TW201915505A - Test apparatus and testing circuit board thereof - Google Patents

Test apparatus and testing circuit board thereof Download PDF

Info

Publication number
TW201915505A
TW201915505A TW106134807A TW106134807A TW201915505A TW 201915505 A TW201915505 A TW 201915505A TW 106134807 A TW106134807 A TW 106134807A TW 106134807 A TW106134807 A TW 106134807A TW 201915505 A TW201915505 A TW 201915505A
Authority
TW
Taiwan
Prior art keywords
test
read
memory
vector
pattern data
Prior art date
Application number
TW106134807A
Other languages
Chinese (zh)
Other versions
TWI661208B (en
Inventor
曾瀚陞
廖江鵬
Original Assignee
致茂電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 致茂電子股份有限公司 filed Critical 致茂電子股份有限公司
Priority to TW106134807A priority Critical patent/TWI661208B/en
Publication of TW201915505A publication Critical patent/TW201915505A/en
Application granted granted Critical
Publication of TWI661208B publication Critical patent/TWI661208B/en

Links

Landscapes

  • Tests Of Electronic Circuits (AREA)

Abstract

A test apparatus including at least one testing circuit board is disclosed. Each testing circuit board includes a cache memory module, a memory interface controller, a test vector generator, and a signal transmitting circuit. The cache memory module is adapted to read and store a plurality of testing vectors from a DRAM. The memory interface controller stores reading command for the cache memory module to read the testing vectors from the DRAM. The test vector generator read one of the plurality of testing vectors form the cache memory module according to a memory address of a micro command, and generates a test signal based on the read testing vector. The signal transmitting circuit is adapted to send out a test control signal generated by the test vector generator, or to receive another test control signal and transmit it to the test vector generator.

Description

測試裝置及其測試電路板Test device and test board

本發明係關於一種具有多個測試電路板的測試裝置,特別是每一個測試電路板都具有緩衝記憶體模組與測試向量產生器,以供個別獨立運作並以該多個測試電路板共同完成所有測試項目的測試裝置。The present invention relates to a test device having a plurality of test boards, in particular, each of the test boards has a buffer memory module and a test vector generator for individually operating independently and jointly by the plurality of test boards Test equipment for all test items.

習知測試裝置的系統架構,通常係藉由一個中央控制電路板來控制多個功能電路板。中央通道控制電路板藉由讀取該電路板記憶體內的測試微指令,依序產生並傳送功能電路板的測試圖案資料記憶體位置至多個功能電路板。隨後,每個功能電路板藉由讀取該電路板記憶體內的測試圖案資料,使該電路板的多個通道波形產生器產生測試訊號來對測試物進行測試。The system architecture of conventional test devices typically controls multiple functional boards by a central control board. The central channel control circuit board sequentially generates and transmits the test pattern data memory location of the functional circuit board to the plurality of functional circuit boards by reading test microinstructions in the memory of the circuit board. Subsequently, each functional circuit board tests the test object by reading test pattern data in the memory of the circuit board, and causing the plurality of channel waveform generators of the circuit board to generate test signals.

於上述架構中,習知功能電路板測試裝置產生測試訊號的運作能力顯然會受限於中央控制電路板的效能。詳言之,由於中央控制電路板的效能需求必須考量共用背板的傳輸線數量、傳輸線長度及傳輸速度等因素,故當測試物需要被測試的功能訊號增加而需要對應增加更多的功能電路板時,不僅導致習知測試裝置需要增加共用背板的插槽數量,更可能因為效能需求而必須更換效能更強大、運作速度更快的中央控制電路板。此外,雖然以單一個中央控制電路板來控制所有功能電路板的架構思維較為簡單,但會降低整體測試系統的效能。In the above architecture, the ability of the conventional functional circuit board test device to generate test signals is obviously limited by the performance of the central control circuit board. In detail, since the performance requirements of the central control circuit board must take into account the number of transmission lines, transmission line lengths, and transmission speeds of the shared backplane, when the test object needs to be tested, the function signal needs to be increased and more functional circuit boards need to be added. This not only causes the conventional test device to increase the number of slots that share the backplane, but is also more likely to replace the more powerful and faster central control board due to performance requirements. In addition, although it is simpler to control the architectural thinking of all functional boards with a single central control board, it will reduce the performance of the overall test system.

本發明在於提供一種測試裝置,該測試裝置具有至少一測試電路板,且每一個測試電路板具有獨立運作能力,藉以解決習知測試裝置的運作能力限制於中央控制器效能的問題。The invention provides a test device having at least one test circuit board, and each test circuit board has an independent operation capability, thereby solving the problem that the operational capability of the conventional test device is limited to the performance of the central controller.

本發明所揭露的測試裝置,包含至少一測試電路板,每一測試電路板均用於連接一動態隨機存取記憶體,以讀取該動態隨機存取記憶體中的測試向量並產生測試訊號,其中每一該測試電路板均具有獨立運作能力,且每一該測試電路板包含一緩衝記憶體模組、一記憶體介面控制器、一測試向量產生器及一傳輸電路。該緩衝記憶體模組用於電性連接至該動態隨機存取記憶體,並用於自該動態隨機存取記憶體讀取並儲存多個測試向量。該記憶體介面控制器連接該緩衝記憶體模組,且該記憶體介面控制器至少儲存讀取指令,以供該緩衝記憶體模組從該動態隨機存取記憶體讀取該些測試向量。該測試向量產生器連接該緩衝記憶體模組,且依據一測試微指令中的記憶體位置自該緩衝記憶體模組讀取該多個測試向量之一,並以該讀取的測試向量產生一測試訊號。該傳輸電路連接該測試向量產生器,且該傳輸電路用於發送該測試向量產生器所產生的一測試控制訊號,或用於接收另一測試控制訊號並傳送至該測試向量產生器。The test device disclosed in the present invention comprises at least one test circuit board, each test circuit board is used for connecting a dynamic random access memory to read test vectors in the dynamic random access memory and generate test signals. Each of the test boards has an independent operation capability, and each of the test boards includes a buffer memory module, a memory interface controller, a test vector generator, and a transmission circuit. The buffer memory module is configured to be electrically connected to the dynamic random access memory and used to read and store a plurality of test vectors from the dynamic random access memory. The memory interface controller is coupled to the buffer memory module, and the memory interface controller stores at least a read command for the buffer memory module to read the test vectors from the dynamic random access memory. The test vector generator is coupled to the buffer memory module, and reads one of the plurality of test vectors from the buffer memory module according to a memory location in a test microinstruction, and generates the read test vector A test signal. The transmission circuit is coupled to the test vector generator, and the transmission circuit is configured to transmit a test control signal generated by the test vector generator or to receive another test control signal and transmit the test control signal to the test vector generator.

根據上述本發明所揭露的測試裝置,藉由每一個測試電路板具有獨立運作能力,且都具有緩衝記憶體模組控制器及測試向量產生器,可實現依測試物之實際腳位機動性地改變測試裝置之測試電路板的數量即能達成產生對應於上述實際腳位的測試訊號。更且,當多個測試電路板群組化成一組測試電路時,由於該組測試電路中的每一個測試電路板都具有獨立的工作能力,使得測試電路群組存取數據、排程能力、產生測試訊號等工作效能亦可對應增加,有效解決習知測試裝置的運作能力限制於中央控制器效能的問題。According to the test apparatus disclosed in the above invention, each test circuit board has independent operation capability, and both have a buffer memory module controller and a test vector generator, so that the actual position of the test object can be flexibly operated. By changing the number of test boards of the test device, a test signal corresponding to the actual pin position described above can be achieved. Moreover, when a plurality of test boards are grouped into a set of test circuits, since each test board of the set of test circuits has an independent working capability, the test circuit group accesses data, scheduling capability, The performance of generating test signals can also be increased correspondingly, effectively solving the problem that the operational capability of the conventional test device is limited to the performance of the central controller.

以上之關於本揭露內容之說明及以下之實施方式之說明係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。The above description of the disclosure and the following description of the embodiments of the present invention are intended to illustrate and explain the spirit and principles of the invention, and to provide further explanation of the scope of the invention.

以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者了解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。以下之實施例係進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。The detailed features and advantages of the present invention are set forth in the Detailed Description of the Detailed Description of the <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> <RTIgt; The objects and advantages associated with the present invention can be readily understood by those skilled in the art. The following examples are intended to describe the present invention in further detail, but are not intended to limit the scope of the invention.

請參照圖1,圖1係根據本發明一實施例所繪示之測試裝置的示意圖。如圖1所示,測試裝置具有多個測試電路板1,每一個測試電路板1具有接腳,例如接腳pin1~pin3。每一個測試電路板1的接腳pin1~pin3分別電性連接一個傳輸線。也就是說,每一個測試電路板1的接腳pin1電性連接於傳輸線tr1,每一個測試電路板1的接腳pin2電性連接於傳輸線tr2,每一個測試電路板1的接腳pin3電性連接於傳輸線tr3。傳輸線例如是纜線(cable)、背板上的走線(trace)或其他合適傳輸訊號的元件。多個測試電路板1藉由接腳pin1~pin3及傳輸線tr1~tr3來相互傳遞訊號,以同步產生測試訊號對測試物DUT進行測試。例如使用者可透過軟體方式預設該多個測試電路板1之一為主控板(master),而其他測試電路板1則預設為伺服板(server),藉此由主控板產生同步訊號透過接腳pin1~pin3及傳輸線tr1~tr3將訊號傳遞至各個伺服板,進而使所有測試電路板1同步產生測試訊號對測試物DUT進行測試。或者,亦可視需求僅以部分的測試電路板1同步產生測試訊號對測試物DUT進行測試,本實施例不予限制。Please refer to FIG. 1. FIG. 1 is a schematic diagram of a testing apparatus according to an embodiment of the invention. As shown in FIG. 1, the test apparatus has a plurality of test boards 1, each of which has pins, such as pins pin1 to pin3. Each of the pins 1 to 3 of the test circuit board 1 is electrically connected to a transmission line. That is to say, the pin pin1 of each test circuit board 1 is electrically connected to the transmission line tr1, and the pin pin 2 of each test circuit board 1 is electrically connected to the transmission line tr2, and the pin 3 of each test circuit board 1 is electrically connected. Connected to the transmission line tr3. The transmission line is, for example, a cable, a trace on the backplane, or other suitable transmission signal component. The plurality of test boards 1 transmit signals to each other through the pins pin1 to pin3 and the transmission lines tr1 to tr3 to synchronously generate a test signal to test the test object DUT. For example, the user can preset one of the plurality of test circuit boards 1 as a master through a software mode, and the other test circuit boards 1 are preset as a servo board, thereby generating synchronization by the main control board. The signal is transmitted to each servo board through pins pin1 to pin3 and transmission lines tr1 to tr3, so that all test boards 1 simultaneously generate test signals to test the test object DUT. Alternatively, the test object DUT may be tested by simultaneously generating a test signal by a part of the test circuit board 1 as needed. This embodiment is not limited.

換言之,本實施例的每一個測試電路板1都具有獨立運作能力,可由外部的記憶體讀取數據並產生測試訊號至測試物DUT的功能。然而,當測試物DUT的應測腳位較多而需要對應產生多個測試訊號時,可藉由將多個測試電路板1以上述的接腳pin1~pin3及傳輸線tr1~tr3群組化成可同步運作的一組測試電路,即能夠在無需另提供具有更強大效能之中央控制電路板的前提下,對此類具有較多應測腳位的測試物DUT進行測試。此外,由於每一個測試電路板1都可獨立運作,故當多個測試電路板1被群組化以同步運作產生測試訊號時,其所構成的測試電路在存取數據、排程能力、產生測試訊號等工作效能上都能同時增強,解決習知測試裝置的運作能力受限於中央控制電路板之效能的問題。In other words, each test circuit board 1 of the present embodiment has an independent operation capability, and can read data from an external memory and generate a test signal to the function of the test object DUT. However, when the test object DUT has a large number of test pins and a plurality of test signals need to be generated correspondingly, the plurality of test circuit boards 1 can be grouped into the above-mentioned pins pin1 to pin3 and the transmission lines tr1 to tr3. A set of test circuits that operate synchronously, that is, can test such a test object DUT with more testable feet without providing a more powerful central control circuit board. In addition, since each test circuit board 1 can operate independently, when a plurality of test circuit boards 1 are grouped to operate synchronously to generate a test signal, the test circuit formed by the test circuit is configured to access data, schedule capability, and generate The performance of test signals and the like can be simultaneously enhanced, and the problem that the operational capability of the conventional test device is limited by the performance of the central control circuit board is solved.

為實施上述測試裝置,本發明一實施例之測試電路板1係具有如圖2所繪示之架構。如圖2所示,測試裝置的每一個測試電路板1具有緩衝記憶體模組11、記憶體介面控制器13、測試向量產生器15及傳輸電路17,且每一個測試電路板1均連接至動態隨機存取記憶體2,以便依指令與動態隨機存取記憶體2互動運作。其中動態隨機存取記憶體2是測試電路板1以外的記憶體元件,例如是雙倍資料率同步動態隨機存取記憶體(Double Data Rate Synchronous Dynamic Random Access Memory,簡稱DDR SDRAM)、次世代的動態隨機存取記憶體(DDR2 DRAM、DDR3 DRAM或DDR4 DRAM等)或其他合適的動態隨機存取記憶體。動態隨機存取記憶體2中儲存使用者設計的測試向量,以供測試電路板1依據系統指令對動態隨機存取記憶體2的記憶體位址存取測試向量。To implement the above test apparatus, the test circuit board 1 of one embodiment of the present invention has the architecture as shown in FIG. As shown in FIG. 2, each test circuit board 1 of the test apparatus has a buffer memory module 11, a memory interface controller 13, a test vector generator 15, and a transmission circuit 17, and each test circuit board 1 is connected to The DRAM 2 is operative to interact with the DRAM 2 in accordance with the instructions. The dynamic random access memory 2 is a memory component other than the test circuit board 1, for example, Double Data Rate Synchronous Dynamic Random Access Memory (DDR SDRAM), next generation. Dynamic random access memory (DDR2 DRAM, DDR3 DRAM or DDR4 DRAM, etc.) or other suitable dynamic random access memory. The user-designed test vector is stored in the DRAM 2 for the test circuit board 1 to access the test vector of the memory address of the DRAM 2 according to the system instruction.

測試電路板1的緩衝記憶體模組11用於依指令與外部的隨機存取記憶體2進行互動,且緩衝記憶體模組11至少包含緩衝記憶體111及記憶體控制器113。緩衝記憶體111例如是快取記憶體(cache memory)或是其他具有高存取速度的暫存記憶體;而記憶體控制器113係為連接於緩衝記憶體111、記憶體介面控制器13、測試向量產生器15及隨機存取記憶體2的讀取與寫入介面,記憶體控制器113係由一電路構成。記憶體控制器113係接收記憶體介面控制器13的讀取與寫入指令,並依據使用者預先撰寫於測試向量產生器15中的測試向量指令,從記憶體介面控制器13發出寫入命令至動態隨機存取記憶體2,或者將使用者設計的測試向量儲存於動態隨機存取記憶體2中。The buffer memory module 11 of the test circuit board 1 is configured to interact with the external random access memory 2 in accordance with an instruction, and the buffer memory module 11 includes at least the buffer memory 111 and the memory controller 113. The buffer memory 111 is, for example, a cache memory or other temporary storage memory having a high access speed; and the memory controller 113 is connected to the buffer memory 111, the memory interface controller 13, The test vector generator 15 and the read and write interfaces of the random access memory 2 are composed of a circuit. The memory controller 113 receives the read and write commands of the memory interface controller 13, and issues a write command from the memory interface controller 13 in accordance with the test vector command previously written by the user in the test vector generator 15. The dynamic random access memory 2 is stored, or the test vector designed by the user is stored in the dynamic random access memory 2.

測試電路板1的記憶體介面控制器13係儲存測試電路板1可對動態隨機存取記憶體2執行的讀取與寫入指令,且在緩衝記憶體模組11必須將測試向量寫入動態隨機存取記憶體2或自動態隨機存取記憶體2讀取測試向量時,記憶體介面控制器13即提供讀取指令或寫入指令供執行上述作動。其中該記憶體介面控制器13係由一電路構成。The memory interface controller 13 of the test circuit board 1 stores read and write commands that the test circuit board 1 can perform on the dynamic random access memory 2, and the test vector must be written to the dynamic memory in the buffer memory module 11. When the random access memory 2 or the dynamic random access memory 2 reads the test vector, the memory interface controller 13 provides a read command or a write command for performing the above operation. The memory interface controller 13 is composed of a circuit.

測試電路板1的測試向量產生器15係於測試啟動時讀取緩衝記憶體11內儲存的測試向量,並據以產生測試物DUT的測試訊號,其中測試向量產生器15可由電路或微控制器(Micro Control Unit)構成,其包含測試微指令處理模組151及測試圖案資料處理模組153,而測試向量則包含測試微指令(例如表示應執行的命令群) 及測試圖案資料(例如表示邏輯值圖案)。測試向量產生器15可以依據緩衝記憶體模組11之緩衝記憶體111內儲存的測試向量進行測試微指令解碼,執行微指令的動作如重複(Repeat)、分支(Branch)等,以產生圖案資料,並進一步產生測試物DUT的測試訊號。詳言之,測試微指令處理模組151依序地執行上述的測試微指令,例如參照測試微指令中的記憶體位址要求緩衝記憶體模組11提供緩衝記憶體111中所暫存的測試向量,或要求記憶體控制器113進一步至動態隨機存取記憶體2讀取測試向量並儲存於緩衝記憶體111中,或者例如依照測試微指令要求測試圖案資料處理模組153運作。測試圖案資料處理模組153依據測試微指令處理模組151的指令執行測試微指令中的圖案資料處理模式,將測試圖案資料進行特定的處理演算法,產生測試物DUT的測試訊號。換言之,測試向量產生器15係執行測試向量中的測試微指令,依據測試微指令中所載之記憶體位址至緩衝記憶體模組11讀取執行測試微指令所需要的下一個測試向量,且依序將每個測試向量中的測試圖案資料傳送至測試圖案資料處理模組153,以生測試訊號。因此,在上述運作中並未包含習知CPU在執行程式時的編譯(compile)程序。The test vector generator 15 of the test circuit board 1 reads the test vector stored in the buffer memory 11 at the start of the test, and generates a test signal of the test object DUT, wherein the test vector generator 15 can be a circuit or a microcontroller. (Micro Control Unit), which comprises a test micro-instruction processing module 151 and a test pattern data processing module 153, and the test vector includes test micro-instructions (for example, a command group indicating that execution should be performed) and test pattern data (for example, representation logic) Value pattern). The test vector generator 15 can perform the test micro-instruction decoding according to the test vector stored in the buffer memory 111 of the buffer memory module 11, and perform the operations of the micro-instruction such as repeat, branch, etc. to generate pattern data. And further generate a test signal of the test object DUT. In detail, the test micro-instruction processing module 151 sequentially executes the above-mentioned test micro-instruction, for example, by referring to the memory address in the test micro-instruction, the buffer memory module 11 provides the test vector temporarily stored in the buffer memory 111. Alternatively, the memory controller 113 is required to further read the test vector to the dynamic random access memory 2 and store it in the buffer memory 111, or the test pattern data processing module 153 is required to operate, for example, in accordance with the test microinstruction. The test pattern data processing module 153 executes the pattern data processing mode in the test micro-instruction according to the instruction of the test micro-instruction processing module 151, and performs specific processing algorithms on the test pattern data to generate a test signal of the test object DUT. In other words, the test vector generator 15 executes the test microinstruction in the test vector, and reads the next test vector required to execute the test microinstruction according to the memory address address in the test microinstruction to the buffer memory module 11 and The test pattern data in each test vector is sequentially transmitted to the test pattern data processing module 153 to generate a test signal. Therefore, the above-mentioned operation does not include a compile program when the conventional CPU executes the program.

詳言之,測試微指令之圖案資料處理模式係例如正常模式(Normal Function)圖案資料處理方式、掃描模式(SCAN Function) 圖案資料處理方式、邏輯圖案演算生成模式 (Algorithm Logic Pattern Generate, ALPG) 圖案資料處理方式、邏輯圖案緩衝模式(Data-Buffer) 圖案資料處理方式或其他圖案資料處理方式。舉例來說,當測試圖案資料處理方式係為正常模式時,可將設定測試輸出端點有效的利用每筆測試向量,具體說明每筆測試向量包含該電路板1的所有測試輸出端點。若該測試向量使用掃描模式時,則將該筆測試向量的所有圖案資料分次給設定的測試輸出端使用,換言之改測試向量會給予特殊的測試微指令重複命令。當測試圖案資料依據邏輯圖案演算生成模式,可使用特別的ALPG微指令,透過邏輯圖案演算生成測試物DUT的演算後測試訊號,此時測試訊號對記憶體元件進行測試具有較佳的測試效率。換言之,測試向量的測試微指令可以讓測試圖案資料生成專用的測試訊號種類。藉此,一種測試裝置就可以產生多種測試功能的測試訊號,來對不同種類或不同功能的測試物來進行測試,但不以此為限。In detail, the pattern data processing mode of the test micro-instruction is, for example, a normal mode pattern data processing method, a scan mode (SCAN Function) pattern data processing method, and an algorithm pattern generation pattern (ALPG) pattern. Data processing method, logic pattern buffer mode (Data-Buffer) pattern data processing method or other pattern data processing method. For example, when the test pattern data processing mode is in the normal mode, each test vector can be effectively utilized by setting the test output end point, and each test vector includes all test output end points of the circuit board 1. If the test vector uses the scan mode, all pattern data of the test vector is divided into the set test output, in other words, the test vector is given a special test micro-instruction repeat command. When the test pattern data is based on the logic pattern calculation generation mode, the special ALPG micro-instruction can be used to generate the post-calculation test signal of the test object DUT through the logic pattern calculation. At this time, the test signal has better test efficiency for testing the memory component. In other words, the test micro-test of the test vector allows the test pattern data to generate a specific test signal type. In this way, a test device can generate test signals of various test functions to test different types or different functional test objects, but not limited thereto.

測試電路板1的傳輸電路17係用於連接前述之接腳pin1~pin3,以透過傳輸線tr1~tr3與其他測試電路板1互相傳遞訊息。詳言之,當測試電路板1做為主控板時,其係需要主動地提供測試相關控制訊號至其他測試電路板,則此一測試電路板1(主控板)的傳輸電路17會依據配置訊號從特定的接腳pin1~pin3輸出測試控制訊號至傳輸線tr1~tr3。反之,當測試電路板1做為伺服板時,則此一測試電路板1(伺服板)的傳輸電路17係被動地接收到傳輸線上的測試控制訊號,且每一個測試電路板1(伺服板)的傳輸電路17也會依據配置訊號決定要接收或忽略傳輸線tr1~tr3上的測試控制訊號。藉此,本發明之測試裝置的該多個測試電路板1即可以該測試控制訊號作為同步運作的啟動基準,使所有測試電路板1同步產生測試訊號對測試物DUT進行測試。The transmission circuit 17 of the test circuit board 1 is used to connect the aforementioned pins pin1 to pin3 to transmit information to and from the other test circuit boards 1 through the transmission lines tr1 to tr3. In detail, when the test circuit board 1 is used as the main control board, it is required to actively provide the test related control signal to other test circuit boards, and the transmission circuit 17 of the test circuit board 1 (main control board) is based on The configuration signal outputs test control signals from the specific pins pin1 to pin3 to the transmission lines tr1 to tr3. On the contrary, when the test circuit board 1 is used as a servo board, the transmission circuit 17 of the test circuit board 1 (servo board) passively receives the test control signals on the transmission line, and each test circuit board 1 (servo board) The transmission circuit 17 also determines whether to receive or ignore the test control signals on the transmission lines tr1 to tr3 according to the configuration signal. Therefore, the plurality of test circuit boards 1 of the test apparatus of the present invention can use the test control signals as a starting reference for synchronous operation, so that all test circuit boards 1 synchronously generate test signals to test the test object DUT.

在實際的操作測試裝置的過程中,在做為主控板的測試電路板1依據配置訊號以傳輸電路17輸出測試控制訊號時,或者在做為伺服板的測試電路板1依據配置訊號接收測試控制訊號時,測試電路板1的測試向量產生器15即必須取得動態隨機存取記憶體2中的測試向量,以便產生測試訊號。此時,測試向量產生器15即要求緩衝記憶體模組11快速地進行動態隨機存取記憶體2讀取,並將所使用到的記憶體區塊讀取至緩衝記憶體模組11的緩衝記憶體111中。藉此,當測試向量產生器15後續所需的測試向量已暫存於該緩衝記憶體111時,即無須由記憶體控制器113反覆自動態隨機存取記憶體2讀取該測試向量,故可有效提高測試向量產生器15讀取資料的速度,且亦可在執行測試微指令的迴圈指令時,提供資料再利用的機制。隨後,測試電路板1的測試向量產生器15由緩衝記憶體模組11的緩衝記憶體111接收了其中儲存的測試向量,並依據測試微指令提供的測試圖案資料產生測試訊號,其中測試向量產生器15中的測試微指令處理模組151及測試圖案資料處理模組153的運作方式係如前所述,故不再於此贅述。In the actual operation of the test device, when the test circuit board 1 as the main control board outputs the test control signal according to the configuration signal by the transmission circuit 17, or the test circuit board 1 as the servo board receives the test according to the configuration signal. When the signal is controlled, the test vector generator 15 of the test board 1 must obtain the test vector in the dynamic random access memory 2 to generate a test signal. At this time, the test vector generator 15 requests the buffer memory module 11 to quickly perform the dynamic random access memory 2 reading, and reads the used memory block to the buffer of the buffer memory module 11. In memory 111. Therefore, when the test vector required by the test vector generator 15 is temporarily stored in the buffer memory 111, the memory controller 113 does not need to read the test vector from the dynamic random access memory 2 repeatedly. The speed at which the test vector generator 15 reads the data can be effectively improved, and the mechanism for data reuse can also be provided when executing the loop instruction of the test microinstruction. Then, the test vector generator 15 of the test circuit board 1 receives the test vector stored therein from the buffer memory 111 of the buffer memory module 11, and generates a test signal according to the test pattern data provided by the test micro-instruction, wherein the test vector is generated. The operation mode of the test micro-instruction processing module 151 and the test pattern data processing module 153 in the device 15 is as described above, and therefore will not be described again.

請一併參照圖2與圖3,圖3係根據本發明另一實施例所繪示之測試向量產生器的功能方塊圖。如圖所示,相較於前一實施例的測試向量產生器15,此實施例的測試向量產生器35更具有先進先出記憶體353。換言之,測試向量產生器35係具有測試微指令處理模組351、先進先出記憶體353及測試圖案資料處理模組355。在測試向量產生器35運作時,測試微指令處理模組351將生成的測試向量暫存於先進先出記憶體353中,以藉由先進先出記憶體353的特色將測試微指令處理速度改變為測試圖案資料處理速度,再由先進先出記憶體353依序地將測試向量提供至測試圖案資料處理模組355。在圖示例中,測試圖案資料處理模組353可以先使測試向量經過多個演算路徑(例如圖3所示的4個演算路徑:第一演算路徑至第四演算路徑),使測試向量產生多種測試訊號。隨後,再以解多工器357依據測試微指令之演算選擇訊號,由上述的多種測試訊號之中擇一輸出,以對測試物DUT進行測試,但不以此為限。於其他實施例中,亦可以先由多個測試向量擇一執行,再將測試向量依據測試微指令與測試圖案資料生成測試訊號。於所屬技術領域具有通常知識者可以依據實際的需求及狀況來設計,本實施例不予限制。Please refer to FIG. 2 and FIG. 3 together. FIG. 3 is a functional block diagram of a test vector generator according to another embodiment of the present invention. As shown, the test vector generator 35 of this embodiment has a first in first out memory 353 as compared to the test vector generator 15 of the previous embodiment. In other words, the test vector generator 35 has a test micro-instruction processing module 351, a first-in first-out memory 353, and a test pattern data processing module 355. When the test vector generator 35 is in operation, the test micro-instruction processing module 351 temporarily stores the generated test vector in the first-in first-out memory 353 to change the processing speed of the test micro-instruction by the characteristics of the first-in first-out memory 353. To test the pattern data processing speed, the test vectors are sequentially supplied to the test pattern data processing module 355 by the first in first out memory 353. In the example of the figure, the test pattern data processing module 353 may first pass the test vector through a plurality of calculation paths (for example, the four calculation paths shown in FIG. 3: the first calculation path to the fourth calculation path), so that the test vectors are generated. A variety of test signals. Then, the multiplexer 357 selects a signal according to the calculation of the test micro-instruction, and selects one of the plurality of test signals to test the test object DUT, but not limited thereto. In other embodiments, the test vector may be first executed by using multiple test vectors, and then the test vector generates a test signal according to the test micro-instruction and the test pattern data. Those having ordinary knowledge in the technical field can design according to actual needs and conditions, and the embodiment is not limited.

接下來,請一併參考圖1及圖2。在實務上,記憶體控制器113從動態隨機存取記憶體2讀取每筆測試向量的速度,係較測試向量產生器15之測試微指令處理的速度為慢。因此,藉由本發明設置之緩衝記憶體模組11將讀取自該動態隨機存取記憶體2的測試向量儲存於緩衝記憶體111中,並透過記憶體控制器113從隨機存取記憶體2讀取測試向量的資料數量,以及以記憶體控制器113預先從動態隨機存取記憶體2讀取測試向量等方式,來因應測試向量產生器15讀取測試向量的速度。Next, please refer to Figure 1 and Figure 2 together. In practice, the speed at which the memory controller 113 reads each test vector from the DRAM 2 is slower than the test microinstruction processing of the test vector generator 15. Therefore, the test memory read from the DRAM 2 is stored in the buffer memory 111 by the buffer memory module 11 provided by the present invention, and is read from the random access memory 2 through the memory controller 113. The number of data of the test vector is read, and the memory controller 113 reads the test vector from the DRAM 2 in advance, in response to the test vector generator 15 reading the speed of the test vector.

詳言之,於一個實施例中,為因應記憶體控制器113由動態隨機存取記憶體2讀取測試向量並存入於緩衝記憶體111的速度,以及測試向量產生器15透過記憶體控制器113讀取緩衝記憶體111中的測試向量的速度之間所存在的落差,記憶體控制器113的記憶體存取資料寬度係採不對稱的設計。以緩衝記憶體模組11的記憶體存入資料寬度為讀取資料寬度的4倍為例,假設記憶體控制器113所讀取的資料寬度為512 位元,而測試向量產生器15所讀取的資料寬度為128 位元,則存入緩衝記憶體111需採用存入資料寬度512位元,而讀取緩衝記憶體111需採用讀取資料寬度128位元。藉此,利用動態隨機存取記憶體2的讀取時高資料寬度,可滿足測試向量產生器15所需的高速資料量需求,且有效縮短測試向量存入緩衝記憶體111的速度及讀取緩衝記憶體111中的測試向量的速度之間的落差。In detail, in one embodiment, the test vector is read from the dynamic random access memory 2 by the memory controller 113 and stored in the buffer memory 111, and the test vector generator 15 is controlled by the memory. The processor 113 reads the difference between the speeds of the test vectors in the buffer memory 111, and the memory access data width of the memory controller 113 is asymmetric. Taking the memory storage data width of the buffer memory module 11 as 4 times the width of the read data, it is assumed that the data width read by the memory controller 113 is 512 bits, and the test vector generator 15 reads The width of the data to be fetched is 128 bits, and the buffer memory 111 needs to be stored in the data width of 512 bits, and the read buffer memory 111 needs to use the read data width of 128 bits. Therefore, by using the high data width of the dynamic random access memory 2, the high-speed data amount required by the test vector generator 15 can be satisfied, and the speed of the test vector stored in the buffer memory 111 and the reading can be effectively shortened. The difference between the speeds of the test vectors in the buffer memory 111.

於另一個實施例中,透過記憶體控制器113預先從動態隨機存取記憶體2快速讀取一區塊測試向量區間的方式,來因應測試向量產生器15透過記憶體控制器113讀取緩衝記憶體111中的測試向量的速度。舉例來說,當測試向量產生器15測試啟動時,會對記憶體控制器113發出第一筆測試向量要求。此時,緩衝記憶體模組11會快速透過記憶體控制器13從動態隨機存取記憶體2讀取一區塊測試向量區間,並將此一區塊測試向量區間儲存於緩衝記憶體111中。接著,繼續預先讀取下一區塊測試向量區間。也就是說,當緩衝記憶體模組11快速透過記憶體控制器113從動態隨機存取記憶體2讀取測試向量後,緩衝記憶體模組11會依據所讀取的動態隨機存取記憶體2的記憶體位址,預測下一筆要從動態隨機存取記憶體2中讀取的測試向量。預測的測試向量會跟隨著讀取動態隨機存取記憶體2的記憶體位址儲存於緩衝記憶體111中,藉以讓緩衝記憶體模組11讀取動態隨機存取記憶體2的速度可以應對測試向量產生器15讀取測試向量的速度。In another embodiment, a block test vector interval is quickly read from the DRAM 2 through the memory controller 113, so that the test vector generator 15 reads the buffer through the memory controller 113. The speed of the test vector in memory 111. For example, when the test vector generator 15 test is initiated, a first test vector request is issued to the memory controller 113. At this time, the buffer memory module 11 quickly reads a block test vector interval from the dynamic random access memory 2 through the memory controller 13, and stores the block test vector interval in the buffer memory 111. . Then, continue to read the next block test vector interval in advance. That is, after the buffer memory module 11 quickly reads the test vector from the dynamic random access memory 2 through the memory controller 113, the buffer memory module 11 is based on the read dynamic random access memory. The memory address of 2 predicts the next test vector to be read from the dynamic random access memory 2. The predicted test vector is stored in the buffer memory 111 following the memory address of the read dynamic random access memory 2, so that the buffer memory module 11 can read the dynamic random access memory 2 at a speed that can cope with the test. The vector generator 15 reads the speed of the test vector.

當測試電路板1同時應用以上述兩種實施例時,緩衝記憶體模組11例如透過記憶體控制器113從動態隨機存取記憶體2一次讀取4筆測試向量後,再依據這4筆測試向量讀取的動態隨機存取記憶體2的記憶體位址預測接下來的4筆測試向量,並將預測的4筆測試向量及4筆讀取動態隨機存取記憶體2的記憶體位址儲存於緩衝記憶體111中,藉以應對測試向量產生器15讀取測試向量的速度。When the test circuit board 1 is simultaneously applied to the above two embodiments, the buffer memory module 11 reads the four test vectors from the dynamic random access memory 2 at a time through the memory controller 113, and then according to the four The memory address of the dynamic random access memory 2 read by the test vector predicts the next four test vectors, and the predicted four test vectors and four memory addresses of the dynamic random access memory 2 are stored. In the buffer memory 111, the speed at which the test vector generator 15 reads the test vector is dealt with.

於再一個實施例中,當測試向量產生器15讀取緩衝記憶體111內儲存的測試向量,並由測試微指令處理模組151接著執行微指令的迴圈指令例如重複(repeat)指令,則測試微指令處理模組151須將該測試向量重複地傳至測試圖案資料處理模組153。此時,藉由再次利用緩衝記憶體111內儲存的測試向量的機制,可快速地將測試向量由緩衝記憶體111傳至測試圖案資料處理模組153,而無須再次由動態隨機存取記憶體2讀取此一測試向量。換言之,當測試向量產生器15從緩衝記憶體內儲存的測試向量取得的測試微指令為迴圈指令時,緩衝記憶體模組11會預測下一筆要從隨機存取記憶體2讀取的測試向量是否已經在緩衝記憶體111內。若為是,則繼續由緩衝記憶體111讀取測試向量予測試向量產生器15,因此可以快速且直接地從緩衝記憶體111讀取到既有的測試向量,以應對測試向量產生器15從緩衝記憶體111讀取測試向量的速度。In still another embodiment, when the test vector generator 15 reads the test vector stored in the buffer memory 111 and the test microinstruction processing module 151 then executes the loop instruction of the microinstruction, such as a repeat command, The test microinstruction processing module 151 must repeatedly transmit the test vector to the test pattern data processing module 153. At this time, by using the mechanism of the test vector stored in the buffer memory 111 again, the test vector can be quickly transferred from the buffer memory 111 to the test pattern data processing module 153 without having to be again by the dynamic random access memory. 2 Read this test vector. In other words, when the test micro-instruction obtained by the test vector generator 15 from the test vector stored in the buffer memory is a loop instruction, the buffer memory module 11 predicts the next test vector to be read from the random access memory 2. Whether it is already in the buffer memory 111. If so, the test vector is continuously read by the buffer memory 111 to the test vector generator 15, so that the existing test vector can be quickly and directly read from the buffer memory 111 to cope with the test vector generator 15 The buffer memory 111 reads the speed of the test vector.

上述資料再利用機制若結合前述緩衝記憶體模組11預先從動態隨機存取記憶體2快速讀取一區塊測試向量區間的方式結合,則當測試向量產生器15依據測試微指令執行迴圈指令時,記憶體控制器113會判斷緩衝記憶體111是否存在測試向量產生器15下一筆資料的位置。換言之,緩衝記憶體模組11不需要依據下一筆資料的位置從動態隨機存取記憶體2讀取下一區塊測試向量區間。The data reuse mechanism is combined with the buffer memory module 11 to quickly read a block test vector interval from the dynamic random access memory 2, and then the test vector generator 15 performs a loop according to the test microinstruction. At the time of the instruction, the memory controller 113 determines whether or not the buffer memory 111 has the position of the next data of the test vector generator 15. In other words, the buffer memory module 11 does not need to read the next block test vector interval from the DRAM 2 in accordance with the position of the next data.

又,於另一個實施例中,測試向量產生器15依據測試微指令執行條件指令,從動態隨機存取記憶體2中讀取條件跳耀位址,且測試向量產生器15依據測試微指令所執行的條件指令的二個條件分支指令其中之一,讀取動態隨機存取記憶體2於條件跳耀位址的一區塊測試向量區間。換言之,當測試向量產生器15從緩衝記憶體111讀取測試向量時,測試向量產生器15會預測下一筆要從動態隨機存取記憶體2存取的測試向量為其中一個條件分支指令指示的條件跳耀位址。例如測試向量產生器15預測條件成立時,即要求記憶體控制器113預先從動態隨機存取記憶體2讀取條件成立時的測試向量並儲存於緩衝記憶體111中。當條件指令確實成立時,測試向量產生器15就可以快速地由緩衝記憶體111取得條件成立時所要讀取的測試向量。In addition, in another embodiment, the test vector generator 15 reads the conditional jump address from the DRAM 2 according to the test micro-instruction execution condition instruction, and the test vector generator 15 according to the test micro-instruction One of the two conditional branch instructions of the executed conditional instruction reads a block test vector interval of the dynamic random access memory 2 at the conditional jump address. In other words, when the test vector generator 15 reads the test vector from the buffer memory 111, the test vector generator 15 predicts that the next test vector to be accessed from the dynamic random access memory 2 is indicated by one of the conditional branch instructions. Conditional hopping address. For example, when the prediction condition of the test vector generator 15 is satisfied, the memory controller 113 is required to read the test vector when the condition is satisfied from the DRAM 2 in advance and store it in the buffer memory 111. When the conditional instruction does not hold, the test vector generator 15 can quickly obtain the test vector to be read when the condition is satisfied by the buffer memory 111.

上述條件指令的執行機制若與前述緩衝記憶體模組11預先從動態隨機存取記憶體2快速讀取一區塊測試向量區間的方式結合,則當測試向量產生器15依據測試微指令執行條件指令的測試向量記憶體位址,以從動態隨機存取記憶體2中讀取位於第一測試向量位址的第一區塊測試向量區間時,測試向量產生器15就可以依據測試微指令執行條件指令成立時的條件分支指令,從動態隨機存取記憶體2讀取第二區塊測試向量區間,並與第一區塊測試向量區間一併儲存於緩衝記憶體111中。If the execution mechanism of the above conditional instruction is combined with the manner in which the buffer memory module 11 quickly reads a block test vector interval from the dynamic random access memory 2, the test vector generator 15 executes the condition according to the test microinstruction. The test vector memory address of the instruction, when the first block test vector interval located in the first test vector address is read from the DRAM 2, the test vector generator 15 can execute the condition according to the test microinstruction. The conditional branch instruction when the instruction is established reads the second block test vector interval from the DRAM 2 and stores it in the buffer memory 111 together with the first block test vector interval.

綜合以上所述,本發明實施例提供一種每個測試電路板1均具有獨立運作能力,即每一個測試電路板1都能讀取動態隨機存取記憶體2所儲存的測試向量,並依測試向量產生測試訊號以送至測試物DUT。當多個測試電路板1彼此傳遞相關控制訊號而群組化成一組測試電路時,群組中的每一個測試電路板1的用於連接至測試物DUT的接腳均係此測試電路群組的測試接腳,藉以讓測試電路群組對測試物DUT進行同步測試的訊號數量增加。再者,由於每一個測試電路板都具有獨立的工作能力,當多個測試電路板被群組化來共同運作產生測試訊號時,測試電路群組存取數據、排程能力、產生測試訊號等工作效能都能同時增強。因此,當測試物DUT有所改變而需要更多的測試接腳時,藉由本發明之測試裝置,僅需要另增額外的測試電路板1並以軟體方式將此額外測試電路板與原始的測試電路群組化,即可與原始的測試電路同步產生測試訊號。因此,本發明之測試裝置及其測試電路板1能夠有效解決習知測試裝置產生測試訊號的運作能力受限於中央控制電路板的效能的問題,也不需要針對不同的測試物DUT進行任何硬體上的改變。In summary, the embodiment of the present invention provides that each test circuit board 1 has independent operation capability, that is, each test circuit board 1 can read the test vector stored in the dynamic random access memory 2, and according to the test. The vector generates a test signal for delivery to the test object DUT. When a plurality of test circuit boards 1 transmit related control signals to each other and group into a set of test circuits, the pins of each of the test circuit boards 1 for connecting to the test object DUT are the test circuit groups. The test pin is used to increase the number of signals that the test circuit group performs a synchronous test on the test object DUT. Moreover, since each test circuit board has an independent working capability, when a plurality of test circuit boards are grouped to work together to generate a test signal, the test circuit group accesses data, schedules, generates test signals, and the like. Work performance can be enhanced at the same time. Therefore, when the test object DUT is changed and more test pins are required, with the test device of the present invention, only an additional test circuit board 1 needs to be added and the additional test circuit board and the original test are in software. The circuit is grouped to generate test signals in synchronization with the original test circuit. Therefore, the test apparatus and the test circuit board 1 of the present invention can effectively solve the problem that the operation capability of the test signal generated by the conventional test device is limited by the performance of the central control circuit board, and does not require any hard work for different test object DUTs. Physical change.

雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神及範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。Although the present invention has been disclosed above in the foregoing embodiments, it is not intended to limit the invention. All modifications and refinements are within the scope of the invention as defined by the scope of the invention. Please refer to the attached patent application for the scope of protection defined by the present invention.

1‧‧‧測試電路板1‧‧‧Test circuit board

11‧‧‧緩衝記憶體模組11‧‧‧Buffered Memory Module

111‧‧‧緩衝記憶體111‧‧‧Buffered memory

113‧‧‧記憶體控制器113‧‧‧ memory controller

13‧‧‧記憶體介面控制器13‧‧‧Memory interface controller

15‧‧‧測試向量產生器15‧‧‧Test Vector Generator

151‧‧‧測試微指令處理模組151‧‧‧Test micro-instruction processing module

153‧‧‧測試圖案資料處理模組153‧‧‧Test pattern data processing module

17‧‧‧傳輸電路17‧‧‧Transmission circuit

2‧‧‧動態隨機存取記憶體2‧‧‧Dynamic random access memory

35‧‧‧測試向量產生器35‧‧‧Test Vector Generator

351‧‧‧測試微指令處理模組351‧‧‧Test micro-instruction processing module

353‧‧‧先進先出記憶體353‧‧‧First In First Out Memory

355‧‧‧測試圖案資料處理模組355‧‧‧Test pattern data processing module

357‧‧‧解多工器357‧‧‧Solution multiplexer

DUT‧‧‧測試物DUT‧‧‧ test object

pin1~pin3‧‧‧接腳Pin1~pin3‧‧‧ pins

tr1~tr3‧‧‧傳輸線Tr1~tr3‧‧‧ transmission line

圖1係根據本發明一實施例所繪示之測試裝置的示意圖。 圖2係根據本發明一實施例所繪示之測試電路板的功能方塊圖。 圖3係根據本發明另一實施例所繪示之測試向量產生器的功能方塊圖。1 is a schematic diagram of a test apparatus according to an embodiment of the invention. 2 is a functional block diagram of a test circuit board according to an embodiment of the invention. 3 is a functional block diagram of a test vector generator according to another embodiment of the present invention.

Claims (7)

一種測試裝置,包含至少一測試電路板,每一測試電路板均用於連接一動態隨機存取記憶體,以讀取該動態隨機存取記憶體中的測試向量並產生測試訊號,其中每一該測試電路板均具有獨立運作能力,且每一該測試電路板包含:一緩衝記憶體模組,用於電性連接至該動態隨機存取記憶體,並用於自該動態隨機存取記憶體讀取並儲存多個測試向量;一記憶體介面控制器,連接該緩衝記憶體模組,且該記憶體介面控制器至少儲存讀取指令,以供該緩衝記憶體模組從該動態隨機存取記憶體讀取該些測試向量;一測試向量產生器,連接該緩衝記憶體模組,且依據一測試微指令中的記憶體位置自該緩衝記憶體模組讀取該多個測試向量之一,並以該讀取的測試向量產生一測試訊號;及一傳輸電路,連接該測試向量產生器,且該傳輸電路用於發送該測試向量產生器所產生的一測試控制訊號,或用於接收另一測試控制訊號並傳送至該測試向量產生器。A test device includes at least one test circuit board, each test circuit board is configured to connect a dynamic random access memory to read test vectors in the dynamic random access memory and generate test signals, each of which The test circuit boards each have independent operation capability, and each of the test circuit boards includes: a buffer memory module for electrically connecting to the dynamic random access memory and used for the dynamic random access memory Reading and storing a plurality of test vectors; a memory interface controller connecting the buffer memory module, and the memory interface controller storing at least a read command for the buffer memory module to be dynamically stored from the buffer Taking the memory to read the test vectors; a test vector generator, connecting the buffer memory module, and reading the plurality of test vectors from the buffer memory module according to the memory location in a test microinstruction And generating a test signal by using the read test vector; and a transmission circuit connecting the test vector generator, and the transmission circuit is configured to send the test vector to generate A control signal generated by the test, or for receiving a control signal and transmits another test to the test vector generator. 如請求項1所述之測試裝置,其中該測試微指令係預先寫入於該測試向量產生器中,或者係包含於該讀取的測試向量中。The test apparatus of claim 1, wherein the test microinstruction is pre-written in the test vector generator or included in the read test vector. 如請求項2所述之測試裝置,其中該測試向量產生器包含一測試微指令處理模組及一測試圖案資料處理模組,該測試向量另包含一測試圖案資料,該測試微指令處理模組係執行該測試微指令以讀取該緩衝記憶體模組中的測試向量並控制該測試圖案資料處理模組,該測試圖案資料處理模組依據該測試微指令對該測試圖案資料執行一演算法,以產生該測試訊號。The test device of claim 2, wherein the test vector generator comprises a test micro-instruction processing module and a test pattern data processing module, the test vector further comprising a test pattern data, the test micro-instruction processing module Performing the test microinstruction to read a test vector in the buffer memory module and controlling the test pattern data processing module, the test pattern data processing module performing an algorithm on the test pattern data according to the test microinstruction To generate the test signal. 如請求項1所述之測試裝置,其中該至少一測試電路板的數量為多個,該多個測試電路板之一為一主控板,該多個測試電路板的其餘者為至少一伺服板,該主控板的傳輸電路發送一測試控制訊號,該至少一伺服板的傳輸電路接收該測試控制訊號,其中該測試控制訊號係作為該多個測試電路板的同步運作啟動基準。The test device of claim 1, wherein the number of the at least one test circuit board is plural, one of the plurality of test circuit boards is a main control board, and the rest of the plurality of test circuit boards are at least one servo The transmission circuit of the main control board sends a test control signal, and the transmission circuit of the at least one servo board receives the test control signal, wherein the test control signal serves as a synchronous operation start reference of the plurality of test boards. 如請求項1所述之測試裝置,其中該緩衝記憶體模組的讀取資料寬度大於該測試向量產生器的讀取資料寬度。The test device of claim 1, wherein the read data width of the buffer memory module is greater than the read data width of the test vector generator. 如請求項1所述之測試裝置,其中該測試向量產生器包含依序連接的一測試微指令處理模組、一先進先出記憶體及一測試圖案資料處理模組,該測試向量另包含一測試圖案資料,該測試微指令處理模組係執行該測試微指令以讀取該緩衝記憶體模組中的測試向量並儲存於該先進先出記憶體,該先進先出記憶體依序地將所儲存的測試向量提供至該測試圖案資料處理模組,該測試圖案資料處理模組依據該測試微指令對該測試圖案資料執行多種演算法,以產生包含該測試訊號的多個測試訊號。The test device of claim 1, wherein the test vector generator comprises a test micro-instruction processing module, a first-in first-out memory and a test pattern data processing module, which are sequentially connected, and the test vector further comprises a test vector Testing the pattern data, the test micro-instruction processing module executes the test micro-instruction to read the test vector in the buffer memory module and store the first-in first-out memory, the FIFO memory sequentially The stored test vector is provided to the test pattern data processing module. The test pattern data processing module executes a plurality of algorithms on the test pattern data according to the test micro-instruction to generate a plurality of test signals including the test signal. 如請求項6所述之測試裝置,其中該測試向量產生器更包含一解多工器,該解多工器連接該測試圖案資料處理模組,且該解多工器依據該測試微指令的一演算選擇訊號,由該多個測試訊號之中擇一輸出。The test device of claim 6, wherein the test vector generator further comprises a demultiplexer, the demultiplexer is connected to the test pattern data processing module, and the demultiplexer is configured according to the test microinstruction A calculation selection signal is selected from the plurality of test signals.
TW106134807A 2017-10-11 2017-10-11 Test apparatus and testing circuit board thereof TWI661208B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106134807A TWI661208B (en) 2017-10-11 2017-10-11 Test apparatus and testing circuit board thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106134807A TWI661208B (en) 2017-10-11 2017-10-11 Test apparatus and testing circuit board thereof

Publications (2)

Publication Number Publication Date
TW201915505A true TW201915505A (en) 2019-04-16
TWI661208B TWI661208B (en) 2019-06-01

Family

ID=66991757

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106134807A TWI661208B (en) 2017-10-11 2017-10-11 Test apparatus and testing circuit board thereof

Country Status (1)

Country Link
TW (1) TWI661208B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6826721B2 (en) * 2001-11-01 2004-11-30 Agilent Technoloiges, Inc. Data accelerator and methods for increasing data throughput
US7181660B2 (en) * 2002-07-26 2007-02-20 Verigy Pte. Ltd. Reconstruction of non-deterministic algorithmic tester stimulus used as input to a device under test
US7216273B2 (en) * 2003-06-26 2007-05-08 Teradyne, Inc. Method for testing non-deterministic device data
US20090113245A1 (en) * 2007-10-30 2009-04-30 Teradyne, Inc. Protocol aware digital channel apparatus
TW201525487A (en) * 2013-12-31 2015-07-01 Chroma Ate Inc Multi-interface signal switching board for use in integrated circuit testing machine table

Also Published As

Publication number Publication date
TWI661208B (en) 2019-06-01

Similar Documents

Publication Publication Date Title
KR101758175B1 (en) Robust memory link testing using memory controller
EP1149294A1 (en) Algorithmic pattern generator for integrated circuit tester
JP4156726B2 (en) High speed pattern generation method and apparatus, and memory test apparatus
KR101295655B1 (en) Test apparatus and test method
JP2008047243A (en) Integrated circuit
US4727312A (en) Circuit tester
US20080086666A1 (en) Analyzer
EP1101158A2 (en) Algorithmic pattern generator
US10288685B2 (en) Multi-bank digital stimulus response in a single field programmable gate array
TWI661208B (en) Test apparatus and testing circuit board thereof
CN109655643B (en) Testing device and testing circuit board thereof
JPH11282709A (en) In-circuit emulator
JP4486383B2 (en) Pattern generator and test apparatus
JP2007102940A (en) Testing device and testing method
JP4285816B2 (en) PATTERN GENERATOR, PATTERN GENERATION METHOD, AND TEST DEVICE
JP3271307B2 (en) Test pattern generator for semiconductor memory
JP7202225B2 (en) Semiconductor device and debug system
JPWO2009153996A1 (en) Test apparatus and test method
JP3481689B2 (en) Semiconductor test equipment
KR20060121737A (en) Pattern generator and test apparatus
KR20080026226A (en) Multi-port memory device and method for testing multi-port memory device
US20160110193A1 (en) Information processing apparatus and control method of information processing apparatus
JP2000162287A (en) Pattern generator for creating pattern signal
JP2006039843A (en) Ram test circuit, information processing apparatus, and ram testing method
JPH08327703A (en) Memory architecture for automatic testing device using vector module table