、N,N’-雙[4-(咔唑-9-基)苯基]-N,N’-二苯基-9,9-二甲基茀-2,7-二胺(簡稱:YGA2F)等。此外,可以舉出:3-[4-(1-萘基)-苯基]-9-苯基-9H-咔唑(簡稱:PCPN)、4,4’,4”-三(咔唑-9-基)三苯胺(簡稱:TCTA)、4,4’,4”-三[N-(1-萘基)-N-苯胺基]三苯胺(簡稱:1’-TNATA)、4,4’,4”-三(N,N-二苯基胺基)三苯胺(簡稱:TDATA)、4,4’,4”-三[N-(3-甲基苯基)-N-苯基胺基]三苯胺(簡稱:m-MTDATA)、N,N’-二(對甲苯基)-N,N’-二苯基-對苯二胺(簡稱:DTDPPA)、4,4’-雙[N-(4-二苯基胺基苯基)-N-苯基胺基]聯苯(簡稱:DPAB)、N,N’-雙{4-[雙(3-甲基苯基)胺基]苯基}-N,N’-二苯基-(1,1’-聯苯)-4,4’-二胺(簡稱:DNTPD)、1,3,5-三[N-(4-二苯基胺基苯基)-N-苯基胺基]苯(簡稱:DPA3B)等具有芳香胺骨架的化合物;1,3-雙(N-咔唑基)苯(簡稱:mCP)、4,4’-二(N-咔唑基)聯苯(簡稱:CBP)、3,6-雙(3,5-二苯基苯基)-9-苯基咔唑(簡稱:CzTP)、3,3’-雙(9-苯基-9H-咔唑)(簡稱:PCCP)、3-[N-(4-二苯基胺基苯基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzDPA1)、3,6-雙[N-(4-二苯基胺基苯基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzDPA2)、3,6-雙[N-(4-二苯基胺基苯基)-N-(1-萘基)氨]-9-苯基咔唑(簡稱:PCzTPN2)、3-[N-(9-苯基咔唑-3-基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzPCA1)、3,6-雙[N-(9-苯基咔唑-3-基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzPCA2)、3-[N-(1-萘基)-N-(9-苯基咔唑-3-基)氨]-9-苯基咔唑(簡稱:PCzPCN1)、1,3,5-三[4-(N-咔唑基)苯基]苯(簡稱:TCPB)、9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:CzPA)等具有咔唑骨架的化合物;1,3,5-三(二苯并噻吩-4-基)苯(簡稱:DBT3P-II)、2,8-二苯基-4-[4-(9-苯基-9H-茀-9-基)苯基]二苯并噻吩(簡稱:DBTFLP-III)、4-[4-(9-苯基-9H-茀-9-基)苯基]-6-苯基二苯并噻吩(簡稱:DBTFLP-IV)等具有噻吩骨架的化合物;4,4’,4”-(苯-1,3,5-三基)三(二苯并呋喃)(簡稱:DBF3P-II)、4-{3-[3-(9-苯基-9H-茀-9-基)苯基]苯基}二苯并呋喃(簡稱:mmDBFFLBi-II)等具有呋喃骨架的化合物。
再者,還可以使用聚(N-乙烯基咔唑)(簡稱:PVK)、聚(4-乙烯基三苯胺)(簡稱:PVTPA)、聚[N-(4-{N’-[4-(4-二苯基胺基)苯基]苯基-N’-苯基胺基}苯基)甲基丙烯醯胺](簡稱:PTPDMA)、聚[N,N’-雙(4-丁基苯基)-N,N’-雙(苯基)聯苯胺](簡稱:Poly-TPD)等高分子化合物。
注意,電洞傳輸性材料不侷限於上述材料,可以將已知的各種材料中的一種或多種的組合作為電洞傳輸性材料用於電洞注入層(111、111a、111b)及電洞傳輸層(112、112a、112b)。另外,電洞傳輸層(112、112a、112b)也可以分別由多個層構成。也就是說,例如,也可以層疊有第一電洞傳輸層和第二電洞傳輸層。
在圖1D所示的發光元件中,藉由真空蒸鍍法在EL層103a中的電洞傳輸層112a上形成發光層113a。另外,在形成EL層103a及電荷產生層104之後,藉由真空蒸鍍法在EL層103b中的電洞傳輸層112b上形成發光層113b。
<發光層>
發光層(113、113a、113b)是包含發光物質的層。另外,作為發光物質,適當地使用呈現藍色、紫色、藍紫色、綠色、黃綠色、黃色、橙色、紅色等發光顏色的物質。另外,藉由在多個發光層(113a、113b)中分別使用不同的發光物質,可以成為呈現不同的發光顏色的結構(例如,可以組合處於補色關係的發光顏色獲得白色光)。再者,也可以為一個發光層包含不同的發光物質的疊層結構。
另外,發光層(113、113a、113b)除了發光物質(客體材料)以外還可以包含一種或多種有機化合物(主體材料、輔助材料)。另外,作為一種或多種有機化合物,可以使用在本實施方式中說明的電洞傳輸性材料和電子傳輸性材料中的一者或兩者。
對可用於發光層(113、113a、113b)的發光物質沒有特別的限制,可以使用將單重激發能量轉換為可見光區域的光的發光物質或將三重激發能量轉換為可見光區域的光的發光物質。另外,作為其他發光物質,例如可以舉出如下物質。
作為將單重激發能量轉換為發光的發光物質,可以舉出發射螢光的物質(螢光材料),例如可以舉出芘衍生物、蒽衍生物、聯伸三苯衍生物、茀衍生物、咔唑衍生物、二苯并噻吩衍生物、二苯并呋喃衍生物、二苯并喹㗁啉衍生物、喹㗁啉衍生物、吡啶衍生物、嘧啶衍生物、菲衍生物、萘衍生物等。尤其是芘衍生物的發光量子產率高,所以是較佳的。作為芘衍生物的具體例子,可以舉出N,N’-雙(3-甲基苯基)-N,N’-雙[3-(9-苯基-9H-茀-9-基)苯基]芘-1,6-二胺(簡稱:1,6mMemFLPAPrn)、N,N’-二苯基-N,N’-雙[4-(9-苯基-9H-茀-9-基)苯基]芘-1,6-二胺(簡稱:1,6FLPAPrn)、N,N’-雙(二苯并呋喃-2-基)-N,N’-二苯基芘-1,6-二胺(簡稱:1,6FrAPrn)、N,N’-雙(二苯并噻吩-2-基)-N,N’-二苯基芘-1,6-二胺(簡稱:1,6ThAPrn)、N,N’-(芘-1,6-二基)雙[(N-苯基苯并[b]萘并[1,2-d]呋喃)-6-胺](簡稱:1,6BnfAPrn)、N,N’-(芘-1,6-二基)雙[(N-苯基苯并[b]萘并[1,2-d]呋喃)-8-胺](簡稱:1,6BnfAPrn-02)、N,N’-(芘-1,6-二基)雙[(6,N-二苯基苯并[b]萘并[1,2-d]呋喃)-8-胺](簡稱:1,6BnfAPrn-03)等。
除了上述以外,可以使用5,6-雙[4-(10-苯基-9-蒽基)苯基]-2,2’-聯吡啶(簡稱:PAP2BPy)、5,6-雙[4’-(10-苯基-9-蒽基)聯苯-4-基]-2,2’-聯吡啶(簡稱:PAPP2BPy)、N,N’-雙[4-(9H-咔唑-9-基)苯基]-N,N’-二苯基二苯乙烯-4,4’-二胺(簡稱:YGA2S)、4-(9H-咔唑-9-基)-4’-(10-苯基-9-蒽基)三苯胺(簡稱:YGAPA)、4-(9H-咔唑-9-基)-4’-(9,10-二苯基-2-蒽基)三苯胺(簡稱:2YGAPPA)、N,9-二苯基-N-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(簡稱:PCAPA)、4-(10-苯基-9-蒽基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPA)、4-[4-(10-苯基-9-蒽基)苯基]-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPBA)、苝、2,5,8,11-四(三級丁基)苝(簡稱:TBP)、N,N”-(2-三級丁基蒽-9,10-二基二-4,1-伸苯基)雙[N,N’,N’-三苯基-1,4-苯二胺](簡稱:DPABPA)、N,9-二苯基-N-[4-(9,10-二苯基-2-蒽基)苯基]-9H-咔唑-3-胺(簡稱:2PCAPPA)、N-[4-(9,10-二苯基-2-蒽基)苯基]-N,N’,N’-三苯基-1,4-苯二胺(簡稱:2DPAPPA)等。
作為將三重激發能量轉換為發光的發光物質,例如可以舉出發射磷光的物質(磷光材料)或呈現熱活化延遲螢光的熱活化延遲螢光(Thermally activated delayed fluorescence:TADF)材料。
作為磷光材料,可以舉出有機金屬錯合物、金屬錯合物(鉑錯合物)、稀土金屬錯合物等。這種物質分別呈現不同的發光顏色(發光峰值),因此根據需要適當地選擇而使用。
作為呈現藍色或綠色且其發射光譜的峰值波長為450nm以上且570nm以下的磷光材料,可以舉出如下物質。
例如可以舉出三{2-[5-(2-甲基苯基)-4-(2,6-二甲基苯基)-4H-1,2,4-三唑-3-基-κN2]苯基-κC}銥(III)(簡稱:[Ir(mpptz-dmp)3 ])、三(5-甲基-3,4-二苯基-4H-1,2,4-三唑)銥(III)(簡稱:[Ir(Mptz)3 ])、三[4-(3-聯苯)-5-異丙基-3-苯基-4H-1,2,4-三唑]銥(III)(簡稱:[Ir(iPrptz-3b)3 ])、三[3-(5-聯苯)-5-異丙基-4-苯基-4H-1,2,4-三唑]銥(III)(簡稱:[Ir(iPr5btz)3 ])等具有4H-三唑骨架的有機金屬錯合物;三[3-甲基-1-(2-甲基苯基)-5-苯基-1H-1,2,4-三唑]銥(III)(簡稱:[Ir(Mptz1-mp)3 ])、三(1-甲基-5-苯基-3-丙基-1H-1,2,4-三唑)銥(III)(簡稱:[Ir(Prptz1-Me)3 ])等具有1H-三唑骨架的有機金屬錯合物;fac-三[1-(2,6-二異丙基苯基)-2-苯基-1H-咪唑]銥(III)(簡稱:[Ir(iPrpmi)3 ])、三[3-(2,6-二甲基苯基)-7-甲基咪唑并[1,2-f]菲啶根(phenanthridinato)]銥(III)(簡稱:[Ir(dmpimpt-Me)3 ])等具有咪唑骨架的有機金屬錯合物;以及雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’ ]銥(III)四(1-吡唑基)硼酸鹽(簡稱:FIr6)、雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’ ]銥(III)吡啶甲酸鹽(簡稱:Firpic)、雙{2-[3’,5’-雙(三氟甲基)苯基]吡啶根-N,C2’ }銥(III)吡啶甲酸鹽(簡稱:[Ir(CF3 ppy)2 (pic)])、雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’ ]銥(III)乙醯丙酮(簡稱:FIr(acac))等以具有拉電子基團的苯基吡啶衍生物為配體的有機金屬錯合物等。
作為呈現綠色或黃色且其發射光譜的峰值波長為495nm以上且590nm以下的磷光材料,可以舉出如下物質。
例如可以舉出三(4-甲基-6-苯基嘧啶)銥(III)(簡稱:[Ir(mppm)3 ])、三(4-三級丁基-6-苯基嘧啶)銥(III)(簡稱:[Ir(tBuppm)3 ])、(乙醯丙酮根)雙(6-甲基-4-苯基嘧啶)銥(III)(簡稱:[Ir(mppm)2 (acac)])、(乙醯丙酮根)雙(6-三級丁基-4-苯基嘧啶)銥(III)(簡稱:[Ir(tBuppm)2 (acac)])、(乙醯丙酮根)雙[6-(2-降莰基)-4-苯基嘧啶]銥(III)(簡稱:[Ir(nbppm)2 (acac)])、(乙醯丙酮根)雙[5-甲基-6-(2-甲基苯基)-4-苯基嘧啶]銥(III)(簡稱:[Ir(mpmppm)2 (acac)])、(乙醯丙酮根)雙{4,6-二甲基-2-[6-(2,6-二甲基苯基)-4-嘧啶基-κN3 ]苯基-κC}銥(III)(簡稱:[Ir(dmppm-dmp)2 (acac)])、(乙醯丙酮根)雙(4,6-二苯基嘧啶)銥(III)(簡稱:[Ir(dppm)2 (acac)])等具有嘧啶骨架的有機金屬錯合物;(乙醯丙酮根)雙(3,5-二甲基-2-苯基吡嗪)銥(III)(簡稱:[Ir(mppr-Me)2 (acac)])、(乙醯丙酮根)雙(5-異丙基-3-甲基-2-苯基吡嗪)銥(III)(簡稱:[Ir(mppr-iPr)2 (acac)])等具有吡嗪骨架的有機金屬錯合物;三(2-苯基吡啶根-N,C2’ )銥(III)(簡稱:[Ir(ppy)3 ])、雙(2-苯基吡啶根-N,C2’ )銥(III)乙醯丙酮(簡稱:[Ir(ppy)2 (acac)])、雙(苯并[h]喹啉)銥(III)乙醯丙酮(簡稱:[Ir(bzq)2 (acac)])、三(苯并[h]喹啉)銥(III)(簡稱:[Ir(bzq)3 ])、三(2-苯基喹啉-N,C2’ )銥(III)(簡稱:[Ir(pq)3 ])、雙(2-苯基喹啉-N,C2’ )銥(III)乙醯丙酮(簡稱:[Ir(pq)2 (acac)])等具有吡啶骨架的有機金屬錯合物;雙(2,4-二苯基-1,3-㗁唑-N,C2’ )銥(III)乙醯丙酮(簡稱:[Ir(dpo)2 (acac)])、雙{2-[4’-(全氟苯基)苯基]吡啶-N,C2’ }銥(III)乙醯丙酮(簡稱:[Ir(p-PF-ph)2 (acac)])、雙(2-苯基苯并噻唑-N,C2’ )銥(III)乙醯丙酮(簡稱:[Ir(bt)2 (acac)])等有機金屬錯合物、三(乙醯丙酮根)(單啡啉)鋱(III)(簡稱:[Tb(acac)3 (Phen)])等稀土金屬錯合物。
作為呈現黃色或紅色且其發射光譜的峰值波長為570nm以上且750nm以下的磷光材料,可以舉出如下物質。
例如可以舉出(二異丁醯甲烷根)雙[4,6-雙(3-甲基苯基)嘧啶根]銥(III)(簡稱:[Ir(5mdppm)2 (dibm)])、雙[4,6-雙(3-甲基苯基)嘧啶根](二新戊醯甲烷)銥(III)(簡稱:[Ir(5mdppm)2 (dpm)])、(二新戊醯甲烷)雙[4,6-二(萘-1-基)嘧啶根]銥(III)(簡稱:[Ir(d1npm)2 (dpm)])等具有嘧啶骨架的有機金屬錯合物;(乙醯丙酮)雙(2,3,5-三苯基吡嗪)銥(III)(簡稱:[Ir(tppr)2 (acac)])、雙(2,3,5-三苯基吡嗪)(二新戊醯甲烷)銥(III)(簡稱:[Ir(tppr)2 (dpm)])、(乙醯丙酮)雙[2,3-雙(4-氟苯基)喹㗁啉合(quinoxalinato)]銥(III)(簡稱:[Ir(Fdpq)2 (acac)])等具有吡嗪骨架的有機金屬錯合物;三(1-苯基異喹啉-N,C2’ )銥(III)(簡稱:[Ir(piq)3 ])、雙(1-苯基異喹啉-N,C2’ )銥(III)乙醯丙酮(簡稱:[Ir(piq)2 (acac)])等具有吡啶骨架的有機金屬錯合物;2,3,7,8,12,13,17,18-八乙基-21H,23H-卟啉鉑(II)(簡稱:[PtOEP])等鉑錯合物;以及三(1,3-二苯基-1,3-丙二酮(propanedionato))(單啡啉)銪(III)(簡稱:[Eu(DBM)3 (Phen)])、三[1-(2-噻吩甲醯基)-3,3,3-三氟丙酮](單啡啉)銪(III)(簡稱:[Eu(TTA)3 (Phen)])等稀土金屬錯合物。
作為用於發光層(113、113a、113b)的有機化合物(主體材料、輔助材料),可以使用選擇一種或多種其能隙比發光物質(客體材料)的能隙大的物質。作為該有機化合物(主體材料、輔助材料),也可以使用作為電洞傳輸性材料舉出的材料以及後面作為電子傳輸性材料舉出的材料。
當發光物質是螢光材料時,較佳為使用單重激發態的能階大且三重激發態的能階小的有機化合物作為主體材料。此外,除了在本實施方式中示出的電洞傳輸性材料或電子傳輸性材料以外,還可以使用雙極性材料作為主體材料,但是,更佳的是滿足上述條件的物質。例如,蒽衍生物或稠四苯衍生物等也是較佳的。
因此,作為與螢光性發光物質組合的主體材料,例如可以舉出9-苯基-3-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:PCzPA)、PCPN、CzPA、7-[4-(10-苯基-9-蒽基)苯基]-7H-二苯并[c,g]咔唑(簡稱:cgDBCzPA)、6-[3-(9,10-二苯基-2-蒽基)苯基]-苯并[b]萘并[1,2-d]呋喃(簡稱:2mBnfPPA)、9-苯基-10-{4-(9-苯基-9H-茀-9-基)-聯苯-4’-基}-蒽(簡稱:FLPPA)、5,12-二苯基稠四苯、5,12-雙(聯苯-2-基)稠四苯等。
在發光物質是磷光材料的情況下,選擇其三重激發能量比發光物質的三重激發能量(基態和三重激發態之間的能量差)大的有機化合物作為主體材料,即可。此外,除了在本實施方式中示出的電洞傳輸性材料或電子傳輸性材料以外,還可以使用雙極性材料作為主體材料,但是,更佳的是滿足上述條件的物質。例如,蒽衍生物、菲衍生物、芘衍生物、䓛(chrysene)衍生物、二苯并[g,p]䓛衍生物等稠合多環芳香化合物也是較佳的。
因此,作為與磷光性發光物質組合的主體材料,例如可以舉出:可以舉出9,10-二苯基蒽(簡稱:DPAnth)、N,N-二苯基-9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(簡稱:CzA1PA)、4-(10-苯基-9-蒽基)三苯胺(簡稱:DPhPA)、YGAPA、PCAPA、9-(4-{4’-[N-苯基-N-(N-苯基-3-咔唑基)]胺基}苯基)苯基-10-苯基蒽(簡稱:PCAPBA)、N-(9,10-二苯基-2-蒽基)-N,9-二苯基-9H-咔唑3-胺(簡稱:2PCAPA)、6,12-二甲氧基-5,11-二苯䓛、N,N,N’,N’,N”,N”,N”’,N”’-八苯基二苯并[g,p]䓛-2,7,10,15-四胺(簡稱為DBC1)、CzPA、3,6-二苯基-9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:DPCzPA)、9,10-雙(3,5-二苯基苯基)蒽(簡稱:DPPA)、9,10-二(2-萘基)蒽(簡稱:DNA)、2-三級丁基-9,10-二(2-萘基)蒽(簡稱:t-BuDNA)、9,9’-聯蒽(簡稱:BANT)、9,9’-(二苯乙烯-3,3’-二基)二菲(簡稱:DPNS)、9,9’-(二苯乙烯-4,4’-二基)二菲(簡稱:DPNS2)以及1,3,5-三(1-芘基)苯(簡稱:TPB3)等。
在將多個有機化合物用於發光層(113、113a、113b)的情況下,較佳為組合形成激態錯合物的化合物和磷光發光物質。藉由採用上述結構,可以獲得利用作為從激態錯合物到發光物質的能量轉移的ExTET(Exciplex-Triplet Energy Transfer:激態錯合物-三重態能量轉移)的發光。在此情況下,可以適當地組合各種有機化合物,但是為了高效地形成激態錯合物,特別較佳為組合容易接收電洞的化合物(電洞傳輸性材料)和容易接收電子的化合物(電子傳輸性材料)。
TADF材料是指能夠利用微小的熱能量將三重激發態上轉換(up-convert)為單重激發態(逆系間竄越)並高效率地發射來自單重激發態的發光(螢光)的材料。可以高效率地獲得熱活化延遲螢光的條件為如下:三重激發能階和單重激發能階之間的能量差為0eV以上且0.2eV以下,較佳為0eV以上且0.1eV以下。TADF材料所發射的延遲螢光是指具有與一般的螢光同樣的光譜但壽命非常長的發光。其壽命為1×10-6 秒以上,較佳為1×10-3 秒以上。
作為TADF材料,例如可以舉出富勒烯或其衍生物、普羅黃素等吖啶衍生物、曙紅(eosin)等。另外,可以舉出包含鎂(Mg)、鋅(Zn)、鎘(Cd)、錫(Sn)、鉑(Pt)、銦(In)或鈀(Pd)等的含金屬卟啉。作為含金屬卟啉,例如,也可以舉出原卟啉-氟化錫錯合物(簡稱:SnF2 (Proto IX))、中卟啉-氟化錫錯合物(簡稱:SnF2 (Meso IX))、血卟啉-氟化錫錯合物(簡稱:SnF2 (Hemato IX))、糞卟啉四甲酯-氟化錫錯合物(簡稱:SnF2 (Copro III-4Me))、八乙基卟啉-氟化錫錯合物(簡稱:SnF2 (OEP))、初卟啉-氟化錫錯合物(簡稱:SnF2 (Etio I))以及八乙基卟啉-氯化鉑錯合物(簡稱:PtCl2 OEP)等。
作為其他TADF材料,可以使用2-(聯苯-4-基)-4,6-雙(12-苯基吲哚并[2,3-a]咔唑-11-基)-1,3,5-三嗪(簡稱:PIC-TRZ)、2-{4-[3-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}-4,6-二苯基-1,3,5-三嗪(簡稱:PCCzPTzn)、2-[4-(10H-啡㗁-10-基)苯基]-4,6-二苯基-1,3,5-三嗪(簡稱:PXZ-TRZ)、3-[4-(5-苯基-5,10-二氫啡-10-基)苯基]-4,5-二苯基-1,2,4-三唑(簡稱:PPZ-3TPT)、3-(9,9-二甲基-9H-吖啶-10-基)-9H-氧雜蒽-9-酮(簡稱:ACRXTN)、雙[4-(9,9-二甲基-9,10-二氫吖啶)苯基]碸(簡稱:DMAC-DPS)、10-苯基-10H,10’H-螺[吖啶-9,9’-蒽]-10’-酮(簡稱:ACRSA)等具有富π電子型芳雜環及缺π電子型芳雜環的雜環化合物。另外,在富π電子型芳雜環和缺π電子型芳雜環直接鍵合的物質中,富π電子型芳雜環的施體性和缺π電子型芳雜環的受體性都強,單重激發態與三重激發態之間的能量差變小,所以是尤其較佳的。
另外,在使用TADF材料的情況下,可以與其他有機化合物組合。
藉由適當地使用上述材料,可以形成發光層(113、113a、113b)。此外,藉由與低分子材料或高分子材料組合,可以將上述材料用於發光層(113、113a、113b)的形成。
在圖1D所示的發光元件中,在EL層103a中的發光層113a上形成電子傳輸層114a。另外,在形成EL層103a及電荷產生層104之後,在EL層103b中的發光層113b上形成電子傳輸層114b。
<電子傳輸層>
電子傳輸層(114、114a、114b)是將從第二電極102由電子注入層(115、115a、115b)注入的電子傳輸到發光層(113、113a、113b)中的層。另外,電子傳輸層(114、114a、114b)是包含電子傳輸性材料的層。作為用於電子傳輸層(114、114a、114b)的電子傳輸性材料,較佳為具有1×10-6 cm2 /Vs以上的電子移動率的物質。另外,只要是電子傳輸性高於電洞傳輸性的物質,可以使用上述以外的物質。
作為電子傳輸性材料,可以使用具有喹啉骨架的金屬錯合物、具有苯并喹啉骨架的金屬錯合物、具有㗁唑骨架的金屬錯合物、具有噻唑骨架的金屬錯合物等,還可以使用㗁二唑衍生物、三唑衍生物、咪唑衍生物、㗁唑衍生物、噻唑衍生物、啡啉衍生物、具有喹啉配體的喹啉衍生物、苯并喹啉衍生物、喹㗁啉衍生物、二苯并喹㗁啉衍生物、吡啶衍生物、聯吡啶衍生物、嘧啶衍生物、含氮雜芳族化合物等缺π電子型雜芳族化合物等電子傳輸性高的材料。
作為電子傳輸性材料的具體例子,可以舉出:三(8-羥基喹啉)鋁(III)(簡稱:Alq3 )、三(4-甲基-8-羥基喹啉)鋁(III)(簡稱:Almq3 )、雙(10-羥基苯并[h]喹啉)鈹(II)(簡稱:BeBq2 )、雙(2-甲基-8-羥基喹啉)(4-苯基苯酚)鋁(III)(簡稱:BAlq)、雙(8-羥基喹啉)鋅(II)(簡稱:Znq)等具有喹啉骨架或苯并喹啉骨架的金屬錯合物;雙[2-(2-苯并㗁唑基)苯酚]鋅(II)(簡稱:ZnPBO)、雙[2-(2-苯并噻唑基)苯酚]鋅(II)(簡稱:ZnBTZ)、雙[2-(2-羥基苯基)苯并噻唑]鋅(II)(簡稱:Zn(BTZ)2 )等具有㗁唑骨架或噻唑骨架的金屬錯合物等。
再者,除了金屬錯合物以外,還可以使用2-(4-聯苯基)-5-(4-三級丁苯基)-1,3,4-㗁二唑(簡稱:PBD)、1,3-雙[5-(對三級丁苯基)-1,3,4-㗁二唑-2-基]苯(簡稱:OXD-7)、9-[4-(5-苯基-1,3,4-㗁二唑-2-基)苯基]-9H-咔唑(簡稱:CO11)等㗁二唑衍生物;3-(4’-三級丁基苯基)-4-苯基-5-(4”-聯苯)-1,2,4-三唑(簡稱:TAZ)、3-(4-三級丁苯基)-4-(4-乙苯基)-5-(4-聯苯基)-1,2,4-三唑(簡稱:p-EtTAZ)等三唑衍生物;2,2’,2”-(1,3,5-苯三基)三(1-苯基-1H-苯并咪唑)(簡稱:TPBI)、2-[3-(二苯并噻吩-4-基)苯基]-1-苯基-1H-苯并咪唑(簡稱:mDBTBIm-II)等咪唑衍生物(包括苯并咪唑衍生物);4,4’-雙(5-甲基苯并㗁唑-2-基)二苯乙烯(簡稱:BzOS)等㗁唑衍生物;紅啡啉(簡稱:BPhen)、浴銅靈(簡稱:BCP)、2,9-雙(萘-2-基)-4,7-二苯基-1,10-啡啉(簡稱:NBPhen)等啡啉衍生物;2-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹㗁啉(簡稱:2mDBTPDBq-II)、2-[3’-(二苯并噻吩-4-基)聯苯-3-基]二苯并[f,h]喹㗁啉(簡稱:2mDBTBPDBq-II)、2-[3’-(9H-咔唑-9-基)聯苯-3-基]二苯并[f,h]喹㗁啉(簡稱:2mCzBPDBq)、2-[4-(3,6-二苯基-9H-咔唑-9-基)苯基]二苯并[f,h]喹㗁啉(簡稱:2CzPDBq-III)、7-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹㗁啉(簡稱:7mDBTPDBq-II)、6-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹㗁啉(簡稱:6mDBTPDBq-II)等喹㗁啉衍生物或二苯并喹㗁啉衍生物、3,5-雙[3-(9H-咔唑-9-基)苯基]吡啶(簡稱:35DCzPPy)、1,3,5-三[3-(3-吡啶基)苯基]苯(簡稱:TmPyPB)等吡啶衍生物、4,6-雙[3-(菲-9-基)苯基]嘧啶(簡稱:4,6mPnP2Pm)、4,6-雙[3-(4-二苯并噻吩基)苯基]嘧啶(簡稱:4,6mDBTP2Pm-II)、4,6-雙[3-(9H-咔唑-9-基)苯基]嘧啶(簡稱:4,6mCzP2Pm)等嘧啶衍生物;2-{4-[3-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}-4,6-二苯基-1,3,5-三嗪(簡稱:PCCzPTzn)等三嗪衍生物。
另外,還可以使用聚(2,5-吡啶二基)(簡稱:PPy)、聚[(9,9-二己基茀-2,7-二基)-共-(吡啶-3,5-二基)](簡稱:PF-Py)、聚[(9,9-二辛基茀-2,7-二基)-共-(2,2’-聯吡啶-6,6’-二基)](簡稱:PF-BPy)等高分子化合物。
另外,電子傳輸層(114、114a、114b)可以為單層,也可以為包含上述物質的兩層以上的疊層。
接著,在圖1D所示的發光元件中,藉由真空蒸鍍法在EL層103a中的電子傳輸層114a上形成電子注入層115a。然後,形成EL層103a及電荷產生層104,並形成到EL層103b中的電子傳輸層114b,然後藉由真空蒸鍍法在其上形成電子注入層115b。
<電子注入層>
電子注入層(115、115a、115b)是包含電子注入性高的物質的層。作為電子注入層(115、115a、115b),可以使用氟化鋰(LiF)、氟化銫(CsF)、氟化鈣(CaF2 )及鋰氧化物(LiOx )等鹼金屬、鹼土金屬或這些金屬的化合物。此外,可以使用氟化鉺(ErF3 )等稀土金屬化合物。此外,也可以將電子鹽用於電子注入層(115、115a、115b)。作為電子鹽,例如可以舉出對鈣和鋁的混合氧化物以高濃度添加電子的物質等。另外,也可以使用如上所述的構成電子傳輸層(114、114a、114b)的物質。
此外,也可以將混合有機化合物與電子予體(施體)而成的複合材料用於電子注入層(115、115a、115b)。這種複合材料因為藉由電子予體在有機化合物中產生電子而具有優異的電子注入性和電子傳輸性。在此情況下,有機化合物較佳為在傳輸所產生的電子方面性能優異的材料,明確而言,例如,可以使用用於如上所述的電子傳輸層(114、114a、114b)的電子傳輸性材料(金屬錯合物、雜芳族化合物等)。作為電子予體,只要是對有機化合物呈現電子供給性的物質即可。明確而言,較佳為使用鹼金屬、鹼土金屬和稀土金屬,可以舉出鋰、銫、鎂、鈣、鉺、鐿等。另外,較佳為使用鹼金屬氧化物或鹼土金屬氧化物,可以舉出鋰氧化物、鈣氧化物、鋇氧化物等。此外,還可以使用氧化鎂等路易士鹼。另外,也可以使用四硫富瓦烯(簡稱:TTF)等有機化合物。
例如,在圖1D所示的發光元件中,在使從發光層113b獲得的光放大的情況下,較佳為以第二電極102與發光層113b之間的光學距離小於λ/4的方式形成(λ為發光層113b所呈現的光的波長)。在此情況下,藉由改變電子傳輸層114b或電子注入層115b的厚度,可以調整光學距離。
<電荷產生層>
在圖1D所示的發光元件中,電荷產生層104具有如下功能:當第一電極101(陽極)和第二電極102(陰極)之間被施加電壓時,對EL層103a注入電子且對EL層103b注入電洞的功能。電荷產生層104既可以具有對電洞傳輸性材料添加電子受體(受體)的結構,也可以具有對電子傳輸性材料添加電子予體(施體)的結構。或者,也可以層疊有這兩種結構。另外,藉由使用上述材料形成電荷產生層104,可以抑制在層疊EL層時的驅動電壓的增大。
在電荷產生層104具有對電洞傳輸性材料添加電子受體的結構的情況下,作為電洞傳輸性材料可以使用本實施方式所示的材料。另外,作為電子受體,可以舉出7,7,8,8-四氰基-2,3,5,6-四氟醌二甲烷(簡稱:F4 -TCNQ)、氯醌等。另外,可以舉出屬於元素週期表中第4族至第8族的金屬的氧化物。明確而言,可以舉出氧化釩、氧化鈮、氧化鉭、氧化鉻、氧化鉬、氧化鎢、氧化錳、氧化錸等。
在電荷產生層104具有對電子傳輸性材料添加電子予體的結構的情況下,作為電子傳輸性材料可以使用本實施方式所示的材料。另外,作為電子予體,可以使用鹼金屬、鹼土金屬、稀土金屬或屬於元素週期表中第2族、第13族的金屬及它們的氧化物或碳酸鹽。明確而言,較佳為使用鋰(Li)、銫(Cs)、鎂(Mg)、鈣(Ca)、鐿(Yb)、銦(In)、氧化鋰、碳酸銫等。此外,也可以將如四硫稠四苯(tetrathianaphthacene)等有機化合物用作電子予體。
<基板>
本實施方式所示的發光元件可以形成在各種基板上。注意,對基板的種類沒有特定的限制。作為該基板的例子,可以舉出半導體基板(例如,單晶基板或矽基板)、SOI基板、玻璃基板、石英基板、塑膠基板、金屬基板、不鏽鋼基板、包含不鏽鋼箔的基板、鎢基板、包含鎢箔的基板、撓性基板、貼合薄膜、包含纖維狀材料的紙或基材薄膜等。
作為玻璃基板的例子,有鋇硼矽酸鹽玻璃、鋁硼矽酸鹽玻璃、鈉鈣玻璃等。作為撓性基板、貼合薄膜、基材薄膜等,可以舉出以聚對苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚醚碸(PES)為代表的塑膠、丙烯酸樹脂等合成樹脂、聚丙烯、聚酯、聚氟化乙烯、聚氯乙烯、聚醯胺、聚醯亞胺、芳族聚醯胺樹脂、環氧樹脂、無機蒸鍍薄膜、紙類等。
另外,當製造本實施方式所示的發光元件時,可以利用蒸鍍法等真空製程或旋塗法、噴墨法等溶液製程。作為蒸鍍法,可以利用濺射法、離子鍍法、離子束蒸鍍法、分子束蒸鍍法、真空蒸鍍法等物理蒸鍍法(PVD法)或化學氣相沉積法(CVD法)等。尤其是,可以利用蒸鍍法(真空蒸鍍法)、塗佈法(浸塗法、染料塗佈法、棒式塗佈法、旋塗法、噴塗法等)、印刷法(噴墨法、網版印刷(孔版印刷)法、平板印刷(平版印刷)法、柔版印刷(凸版印刷)法、照相凹版印刷法、微接觸印刷法、奈米壓印法等)等方法形成包括在發光元件的EL層中的功能層(電洞注入層(111、111a、111b)、電洞傳輸層(112、112a、112b)、發光層(113、113a、113b)、電子傳輸層(114、114a、114b)、電子注入層(115、115a、115b)以及電荷產生層104。
另外,本實施方式所示的構成發光元件的EL層(103、103a、103b)的各功能層(電洞注入層(111、111a、111b)、電洞傳輸層(112、112a、112b)、發光層(113、113a、113b)、電子傳輸層(114、114a、114b)、電子注入層(115、115a、115b)以及電荷產生層104的材料不侷限於此,只要為可以滿足各層的功能的材料就可以組合地使用。作為一個例子,可以使用高分子化合物(低聚物、樹枝狀聚合物、聚合物等)、中分子化合物(介於低分子與高分子之間的化合物:分子量為400至4000)、無機化合物(量子點材料等)等。作為量子點材料,可以使用膠狀量子點材料、合金型量子點材料、核殼(Core Shell)型量子點材料、核型量子點材料等。
本實施方式所示的結構可以適當地與其他實施方式所示的結構組合而使用。
實施方式3
在本實施方式中,說明本發明的一個實施方式的發光裝置。圖2A所示的發光裝置是形成在第一基板201上的電晶體(FET)202和發光元件(203R、203G、203B、203W)電連接而成的主動矩陣型發光裝置,多個發光元件(203R、203G、203B、203W)共同使用EL層204,並且採用根據各發光元件的發光顏色分別調整了各發光元件的電極之間的光學距離的微腔結構。另外,採用從EL層204得到的發光穿過形成在第二基板205上的濾色片(206R、206G、206B)射出的頂部發射型發光裝置。
在圖2A所示的發光裝置中,將第一電極207用作反射電極,並將第二電極208用作半透射-半反射電極。作為用來形成第一電極207及第二電極208的電極材料,可以參照其他實施方式而適當地使用。
另外,在圖2A中,例如,在以發光元件203R、發光元件203G、發光元件203B、發光元件203W分別作為紅色發光元件、綠色發光元件、藍色發光元件、白色發光元件的情況下,如圖2B所示,將發光元件203R中的第一電極207與第二電極208之間的距離調整為光學距離200R,將發光元件203G中的第一電極207與第二電極208之間的距離調整為光學距離200G,並且將發光元件203B中的第一電極207與第二電極208之間的距離調整為光學距離200B。另外,如圖2B所示,藉由將導電層210R層疊在發光元件203R的第一電極207上,並將導電層210G層疊在發光元件203G的第一電極207上,可以進行光學調整。
在第二基板205上形成有濾色片(206R、206G、206B)。濾色片使特定波長範圍的可見光透過並遮阻特定波長範圍的可見光。因此,如圖2A所示,藉由在與發光元件203R重疊的位置上設置只使紅色波長範圍的光透過的濾色片206R,可以從發光元件203R得到紅色光。另外,藉由在與發光元件203G重疊的位置上設置只使綠色波長範圍的光透過的濾色片206G,可以從發光元件203G得到綠色光。另外,藉由在與發光元件203B重疊的位置上設置只使藍色波長範圍的光透過的濾色片206B,可以從發光元件203B得到藍色光。但是,可以從發光元件203W得到白色光,而不設置濾色片。另外,也可以在各濾色片的端部設置有黑色層(黑矩陣)209。再者,濾色片(206R、206G、206B)或黑色層209也可以被由透明材料構成的保護層覆蓋。
雖然在圖2A中示出在第二基板205一側取出光的結構(頂部發射型)的發光裝置,但是也可以採用如圖2C所示那樣在形成有FET202的第一基板201一側取出光的結構(底部發射型)的發光裝置。在底部發射型發光裝置中,將第一電極207用作半透射-半反射電極,並將第二電極208用作反射電極。另外,作為第一基板201,至少使用具有透光性的基板。另外,如圖2C所示,將濾色片(206R’、206G’、206B’)設置在比發光元件(203R、203G、203B)更靠近第一基板201的一側即可。
另外,雖然在圖2A中示出發光元件為紅色發光元件、綠色發光元件、藍色發光元件以及白色發光元件的情況,但是本發明的一個實施方式的發光元件不侷限於該結構,也可以使用黃色發光元件或橙色發光元件。作為用來製造這些發光元件的EL層(發光層、電洞注入層、電洞傳輸層、電子傳輸層、電子注入層、電荷產生層等)的材料,可以參照其他實施方式而適當地使用。在此情況下,需要根據發光元件的發光顏色而適當地選擇濾色片。
藉由採用上述結構,可以得到具備發射多個顏色的光的發光元件的發光裝置。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而使用。
實施方式4
在本實施方式中,對本發明的一個實施方式的發光裝置進行說明。
藉由採用本發明的一個實施方式的發光元件的元件結構,可以製造主動矩陣型發光裝置或被動矩陣型發光裝置。另外,主動矩陣型發光裝置具有組合了發光元件和電晶體(FET)的結構。由此,被動矩陣型發光裝置和主動矩陣型發光裝置都包括在本發明的一個實施方式中。另外,可以將其他實施方式所示的發光元件應用於本實施方式所示的發光裝置。
在本實施方式中,首先參照圖3A及圖3B說明主動矩陣型發光裝置。
圖3A是發光裝置21的俯視圖,圖3B是沿著圖3A中的點劃線A-A’進行切割的剖面圖。主動矩陣型發光裝置具有設置在第一基板301上的像素部302、驅動電路部(源極線驅動電路)303以及驅動電路部(閘極線驅動電路)(304a、304b)。將像素部302及驅動電路部(303、304a、304b)用密封劑305密封在第一基板301與第二基板306之間。
在第一基板301上設置有引線307。引線307與作為外部輸入端子的FPC308電連接。FPC308用來對驅動電路部(303、304a、304b)傳遞來自外部的信號(例如,視訊信號、時脈信號、啟動信號或重設信號等)或電位。另外,FPC308也可以安裝有印刷線路板(PWB)。安裝有這些FPC和PWB的狀態也可以包括在發光裝置的範疇內。
圖3B示出發光裝置的剖面結構。
像素部302由具有FET(開關用FET)311、FET(電流控制用FET)312以及電連接於FET312的第一電極313的多個像素構成。對各像素所具有的FET的個數沒有特別的限制,而根據需要適當地設置即可。
另外,對FET309、310、311、312沒有特別的限制,例如可以採用交錯型電晶體或反交錯型電晶體。另外,也可以採用頂閘極型或底閘極型等的電晶體結構。
另外,對可用於上述FET309、310、311、312的半導體的結晶性沒有特別的限制,可以使用非晶半導體和具有結晶性的半導體(微晶半導體、多晶半導體、單晶半導體或其一部分具有結晶區域的半導體)中的任一個。藉由使用具有結晶性的半導體,可以抑制電晶體特性的劣化,所以是較佳的。
作為上述半導體,例如可以使用第14族元素、化合物半導體、氧化物半導體、有機半導體等。典型地是,可以使用包含矽的半導體、包含砷化鎵的半導體或包含銦的氧化物半導體等。
驅動電路部303包括FET309及FET310。FET309及FET310既可以由包含單極性(N型和P型中的任一個)電晶體的電路形成,也可以由包含N型電晶體及P型電晶體的CMOS電路形成。另外,也可以採用外部具有驅動電路的結構。
第一電極313的端部由絕緣物314覆蓋。絕緣物314可以使用負型感光樹脂或正型感光樹脂(丙烯酸樹脂)等有機化合物或者氧化矽、氧氮化矽、氮化矽等無機化合物。絕緣物314的上端部或下端部較佳為有具有曲率的曲面。由此,可以使形成在絕緣物314上的膜具有良好的覆蓋性。
在第一電極313上層疊有EL層315及第二電極316。EL層315具有發光層、電洞注入層、電洞傳輸層、電子傳輸層、電子注入層、電荷產生層等。
作為本實施方式所示的發光元件317的結構,可以應用其他實施方式所示的結構或材料。雖然在此未圖示,但是第二電極316與作為外部輸入端子的FPC308電連接。
雖然在圖3B所示的剖面圖中僅示出一個發光元件317,但是,在像素部302中多個發光元件被配置為矩陣狀。藉由在像素部302中分別選擇性地形成能夠得到三種(R、G、B)顏色的發光的發光元件,可以形成能夠進行全彩色顯示的發光裝置。另外,除了可以得到三種(R、G、B)顏色的發光的發光元件以外,例如也可以形成能夠得到白色(W)、黃色(Y)、洋紅色(M)、青色(C)等顏色的發光的發光元件。例如,藉由對能夠得到三種(R、G、B)顏色的發光的發光元件追加能夠得到上述多種發光的發光元件,可以獲得色純度的提高、功耗的降低等效果。另外,也可以藉由與濾色片組合來實現能夠進行全彩色顯示的發光裝置。作為濾色片的種類,可以使用紅色(R)、綠色(G)、藍色(B)、青色(C)、洋紅色(M)、黃色(Y)等。
藉由使用密封劑305將第二基板306與第一基板301貼合在一起,使第一基板301上的FET(309、310、311、312)和發光元件317位於由第一基板301、第二基板306和密封劑305圍繞的空間318。另外,空間318可以填充有惰性氣體(如氮氣或氬氣等),也可以填充有有機物(包括密封劑305)。
可以將環氧類樹脂或玻璃粉用作密封劑305。另外,作為密封劑305,較佳為使用儘量未使水分和氧透過的材料。另外,第二基板306可以使用與第一基板301同樣的材料。由此,可以使用其他實施方式所示的各種基板。作為基板,除了玻璃基板和石英基板之外,還可以使用由FRP(Fiber-Reinforced Plastics:玻璃纖維強化塑膠)、PVF(Polyvinyl Fluoride:聚氟乙烯)、聚酯、丙烯酸樹脂等構成的塑膠基板。從黏合性的觀點來看,在作為密封劑使用玻璃粉的情況下,第一基板301及第二基板306較佳為玻璃基板。
如上所述,可以得到主動矩陣型發光裝置。
另外,當在撓性基板上形成主動矩陣型發光裝置時,可以在撓性基板上直接形成FET及發光元件,也可以在具有剝離層的其他基板上形成FET及發光元件之後藉由施加熱、力量、雷射照射等使FET與發光元件在剝離層分離再將其轉置於撓性基板。另外,作為剝離層,例如可以使用鎢膜及氧化矽膜的無機膜的疊層或聚醯亞胺等有機樹脂膜等。另外,作為撓性基板,除了可以形成電晶體的基板之外,還可以舉出紙基板、玻璃紙基板、芳族聚醯胺薄膜基板、聚醯亞胺薄膜基板、布基板(包括天然纖維(絲、棉、麻)、合成纖維(尼龍、聚氨酯、聚酯)或再生纖維(醋酯纖維、銅氨纖維、人造纖維、再生聚酯)等)、皮革基板、橡皮基板等。藉由使用這種基板,可以實現良好的耐性及耐熱性、輕量化及薄型化。
本實施方式所示的結構可以適當地與其他實施方式所示的結構組合而使用。
實施方式5
在本實施方式中,對採用本發明的一個實施方式的發光元件或包括本發明的一個實施方式的發光元件的發光裝置的各種電子機器及汽車的例子進行說明。注意,可以將發光裝置主要用於本實施方式所說明的電子機器中的顯示部。
圖4A至圖4C所示的電子機器可以包括外殼7000、顯示部7001、揚聲器7003、LED燈7004、操作鍵7005(包括電源開關或操作開關)、連接端子7006、感測器7007(具有測量如下因素的功能:力、位移、位置、速度、加速度、角速度、轉速、距離、光、液、磁、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、輻射線、流量、濕度、傾斜度、振動、氣味或紅外線)、麥克風7008等。
圖4A示出移動電腦,該移動電腦除了上述以外還可以包括開關7009、紅外線埠7010等。
圖4B示出具備儲存媒體的可攜式影像再現裝置(例如DVD再現裝置),該可攜式影像再現裝置除了上述以外還可以包括第二顯示部7002、記錄介質讀取部7011等。
圖4C示出具有電視接收功能的數位相機,該數位相機除了上述以外還可以包括天線7014、快門按鈕7015、影像接收部7016等。
圖4D示出可攜式資訊終端。可攜式資訊終端具有將資訊顯示在顯示部7001的三個以上的面上的功能。在此,示出資訊7052、資訊7053、資訊7054分別顯示於不同的面上的例子。例如,在將可攜式資訊終端放在上衣口袋裡的狀態下,使用者能夠確認顯示在從可攜式資訊終端的上方看到的位置上的資訊7053。使用者可以確認顯示而無需從口袋裡拿出可攜式資訊終端,能夠判斷是否接電話。
圖4E示出可攜式資訊終端(包括智慧手機),該可攜式資訊終端可以在外殼7000中包括顯示部7001、操作鍵7005等。可攜式資訊終端也可以設置有揚聲器、連接端子、感測器等。另外,可攜式資訊終端可以將文字或影像資訊顯示在其多個面上。在此,示出三個圖示7050的例子。另外,可以將由虛線矩形表示的資訊7051顯示在顯示部7001的另一個面上。作為資訊7051的例子,可以舉出提示收到來自電子郵件、SNS(Social Networking Services:社交網路服務)或電話等的資訊;電子郵件或SNS等的標題;電子郵件或SNS等的發送者姓名;日期;時間;電池餘量;以及天線接收信號強度等。或者,可以在顯示有資訊7051的位置上顯示圖示7050等。
圖4F是大型電視機(也稱為電視機或電視接收器),可以包括外殼7000、顯示部7001等。另外,在此示出由支架7018支撐外殼7000的結構。另外,藉由利用另外提供的遙控器7111等可以進行電視機的操作。另外,顯示部7001也可以具備觸控感測器,藉由用手指等觸摸顯示部7001可以進行操作。遙控器7111也可以具備顯示從該遙控器7111輸出的資料的顯示部。藉由利用遙控器7111所具備的操作鍵或觸摸面板,可以進行頻道及音量的操作,並可以對顯示在顯示部7001上的影像進行操作。
圖4A至圖4F所示的電子機器可以具有各種功能。例如,可以具有如下功能:將各種資訊(靜態影像、動態影像、文字影像等)顯示在顯示部上的功能;觸摸面板功能;顯示日曆、日期或時刻等的功能;藉由利用各種軟體(程式)控制處理的功能;無線通訊功能;藉由利用無線通訊功能來連接到各種電腦網路的功能;藉由利用無線通訊功能,進行各種資料的發送或接收的功能;讀出儲存在記錄介質中的程式或資料來將其顯示在顯示部上的功能等。此外,包括多個顯示部的電子機器可以具有在一個顯示部主要顯示影像資訊而在另一個顯示部主要顯示文本資訊的功能,或者具有藉由將考慮了視差的影像顯示於多個顯示部上來顯示三維影像的功能等。再者,在具有影像接收部的電子機器中,可以具有如下功能:拍攝靜態影像的功能;拍攝動態影像的功能;對所拍攝的影像進行自動或手動校正的功能;將所拍攝的影像儲存在記錄介質(外部或內置於相機)中的功能;將所拍攝的影像顯示在顯示部的功能等。注意,圖4A至圖4F所示的電子機器可具有的功能不侷限於上述功能,而可以具有各種功能。
圖4G是手錶型可攜式資訊終端,例如可以被用作智慧手錶。該手錶型可攜式資訊終端包括外殼7000、顯示部7001、操作按鈕7022、7023、連接端子7024、錶帶7025、麥克風7026、感測器7029、揚聲器7030等。顯示部7001的顯示面彎曲,因此能夠沿著彎曲的顯示面進行顯示。此外,該手錶型可攜式資訊終端例如藉由與可進行無線通訊的耳麥相互通訊可以進行免提通話。此外,藉由利用連接端子7024,可以與其他資訊終端進行資料傳輸或進行充電。充電也可以藉由無線供電進行。
安裝在兼作框架(bezel)部分的外殼7000中的顯示部7001具有非矩形狀的顯示區域。顯示部7001可以顯示表示時間的圖示7027以及其他圖示7028等。此外,顯示部7001也可以為安裝有觸控感測器(輸入裝置)的觸摸面板(輸入輸出裝置)。
在圖4G所示的智慧手錶可以具有各種功能。例如,可以具有如下功能:將各種資訊(靜態影像、動態影像、文字影像等)顯示在顯示部上的功能;觸摸面板功能;顯示日曆、日期或時刻等的功能;藉由利用各種軟體(程式)控制處理的功能;無線通訊功能;藉由利用無線通訊功能來連接到各種電腦網路的功能;藉由利用無線通訊功能,進行各種資料的發送或接收的功能;讀出儲存在記錄介質中的程式或資料來將其顯示在顯示部上的功能等。
外殼7000的內部可具有揚聲器、感測器(具有測量如下因素的功能:力、位移、位置、速度、加速度、角速度、轉速、距離、光、液、磁、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、輻射線、流量、濕度、傾斜度、振動、氣味或紅外線)、麥克風等。
可以將本發明的一個實施方式的發光裝置以及包括本發明的一個實施方式的發光元件的顯示裝置用於本實施方式中所示的電子機器的各顯示部,由此可以實現長使用壽命的電子機器。
作為使用發光裝置的電子機器,可以舉出圖5A至圖5C所示的能夠折疊的可攜式資訊終端。圖5A示出展開狀態的可攜式資訊終端9310。圖5B示出從展開狀態和折疊狀態中的一個狀態變為另一個狀態的中途的狀態的可攜式資訊終端9310。圖5C示出折疊狀態的可攜式資訊終端9310。可攜式資訊終端9310在折疊狀態下可攜性好,在展開狀態下因為具有無縫拼接的較大的顯示區域所以顯示一覽性強。
顯示部9311由藉由鉸鏈部9313連接的三個外殼9315來支撐。此外,顯示部9311也可以為安裝有觸控感測器(輸入裝置)的觸摸面板(輸入輸出裝置)。此外,顯示部9311藉由鉸鏈部9313使兩個外殼9315之間彎折,由此可以使可攜式資訊終端9310從展開狀態可逆性地變為折疊狀態。可以將本發明的一個實施方式的發光裝置用於顯示部9311。另外,可以實現長使用壽命的電子機器。顯示部9311中的顯示區域9312是位於折疊狀態的可攜式資訊終端9310的側面的顯示區域。在顯示區域9312中可以顯示資訊圖示或者使用頻率高的應用軟體或程式的快捷方式等,能夠順利地進行資訊的確認或應用軟體的啟動。
圖6A及圖6B示出使用發光裝置的汽車。就是說,可以與汽車一體地形成發光裝置。明確而言,可以用於圖6A所示的汽車的外側的燈5101(包括車身後部)、輪胎的輪轂5102、車門5103的一部分或整體等。另外,可以用於圖6B所示的汽車內側的顯示部5104、方向盤5105、變速杆5106、座位5107、內部後視鏡5108等。除此之外,也可以用於玻璃窗的一部分。
如上所述,可以得到使用本發明的一個實施方式的發光裝置及顯示裝置的電子機器或汽車。此時,可以實現長使用壽命的電子機器。能夠使用的電子機器或汽車不侷限於在本實施方式中示出的電子機器或汽車,在各種領域可以應用。
注意,本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而使用。
實施方式6
在本實施方式中,參照圖7A和圖7B說明應用本發明的一個實施方式的發光裝置或其一部分的發光元件而製造的照明裝置的結構。
圖7A和圖7B示出照明裝置的剖面圖的例子。圖7A是在基板一側提取光的底部發射型照明裝置,而圖7B是在密封基板一側提取光的頂部發射型照明裝置。
圖7A所示的照明裝置4000在基板4001上包括發光元件4002。另外,照明裝置4000在基板4001的外側包括具有凹凸的基板4003。發光元件4002包括第一電極4004、EL層4005以及第二電極4006。
第一電極4004與電極4007電連接,第二電極4006與電極4008電連接。另外,也可以設置與第一電極4004電連接的輔助佈線4009。此外,在輔助佈線4009上形成有絕緣層4010。
基板4001與密封基板4011由密封劑4012黏合。另外,較佳為在密封基板4011與發光元件4002之間設置有乾燥劑4013。由於基板4003具有如圖7A所示那樣的凹凸,因此可以提高在發光元件4002中產生的光的提取效率。
圖7B所示的照明裝置4200在基板4201上包括發光元件4202。發光元件4202包括第一電極4204、EL層4205以及第二電極4206。
第一電極4204與電極4207電連接,第二電極4206與電極4208電連接。另外,也可以設置與第二電極4206電連接的輔助佈線4209。另外,也可以在輔助佈線4209下設置絕緣層4210。
基板4201與具有凹凸的密封基板4211由密封劑4212黏合。另外,也可以在密封基板4211與發光元件4202之間設置障壁膜4213及平坦化膜4214。由於密封基板4211具有如圖7B所示那樣的凹凸,因此可以提高在發光元件4202中產生的光的提取效率。
作為上述照明裝置的應用例子,可以舉出室內照明的天花射燈。作為天花射燈,有天花安裝型燈或天花嵌入型燈等。這種照明裝置可以由發光裝置與外殼或覆蓋物的組合構成。
除此以外,也可以應用於能夠照射地面上以提高安全性的腳燈。例如,能夠將腳燈有效地利用於臥室、樓梯或通路等。在此情況下,可以根據房間的尺寸或結構而適當地改變其尺寸或形狀。另外,也可以組合發光裝置和支撐台構成安裝型照明裝置。
另外,也可以應用於薄膜狀照明裝置(片狀照明)。因為將片狀照明貼在牆上而使用,所以不需要空間而可以應用於各種用途。另外,容易實現大面積化。另外,也可以將其貼在具有曲面的牆或外殼上。
藉由將本發明的一個實施方式的發光裝置或其一部分的發光元件用於上述以外的室內家具的一部分,可以提供具有家具的功能的照明裝置。
如上所述,可以得到使用發光裝置的各種各樣的照明裝置。另外,這種照明裝置包括在本發明的一個實施方式中。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。

實施例1
<<合成實例1>>
在本實施例中,說明以實施方式1的結構式(100)表示的本發明的一個實施方式的有機金屬錯合物雙(苯并[f]萘并[2,1-h]喹㗁啉-5-基-κC5 ,κN4 )(2,2,6,6-四甲基-3,5-庚二酮-κ2 O,O’)銥(III)(簡稱:[Ir(bnq)2 (dpm)])的合成方法。注意,下面示出[Ir(bnq)2 (dpm)]的結構。
[化學式22]
<步驟1:苯并[f]萘并[2,1-h]喹㗁啉(簡稱:Hbnq)的合成>
首先,將䓛-5,6-二酮2.1g(7.7mmol)、乙二胺0.56g(9.3mmol)及乙醇20mL放入100mL三頸燒瓶中,在氮氣氛圍下以80℃進行加熱攪拌12小時。對所得到的混合物進行吸引過濾,對濾渣用乙醇進行洗滌。藉由矽膠管柱層析法使所得到的固體純化。作為展開溶劑使用甲苯。濃縮所得到的餾分,而得到目的物(白色固體0.98g,產率45%)。在下述式(a-1)中示出步驟1的合成方案。
[化學式23]
<步驟2:[Ir(bnq)2 (dpm)]的合成>
接著,將藉由上述步驟1得到的配體Hbnq0.98g(3.5mmol)、氯化銥水合物0.47g(1.6mmol)及二甲基甲醯胺(DMF)35mL放入三頸燒瓶中,對燒瓶內進行氮氣置換。對該混合物以160℃進行加熱攪拌5小時。經過指定時間之後,對該混合物添加碳酸鈉0.67g(6.4mmol)及Hdpm0.88g(4.8mmol),以140℃進行加熱攪拌9小時。接著,對該混合物進行吸引過濾,對濾渣用水、乙醇進行洗滌而得到紅色固體。
接著,對該紅色固體添加二氯甲烷進行吸引過濾,而去除不溶固體。使用層疊有矽藻土和礬土的過濾材對濾液進行吸引過濾,濃縮濾液得到目的物(深紅色固體0.42g,產率28%)。在下述式(a-2)中示出步驟2的合成方案。
[化學式24]
利用核磁共振法(NMR)對藉由上述步驟2得到的深紅色固體的質子(1 H)進行了測量。下面示出所得到的值。另外,圖8示出1 H-NMR譜。由此可知,在本合成實例中,得到了以上述結構式(100)表示的本發明的一個實施方式的有機金屬錯合物[Ir(bnq)2 (dpm)]。在圖8中,大約為11ppm的質子來源於苯并萘并喹㗁啉(bnq)的14位的質子,並且配位於中心金屬的苯并萘并喹㗁啉(bnq)骨架所包括的氮中之不鍵合於作為中心金屬的Ir的氮和稠合了的烴的氫(苯并萘并喹㗁啉(bnq)的14位的質子)之間形成強氫鍵合。由此,大約為11ppm的質子向低磁場偏移得大。
1 H-NMR.δ(CDCl3 ):0.89(s, 18H),5.65(s, 1H),6.52(d, 2H),7.13(t, 2H),7.70(t, 2H),7.88(t, 2H),8.07(d, 2H),8.10(d, 2H),8.20(d, 2H),8.70(d, 2H),8.80(d, 2H),9.01(d, 2H),11.03(d, 2H)。
接著,對[Ir(bnq)2 (dpm)]的二氯甲烷溶液的紫外可見吸收光譜(以下簡稱為“吸收光譜”)及發射光譜進行測量。
當測量吸收光譜時,使用紫外可見分光光度計(日本分光株式會社製造,V550型),將二氯甲烷溶液(0.011mmol/L)放在石英皿,並在室溫下進行測量。當測量發射光譜時,使用螢光分光光度計(濱松光子株式會社製造,FS920),將脫氣的二氯甲烷溶液(0.011mmol/L)放在石英皿,並在室溫下進行測量。
圖9示出所得到的吸收光譜及發射光譜的測量結果。橫軸表示波長,縱軸表示吸收強度及發光強度。此外,圖9中的細實線示出吸收光譜,粗實線示出發射光譜。圖9所示的吸收光譜表示從將二氯甲烷溶液(0.011mmol/L)放在石英皿而測量的吸收光譜減去只將二氯甲烷放在石英皿而測量的吸收光譜來得到的結果。
根據圖9的結果,觀察到本發明的一個實施方式的有機金屬錯合物[Ir(bnq)2 (dpm)]在660nm表示發光峰值,從二氯甲烷溶液觀察到紅色發光。

實施例2
在本實施例中,對作為本發明的一個實施方式的發光元件,製造將實施例1中說明的雙(苯并[f]萘并[2,1-h]喹㗁啉-5-基-κC5 ,κN4 )(2,2,6,6-四甲基-3,5-庚二酮-κ2 O,O’)銥(III)(簡稱:[Ir(bnq)2 (dpm)])(結構式(100))用於發光層的發光元件1,並且作為用來比較的發光元件,製造將雙(二苯并[f,h]喹㗁啉-5-基-κC5 ,κN4 )(2,4-戊二酮-κ2 O,O’)銥(III)(簡稱:[Ir(dbq)2 (acac)])(結構式(200))用於發光層的對比發光元件2。對發光元件1及對比發光元件2的元件結構、製造方法及特性進行說明。注意,圖10示出本實施例所使用的發光元件的元件結構,表1示出具體結構。另外,下面示出本實施例中使用的材料的化學式。
[化學式25]
<<發光元件的製造>>
如圖10所示,本實施例所示的發光元件具有如下結構:在形成在基板900上的第一電極901上依次層疊有電洞注入層911、電洞傳輸層912、發光層913、電子傳輸層914以及電子注入層915,且在電子注入層915上層疊有第二電極903。
首先,在基板900上形成第一電極901。電極面積為4mm2 (2mm×2mm)。另外,作為基板900使用玻璃基板。第一電極901藉由利用濺射法形成厚度為70nm的包含氧化矽的銦錫氧化物(ITSO)而形成。
在此,作為預處理,利用水對基板表面進行洗滌,在200℃的溫度下焙燒1小時,然後進行UV臭氧處理370秒。然後,將基板放入其內部被減壓到1×10-4 Pa左右的真空蒸鍍裝置中,並在真空蒸鍍裝置內的加熱室中,在170℃的溫度下進行真空焙燒30分鐘,然後對基板進行冷卻30分鐘左右。
接著,在第一電極901上形成電洞注入層911。在真空蒸鍍裝置內被減壓到1×10-4 Pa之後,將1,3,5-三(二苯并噻吩-4-基)苯(簡稱:DBT3P-II)和氧化鉬以質量比為DBT3P-II:氧化鉬=2:1且厚度為75nm的方式共蒸鍍,以形成電洞注入層911。
接著,在電洞注入層911上形成電洞傳輸層912。以厚度為20nm的方式蒸鍍4-苯基-4’-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP),以形成電洞傳輸層912。
接著,在電洞傳輸層912上形成發光層913。
在發光元件1的發光層913中,作為主體材料使用2mDBTBPDBq-II,作為輔助材料使用PCBBiF,作為客體材料(磷光材料)使用本發明的一個實施方式的有機金屬錯合物[Ir(bnq)2 (dpm)],以重量比為2mDBTBPDBq-II:PCBBiF:[Ir(bnq)2 (dpm)]=0.75:0.25:0.10的方式進行共蒸鍍。另外,將膜厚度設定為40nm。
在對比發光元件2的發光層913中,作為主體材料使用2mDBTBPDBq-II,作為輔助材料使用PCBBiF,作為客體材料(磷光材料)使用[Ir(dbq)2 (acac)],以重量比為2mDBTBPDBq-II:PCBBiF:[Ir(dbq)2 (acac)]=0.75:0.25:0.075的方式進行共蒸鍍。另外,將膜厚度設定為40nm。
接著,在發光層913上形成電子傳輸層914。藉由將2mDBTBPDBq-II和2,9-雙(萘-2-基)-4,7-二苯基-1,10-啡啉(簡稱:NBphen)分別以厚度為30nm和15nm的方式依次進行蒸鍍,形成電子傳輸層914。
接著,在電子傳輸層914上形成電子注入層915。電子注入層915藉由以厚度為1nm的方式蒸鍍氟化鋰(LiF)而形成。
接著,在電子注入層915上形成第二電極903。第二電極903藉由以厚度為200nm的方式蒸鍍鋁而形成。在本實施例中,第二電極903被用作陰極。
藉由上述製程在基板900上形成在一對電極之間夾有EL層的發光元件。另外,上述製程中說明的電洞注入層911、電洞傳輸層912、發光層913、電子傳輸層914以及電子注入層915是構成本發明的一個實施方式中的EL層的功能層。另外,在上述製造方法的蒸鍍過程中,都利用電阻加熱法進行蒸鍍。
另外,使用另一基板(未圖示)密封如上所述那樣製成的發光元件。使用另一基板(未圖示)進行密封時,在氮氛圍的手套箱內將塗佈有紫外光線而固化密封劑的另一基板(未圖示)固定於基板900上,並以密封劑附著於形成在基板900上的發光元件的周圍的方式將基板彼此黏合。在密封時以6J/cm2 照射365nm的紫外光使密封劑固化,並且以80℃進行1小時的加熱處理來使密封劑穩定化。
《發光元件的工作特性》
對所製造的各發光元件的工作特性進行測量。測量在室溫(保持為25℃的氛圍)下進行。圖11至圖14示出其結果。
此外,下面的表2示出1000cd/m2 附近的各發光元件的主要初始特性值。
從上述結果可知,發光元件1具有良好的元件特性。
另外,圖15示出以2.5mA/cm2 的電流密度使電流流過發光元件1及對比發光元件2時的發射光譜。在圖15中,發光元件1示出來源於發光層913所包含的有機金屬錯合物[Ir(bnq)2 (dpm)]的發光在650nm附近具有峰值的發射光譜。另外,對比發光元件2示出來源於發光層913所包含的有機金屬錯合物[Ir(dbq)2 (acac)]的發光在630nm附近具有峰值的發射光譜。注意,與對比發光元件2相比,發光元件1的極大發光波長漂移至長波長方向。這是因為在發光元件1的發光層913所包含的有機金屬錯合物[Ir(bnq)2 (dpm)]中,配體的苯并萘并喹㗁啉(bnq)骨架所包括的氮中之不鍵合於中心金屬(第9族或第10族:Ir、Pt)的氮和bnq骨架的稠環的氫之間形成氫鍵合,因此與二苯并喹㗁啉(dbq)相比,苯并萘并喹㗁啉(bnq)的共軛擴大。由此,可以說是在為要使極大發光波長漂移至長波長方向並將發光波長調整為紅色發光區域時,本發明的一個實施方式的有機金屬錯合物是較佳的。
接著,進行發光元件1及對比發光元件2的可靠性測試。圖16示出可靠性測試的結果。在圖16中,縱軸表示起始亮度為100%時的正規化亮度(%),橫軸表示元件的驅動時間(h)。在可靠性測試中,將電流密度設定為75mA/cm2 ,驅動發光元件。
從可靠性測試的結果可知,發光元件1的可靠性比對比發光元件2高。這可以說是將本發明的一個實施方式的有機金屬錯合物[Ir(bnq)2 (dpm)](結構式(100))用於發光元件1的發光層的效果。關於[Ir(dbq)2 (acac)],其分子結構上配體的二苯并喹㗁啉(dbq)骨架所包括的氮中之不鍵合於中心金屬(第9族或10族:Ir、Pt)的氮和鄰接的主體分子等所包括的稠合了的烴的氫之間有時形成氫鍵合,因此在激發態的形成或激發能的轉移的過程中,有可能分子之間引起質子轉移而成為分子劣化的原因。另一方面,關於本實施例的[Ir(bnq)2 (dpm)],其分子結構上配體的苯并萘并喹㗁啉(bnq)骨架所包括的氮中之不鍵合於中心金屬(第9族或第10族:Ir、Pt)的氮和bnq骨架的稠環的氫之間可以形成氫鍵合,因此能夠實現結構的穩定化。由此,可以說發光元件1的可靠性得到提高。

實施例3
<<合成實例2>>
在本實施例中,說明以實施方式1的結構式(118)表示的本發明的一個實施方式的有機金屬錯合物雙(苯并[a,i]萘并[2,1-c]吩嗪-10-基-κC10 ,κN11 )(2,2,6,6-四甲基-3,5-庚二酮-κ2 O,O’)銥(III)(簡稱:[Ir(dbnphz)2 (dpm)])的合成方法。注意,下面示出[Ir(dbnphz)2 (dpm)]的結構。
[化學式26]
<步驟1:二苯并[a,i]萘并[2,1-c]吩嗪(簡稱:Hdbnphz)的合成>
首先,將䓛-5,6-二酮1.0g(4.0mmol)、2,3-二胺基萘0.67g(4.3mmol)及乙醇20mL放入反應容器中,進行加熱回流5小時。經過指定時間之後,對所得到的混合物進行吸引過濾並對固體用乙醇進行洗滌。將該固體溶解於加熱甲苯,藉由依次層疊藻土、礬土和藻土而成的過濾材進行吸引過濾。濃縮所得到的濾液,利用甲苯及乙醇的混合溶劑而進行重結晶,得到目的物(1.1g,產率74%)。在下述式(b-1)中示出步驟1的合成方案。
[化學式27]
<步驟2:[Ir(dbnphz)2 (dpm)]的合成>
接著,將藉由上述步驟2得到的配體Hdbnphz1.1g(2.9mmol)、氯化銥水合物0.39g(1.3mmol)及二甲基甲醯胺(DMF)30mL放入反應容器中,對該容器內進行氮氣置換,以160℃進行加熱攪拌7.5小時。經過指定時間之後,添加碳酸鈉0.55g(5.2mmol)及二叔戊醯甲烷0.72g(3.9mmol)以140℃進行加熱攪拌14小時。接著,對該混合物進行吸引過濾,對所得到的固體用水、乙醇進行洗滌。
接著,藉由將二氯甲烷用作展開溶劑的矽膠管柱層析法對該固體進行純化,濃縮所得到的餾分而得到固體。對該固體用加熱甲苯進行洗滌,來得到133mg的目的物。
接著,濃縮所得到的濾液,藉由將甲苯用作展開溶劑的矽膠管柱層析法進行純化。接著,利用甲苯和乙醇的混合溶劑使濃縮所得到的餾分而得到的固體重結晶,而得到目的物(80mg)(總收量為213mg,產率14%)。下述式(b-2)表示步驟2的合成方案。
[化學式28]
利用核磁共振法(NMR)對藉由上述步驟2得到的黑色固體的質子(1 H)進行了測量。以下示出所得到的值。另外,圖17示出1 H-NMR譜。由此可知,在本合成實例2中,得到了以上述結構式(118)表示的本發明的一個實施方式的有機金屬錯合物[Ir(dbnphz)2 (dpm)]。
1 H-NMR δ(CDCl3 ):0.52(s, 18H),5.04(s, 1H),6.80(d, 2H),6.97(t, 2H),7.48(d, 2H),7.59(t, 2H),7.74(t, 2H),7.88(d, 2H),7.98(t, 2H),8.06(d, 2H),8.10(d, 2H),8.26(d, 4H),8.64(d, 2H),9.13(s, 2H),9.19(s, 2H),11.21(d, 2H)。
接著,對[Ir(dbnphz)2 (dpm)]的二氯甲烷溶液的紫外可見吸收光譜(以下簡稱為“吸收光譜”)及發射光譜進行測量。
當測量吸收光譜時,使用紫外可見分光光度計(日本分光株式會社製造,V550型),將二氯甲烷溶液(0.013mmol/L)放在石英皿,並在室溫下進行測量。當測量發射光譜時,使用絕對PL量子產率測定裝置(濱松光子株式會社製造,C11347-01),將脫氣的二氯甲烷溶液(0.013mmol/L)放在石英皿,並在室溫下進行測量。
圖18示出所得到的吸收光譜及發射光譜的測量結果。橫軸表示波長,縱軸表示吸收強度及發光強度。注意,圖18所示的吸收光譜表示從將二氯甲烷溶液放在石英皿而測量的吸收光譜減去只將二氯甲烷放在石英皿而測量的吸收光譜來得到的結果。
如圖18所示,從[Ir(dbnphz)2 (dpm)]的二氯甲烷溶液觀察到在865nm表示發光峰值的近紅外發光。注意,根據圖18的結果,[Ir(dbnphz)2 (dpm)]的吸收光譜中的斯托克斯位移較大。因為斯托克司位移較大,所以可以使極大發光波長漂移至更長波長方向。
此外,bnq骨架由於多環的稠環可以為共軛擴張的結構,而且,對bnq骨架的吡嗪環稠合萘基,可以使π共軛類擴張,而能夠使LUMO能階穩定化,因此將極大發光波長可以漂移至更長波長方向。

實施例4
在本實施例中,作為本發明的一個實施方式的發光元件,製造將實施例3中說明的[Ir(dbnphz)2 (dpm)](結構式(118))用於發光層的發光元件3,說明對元件特性進行測量的結果。注意,本實施例中使用的發光元件的元件結構與實施例2所示的圖10中的發光元件的元件結構相同,表3示出構成元件結構的各層的具體結構。另外,下面示出本實施例中使用的材料的化學式。
[化學式29]
<<發光元件3的工作特性>>
對所製造的發光元件3的工作特性進行測量。測量在室溫(保持為25℃的氛圍)下進行。另外,圖19示出發光元件3的電流密度-輻射度特性,圖20示出電壓-電流密度特性,圖21示出電流密度-輻射通量特性,圖22示出電壓-輻射度特性,圖23示出電流密度-外部量子效率特性。注意,在此將元件的配光特性假定為朗伯特(Lambertian)型,使用輻射亮度算出輻射度、輻射通量及外部量子效率。
下面的表4示出0.11W/sr/m2 附近的發光元件3的主要初始特性值。
此外,圖24示出以15mA/cm2 的電流密度使電流流過發光元件3時的發射光譜。利用近紅外分光輻射亮度計(SR-NIR,拓普康公司製造)進行發射光譜的測量。在圖24中,發光元件3示出來源於發光層913所包含的有機金屬錯合物[Ir(dbnphz)2 (dpm)]的發光在870nm附近具有峰值的發射光譜。注意,光譜的半寬為63nm。在將此時的半寬換算為大約0.10eV的能量時,這作為來源於有機金屬錯合物的發光非常窄。該特性有助於有效地發射700nm以上的波長的光,因此可以說是作為用來感測器等的光源有用。
接著,進行發光元件3的可靠性測試。圖25示出可靠性測試的結果。在圖25中,縱軸表示初始亮度為100%時的正規化亮度(%),橫軸表示元件的驅動時間(h)。在可靠性測試中,將電流密度設定為75mA/cm2 ,驅動發光元件。
從可靠性測試的結果可知,發光元件3呈現高可靠性。這可以說是將本發明的一個實施方式的有機金屬錯合物[Ir(dbnphz)2 (dpm)](結構式(108))用於發光元件3的發光層的效果。關於[Ir(dbnphz)2 (dpm)],其分子結構上配體的苯并萘并喹㗁啉(bnq)骨架所包括的氮中之不鍵合於中心金屬(第9族或第10族:Ir、Pt)的氮和bnq骨架的稠環的氫之間形成氫鍵合,因此實現結構的穩定化,從而與鄰接的分子氫鍵合不強。由此,可以說是提高發光元件3的可靠性。
101‧‧‧第一電極
102‧‧‧第二電極
103‧‧‧EL層
103a、103b‧‧‧EL層
104‧‧‧電荷產生層
111、111a、111b‧‧‧電洞注入層
112、112a、112b‧‧‧電洞傳輸層
113、113a、113b‧‧‧發光層
114、114a、114b‧‧‧電子傳輸層
115、115a、115b‧‧‧電子注入層
200R、200G、200B‧‧‧光學距離
201‧‧‧第一基板
202‧‧‧電晶體(FET)
203R、203G、203B、203W‧‧‧發光元件
204‧‧‧EL層
205‧‧‧第二基板
206R、206G、206B‧‧‧濾色片
206R’、206G’、206B’‧‧‧濾色片
207‧‧‧第一電極
208‧‧‧第二電極
209‧‧‧黑色層(黑矩陣)
210R、210G‧‧‧導電層
301‧‧‧第一基板
302‧‧‧像素部
303‧‧‧驅動電路部(源極線驅動電路)
304a、304b‧‧‧驅動電路部(閘極線驅動電路)
305‧‧‧密封劑
306‧‧‧第二基板
307‧‧‧引線
308‧‧‧FPC
309‧‧‧FET
310‧‧‧FET
311‧‧‧FET
312‧‧‧FET
313‧‧‧第一電極
314‧‧‧絕緣物
315‧‧‧EL層
316‧‧‧第二電極
317‧‧‧發光元件
318‧‧‧空間
900‧‧‧基板
901‧‧‧第一電極
902‧‧‧EL層
903‧‧‧第二電極
911‧‧‧電洞注入層
912‧‧‧電洞傳輸層
913‧‧‧發光層
914‧‧‧電子傳輸層
915‧‧‧電子注入層
4000‧‧‧照明裝置
4001‧‧‧基板
4002‧‧‧發光元件
4003‧‧‧基板
4004‧‧‧第一電極
4005‧‧‧EL層
4006‧‧‧第二電極
4007‧‧‧電極
4008‧‧‧電極
4009‧‧‧輔助佈線
4010‧‧‧絕緣層
4011‧‧‧密封基板
4012‧‧‧密封劑
4013‧‧‧乾燥劑
4200‧‧‧照明裝置
4201‧‧‧基板
4202‧‧‧發光元件
4204‧‧‧第一電極
4205‧‧‧EL層
4206‧‧‧第二電極
4207‧‧‧電極
4208‧‧‧電極
4209‧‧‧輔助佈線
4210‧‧‧絕緣層
4211‧‧‧密封基板
4212‧‧‧密封劑
4213‧‧‧障壁膜
4214‧‧‧平坦化膜
5101‧‧‧燈
5102‧‧‧輪轂
5103‧‧‧車門
5104‧‧‧顯示部
5105‧‧‧方向盤
5106‧‧‧變速杆
5107‧‧‧座位
5108‧‧‧內部後視鏡
7000‧‧‧外殼
7001‧‧‧顯示部
7002‧‧‧第二顯示部
7003‧‧‧揚聲器
7004‧‧‧LED燈
7005‧‧‧操作鍵
7006‧‧‧連接端子
7007‧‧‧感測器
7008‧‧‧麥克風
7009‧‧‧開關
7010‧‧‧紅外線埠
7011‧‧‧記錄介質讀取部
7014‧‧‧天線
7015‧‧‧快門按鈕
7016‧‧‧影像接收部
7018‧‧‧支架
7022、7023‧‧‧操作按鈕
7024‧‧‧連接端子
7025‧‧‧錶帶
7026‧‧‧麥克風
7027‧‧‧表示時間的圖示
7028‧‧‧其他圖示
7029‧‧‧感測器
7030‧‧‧揚聲器
7052、7053、7054‧‧‧資訊
9310‧‧‧可攜式資訊終端
9311‧‧‧顯示部
9312‧‧‧顯示區域
9313‧‧‧鉸鏈部
9315‧‧‧外殼
在圖式中:
圖1A和圖1C是說明發光元件的結構的圖,圖1B和圖1D是說明疊層結構(串聯結構)的發光元件的圖;
圖2A至圖2C是說明發光裝置的圖;
圖3A和圖3B是說明發光裝置的圖;
圖4A至圖4G是說明電子機器的圖;
圖5A至圖5C是說明電子機器的圖;
圖6A和圖6B是說明汽車的圖;
圖7A和圖7B是說明照明裝置的圖;
圖8示出由結構式(100)表示的有機金屬錯合物的1 H-NMR譜;
圖9示出由結構式(100)表示的有機金屬錯合物的溶液中的紫外-可見吸收光譜及發射光譜;
圖10是說明發光元件的圖;
圖11是示出發光元件1及對比發光元件2的電流密度-亮度特性的圖;
圖12是示出發光元件1及對比發光元件2的電壓-亮度特性的圖;
圖13是示出發光元件1及對比發光元件2的亮度-電流效率特性的圖;
圖14是示出發光元件1及對比發光元件2的電壓-電流特性的圖;
圖15是示出發光元件1及對比發光元件2的發射光譜的圖;
圖16是示出發光元件1及對比發光元件2的可靠性的圖;
圖17是示出由結構式(118)表示的有機金屬錯合物的1 H-NMR譜;
圖18示出由結構式(118)表示的有機金屬錯合物的溶液中的紫外-可見吸收光譜及發射光譜;
圖19是示出發光元件3的電流密度-輻射度特性的圖;
圖20是示出發光元件3的電壓-電流密度特性的圖;
圖21是示出發光元件3的電流密度-輻射通量特性的圖;
圖22是示出發光元件3的電壓-輻射度特性的圖;
圖23是示出發光元件3的電流密度-外部量子效率特性的圖;
圖24是示出發光元件3的發射光譜的圖;
圖25是示出發光元件3的可靠性的圖。

Claims (12)

  1. 一種以通式(G1)表示的有機金屬錯合物, [化學式1], 在通式中: M表示第9族元素或第10族元素; R1 至R10 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為6至12的芳基、以及取代或未取代的碳原子數為3至12的雜芳基中的任一個; R9 及R10 也可以彼此鍵合併形成取代或未取代的碳原子數為3至24的飽和環或不飽和環; L表示單陰離子的配體; 在該M為第9族元素時,m+n=3(注意,m=0、1及2中的任一個,n=1、2及3中的任一個); 在該M為第10族元素時,m+n=2(注意,m=0或1,n=1或2中的任一個)。
  2. 一種以通式(G2)表示的有機金屬錯合物, [化學式2], 在通式中: R1 至R10 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為6至12的芳基、以及取代或未取代的碳原子數為3至12的雜芳基中的任一個; R9 及R10 也可以彼此鍵合併形成取代或未取代的碳原子數為3至24的飽和環或不飽和環; L表示單陰離子的配體。
  3. 根據申請專利範圍第1或2項之有機金屬錯合物,其中該單陰離子的配體為含有β-二酮結構的單陰離子的雙牙螯合配體、含有羧基的單陰離子的雙牙螯合配體、含有酚式羥基的單陰離子的雙牙螯合配體、兩個配位元素都為氮的單陰離子的雙牙螯合配體、或者由於環金屬化與銥形成金屬-碳鍵合的雙牙配位體。
  4. 根據申請專利範圍第1至3中任一項之有機金屬錯合物,其中該單陰離子的配體為以下面通式(L1)至(L7)中的任一個的有機金屬錯合物, [化學式3], 在通式中: R51 至R89 分別獨立地表示如下:氫;取代或未取代的碳原子數為1至6的烷基;鹵代基;乙烯基;取代或未取代的碳原子數為1至6的鹵代烷基;取代或未取代的碳原子數為1至6的烷氧基;取代或未取代的碳原子數為1至6的烷硫基;以及取代或未取代的碳原子數為6至13的芳基; A1 至A13 分別獨立地表示氮、與氫鍵合的sp2 雜化碳或者具有取代基的sp2 雜化碳,上述取代基表示碳原子數為1至6的烷基、鹵代基、碳原子數為1至6的鹵代烷基以及苯基中的任一個。
  5. 一種以通式(G3)表示的有機金屬錯合物, [化學式4], 在通式中: R1 至R13 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為6至12的芳基、以及取代或未取代的碳原子數為3至12的雜芳基中的任一個; R9 及R10 也可以彼此鍵合併形成取代或未取代的碳原子數為3至24的飽和環或不飽和環。
  6. 一種以結構式(100)或結構式(118)表示的有機金屬錯合物, [化學式5]
  7. 一種使用申請專利範圍第1至6中任一項之有機金屬錯合物的發光元件。
  8. 一種一對電極之間具有EL層的發光元件,其中該EL層包括申請專利範圍第1至6中任一項之有機金屬錯合物。
  9. 一種一對電極之間具有EL層的發光元件, 其中,該EL層包括發光層, 並且,該發光層包括申請專利範圍第1至6中任一項之有機金屬錯合物。
  10. 一種發光裝置,包括: 申請專利範圍第7至9中任一項之發光元件;以及 電晶體及基板中的任一個。
  11. 一種電子機器,包括: 申請專利範圍第10項之發光裝置;以及 麥克風、相機、操作按鈕、外部連接部及揚聲器中的任一個。
  12. 一種照明裝置,包括: 申請專利範圍第10項之發光裝置;以及 外殼、覆蓋物及支架中的任一個。
TW108113970A 2018-04-27 2019-04-22 有機化合物、發光元件、發光裝置、電子機器及照明裝置 TWI810283B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018086380 2018-04-27
JP2018-086380 2018-04-27
JP2018-182680 2018-09-27
JP2018182680 2018-09-27

Publications (2)

Publication Number Publication Date
TW201945380A true TW201945380A (zh) 2019-12-01
TWI810283B TWI810283B (zh) 2023-08-01

Family

ID=68293788

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108113970A TWI810283B (zh) 2018-04-27 2019-04-22 有機化合物、發光元件、發光裝置、電子機器及照明裝置

Country Status (4)

Country Link
JP (1) JP7287953B2 (zh)
CN (1) CN112041326A (zh)
TW (1) TWI810283B (zh)
WO (1) WO2019207409A1 (zh)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5238227B2 (ja) * 2006-12-27 2013-07-17 株式会社半導体エネルギー研究所 有機金属錯体および有機金属錯体を用いた発光素子、発光装置、並びに電子機器
CN101878553A (zh) * 2007-11-30 2010-11-03 株式会社半导体能源研究所 发光元件、发光装置以及电子装置
CN105859792A (zh) 2008-02-12 2016-08-17 巴斯夫欧洲公司 具有二苯并[f,h]喹噁啉的电致发光金属络合物
WO2009157498A1 (en) 2008-06-25 2009-12-30 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, and lighting apparatus, and electronic device using the organometallic complex
CN107814821A (zh) * 2012-01-12 2018-03-20 Udc 爱尔兰有限责任公司 具有二苯并[f,h]喹喔啉的金属配合物
JP6264766B2 (ja) * 2012-12-06 2018-01-24 三菱ケミカル株式会社 イリジウム錯体化合物、有機電界発光素子、表示装置ならびに照明装置
WO2016203350A1 (en) * 2015-06-17 2016-12-22 Semiconductor Energy Laboratory Co., Ltd. Iridium complex, light-emitting element, display device, electronic device, and lighting device
JP6863590B2 (ja) * 2015-12-18 2021-04-21 国立研究開発法人産業技術総合研究所 赤色発光性イリジウム錯体ならびに該化合物を用いた発光材料および有機発光素子
US10392387B2 (en) * 2017-05-19 2019-08-27 Arizona Board Of Regents On Behalf Of Arizona State University Substituted benzo[4,5]imidazo[1,2-a]phenanthro[9,10-c][1,8]naphthyridines, benzo[4,5]imidazo[1,2-a]phenanthro[9,10-c][1,5]naphthyridines and dibenzo[f,h]benzo[4,5]imidazo[2,1-a]pyrazino[2,3-c]isoquinolines as thermally assisted delayed fluorescent materials

Also Published As

Publication number Publication date
JPWO2019207409A1 (ja) 2021-06-17
JP7287953B2 (ja) 2023-06-06
WO2019207409A1 (ja) 2019-10-31
CN112041326A (zh) 2020-12-04
TWI810283B (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
KR102579973B1 (ko) 유기 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
KR102555608B1 (ko) 유기 금속 착체, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
TWI826371B (zh) 有機化合物及發光元件
KR102643402B1 (ko) 유기 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
JP7170930B1 (ja) 発光デバイス、発光装置、電子機器、および照明装置
TW202000671A (zh) 有機化合物、發光元件、發光裝置、電子裝置及照明設備
JP2019189540A (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
WO2019229584A1 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP2023113638A (ja) 発光素子
KR102567674B1 (ko) 유기 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
WO2020121097A1 (ja) 発光デバイス、発光装置、電子機器、および照明装置
KR20210018142A (ko) 유기 화합물, 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치
TWI810283B (zh) 有機化合物、發光元件、發光裝置、電子機器及照明裝置
JP7478670B2 (ja) 有機金属錯体、発光デバイス、発光装置、電子機器、および照明装置
JP7275042B2 (ja) 有機金属錯体、発光素子、発光装置、電子機器および照明装置
KR102671111B1 (ko) 유기 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
WO2020109922A1 (ja) 発光デバイス用組成物
WO2020058811A1 (ja) 有機化合物、発光デバイス、発光装置、電子機器、および照明装置
WO2018189623A1 (ja) 有機金属錯体、発光素子、発光装置、電子機器、および照明装置
JPWO2019097361A6 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
KR20200028401A (ko) 유기 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치