TW201921820A - 雷射二極體、led及在圖案化基板上之矽積體感測器 - Google Patents

雷射二極體、led及在圖案化基板上之矽積體感測器

Info

Publication number
TW201921820A
TW201921820A TW107128871A TW107128871A TW201921820A TW 201921820 A TW201921820 A TW 201921820A TW 107128871 A TW107128871 A TW 107128871A TW 107128871 A TW107128871 A TW 107128871A TW 201921820 A TW201921820 A TW 201921820A
Authority
TW
Taiwan
Prior art keywords
patterned substrate
laser diode
gan
patterned
sapphire
Prior art date
Application number
TW107128871A
Other languages
English (en)
Inventor
杰 朴
Original Assignee
杰 朴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杰 朴 filed Critical 杰 朴
Publication of TW201921820A publication Critical patent/TW201921820A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only AIVBIV alloys, e.g. SiGe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0054Processes for devices with an active region comprising only group IV elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0207Substrates having a special shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/24Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0202Cleaving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3428Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers layer orientation perpendicular to the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本發明歸屬於光電子學之領域,特定而言,包含在圖案化基板(PS)上在紫外光(UV)至紅外光(IR)光譜型態中操作的雷射二極體(LD)之設計、磊晶生長、製作及表徵,該等圖案化基板(PS)係由低成本、大尺寸Si或藍寶石上氮化鎵、氮化鎵及其他晶圓製成(形成於其上)。揭示三種類型之PS,其可係允許以低缺陷及/或位錯密度在其頂部上生長任何材料(III-V、II-VI等)之通用基板。

Description

雷射二極體、LED及在圖案化基板上之矽積體感測器
本發明係關於圖案化基板及其製作,其將產生包含雷射二極體(LD)、發光二極體(LED)及矽積體感測器(矽基板上之感測器)之經改良光電子裝置。更具體而言,本發明係關於紫外光(UV)雷射二極體(UV LD)、發光二極體(LED)、及矽溫帶(silicon temperate)上之矽及二氧化矽上之感測器,其可在無低溫緩衝層之情形下製造,具有極大減少之位錯密度,藉此提供改良之效率及效能。
III族氮化物化合物半導體,諸如,例如,氮化鎵(GaN)、氮化鋁(AlN)及氮化銦(InN) (下文亦稱為「III族氮化物半導體」或「III族氮化物」)作為用於發射綠光、藍光或紫外光之半導體裝置之材料已備受關注。
對於若干應用及建議應用,UV LD、LED及感測器係極合意的。預計其將在諸如生物化學感測器、空氣及水淨化、食品加工及包裝、顯示器、照明及用於高密度光碟裝置之此等不同領域,及諸如牙科、皮膚科及視力測定之各種形式之醫療應用中發現極大效用。
由於諸多原因,難以製造此等LD、LED及感測器。舉例而言,缺陷源自基於III族氮化物之主動裝置層與該等主動裝置構造於其上之基板(諸如矽、藍寶石、氮化鎵或碳化矽)之間的晶格及熱失配。此外,雜質及傾斜晶界還導致晶體缺陷之形成。此等缺陷已展示會減少由此等材料製作之LED及LD之效率及壽命。對於在上文提及之基板上生長之III族氮化物薄膜,已觀察到此等缺陷,其中對於經由金屬有機化學汽相沈積(MOCVD)、分子束磊晶(MBE)、氫化物汽相磊晶(HVPE)及數個其他不太常見之生長技術生長的薄膜,典型位錯密度介於自108 cm-2 至1010 cm-2 之範圍內。因此,減少位錯密度已成為重點研究中之一者。
已研究諸多方法來減少位錯密度。該等方法中之一者係使用磊晶側向過生長(ELOG)及此方法之變化形式,包含先前技術中皆公知之側向生長(PENDEO)磊晶及小面控制磊晶側向過生長(FACELO)技术。藉助此等方法,位錯密度可減少至大約105 cm-2 至106 cm-2 。然而,此等方法已展示對於含鋁的基於III族氮化物之半導體之生長係低效的,此乃因鋁傾向於黏附到遮蔽之材料且破壞側向過生長。
存在諸多其他方法來減少缺陷密度。
儘管諸多發展及進步,對於開發高功率LD、可靠UVLED及積體於矽基板上之感測器仍存在顯著限制。因此,對於LD、LED及矽積體感測器及用於形成具有低缺陷密度之LD、LED及矽積體感測器之方法一直存在期望。
本發明揭示使得能夠在其上生長之薄膜上極大減少位錯密度的三種圖案化基板,及雷射二極體之設計及結構及在此等圖案化基板上製作此等裝置的方法。該等圖案化基板將由各種晶圓製成(形成於其上),包含Si、藍寶石上GaN或GaN、藍寶石晶圓。
本發明呈現在奈米/微圖案化基板上生長及製作高晶體品質半導體光電子裝置結構及裝置的方法。該光電子裝置包含LD、LED及包含矽溫帶上之矽及氧化矽(SiOx , 1£x)上之SiGeSn的矽積體感測器。本發明達成在圖案化基板上之高效能雷射二極體(及其他光電子及光子裝置)之大量製作。
本申請案主張在2017年8月18日提出申請之美國申請案第15/680,345號之優先權,該申請案之全部內容特此以引用方式併入本文中。
本發明歸屬於光電子學之領域,特定而言,係在由低成本、大尺寸Si或藍寶石上之GaN、GaN及其他晶圓製成(形成於其上)之圖案化基板(PS)上於紫外光(UV)至紅外光(IR)光譜型態中操作之雷射二極體(LD)之設計、磊晶生長、製作及表徵。揭示三種類型之PS,其可係允許以低缺陷及/或位錯密度在其頂部上生長任何材料(III-V、II-VI等)之通用基板。可利用分子束磊晶(MBE)、金屬有機化學汽相沈積(MOCVD)、化學汽相沈積(CVD)或任何其他磊晶生長方法以在此三種PS上生長高品質之接近/完全無位錯的裝置結構。因此,此等PS達成在自UV至IR光譜範圍操作之高效能LD之大量製作。此等PS亦達成基於III-V、II-VI及包含III族氮化物材料之其他材料的其他光電子裝置及光子裝置之大量製作。
歸因於LD材料與矽基板之間的大晶格失配,數十年之廣泛努力未成功開發單片地生長在平坦矽基板上之基於III-V或II-VI之LD。本發明中所揭示之三種PS達成此等LD與基於矽之裝置/電路之單片積體。
作為基於III族氮化物之LD實例,迄今為止,歸因於缺乏低成本及/或晶格匹配基板,尚未有可用之低成本商用UV及綠色LD。三種類型之PS達成在矽、藍寶石上GaN或GaN基板上形成之此等PS上之高品質GaN、AlGaN及InGaN薄膜,藉此達成在此等PS上之商用UV及綠色LD。
三種類型之PS係V形槽PS 2、梯形槽PS 13及矩形/正方形立方體PS 20。
圖2、圖13及圖24分別呈現V型槽PS、梯形槽PS及矩形立方體PS之示意圖。圖2a、圖13a及圖24a分別展示V型槽PS、梯形槽PS及矩形立方體PS之剖面圖。
可藉由電子束微影與濕式化學蝕刻之組合或電子束微影與乾式蝕刻之組合,或透過奈米壓印將主模圖案轉印至各種晶圓後續接著蝕刻來製作PS。舉例而言,氫氧化鉀(KOH)可用於選擇性蝕刻以在具有微影圖案之(100) Si晶圓上製作V形槽PS 2或梯形槽PS,微影圖案係藉助電子束微影或奈米壓印微影製成。反應性離子蝕刻(RIE)亦可用於在具有微影圖案之Si或藍寶石上GaN或GaN晶圓上製作此等PS,微影圖案係藉助電子束微影或奈米壓印微影透過轉印主模圖案而製成。圖28中闡述經由奈米壓印微影後續接著蝕刻來製作PS。可係Si、藍寶石、藍寶石上GaN、自支撐GaN、SiC等之晶圓將用作開始基板。然後,界定且使用主模來製成PS(其可係V形槽PS、梯形槽PS或矩形立方體PS)。任何奈米壓印抗蝕劑(基於UV及熱兩者)可經沈積/塗佈至待用於產生PS之主模上/或晶圓上。然後將執行標準奈米壓印製程來將圖案自主模轉印至基板。移除主模之後,可執行額外蝕刻製程以製成清晰圖案,以及移除殘餘塗佈層,後續接著退火步驟(退火溫度取決於所使用之奈米壓印抗蝕劑而變化)。然後執行蝕刻之最終步驟以製成PS。蝕刻可係濕式化學蝕刻、乾式蝕刻或兩種方法之組合。基板上圖案之形狀取決於用於形成圖案之主模。應藉助適合主模來製作V型槽PS、梯形槽PS及矩形立方體PS。
以下論述及說明應視為大體上例示性的,其不限制本發明之當前版本之總體範疇。PS達成具有任何材料組合之任何雷射結構。將III族氮化物LD作為實例來演示三種類型PS之使用。
在此實例中,LD係藉由MBE、MOCVD、CVD或任何其他磊晶生長方法而生長。PS可由常規基板1製作,例如,Si、藍寶石、藍寶石上GaN、GaN晶圓或其他適合晶圓。
圖1展示基板之影像。然後,將處理基板以在具有上文提及之三種PS之基板上製成合意圖案。如本文中上文所闡述,可藉由濕式化學蝕刻或乾式蝕刻或濕式及乾式蝕刻製程之組合來製作此等PS。在蝕刻製程之前,可藉由光微影或更先進方法,諸如電子束微影及/或奈米壓印微影 後續接著蝕刻在適合晶圓上界定圖案。
在LD之生長製程之前,使用標準溶劑及/或酸溶液,經由標準晶圓清潔製程清潔PS。然後,將PS裝載入生長室中。使用進一步清潔步驟(若干步驟)用於移除PS之表面上形成之自然氧化物。
下一步驟係在PS上磊晶生長LD結構,於生長室內執行。
LD結構可具有用作作用區之單量子井(舉例而言,Alx Ga1-x N/Aly Ga1-y N或Ini Ga1-i N/Alj Ga1-j N)、多量子井或量子點(單層或多層)。裝置結構可具有n-Alj Ga1-j N(或n-Ink Ga1-k N)底部包覆層3、n-All Ga1-l N(或n-Inm Ga1-m N或n-GaN)底部波導層4、具有單量子井或多量子井或量子點(單層或多層Ini Ga1-i N、Alx Ga1-x N、Aln Inp Ga(1-n-p) N、GaN或 AlN)之作用區5、頂部波導層(p-All Ga1-l N、p-GaN或p-Inm Ga1-m N)6及頂部包覆層(P-Alj Ga1-j N或p- Ink Ga1-k N)7及p-接觸層8之最終層,該最終層可係p++-GaN以在雷射裝置上形成歐姆觸點。其中x係在[0-1]之範圍中,y係在[0-1]之範圍中,i係在[0-1]之範圍中,j係在[0-1]之範圍中,k係在[0-1]之範圍中,l係在[0-1]之範圍中,m係在[0-1]之範圍中,n係在[0-1]之範圍中,且p係在[0-1]之範圍中。每一層之厚度可經設計且取決於在UV與IR光譜範圍之間操作之LD之發射波長。
如本文中上文所陳述,本發明中將使用三種類型之PS。第一演示/揭示係在V形槽PS上製作LD。在圖3、圖4、圖5、圖6、圖7及圖8中所圖解說明,首先在V形槽PS(圖3)上生長LD之底部包覆層3,後續接著底部波導層4(圖4)、作用區層5(圖5)、頂部波導層6(圖6)、頂部包覆層7(圖7)及接觸層8(圖8)之生長。生長溫度及生長條件可在每一層之生長期間相應地調整。舉例而言,AlGaN通常以較GaN及InGaN層高之溫度生長。亦注意,本發明中各圖中所展示,基板及磊晶層之厚度不成比例。各圖用於更清晰地展示LD結構。
將自室中取出LD樣品用於表徵及裝置製作。
所生長之LD樣品將用於透過標準LD製作程序來製作LD裝置。PS上LD之裝置製作製程包含以下步驟:首先,用溶劑及DI水清潔LD樣品。藉由氮氣乾燥樣品。可在基板上藉由標準光微影來界定LD尺寸。然後,旋塗光阻劑用於後續光微影步驟。藉由光微影在LD樣品之表面上界定LD條帶、長度及頂部觸點。然後,在先前藉由光微影界定之合意位置處沈積頂部金屬觸點。然後,在n-型摻雜Si基板或自支撐GaN基板之背側上沈積背部金屬觸點。金屬觸點可係用於n-型觸點之Ti/Al、Ti/Au或Al及用於p-型觸點之Ni/Au、Ni/Al或Ni/Al/Au。對於藍寶石上GaN基板,在特定光微影步驟後,將在n-GaN層沈積n-金屬觸點,此需要在n-GaN層上開啟窗口用於金屬沈積。在400℃至600℃(或更高)之間,在氮環境中對所製作之具有金屬觸點之裝置進行退火達1至3分鐘以形成良好之歐姆觸點。藉由在合意位置斷裂晶圓,將以兩個端小面來界定雷射裝置之長度。可藉由尖硬物件來執行斷裂晶圓,諸如金剛石筆或劃割器。
圖9展示在沈積頂部金屬觸點9之後之LD樣品。圖10呈現在沈積背部金屬觸點10之後之單個LD裝置。圖11展示在斷裂LD之兩個小面之後具有單個LD裝置之LD晶片。額外處理步驟可用於幫助容易地斷裂裝置。圖12展示具有單個LD裝置之LD晶片之剖面圖,展示包含n-及p-金屬之LD之每一層。
圖2及圖11中圖解說明之包含L1、CL1及W1之縱橫比可係變化的。L1係圖案長度,其自10 nm變化至5 cm或更長,CL1係LD之腔長度,其自10 nm變化至5 mm或更長。W1係LD之寬度,其可自10 nm變化至5 cm或更長。溝渠寬度TW1可係在0 nm至3 mm或更長之範圍內。裝置晶片可含有單個LD裝置或多個LD裝置,取決於用於不同應用之微影遮罩。圖2b展示V型槽PS,其中TW1係0。
第二演示/揭示係在梯形槽PS 11上製作LD。在此類型之基板上之LD之磊晶生長類似於在V形槽PS上之LD之磊晶生長。在裝載入生長室中之前,藉由標準清潔程序清潔梯形槽PS。LD作用區可具有用作作用區14之單量子井或多量子井或量子點(單層或多層)。裝置結構可具有n-型底部包覆層(可係n-Alj Ga1-j N或n-Ink Ga1-k N)12、n-型底部波導層(可係n-All Ga1-l N或n-Inm Ga1-m N或n-GaN)13、具有單量子井或多量子井(舉例而言,Alx Ga1-x N/Aly Ga1-y N或Ini Ga1-i N/GaN)或量子點(單層或多層Ini Ga1-i N、Alx Ga1-x N、Aln Inp Ga(1-n-p) N、GaN或AlN)之作用區14、p-型頂部波導層(可係p-All Ga1-l N、p-GaN或p-Inm Ga1-m N)15、p-型頂部包覆層(可係Alj Ga1-j N或p-Ink Ga1-k N)16及可係p++ -GaN之重摻雜接觸層17。圖14、圖15、圖16、圖17、圖18及圖19中所呈現,LD結構之磊晶生長可如下執行:首先,在梯形槽PS上生長LD之底部包覆層12(圖14),接著磊晶生長底部波導層13(圖15)、作用區層14(圖16)、頂部波導層15(圖17)、頂部包覆層16(圖18)、重摻雜接觸層17(圖19)。
將自室及製程裝置製作取出在梯形槽PS樣品上之LD。LD之製作程序類似於在第一演示/揭示(在上文之裝置製作說明中呈現)中所展示者。圖20展示在沈積頂部金屬觸點18之後之LD樣品。圖21呈現在沈積背部金屬觸點19之後之LD樣品。圖22展示在藉助斷裂形成兩個鏡像小面之後具有單個LD裝置之LD晶片。額外處理步驟可用於幫助容易地斷裂裝置。圖23展示梯形槽PS上之具有單個LD裝置之LD晶片,清晰地呈現LD之每一層。裝置晶片可含有單個LD裝置或多個LD裝置,取決於用於不同應用之微影遮罩。
圖13及圖22中圖解說明之包含L2、CL2及W2之縱橫比可係變化的。L2係圖案長度,其自10 nm變化至5 cm或更長,CL2係LD之腔長度,其自10 nm變化至5 mm或更長。W2係LD之寬度,其可自10 nm變化至5 cm或更長。溝渠寬度TW2可係在10 nm至5 mm或更長之範圍內。
第三演示/揭示係在矩形/正方形立方體槽PS 20上製作LD。在此類型之基板上之LD之磊晶生長類似於在V型槽PS上之LD之磊晶生長。因為用於生長及製作矩形立方體槽PS與正方形立方體槽PS之程序係類似的,在此說明中,僅呈現矩形立方體槽PS 20,如圖24中所展示。在裝載入生長室之前,首先藉由標準清潔程序清潔矩形立方體槽PS。LD作用區可具有用作作用區23之單量子井或多量子井或量子點(單層或多層)。裝置結構可具有n-型底部包覆層(可係n-Alj Ga1-j N或n-Ink Ga1-k N)21,n-型底部波導層(可係n-All Ga1-l N或n-Inm Ga1-m N或n-GaN)22、具有單量子井或多量子井(可係Alx Ga1-x N/Aly Ga1-y N或Ini Ga1-i N/GaN)或量子點(單層或多層Ini Ga1-i N、Alx Ga1-x N、Aln Inp Ga(1-n-p) N、GaN或AlN)之作用區23、p-型頂部波導層(p-All Ga1-l N、p-GaN或p-Inm Ga1-m N)24、p-型頂部包覆層(可係Alj Ga1-j N或p- Ink Ga1-k N)25及可係p++ -GaN之重摻雜接觸層26。圖25中呈現在矩形立方體槽PS上之LD之一剖面圖。LD結構之磊晶生長可如下執行:首先,在矩形立方體槽PS上生長LD 21之底部包覆層,後續接著底部波導層22、作用區層23、頂部波導層24、頂部包覆層25及重摻雜接觸層26之磊晶生長。
圖24及圖27中圖解說明之包含L3、CL3及W3之縱橫比可係變化的。L3係圖案長度,其自10 nm變化至5 cm或更長,CL3係LD之腔長度,其自10 nm變化至5 mm或更長。W3係LD之寬度,其可自10 nm變化至5 cm或更長。溝渠寬度TW3可係在10 nm至5 mm或更長之範圍內。
類似地,將自室取出LD樣品,且經歷類似於第一或第二演示/揭示中所展示之一者之裝置製作製程。圖26展示在沈積頂部金屬觸點27及背部金屬觸點28之後之LD樣品。圖27展示在藉助斷裂形成兩個鏡像小面之後之具有單個LD裝置之雷射晶片。額外處理步驟可用於幫助容易地斷裂裝置。裝置晶片可含有單個LD裝置或多個LD裝置,取決於用於不同應用之微影遮罩。
本文中所闡述之實施例係例示性的且涵蓋變化形式。舉例而言,P-N或P-I-N結構可使用以下材料中之一者在此三種圖案化基板(或此三者之組合)上生長:III-V(包含III-N)、II-VI、IV-IV及其三元材料、四元材料及組合。更具體而言,作為實例,AlxGa1-x N或InxGa1-xN或Si1-x-y GexSny或InAsxSb1-x或HgxCd1-xTe或InSb或InAs(其中0£x£1,0£y£1)可生長在三種(或此三者之組合)圖案化基板上以形成P-N或P-I-N結構。
熟習UV LD、LED及矽積體感測器之技術者將顯而易見,可在不違背隨附申請專利範圍中具體陳述之本發明之精神及範疇的情形下,可對本文中所闡述之較佳實施例進行諸多修改及替換。
1‧‧‧基板
2‧‧‧V形槽圖案化基板
3‧‧‧底部包覆層
4‧‧‧底部波導層
5‧‧‧作用區/作用區層
6‧‧‧頂部波導層
7‧‧‧頂部包覆層
8‧‧‧接觸層/p-接觸層
9‧‧‧頂部金屬觸點
10‧‧‧底部金屬觸點/背部金屬觸點
11‧‧‧ 梯形槽圖案化基板
12‧‧‧底部包覆層/n-型底部包覆層
13‧‧‧底部波導層/n-型底部波導層
14‧‧‧作用區/作用區層
15‧‧‧頂部波導層
16‧‧‧頂部包覆層
17‧‧‧接觸層/重摻雜觸點
18‧‧‧頂部金屬觸點
19‧‧‧底部金屬觸點/背部金屬觸點
20‧‧‧矩形立方體槽圖案化基板
21‧‧‧n-型底部包覆層
22‧‧‧底部波導層/n-型底部波導層
23‧‧‧作用區/作用區層
24‧‧‧p-型頂部波導層/頂部波導層
25‧‧‧p-型頂部包覆層/頂部包覆層
26‧‧‧重摻雜接觸層
27‧‧‧頂部金屬觸點
28‧‧‧背部金屬觸點
CL1‧‧‧雷射二極體之腔長度
CL2‧‧‧雷射二極體之腔長度
CL3‧‧‧雷射二極體之腔長度
L1‧‧‧圖案長度
L2‧‧‧圖案長度
L3‧‧‧圖案長度
TW1‧‧‧溝渠寬度
TW2‧‧‧溝渠寬度
TW3‧‧‧溝渠寬度
W1‧‧‧雷射二極體之寬度
W2‧‧‧雷射二極體之寬度
W3‧‧‧雷射二極體之寬度
圖1闡述基板1;
圖2繪示V形槽圖案化基板2之示意圖;
圖2a繪示V形槽圖案化基板2之剖面圖;
圖2b繪示溝渠寬度等於0之情形下V形槽圖案化基板2之剖面圖;
圖3繪示在V形槽圖案化基板上之雷射結構之第一層(底部包覆層3)之示意圖;
圖4繪示在V形槽圖案化基板上之雷射結構之第二層(底部波導層4)之示意圖;
圖5繪示在生長作用區5之後雷射結構之示意圖;
圖6繪示在生長頂部波導層6之後雷射結構之示意圖;
圖7繪示在生長頂部包覆層7之後雷射結構之示意圖;
圖8繪示在生長接觸層8之後雷射結構之示意圖;
圖9繪示在沈積頂部金屬觸點9之後雷射結構之示意圖;
圖10繪示在沈積底部金屬觸點10之後雷射結構之示意圖;
圖11繪示在藉助斷裂形成兩個鏡像小面之後V形槽圖案化基板上之具有單個雷射二極體之雷射晶片;
圖12繪示在V形槽圖案化基板上之單個雷射二極體之剖面圖;
圖13繪示梯形槽圖案化基板11之示意圖;
圖13a繪示梯形槽圖案化基板11之剖面圖;
圖14繪示在梯形槽圖案化基板上之雷射結構之第一層(底部包覆層12)之示意圖;
圖15繪示在梯形槽圖案化基板上之雷射結構之第二層(底部波導層13)之示意圖;
圖16繪示在生長作用區14之後雷射結構之示意圖;
圖17繪示在生長頂部波導層15之後雷射結構之示意圖;
圖18繪示在生長頂部包覆層16之後雷射結構之示意圖;
圖19繪示在生長接觸層17之後雷射結構之示意圖;
圖20繪示在沈積頂部金屬觸點18之後雷射結構之示意圖;
圖21繪示在沈積底部金屬觸點19之後雷射結構之示意圖;
圖22繪示在藉助斷裂形成兩個鏡像小面之後梯形槽圖案化基板上之具有單個雷射二極體之雷射晶片;
圖23繪示在梯形槽圖案化基板上之雷射二極體之剖面圖;
圖24繪示矩形立方體槽圖案化基板20之示意圖;
圖24a繪示矩形立方體槽圖案化基板20之剖面圖;
圖25繪示在立方體槽圖案化基板上之單個雷射二極體之剖面圖;
圖26繪示在沈積頂部及底部金屬觸點之後雷射結構之示意圖;
圖27繪示在藉助斷裂形成兩個鏡像小面之後立方體槽圖案化基板上之單個雷射二極體;
圖28呈現藉由奈米壓印微影之圖案化基板之製作程序。

Claims (17)

  1. 一種方法,其包括: 製作圖案化基板,該圖案化基板包含V形槽圖案化基板、梯形槽圖案化基板或矩形/正方形立方體圖案化基板中之至少一者; 在該圖案化基板上製作雷射二極體或發光二極體;及 藉助該圖案化基板減少位錯且增強半導體之磊晶生長之晶體品質。
  2. 如請求項1之方法,其進一步包括: 將該圖案化基板用於高效能光電子裝置,其中該圖案化基板包含Si、藍寶石上GaN、藍寶石、自支撐GaN、III-V、II-VI或Ge中之至少一者, 其中製作該圖案化基板包含藉由電子束微影與濕式化學蝕刻之組合、電子束微影與乾式蝕刻之組合、電子束微影與濕式化學蝕刻及乾式蝕刻之組合或奈米壓印微影後續接著蝕刻中之至少一者來製作。
  3. 如請求項1之方法,其中在該圖案化基板上之該雷射二極體係經組態以在深紫外光至可見光且至紅外光區中操作,且 其中製作該雷射二極體包含藉由MBE、MOCVD或磊晶技術中之至少一者在該圖案化基板上生長該雷射二極體。
  4. 一種裝置,其包括在用於減少位錯密度之圖案化基板上的磊晶生長雷射二極體結構。
  5. 如請求項4之裝置,其中該等雷射二極體結構包含: 在具有V形槽形狀之圖案化基板上的雷射二極體; 在具有梯形槽形狀之圖案化基板上的雷射二極體; 在具有矩形/正方形立方體形狀之圖案化基板上的雷射二極體;及 在具有V形槽、梯形槽及矩形/正方形立方體形狀之組合之圖案化基板上的雷射二極體。
  6. 如請求項4之裝置,其中該等雷射二極體結構包含: 在作用區中具有以下各項中之至少一者的雷射二極體裝置:單量子井、多量子井或量子點;及 在自深紫外光至紅外光區之發射波長之範圍內操作的雷射二極體裝置。
  7. 如請求項1之方法,其進一步包括藉由MBE、MOCVD或磊晶技術中之至少一者生長半導體結構,該半導體結構包含p-i-n或p-n二極體、發光二極體、超發光發光二極體、光電二極體、雷射二極體、感測器或太陽能電池中之至少一者。
  8. 如請求項1之方法,其進一步包括: 在該圖案化基板上生長在該UV光、可見光及紅外光區中之發光裝置, 其中該圖案化基板係由以下各項中之至少一者製成:Si、藍寶石上GaN、藍寶石或自支撐GaN。
  9. 如請求項1之方法,其進一步包括: 在該圖案化基板上生長感測器裝置, 其中該感測器裝置包含Si1-x-y Gex Sny ,其中0£x£1,且0£y£1,且 其中該圖案化基板係由以下各項中之至少一者製成:矽、矽上SiOx 、III-V、II-VI或Ge。
  10. 一種裝置,其包括: 包含V形槽圖案化基板、梯形槽圖案化基板及矩形/正方形立方體圖案化基板中之至少一者的結構, 其中該至少一種圖案化基板係由以下各項中之至少一者製成:Si、藍寶石上GaN、藍寶石、自支撐GaN、矽上SiOx 、III-V、II-VI或Ge。
  11. 如請求項10之裝置,其中該結構係雷射二極體。
  12. 如請求項10之裝置,其中該結構係發光二極體。
  13. 如請求項10之裝置,其中: 該結構係感測器裝置,且 該至少一種圖案化基板係由以下各項中之至少一者製成:Si、矽上SiOx 或III-V、II-VI或Ge。
  14. 如請求項13之裝置,其中作用區含有Si1-x-y Gex Sny ,其中0£x£1且0£y£1。
  15. 如請求項13之裝置,其中作用區含有以下各項中之至少一者:Alx Ga1-x N、Inx Ga1-x N、InAsx Sb1-x 、Hgx Cd1-x Te、InSb或InAs,其中0£x£1且0£y£1。
  16. 一種裝置,其包括在用於減少位錯密度之圖案化基板上的磊晶生長發光二極體結構。
  17. 如請求項16之裝置,其中在圖案化基板上之該等發光二極體結構包含: 在具有V形槽形狀之圖案化基板上的發光二極體; 在具有梯形槽形狀之圖案化基板上的發光二極體; 在具有矩形/正方形立方體形狀之圖案化基板上的發光二極體;及 在具有V形槽、梯形槽及矩形/正方形立方體形狀之組合之圖案化基板上的發光二極體。
TW107128871A 2017-08-18 2018-08-17 雷射二極體、led及在圖案化基板上之矽積體感測器 TW201921820A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/680,345 US20190058084A1 (en) 2017-08-18 2017-08-18 Laser Diodes, LEDs, and Silicon Integrated sensors on Patterned Substrates
US15/680,345 2017-08-18

Publications (1)

Publication Number Publication Date
TW201921820A true TW201921820A (zh) 2019-06-01

Family

ID=65360726

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107128871A TW201921820A (zh) 2017-08-18 2018-08-17 雷射二極體、led及在圖案化基板上之矽積體感測器

Country Status (3)

Country Link
US (4) US20190058084A1 (zh)
TW (1) TW201921820A (zh)
WO (1) WO2019035107A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733225B (zh) * 2019-10-24 2021-07-11 國立中興大學 雙極性光電流輸出的檢光器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6841198B2 (ja) * 2017-09-28 2021-03-10 豊田合成株式会社 発光素子の製造方法
GB2586861B (en) * 2019-09-06 2022-01-19 Plessey Semiconductors Ltd Light Emitting Diode and method of forming a Light Emitting Diode
CN112366250B (zh) * 2020-11-17 2022-11-15 佛山市国星半导体技术有限公司 一种GaN基紫外探测器及其制作方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7598513B2 (en) * 2003-06-13 2009-10-06 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University, A Corporate Body Organized Under Arizona Law SixSnyGe1-x-y and related alloy heterostructures based on Si, Ge and Sn
US9153645B2 (en) * 2005-05-17 2015-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
WO2007112066A2 (en) * 2006-03-24 2007-10-04 Amberwave Systems Corporation Lattice-mismatched semiconductor structures and related methods for device fabrication
US9508890B2 (en) * 2007-04-09 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US8237151B2 (en) * 2009-01-09 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
TWI425558B (zh) * 2008-08-11 2014-02-01 Taiwan Semiconductor Mfg 形成電路結構的方法
WO2010022064A1 (en) * 2008-08-21 2010-02-25 Nanocrystal Corporation Defect-free group iii - nitride nanostructures and devices using pulsed and non-pulsed growth techniques
US8253211B2 (en) * 2008-09-24 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
WO2010114956A1 (en) * 2009-04-02 2010-10-07 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
US8507304B2 (en) * 2009-07-17 2013-08-13 Applied Materials, Inc. Method of forming a group III-nitride crystalline film on a patterned substrate by hydride vapor phase epitaxy (HVPE)
US8759203B2 (en) * 2009-11-17 2014-06-24 Taiwan Semiconductor Manufacturing Company, Ltd. Growing III-V compound semiconductors from trenches filled with intermediate layers
US8541252B2 (en) * 2009-12-17 2013-09-24 Lehigh University Abbreviated epitaxial growth mode (AGM) method for reducing cost and improving quality of LEDs and lasers
US8921141B2 (en) * 2012-09-18 2014-12-30 Glo Ab Nanopyramid sized opto-electronic structure and method for manufacturing of same
US9530911B2 (en) * 2013-03-14 2016-12-27 The Boeing Company Solar cell structures for improved current generation and collection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733225B (zh) * 2019-10-24 2021-07-11 國立中興大學 雙極性光電流輸出的檢光器

Also Published As

Publication number Publication date
US20210234064A1 (en) 2021-07-29
US20190058084A1 (en) 2019-02-21
US20240120436A1 (en) 2024-04-11
WO2019035107A1 (en) 2019-02-21
US20220336695A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
US8729559B2 (en) Method of making bulk InGaN substrates and devices thereon
JP6484076B2 (ja) 光デバイス
US8878252B2 (en) III-V compound semiconductor epitaxy from a non-III-V substrate
JP4092927B2 (ja) Iii族窒化物系化合物半導体、iii族窒化物系化合物半導体素子及びiii族窒化物系化合物半導体基板の製造方法
KR101710159B1 (ko) Ⅲ족 질화물 나노로드 발광소자 및 그 제조 방법
US8803189B2 (en) III-V compound semiconductor epitaxy using lateral overgrowth
US20240120436A1 (en) Laser diodes, leds, and silicon integrated sensors on patterned substrates
KR101082788B1 (ko) 다공성 질화물 반도체 상의 고품질 비극성/반극성 반도체 소자 및 그 제조 방법
US20240063340A1 (en) METHOD FOR RELAXING SEMICONDUCTOR FILMS INCLUDING THE FABRICATION OF PSEUDO-SUBSTRATES AND FORMATION OF COMPOSITES ALLOWING THE ADDITION OF PREVIOUSLY UN-ACCESSIBLE FUNCTIONALITY OF GROUP lll-NITRIDES
EP2389693B1 (en) Light emitting diode device and method for manufacturing the same
TW201706452A (zh) 利用化學腐蝕的方法剝離生長襯底的方法
JP2015167231A (ja) 厚みのある擬似格子整合型の窒化物エピタキシャル層
KR101118268B1 (ko) 요철 패턴 기판 상의 고품질 비극성/반극성 반도체 소자 및 그 제조 방법
TWI617045B (zh) 具有奈米柱之發光元件及其製造方法
US9608160B1 (en) Polarization free gallium nitride-based photonic devices on nanopatterned silicon
CN115244717A (zh) 半导体结构和制造方法
KR101246832B1 (ko) 무극성 또는 반극성 iii족 질화물 기반 발광 다이오드 및 이의 제조방법
JP2013544027A (ja) 基板およびエピ層パターン化によるiii族窒化物ヘテロ構造歪み緩和制限
EP2487707B1 (en) Semiconductor devices and methods of manufacturing the same
KR101134493B1 (ko) 발광 다이오드 및 이의 제조 방법
JP2007266589A (ja) 窒化ガリウム系化合物半導体の製造方法、窒化ガリウム系化合物半導体、発光素子の製造方法及び発光素子
US9876136B2 (en) Separation method of GaN substrate by wet etching
US8541772B2 (en) Nitride semiconductor stacked structure and method for manufacturing same and nitride semiconductor device
Kane et al. Gallium nitride (GaN) on silicon substrates for LEDs
KR101250475B1 (ko) 절연체 패턴을 갖는 이종 기판 및 그를 이용한 질화물계 반도체 소자