TWI661208B - Test apparatus and testing circuit board thereof - Google Patents

Test apparatus and testing circuit board thereof Download PDF

Info

Publication number
TWI661208B
TWI661208B TW106134807A TW106134807A TWI661208B TW I661208 B TWI661208 B TW I661208B TW 106134807 A TW106134807 A TW 106134807A TW 106134807 A TW106134807 A TW 106134807A TW I661208 B TWI661208 B TW I661208B
Authority
TW
Taiwan
Prior art keywords
test
memory
read
microinstruction
vector
Prior art date
Application number
TW106134807A
Other languages
Chinese (zh)
Other versions
TW201915505A (en
Inventor
曾瀚陞
廖江鵬
Original Assignee
致茂電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 致茂電子股份有限公司 filed Critical 致茂電子股份有限公司
Priority to TW106134807A priority Critical patent/TWI661208B/en
Publication of TW201915505A publication Critical patent/TW201915505A/en
Application granted granted Critical
Publication of TWI661208B publication Critical patent/TWI661208B/en

Links

Landscapes

  • Tests Of Electronic Circuits (AREA)

Abstract

一種測試裝置,包含至少一測試電路板,每一該測試電路板均具有獨立運作能力,且每一該測試電路板包含:一緩衝記憶體模組用於自一動態隨機存取記憶體讀取並儲存多個測試向量;一記憶體介面控制器儲存讀取指令,以供該緩衝記憶體模組讀取該些測試向量;一測試向量產生器依據一測試微指令中的記憶體位置自該緩衝記憶體模組讀取該多個測試向量之一,並以該讀取的測試向量產生一測試訊號;及一傳輸電路用於發送該測試向量產生器所產生的一測試控制訊號,或接收另一測試控制訊號並傳送至該測試向量產生器。A test device includes at least one test circuit board, each of which has an independent operation capability, and each of the test circuit boards includes: a buffer memory module for reading from a dynamic random access memory And store a plurality of test vectors; a memory interface controller stores a read command for the buffer memory module to read the test vectors; a test vector generator selects the test vector from the memory position in a test microinstruction The buffer memory module reads one of the plurality of test vectors and generates a test signal based on the read test vectors; and a transmission circuit is used for transmitting a test control signal generated by the test vector generator, or receiving Another test control signal is transmitted to the test vector generator.

Description

測試裝置及其測試電路板Test device and test circuit board

本發明係關於一種具有多個測試電路板的測試裝置,特別是每一個測試電路板都具有緩衝記憶體模組與測試向量產生器,以供個別獨立運作並以該多個測試電路板共同完成所有測試項目的測試裝置。The invention relates to a test device with multiple test circuit boards, in particular, each test circuit board has a buffer memory module and a test vector generator for individual independent operation and completion by the multiple test circuit boards. Test fixture for all test items.

習知測試裝置的系統架構,通常係藉由一個中央控制電路板來控制多個功能電路板。中央通道控制電路板藉由讀取該電路板記憶體內的測試微指令,依序產生並傳送功能電路板的測試圖案資料記憶體位置至多個功能電路板。隨後,每個功能電路板藉由讀取該電路板記憶體內的測試圖案資料,使該電路板的多個通道波形產生器產生測試訊號來對測試物進行測試。The system architecture of the conventional test device usually controls a plurality of functional circuit boards through a central control circuit board. The central channel control circuit board sequentially generates and transmits the test pattern data memory locations of the functional circuit boards to a plurality of functional circuit boards by reading the test micro-instructions in the memory of the circuit board. Subsequently, each functional circuit board tests the test object by reading test pattern data in the memory of the circuit board, so that a plurality of channel waveform generators of the circuit board generate test signals.

於上述架構中,習知功能電路板測試裝置產生測試訊號的運作能力顯然會受限於中央控制電路板的效能。詳言之,由於中央控制電路板的效能需求必須考量共用背板的傳輸線數量、傳輸線長度及傳輸速度等因素,故當測試物需要被測試的功能訊號增加而需要對應增加更多的功能電路板時,不僅導致習知測試裝置需要增加共用背板的插槽數量,更可能因為效能需求而必須更換效能更強大、運作速度更快的中央控制電路板。此外,雖然以單一個中央控制電路板來控制所有功能電路板的架構思維較為簡單,但會降低整體測試系統的效能。In the above architecture, the operation capability of the conventional functional circuit board test device to generate test signals is obviously limited by the effectiveness of the central control circuit board. In detail, due to the performance requirements of the central control circuit board, factors such as the number of transmission lines, transmission line length, and transmission speed of the shared backplane must be considered. Therefore, when the test object requires more functional signals, more functional circuit boards must be added accordingly. As a result, not only does the conventional test device need to increase the number of slots for the common backplane, but it is also more likely that the central control circuit board with a more powerful and faster operation must be replaced due to performance requirements. In addition, although a single central control circuit board is used to control all functional circuit boards, the architectural thinking is relatively simple, but it will reduce the performance of the overall test system.

本發明在於提供一種測試裝置,該測試裝置具有至少一測試電路板,且每一個測試電路板具有獨立運作能力,藉以解決習知測試裝置的運作能力限制於中央控制器效能的問題。The invention is to provide a test device, which has at least one test circuit board, and each test circuit board has an independent operation capability, thereby solving the problem that the operation capability of the conventional test device is limited to the performance of the central controller.

本發明所揭露的測試裝置,包含至少一測試電路板,每一測試電路板均用於連接一動態隨機存取記憶體,以讀取該動態隨機存取記憶體中的測試向量並產生測試訊號,其中每一該測試電路板均具有獨立運作能力,且每一該測試電路板包含一緩衝記憶體模組、一記憶體介面控制器、一測試向量產生器及一傳輸電路。該緩衝記憶體模組用於電性連接至該動態隨機存取記憶體,並用於自該動態隨機存取記憶體讀取並儲存多個測試向量。該記憶體介面控制器連接該緩衝記憶體模組,且該記憶體介面控制器至少儲存讀取指令,以供該緩衝記憶體模組從該動態隨機存取記憶體讀取該些測試向量。該測試向量產生器連接該緩衝記憶體模組,且依據一測試微指令中的記憶體位置自該緩衝記憶體模組讀取該多個測試向量之一,並以該讀取的測試向量產生一測試訊號。該傳輸電路連接該測試向量產生器,且該傳輸電路用於發送該測試向量產生器所產生的一測試控制訊號,或用於接收另一測試控制訊號並傳送至該測試向量產生器。The test device disclosed in the present invention includes at least one test circuit board, and each test circuit board is used to connect a dynamic random access memory to read a test vector in the dynamic random access memory and generate a test signal. Each of the test circuit boards has an independent operation capability, and each of the test circuit boards includes a buffer memory module, a memory interface controller, a test vector generator, and a transmission circuit. The buffer memory module is used for being electrically connected to the dynamic random access memory, and used for reading and storing a plurality of test vectors from the dynamic random access memory. The memory interface controller is connected to the buffer memory module, and the memory interface controller stores at least a read command for the buffer memory module to read the test vectors from the dynamic random access memory. The test vector generator is connected to the buffer memory module, and reads one of the plurality of test vectors from the buffer memory module according to the memory position in a test microinstruction, and generates the test vector from the read test vector. A test signal. The transmission circuit is connected to the test vector generator, and the transmission circuit is used to send a test control signal generated by the test vector generator, or to receive another test control signal and send it to the test vector generator.

根據上述本發明所揭露的測試裝置,藉由每一個測試電路板具有獨立運作能力,且都具有緩衝記憶體模組控制器及測試向量產生器,可實現依測試物之實際腳位機動性地改變測試裝置之測試電路板的數量即能達成產生對應於上述實際腳位的測試訊號。更且,當多個測試電路板群組化成一組測試電路時,由於該組測試電路中的每一個測試電路板都具有獨立的工作能力,使得測試電路群組存取數據、排程能力、產生測試訊號等工作效能亦可對應增加,有效解決習知測試裝置的運作能力限制於中央控制器效能的問題。According to the test device disclosed in the present invention, each test circuit board has an independent operation capability, and each has a buffer memory module controller and a test vector generator, which can realize the mobility according to the actual foot position of the test object. Changing the number of test circuit boards of the test device can achieve the generation of test signals corresponding to the above-mentioned actual pins. Moreover, when multiple test circuit boards are grouped into a set of test circuits, each test circuit board in the set of test circuits has an independent working capability, which makes the test circuit group access data, schedule, The work efficiency such as generating test signals can also be correspondingly increased, which effectively solves the problem that the operating capacity of the conventional test device is limited to the performance of the central controller.

以上之關於本揭露內容之說明及以下之實施方式之說明係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。The above description of the contents of this disclosure and the description of the following embodiments are used to demonstrate and explain the spirit and principle of the present invention, and provide a further explanation of the scope of the patent application of the present invention.

以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者了解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。以下之實施例係進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。The detailed features and advantages of the present invention are described in detail in the following embodiments. The content is sufficient for any person skilled in the art to understand and implement the technical contents of the present invention. Anyone skilled in the relevant art can easily understand the related objects and advantages of the present invention. The following examples further illustrate the viewpoints of the present invention in detail, but do not limit the scope of the present invention in any way.

請參照圖1,圖1係根據本發明一實施例所繪示之測試裝置的示意圖。如圖1所示,測試裝置具有多個測試電路板1,每一個測試電路板1具有接腳,例如接腳pin1~pin3。每一個測試電路板1的接腳pin1~pin3分別電性連接一個傳輸線。也就是說,每一個測試電路板1的接腳pin1電性連接於傳輸線tr1,每一個測試電路板1的接腳pin2電性連接於傳輸線tr2,每一個測試電路板1的接腳pin3電性連接於傳輸線tr3。傳輸線例如是纜線(cable)、背板上的走線(trace)或其他合適傳輸訊號的元件。多個測試電路板1藉由接腳pin1~pin3及傳輸線tr1~tr3來相互傳遞訊號,以同步產生測試訊號對測試物DUT進行測試。例如使用者可透過軟體方式預設該多個測試電路板1之一為主控板(master),而其他測試電路板1則預設為伺服板(server),藉此由主控板產生同步訊號透過接腳pin1~pin3及傳輸線tr1~tr3將訊號傳遞至各個伺服板,進而使所有測試電路板1同步產生測試訊號對測試物DUT進行測試。或者,亦可視需求僅以部分的測試電路板1同步產生測試訊號對測試物DUT進行測試,本實施例不予限制。Please refer to FIG. 1, which is a schematic diagram of a test device according to an embodiment of the present invention. As shown in FIG. 1, the test apparatus has a plurality of test circuit boards 1, and each test circuit board 1 has pins, such as pins pin1 to pin3. Pins 1 to 3 of each test circuit board 1 are electrically connected to a transmission line, respectively. That is, the pin 1 of each test circuit board 1 is electrically connected to the transmission line tr1, the pin 2 of each test circuit board 1 is electrically connected to the transmission line tr2, and the pin 3 of each test circuit board 1 is electrically Connected to transmission line tr3. The transmission line is, for example, a cable, a trace on the backplane, or other components suitable for transmitting signals. The plurality of test circuit boards 1 transmit signals to each other through pins pin1 to pin3 and transmission lines tr1 to tr3, so as to simultaneously generate test signals to test the test object DUT. For example, the user can preset one of the plurality of test circuit boards 1 as a master through software, and the other test circuit boards 1 are preset as server boards, so that the master control board generates synchronization. The signals are transmitted to each servo board through the pins pin1 to pin3 and the transmission lines tr1 to tr3, so that all the test circuit boards 1 generate test signals synchronously to test the test object DUT. Alternatively, only a part of the test circuit board 1 may be used to synchronously generate test signals to test the test object DUT according to requirements, which is not limited in this embodiment.

換言之,本實施例的每一個測試電路板1都具有獨立運作能力,可由外部的記憶體讀取數據並產生測試訊號至測試物DUT的功能。然而,當測試物DUT的應測腳位較多而需要對應產生多個測試訊號時,可藉由將多個測試電路板1以上述的接腳pin1~pin3及傳輸線tr1~tr3群組化成可同步運作的一組測試電路,即能夠在無需另提供具有更強大效能之中央控制電路板的前提下,對此類具有較多應測腳位的測試物DUT進行測試。此外,由於每一個測試電路板1都可獨立運作,故當多個測試電路板1被群組化以同步運作產生測試訊號時,其所構成的測試電路在存取數據、排程能力、產生測試訊號等工作效能上都能同時增強,解決習知測試裝置的運作能力受限於中央控制電路板之效能的問題。In other words, each test circuit board 1 in this embodiment has an independent operation capability, and functions of reading data from an external memory and generating a test signal to a test object DUT. However, when there are many pins to be tested in the test object DUT and multiple test signals need to be generated correspondingly, multiple test circuit boards 1 can be grouped into the pin 1 through pin 3 and the transmission lines tr 1 through tr 3 as described above. A set of test circuits that operate synchronously can test such DUTs with more pins to be tested without the need to provide a more powerful central control circuit board. In addition, since each test circuit board 1 can operate independently, when multiple test circuit boards 1 are grouped to operate synchronously to generate a test signal, the test circuit formed by the test circuit board 1 accesses data, schedules, and generates data. The test signal and other work efficiency can be enhanced at the same time, which solves the problem that the operating capability of the conventional test device is limited by the performance of the central control circuit board.

為實施上述測試裝置,本發明一實施例之測試電路板1係具有如圖2所繪示之架構。如圖2所示,測試裝置的每一個測試電路板1具有緩衝記憶體模組11、記憶體介面控制器13、測試向量產生器15及傳輸電路17,且每一個測試電路板1均連接至動態隨機存取記憶體2,以便依指令與動態隨機存取記憶體2互動運作。其中動態隨機存取記憶體2是測試電路板1以外的記憶體元件,例如是雙倍資料率同步動態隨機存取記憶體(Double Data Rate Synchronous Dynamic Random Access Memory,簡稱DDR SDRAM)、次世代的動態隨機存取記憶體(DDR2 DRAM、DDR3 DRAM或DDR4 DRAM等)或其他合適的動態隨機存取記憶體。動態隨機存取記憶體2中儲存使用者設計的測試向量,以供測試電路板1依據系統指令對動態隨機存取記憶體2的記憶體位址存取測試向量。To implement the above-mentioned test device, a test circuit board 1 according to an embodiment of the present invention has a structure as shown in FIG. 2. As shown in FIG. 2, each test circuit board 1 of the test device has a buffer memory module 11, a memory interface controller 13, a test vector generator 15, and a transmission circuit 17, and each test circuit board 1 is connected to The dynamic random access memory 2 is used to interact with the dynamic random access memory 2 according to instructions. Among them, the dynamic random access memory 2 is a memory component other than the test circuit board 1, such as a double data rate synchronous dynamic random access memory (DDR SDRAM), Dynamic random access memory (DDR2 DRAM, DDR3 DRAM or DDR4 DRAM, etc.) or other suitable dynamic random access memory. The dynamic random access memory 2 stores a test vector designed by a user, so that the test circuit board 1 accesses the test vector to the memory address of the dynamic random access memory 2 according to a system instruction.

測試電路板1的緩衝記憶體模組11用於依指令與外部的隨機存取記憶體2進行互動,且緩衝記憶體模組11至少包含緩衝記憶體111及記憶體控制器113。緩衝記憶體111例如是快取記憶體(cache memory)或是其他具有高存取速度的暫存記憶體;而記憶體控制器113係為連接於緩衝記憶體111、記憶體介面控制器13、測試向量產生器15及隨機存取記憶體2的讀取與寫入介面,記憶體控制器113係由一電路構成。記憶體控制器113係接收記憶體介面控制器13的讀取與寫入指令,並依據使用者預先撰寫於測試向量產生器15中的測試向量指令,從記憶體介面控制器13發出寫入命令至動態隨機存取記憶體2,或者將使用者設計的測試向量儲存於動態隨機存取記憶體2中。The buffer memory module 11 of the test circuit board 1 is configured to interact with the external random access memory 2 according to instructions. The buffer memory module 11 includes at least a buffer memory 111 and a memory controller 113. The buffer memory 111 is, for example, a cache memory or other temporary memory with high access speed; and the memory controller 113 is connected to the buffer memory 111, the memory interface controller 13, The reading and writing interface of the test vector generator 15 and the random access memory 2, the memory controller 113 is composed of a circuit. The memory controller 113 receives the read and write instructions from the memory interface controller 13 and issues a write command from the memory interface controller 13 according to the test vector instructions written in the test vector generator 15 by the user in advance. Go to the dynamic random access memory 2 or store the test vector designed by the user in the dynamic random access memory 2.

測試電路板1的記憶體介面控制器13係儲存測試電路板1可對動態隨機存取記憶體2執行的讀取與寫入指令,且在緩衝記憶體模組11必須將測試向量寫入動態隨機存取記憶體2或自動態隨機存取記憶體2讀取測試向量時,記憶體介面控制器13即提供讀取指令或寫入指令供執行上述作動。其中該記憶體介面控制器13係由一電路構成。The memory interface controller 13 of the test circuit board 1 stores the read and write instructions that the test circuit board 1 can execute on the dynamic random access memory 2 and the test vector must be written into the dynamic state in the buffer memory module 11 When the random access memory 2 or the test vector is read from the dynamic random access memory 2, the memory interface controller 13 provides a read instruction or a write instruction for performing the above-mentioned actions. The memory interface controller 13 is composed of a circuit.

測試電路板1的測試向量產生器15係於測試啟動時讀取緩衝記憶體11內儲存的測試向量,並據以產生測試物DUT的測試訊號,其中測試向量產生器15可由電路或微控制器(Micro Control Unit)構成,其包含測試微指令處理模組151及測試圖案資料處理模組153,而測試向量則包含測試微指令(例如表示應執行的命令群) 及測試圖案資料(例如表示邏輯值圖案)。測試向量產生器15可以依據緩衝記憶體模組11之緩衝記憶體111內儲存的測試向量進行測試微指令解碼,執行微指令的動作如重複(Repeat)、分支(Branch)等,以產生圖案資料,並進一步產生測試物DUT的測試訊號。詳言之,測試微指令處理模組151依序地執行上述的測試微指令,例如參照測試微指令中的記憶體位址要求緩衝記憶體模組11提供緩衝記憶體111中所暫存的測試向量,或要求記憶體控制器113進一步至動態隨機存取記憶體2讀取測試向量並儲存於緩衝記憶體111中,或者例如依照測試微指令要求測試圖案資料處理模組153運作。測試圖案資料處理模組153依據測試微指令處理模組151的指令執行測試微指令中的圖案資料處理模式,將測試圖案資料進行特定的處理演算法,產生測試物DUT的測試訊號。換言之,測試向量產生器15係執行測試向量中的測試微指令,依據測試微指令中所載之記憶體位址至緩衝記憶體模組11讀取執行測試微指令所需要的下一個測試向量,且依序將每個測試向量中的測試圖案資料傳送至測試圖案資料處理模組153,以生測試訊號。因此,在上述運作中並未包含習知CPU在執行程式時的編譯(compile)程序。The test vector generator 15 of the test circuit board 1 reads the test vectors stored in the buffer memory 11 when the test is started, and generates a test signal of the test object DUT accordingly. The test vector generator 15 may be a circuit or a microcontroller. (Micro Control Unit), which includes a test microinstruction processing module 151 and a test pattern data processing module 153, and the test vector includes a test microinstruction (such as a group of commands to be executed) and test pattern data (such as a logic Value pattern). The test vector generator 15 can decode test microinstructions according to the test vectors stored in the buffer memory 111 of the buffer memory module 11, and execute microinstruction actions such as Repeat, Branch, etc. to generate pattern data And further generate a test signal for the test object DUT. In detail, the test microinstruction processing module 151 sequentially executes the above test microinstructions, for example, referring to the memory address in the test microinstructions, the buffer memory module 11 is required to provide the test vectors temporarily stored in the buffer memory 111. Or, the memory controller 113 is further requested to read the test vector from the dynamic random access memory 2 and stored in the buffer memory 111, or for example, the test pattern data processing module 153 is required to operate according to the test microinstruction. The test pattern data processing module 153 executes the pattern data processing mode in the test microinstruction according to the instructions of the test microinstruction processing module 151, performs a specific processing algorithm on the test pattern data, and generates a test signal of the test object DUT. In other words, the test vector generator 15 executes the test microinstructions in the test vector, reads the next test vector required to execute the test microinstruction according to the memory address contained in the test microinstruction to the buffer memory module 11, and The test pattern data in each test vector is sequentially transmitted to the test pattern data processing module 153 to generate a test signal. Therefore, the above-mentioned operation does not include a compile program of the conventional CPU when executing the program.

詳言之,測試微指令之圖案資料處理模式係例如正常模式(Normal Function)圖案資料處理方式、掃描模式(SCAN Function) 圖案資料處理方式、邏輯圖案演算生成模式 (Algorithm Logic Pattern Generate, ALPG) 圖案資料處理方式、邏輯圖案緩衝模式(Data-Buffer) 圖案資料處理方式或其他圖案資料處理方式。舉例來說,當測試圖案資料處理方式係為正常模式時,可將設定測試輸出端點有效的利用每筆測試向量,具體說明每筆測試向量包含該電路板1的所有測試輸出端點。若該測試向量使用掃描模式時,則將該筆測試向量的所有圖案資料分次給設定的測試輸出端使用,換言之改測試向量會給予特殊的測試微指令重複命令。當測試圖案資料依據邏輯圖案演算生成模式,可使用特別的ALPG微指令,透過邏輯圖案演算生成測試物DUT的演算後測試訊號,此時測試訊號對記憶體元件進行測試具有較佳的測試效率。換言之,測試向量的測試微指令可以讓測試圖案資料生成專用的測試訊號種類。藉此,一種測試裝置就可以產生多種測試功能的測試訊號,來對不同種類或不同功能的測試物來進行測試,但不以此為限。In detail, the pattern data processing mode of the test microinstruction is, for example, a normal function pattern data processing method, a scan mode (SCAN Function) pattern data processing method, or an algorithm pattern generation algorithm (Algorithm Logic Pattern Generate, ALPG) pattern. Data processing method, logical pattern buffer mode (Data-Buffer) pattern data processing method or other pattern data processing method. For example, when the test pattern data processing method is the normal mode, the set test output endpoints can effectively use each test vector, and it is specifically stated that each test vector includes all test output endpoints of the circuit board 1. If the test vector uses the scan mode, all the pattern data of the test vector is divided and used for the set test output. In other words, changing the test vector will give a special test microinstruction repeat command. When the test pattern data is generated based on the logic pattern calculation mode, special ALPG micro instructions can be used to generate the test test signal of the test object DUT through the logic pattern calculation. At this time, the test signal has better test efficiency for testing the memory element. In other words, the test micro-instruction of the test vector allows the test pattern data to generate a dedicated test signal type. In this way, one test device can generate test signals with multiple test functions to test different types or different test objects, but not limited to this.

測試電路板1的傳輸電路17係用於連接前述之接腳pin1~pin3,以透過傳輸線tr1~tr3與其他測試電路板1互相傳遞訊息。詳言之,當測試電路板1做為主控板時,其係需要主動地提供測試相關控制訊號至其他測試電路板,則此一測試電路板1(主控板)的傳輸電路17會依據配置訊號從特定的接腳pin1~pin3輸出測試控制訊號至傳輸線tr1~tr3。反之,當測試電路板1做為伺服板時,則此一測試電路板1(伺服板)的傳輸電路17係被動地接收到傳輸線上的測試控制訊號,且每一個測試電路板1(伺服板)的傳輸電路17也會依據配置訊號決定要接收或忽略傳輸線tr1~tr3上的測試控制訊號。藉此,本發明之測試裝置的該多個測試電路板1即可以該測試控制訊號作為同步運作的啟動基準,使所有測試電路板1同步產生測試訊號對測試物DUT進行測試。The transmission circuit 17 of the test circuit board 1 is used to connect the aforementioned pins pin1 to pin3 to transmit messages to and from other test circuit boards 1 through the transmission lines tr1 to tr3. In detail, when the test circuit board 1 is used as the main control board, it needs to actively provide test-related control signals to other test circuit boards. The transmission circuit 17 of this test circuit board 1 (the main control board) will be based on The configuration signal outputs the test control signal from the specific pins pin1 to pin3 to the transmission lines tr1 to tr3. Conversely, when the test circuit board 1 is used as a servo board, the transmission circuit 17 of the test circuit board 1 (servo board) passively receives the test control signal on the transmission line, and each test circuit board 1 (servo board) The transmission circuit 17 may also decide to receive or ignore the test control signals on the transmission lines tr1 to tr3 according to the configuration signal. Therefore, the plurality of test circuit boards 1 of the test device of the present invention can use the test control signals as a starting reference for synchronous operation, so that all the test circuit boards 1 generate test signals synchronously to test the test object DUT.

在實際的操作測試裝置的過程中,在做為主控板的測試電路板1依據配置訊號以傳輸電路17輸出測試控制訊號時,或者在做為伺服板的測試電路板1依據配置訊號接收測試控制訊號時,測試電路板1的測試向量產生器15即必須取得動態隨機存取記憶體2中的測試向量,以便產生測試訊號。此時,測試向量產生器15即要求緩衝記憶體模組11快速地進行動態隨機存取記憶體2讀取,並將所使用到的記憶體區塊讀取至緩衝記憶體模組11的緩衝記憶體111中。藉此,當測試向量產生器15後續所需的測試向量已暫存於該緩衝記憶體111時,即無須由記憶體控制器113反覆自動態隨機存取記憶體2讀取該測試向量,故可有效提高測試向量產生器15讀取資料的速度,且亦可在執行測試微指令的迴圈指令時,提供資料再利用的機制。隨後,測試電路板1的測試向量產生器15由緩衝記憶體模組11的緩衝記憶體111接收了其中儲存的測試向量,並依據測試微指令提供的測試圖案資料產生測試訊號,其中測試向量產生器15中的測試微指令處理模組151及測試圖案資料處理模組153的運作方式係如前所述,故不再於此贅述。In the actual operation of the test device, when the test circuit board 1 serving as the main control board is configured to output the test control signal according to the configuration signal, or when the test circuit board 1 serving as the servo board receives the test according to the configuration signal When controlling the signals, the test vector generator 15 of the test circuit board 1 must obtain the test vectors in the dynamic random access memory 2 in order to generate the test signals. At this time, the test vector generator 15 requires the buffer memory module 11 to quickly read the dynamic random access memory 2 and read the used memory block to the buffer of the buffer memory module 11 In memory 111. Therefore, when the test vectors required by the test vector generator 15 are temporarily stored in the buffer memory 111, the memory controller 113 does not need to read the test vectors from the dynamic random access memory 2 repeatedly. The data reading speed of the test vector generator 15 can be effectively improved, and a mechanism for data reuse can also be provided when the loop instruction of the test microinstruction is executed. Subsequently, the test vector generator 15 of the test circuit board 1 receives the test vectors stored therein by the buffer memory 111 of the buffer memory module 11 and generates a test signal according to the test pattern data provided by the test microinstruction, wherein the test vector generates The operation modes of the test micro-instruction processing module 151 and the test pattern data processing module 153 in the processor 15 are as described above, so they are not repeated here.

請一併參照圖2與圖3,圖3係根據本發明另一實施例所繪示之測試向量產生器的功能方塊圖。如圖所示,相較於前一實施例的測試向量產生器15,此實施例的測試向量產生器35更具有先進先出記憶體353。換言之,測試向量產生器35係具有測試微指令處理模組351、先進先出記憶體353及測試圖案資料處理模組355。在測試向量產生器35運作時,測試微指令處理模組351將生成的測試向量暫存於先進先出記憶體353中,以藉由先進先出記憶體353的特色將測試微指令處理速度改變為測試圖案資料處理速度,再由先進先出記憶體353依序地將測試向量提供至測試圖案資料處理模組355。在圖示例中,測試圖案資料處理模組353可以先使測試向量經過多個演算路徑(例如圖3所示的4個演算路徑:第一演算路徑至第四演算路徑),使測試向量產生多種測試訊號。隨後,再以解多工器357依據測試微指令之演算選擇訊號,由上述的多種測試訊號之中擇一輸出,以對測試物DUT進行測試,但不以此為限。於其他實施例中,亦可以先由多個測試向量擇一執行,再將測試向量依據測試微指令與測試圖案資料生成測試訊號。於所屬技術領域具有通常知識者可以依據實際的需求及狀況來設計,本實施例不予限制。Please refer to FIG. 2 and FIG. 3 together. FIG. 3 is a functional block diagram of a test vector generator according to another embodiment of the present invention. As shown in the figure, compared with the test vector generator 15 of the previous embodiment, the test vector generator 35 of this embodiment has a first-in-first-out memory 353. In other words, the test vector generator 35 includes a test micro-instruction processing module 351, a first-in-first-out memory 353, and a test pattern data processing module 355. When the test vector generator 35 operates, the test microinstruction processing module 351 temporarily stores the generated test vector in the first-in-first-out memory 353 to change the processing speed of the test micro-instructions by using the characteristics of the first-in-first-out memory 353. In order to test the processing speed of the pattern data, the FIFO memory 353 sequentially provides the test vectors to the test pattern data processing module 355. In the example of the figure, the test pattern data processing module 353 may first pass the test vector through multiple calculation paths (for example, the four calculation paths shown in FIG. 3: the first calculation path to the fourth calculation path) to generate the test vector. Various test signals. Subsequently, the demultiplexer 357 selects a signal according to the calculation of the test microinstruction, and selects one of the above-mentioned multiple test signals for testing the DUT, but not limited to this. In other embodiments, one of a plurality of test vectors may be executed first, and then the test vector may be used to generate a test signal according to the test microinstruction and test pattern data. Those with ordinary knowledge in the technical field may design according to actual needs and conditions, and this embodiment is not limited.

接下來,請一併參考圖1及圖2。在實務上,記憶體控制器113從動態隨機存取記憶體2讀取每筆測試向量的速度,係較測試向量產生器15之測試微指令處理的速度為慢。因此,藉由本發明設置之緩衝記憶體模組11將讀取自該動態隨機存取記憶體2的測試向量儲存於緩衝記憶體111中,並透過記憶體控制器113從隨機存取記憶體2讀取測試向量的資料數量,以及以記憶體控制器113預先從動態隨機存取記憶體2讀取測試向量等方式,來因應測試向量產生器15讀取測試向量的速度。Next, please refer to FIG. 1 and FIG. 2 together. In practice, the speed at which the memory controller 113 reads each test vector from the dynamic random access memory 2 is slower than the processing speed of the test microinstructions of the test vector generator 15. Therefore, the test vector read from the dynamic random access memory 2 is stored in the buffer memory 111 by the buffer memory module 11 provided by the present invention, and is transferred from the random access memory 2 through the memory controller 113. The amount of data in the test vector is read, and the speed at which the test vector generator 15 reads the test vector is determined by the memory controller 113 reading the test vector from the dynamic random access memory 2 in advance.

詳言之,於一個實施例中,為因應記憶體控制器113由動態隨機存取記憶體2讀取測試向量並存入於緩衝記憶體111的速度,以及測試向量產生器15透過記憶體控制器113讀取緩衝記憶體111中的測試向量的速度之間所存在的落差,記憶體控制器113的記憶體存取資料寬度係採不對稱的設計。以緩衝記憶體模組11的記憶體存入資料寬度為讀取資料寬度的4倍為例,假設記憶體控制器113所讀取的資料寬度為512 位元,而測試向量產生器15所讀取的資料寬度為128 位元,則存入緩衝記憶體111需採用存入資料寬度512位元,而讀取緩衝記憶體111需採用讀取資料寬度128位元。藉此,利用動態隨機存取記憶體2的讀取時高資料寬度,可滿足測試向量產生器15所需的高速資料量需求,且有效縮短測試向量存入緩衝記憶體111的速度及讀取緩衝記憶體111中的測試向量的速度之間的落差。Specifically, in one embodiment, the speed at which the test controller reads the test vector from the dynamic random access memory 2 and stores it in the buffer memory 111 in accordance with the memory controller 113, and the test vector generator 15 controls the speed through the memory. There is a gap between the speed at which the processor 113 reads the test vectors in the buffer memory 111, and the memory access data width of the memory controller 113 is designed asymmetrically. Taking the width of the data stored in the buffer memory module 11 as 4 times the width of the read data as an example, it is assumed that the width of the data read by the memory controller 113 is 512 bits, and the width of the data read by the test vector generator 15 is The fetched data width is 128 bits, so the buffer memory 111 needs to use a data width of 512 bits, and the read buffer memory 111 needs to use a read data width of 128 bits. Thereby, by using the high data width when the dynamic random access memory 2 is read, the high-speed data amount required by the test vector generator 15 can be satisfied, and the speed and reading of the test vector into the buffer memory 111 can be effectively reduced. The difference between the speeds of the test vectors in the buffer memory 111 is buffered.

於另一個實施例中,透過記憶體控制器113預先從動態隨機存取記憶體2快速讀取一區塊測試向量區間的方式,來因應測試向量產生器15透過記憶體控制器113讀取緩衝記憶體111中的測試向量的速度。舉例來說,當測試向量產生器15測試啟動時,會對記憶體控制器113發出第一筆測試向量要求。此時,緩衝記憶體模組11會快速透過記憶體控制器13從動態隨機存取記憶體2讀取一區塊測試向量區間,並將此一區塊測試向量區間儲存於緩衝記憶體111中。接著,繼續預先讀取下一區塊測試向量區間。也就是說,當緩衝記憶體模組11快速透過記憶體控制器113從動態隨機存取記憶體2讀取測試向量後,緩衝記憶體模組11會依據所讀取的動態隨機存取記憶體2的記憶體位址,預測下一筆要從動態隨機存取記憶體2中讀取的測試向量。預測的測試向量會跟隨著讀取動態隨機存取記憶體2的記憶體位址儲存於緩衝記憶體111中,藉以讓緩衝記憶體模組11讀取動態隨機存取記憶體2的速度可以應對測試向量產生器15讀取測試向量的速度。In another embodiment, the memory controller 113 quickly reads a block of test vector intervals from the dynamic random access memory 2 in advance to respond to the test vector generator 15 reading the buffer through the memory controller 113. The speed of the test vector in the memory 111. For example, when the test of the test vector generator 15 is started, the first test vector request is issued to the memory controller 113. At this time, the buffer memory module 11 quickly reads a block test vector interval from the dynamic random access memory 2 through the memory controller 13 and stores the block test vector interval in the buffer memory 111. . Then, the test vector interval of the next block is read in advance. That is, after the buffer memory module 11 quickly reads the test vector from the dynamic random access memory 2 through the memory controller 113, the buffer memory module 11 will read the dynamic random access memory according to the read The memory address of 2 predicts the next test vector to be read from dynamic random access memory 2. The predicted test vector will be stored in the buffer memory 111 along with the memory address of the read dynamic random access memory 2 so that the speed of the buffer memory module 11 to read the dynamic random access memory 2 can meet the test. The speed at which the vector generator 15 reads the test vectors.

當測試電路板1同時應用以上述兩種實施例時,緩衝記憶體模組11例如透過記憶體控制器113從動態隨機存取記憶體2一次讀取4筆測試向量後,再依據這4筆測試向量讀取的動態隨機存取記憶體2的記憶體位址預測接下來的4筆測試向量,並將預測的4筆測試向量及4筆讀取動態隨機存取記憶體2的記憶體位址儲存於緩衝記憶體111中,藉以應對測試向量產生器15讀取測試向量的速度。When the test circuit board 1 is applied to the above two embodiments at the same time, the buffer memory module 11 reads four test vectors from the dynamic random access memory 2 at a time through the memory controller 113, and then according to the four tests The memory address of the dynamic random access memory 2 read by the test vector predicts the next four test vectors, and the predicted four test vectors and the memory address of the four read dynamic random access memory 2 are stored. The buffer memory 111 responds to the speed at which the test vector generator 15 reads the test vectors.

於再一個實施例中,當測試向量產生器15讀取緩衝記憶體111內儲存的測試向量,並由測試微指令處理模組151接著執行微指令的迴圈指令例如重複(repeat)指令,則測試微指令處理模組151須將該測試向量重複地傳至測試圖案資料處理模組153。此時,藉由再次利用緩衝記憶體111內儲存的測試向量的機制,可快速地將測試向量由緩衝記憶體111傳至測試圖案資料處理模組153,而無須再次由動態隨機存取記憶體2讀取此一測試向量。換言之,當測試向量產生器15從緩衝記憶體內儲存的測試向量取得的測試微指令為迴圈指令時,緩衝記憶體模組11會預測下一筆要從隨機存取記憶體2讀取的測試向量是否已經在緩衝記憶體111內。若為是,則繼續由緩衝記憶體111讀取測試向量予測試向量產生器15,因此可以快速且直接地從緩衝記憶體111讀取到既有的測試向量,以應對測試向量產生器15從緩衝記憶體111讀取測試向量的速度。In yet another embodiment, when the test vector generator 15 reads the test vectors stored in the buffer memory 111 and the test microinstruction processing module 151 then executes the microinstruction loop instructions such as the repeat instruction, then The test microinstruction processing module 151 must repeatedly transmit the test vector to the test pattern data processing module 153. At this time, by using the mechanism of the test vector stored in the buffer memory 111 again, the test vector can be quickly transferred from the buffer memory 111 to the test pattern data processing module 153 without the need for the dynamic random access memory again. 2 Read this test vector. In other words, when the test microinstruction obtained by the test vector generator 15 from the test vector stored in the buffer memory is a loop instruction, the buffer memory module 11 predicts the next test vector to be read from the random access memory 2 Whether it is already in the buffer memory 111. If yes, the test vector continues to be read from the buffer memory 111 to the test vector generator 15, so the existing test vectors can be quickly and directly read from the buffer memory 111 to deal with the test vector generator 15 from The speed at which the buffer memory 111 reads the test vectors.

上述資料再利用機制若結合前述緩衝記憶體模組11預先從動態隨機存取記憶體2快速讀取一區塊測試向量區間的方式結合,則當測試向量產生器15依據測試微指令執行迴圈指令時,記憶體控制器113會判斷緩衝記憶體111是否存在測試向量產生器15下一筆資料的位置。換言之,緩衝記憶體模組11不需要依據下一筆資料的位置從動態隨機存取記憶體2讀取下一區塊測試向量區間。If the above-mentioned data reuse mechanism is combined with the foregoing buffer memory module 11 to read a block of test vector intervals from the dynamic random access memory 2 in advance, the test vector generator 15 executes a loop according to the test microinstruction. When instructed, the memory controller 113 determines whether the buffer memory 111 has a position of the next piece of data in the test vector generator 15. In other words, the buffer memory module 11 does not need to read the next block test vector interval from the dynamic random access memory 2 according to the position of the next piece of data.

又,於另一個實施例中,測試向量產生器15依據測試微指令執行條件指令,從動態隨機存取記憶體2中讀取條件跳耀位址,且測試向量產生器15依據測試微指令所執行的條件指令的二個條件分支指令其中之一,讀取動態隨機存取記憶體2於條件跳耀位址的一區塊測試向量區間。換言之,當測試向量產生器15從緩衝記憶體111讀取測試向量時,測試向量產生器15會預測下一筆要從動態隨機存取記憶體2存取的測試向量為其中一個條件分支指令指示的條件跳耀位址。例如測試向量產生器15預測條件成立時,即要求記憶體控制器113預先從動態隨機存取記憶體2讀取條件成立時的測試向量並儲存於緩衝記憶體111中。當條件指令確實成立時,測試向量產生器15就可以快速地由緩衝記憶體111取得條件成立時所要讀取的測試向量。Also, in another embodiment, the test vector generator 15 executes the conditional instruction according to the test microinstruction, reads the conditional jump address from the dynamic random access memory 2, and the test vector generator 15 executes the conditional instruction according to the test microinstruction. One of the two conditional branch instructions of the executed conditional instruction reads a block test vector interval of the dynamic random access memory 2 at the conditional jump address. In other words, when the test vector generator 15 reads the test vector from the buffer memory 111, the test vector generator 15 predicts the next test vector to be accessed from the dynamic random access memory 2 as indicated by one of the conditional branch instructions. Conditional jump address. For example, when the test vector generator 15 predicts that the condition is satisfied, the memory controller 113 is required to read the test vector when the condition is satisfied from the dynamic random access memory 2 in advance and store the test vector in the buffer memory 111. When the condition instruction is true, the test vector generator 15 can quickly obtain the test vector to be read when the condition is satisfied from the buffer memory 111.

上述條件指令的執行機制若與前述緩衝記憶體模組11預先從動態隨機存取記憶體2快速讀取一區塊測試向量區間的方式結合,則當測試向量產生器15依據測試微指令執行條件指令的測試向量記憶體位址,以從動態隨機存取記憶體2中讀取位於第一測試向量位址的第一區塊測試向量區間時,測試向量產生器15就可以依據測試微指令執行條件指令成立時的條件分支指令,從動態隨機存取記憶體2讀取第二區塊測試向量區間,並與第一區塊測試向量區間一併儲存於緩衝記憶體111中。If the execution mechanism of the above-mentioned conditional instruction is combined with the manner in which the foregoing buffer memory module 11 reads a block of test vector intervals from the dynamic random access memory 2 in advance, when the test vector generator 15 executes the conditions according to the test microinstruction When the test vector memory address of the instruction is used to read the first block test vector interval located at the first test vector address from the dynamic random access memory 2, the test vector generator 15 may perform the test microinstruction execution condition. The conditional branch instruction when the instruction is established reads the second block test vector interval from the dynamic random access memory 2 and stores it in the buffer memory 111 together with the first block test vector interval.

綜合以上所述,本發明實施例提供一種每個測試電路板1均具有獨立運作能力,即每一個測試電路板1都能讀取動態隨機存取記憶體2所儲存的測試向量,並依測試向量產生測試訊號以送至測試物DUT。當多個測試電路板1彼此傳遞相關控制訊號而群組化成一組測試電路時,群組中的每一個測試電路板1的用於連接至測試物DUT的接腳均係此測試電路群組的測試接腳,藉以讓測試電路群組對測試物DUT進行同步測試的訊號數量增加。再者,由於每一個測試電路板都具有獨立的工作能力,當多個測試電路板被群組化來共同運作產生測試訊號時,測試電路群組存取數據、排程能力、產生測試訊號等工作效能都能同時增強。因此,當測試物DUT有所改變而需要更多的測試接腳時,藉由本發明之測試裝置,僅需要另增額外的測試電路板1並以軟體方式將此額外測試電路板與原始的測試電路群組化,即可與原始的測試電路同步產生測試訊號。因此,本發明之測試裝置及其測試電路板1能夠有效解決習知測試裝置產生測試訊號的運作能力受限於中央控制電路板的效能的問題,也不需要針對不同的測試物DUT進行任何硬體上的改變。To sum up, the embodiment of the present invention provides an independent operation capability of each test circuit board 1, that is, each test circuit board 1 can read the test vectors stored in the dynamic random access memory 2 and perform test according to the test. The vector generates a test signal to send to the test object DUT. When multiple test circuit boards 1 pass related control signals to each other and are grouped into a group of test circuits, the pins of each test circuit board 1 in the group for connecting to the test object DUT belong to this test circuit group. The number of signals for the test circuit group to perform a synchronous test on the DUT under test increases. Furthermore, since each test circuit board has independent working capabilities, when multiple test circuit boards are grouped to work together to generate test signals, the test circuit group accesses data, schedules capabilities, generates test signals, etc. Work efficiency can be enhanced at the same time. Therefore, when the test object DUT is changed and more test pins are required, with the test device of the present invention, it is only necessary to add an additional test circuit board 1 and software to compare the additional test circuit board with the original test. By grouping the circuits, a test signal can be generated synchronously with the original test circuit. Therefore, the test device and the test circuit board 1 of the present invention can effectively solve the problem that the operating ability of the conventional test device to generate test signals is limited by the performance of the central control circuit board, and it is not necessary to perform any hardening for different test objects DUT Physical change.

雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神及範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。Although the present invention is disclosed in the foregoing embodiments, it is not intended to limit the present invention. Changes and modifications made without departing from the spirit and scope of the present invention belong to the patent protection scope of the present invention. For the protection scope defined by the present invention, please refer to the attached patent application scope.

1 測試電路板 11 緩衝記憶體模組 111 緩衝記憶體 113 記憶體控制器 13 記憶體介面控制器 15 測試向量產生器 151 測試微指令處理模組 153 測試圖案資料處理模組 17 傳輸電路 2 動態隨機存取記憶體 35 測試向量產生器 351 測試微指令處理模組 353 先進先出記憶體 355 測試圖案資料處理模組 357 解多工器 DUT 測試物 pin1~pin3 接腳 tr1~tr3 傳輸線1 Test circuit board 11 Buffer memory module 111 Buffer memory 113 Memory controller 13 Memory interface controller 15 Test vector generator 151 Test micro-instruction processing module 153 Test pattern data processing module 17 Transmission circuit 2 Dynamic random Access memory 35 Test vector generator 351 Test micro-instruction processing module 353 FIFO memory 355 Test pattern data processing module 357 Demultiplexer DUT Test object pin1 ~ pin3 pins tr1 ~ tr3 transmission line

圖1係根據本發明一實施例所繪示之測試裝置的示意圖。 圖2係根據本發明一實施例所繪示之測試電路板的功能方塊圖。 圖3係根據本發明另一實施例所繪示之測試向量產生器的功能方塊圖。FIG. 1 is a schematic diagram of a testing device according to an embodiment of the present invention. FIG. 2 is a functional block diagram of a test circuit board according to an embodiment of the present invention. FIG. 3 is a functional block diagram of a test vector generator according to another embodiment of the present invention.

Claims (6)

一種測試裝置,包含複數個測試電路板,每一測試電路板均用於連接一動態隨機存取記憶體,以讀取該動態隨機存取記憶體中的測試向量並產生測試訊號,其中每一該測試電路板均具有獨立運作能力,且每一該測試電路板包含:一緩衝記憶體模組,用於電性連接至該動態隨機存取記憶體,並用於自該動態隨機存取記憶體讀取並儲存多個測試向量;一記憶體介面控制器,連接該緩衝記憶體模組,且該記憶體介面控制器至少儲存讀取指令,以供該緩衝記憶體模組從該動態隨機存取記憶體讀取該些測試向量;一測試向量產生器,連接該緩衝記憶體模組,且依據一測試微指令中的記憶體位置自該緩衝記憶體模組讀取該多個測試向量之一,並以該讀取的測試向量產生一測試訊號;及一傳輸電路,連接該測試向量產生器,且該傳輸電路用於發送該測試向量產生器所產生的一測試控制訊號,或用於接收另一測試控制訊號並傳送至該測試向量產生器;其中該多個測試電路板之一為一主控板,該多個測試電路板的其餘者為至少一伺服板,該主控板的傳輸電路發送一測試控制訊號,該至少一伺服板的傳輸電路接收該測試控制訊號,其中該測試控制訊號係作為該多個測試電路板的同步運作啟動基準。A test device includes a plurality of test circuit boards, and each test circuit board is used to connect a dynamic random access memory to read a test vector in the dynamic random access memory and generate a test signal, each of which Each of the test circuit boards has an independent operation capability, and each of the test circuit boards includes: a buffer memory module for electrically connecting to the dynamic random access memory and for using the dynamic random access memory Read and store multiple test vectors; a memory interface controller connected to the buffer memory module, and the memory interface controller stores at least a read command for the buffer memory module to randomly store from the dynamic memory; Fetch memory to read the test vectors; a test vector generator connected to the buffer memory module, and reading the plurality of test vectors from the buffer memory module according to the memory position in a test microinstruction A test signal is generated from the read test vector; and a transmission circuit is connected to the test vector generator, and the transmission circuit is used to send the test vector to generate A test control signal generated or used to receive another test control signal and send it to the test vector generator; wherein one of the plurality of test circuit boards is a main control board, and the rest of the plurality of test circuit boards For at least one servo board, the transmission circuit of the main control board sends a test control signal, and the transmission circuit of the at least one servo board receives the test control signal, wherein the test control signal is started as a synchronous operation of the plurality of test circuit boards Benchmark. 如請求項1所述之測試裝置,其中該測試微指令係預先寫入於該測試向量產生器中,或者係包含於該讀取的測試向量中。The test device according to claim 1, wherein the test microinstruction is written in the test vector generator in advance, or is contained in the read test vector. 如請求項2所述之測試裝置,其中該測試向量產生器包含一測試微指令處理模組及一測試圖案資料處理模組,該測試向量另包含一測試圖案資料,該測試微指令處理模組係執行該測試微指令以讀取該緩衝記憶體模組中的測試向量並控制該測試圖案資料處理模組,該測試圖案資料處理模組依據該測試微指令對該測試圖案資料執行一演算法,以產生該測試訊號。The test device according to claim 2, wherein the test vector generator includes a test microinstruction processing module and a test pattern data processing module, the test vector further includes a test pattern data, and the test microinstruction processing module It executes the test microinstruction to read the test vector in the buffer memory module and controls the test pattern data processing module. The test pattern data processing module executes an algorithm on the test pattern data according to the test microinstruction. To generate the test signal. 如請求項1所述之測試裝置,其中該緩衝記憶體模組的讀取資料寬度大於該測試向量產生器的讀取資料寬度。The test device according to claim 1, wherein the read data width of the buffer memory module is greater than the read data width of the test vector generator. 如請求項1所述之測試裝置,其中該測試向量產生器包含依序連接的一測試微指令處理模組、一先進先出記憶體及一測試圖案資料處理模組,該測試向量另包含一測試圖案資料,該測試微指令處理模組係執行該測試微指令以讀取該緩衝記憶體模組中的測試向量並儲存於該先進先出記憶體,該先進先出記憶體依序地將所儲存的測試向量提供至該測試圖案資料處理模組,該測試圖案資料處理模組依據該測試微指令對該測試圖案資料執行多種演算法,以產生包含該測試訊號的多個測試訊號。The test device according to claim 1, wherein the test vector generator includes a test microinstruction processing module, a first-in-first-out memory, and a test pattern data processing module connected in sequence. The test vector further includes a Test pattern data. The test microinstruction processing module executes the test microinstruction to read the test vector in the buffer memory module and stores the test vector in the FIFO memory. The FIFO memory sequentially stores The stored test vector is provided to the test pattern data processing module, and the test pattern data processing module executes various algorithms on the test pattern data according to the test microinstruction to generate a plurality of test signals including the test signal. 如請求項5所述之測試裝置,其中該測試向量產生器更包含一解多工器,該解多工器連接該測試圖案資料處理模組,且該解多工器依據該測試微指令的一演算選擇訊號,由該多個測試訊號之中擇一輸出。The test device according to claim 5, wherein the test vector generator further includes a demultiplexer, the demultiplexer is connected to the test pattern data processing module, and the demultiplexer is based on the test microinstruction. A calculation selects a signal and outputs one of the plurality of test signals.
TW106134807A 2017-10-11 2017-10-11 Test apparatus and testing circuit board thereof TWI661208B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106134807A TWI661208B (en) 2017-10-11 2017-10-11 Test apparatus and testing circuit board thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106134807A TWI661208B (en) 2017-10-11 2017-10-11 Test apparatus and testing circuit board thereof

Publications (2)

Publication Number Publication Date
TW201915505A TW201915505A (en) 2019-04-16
TWI661208B true TWI661208B (en) 2019-06-01

Family

ID=66991757

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106134807A TWI661208B (en) 2017-10-11 2017-10-11 Test apparatus and testing circuit board thereof

Country Status (1)

Country Link
TW (1) TWI661208B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040019839A1 (en) * 2002-07-26 2004-01-29 Krech Alan S. Reconstruction of non-deterministic algorithmic tester stimulus used as input to a device under test
TW589461B (en) * 2001-11-01 2004-06-01 Agilent Technologies Inc Apparatus and method for testing circuits and programming integrated circuit devices
US20040268199A1 (en) * 2003-06-26 2004-12-30 Brian Phelps Method for testing non-deterministic device data
TW200921130A (en) * 2007-10-30 2009-05-16 Teradyne Inc Protocol aware digital channel apparatus
TW201525487A (en) * 2013-12-31 2015-07-01 Chroma Ate Inc Multi-interface signal switching board for use in integrated circuit testing machine table

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW589461B (en) * 2001-11-01 2004-06-01 Agilent Technologies Inc Apparatus and method for testing circuits and programming integrated circuit devices
US20040019839A1 (en) * 2002-07-26 2004-01-29 Krech Alan S. Reconstruction of non-deterministic algorithmic tester stimulus used as input to a device under test
US20040268199A1 (en) * 2003-06-26 2004-12-30 Brian Phelps Method for testing non-deterministic device data
TW200921130A (en) * 2007-10-30 2009-05-16 Teradyne Inc Protocol aware digital channel apparatus
TW201525487A (en) * 2013-12-31 2015-07-01 Chroma Ate Inc Multi-interface signal switching board for use in integrated circuit testing machine table

Also Published As

Publication number Publication date
TW201915505A (en) 2019-04-16

Similar Documents

Publication Publication Date Title
KR101758175B1 (en) Robust memory link testing using memory controller
JP5125028B2 (en) Integrated circuit
JP4156726B2 (en) High speed pattern generation method and apparatus, and memory test apparatus
US20070038795A1 (en) Asynchronous bus interface and processing method thereof
KR101295655B1 (en) Test apparatus and test method
US7149944B2 (en) Semiconductor integrated circuit device equipped with read sequencer and write sequencer
US20080086666A1 (en) Analyzer
TWI661208B (en) Test apparatus and testing circuit board thereof
US10288685B2 (en) Multi-bank digital stimulus response in a single field programmable gate array
CN113867803A (en) Memory initialization device and method and computer system
US6405321B1 (en) Data processing apparatus and testing method
CN109655643B (en) Testing device and testing circuit board thereof
JPH11282709A (en) In-circuit emulator
JP7202225B2 (en) Semiconductor device and debug system
US9645818B2 (en) Information processing apparatus and control method of information processing apparatus
JP3481689B2 (en) Semiconductor test equipment
JP2020140380A (en) Semiconductor device and debugging system
KR20150007514A (en) Semiconductor device and method of control the same
JP5850732B2 (en) Semiconductor device and control method thereof
JPH1011314A (en) Data trace device
KR20110003046A (en) Semiconductor memory device
KR20080026226A (en) Multi-port memory device and method for testing multi-port memory device
KR20080034061A (en) System on chip for real operation speed testing and test method thereof
JP2006039843A (en) Ram test circuit, information processing apparatus, and ram testing method
JP2009009201A (en) Debugging device