TW201909226A - 用於產生游離輻射的微型源、包含複數個源的總成、以及用於製造該源的製程 - Google Patents

用於產生游離輻射的微型源、包含複數個源的總成、以及用於製造該源的製程 Download PDF

Info

Publication number
TW201909226A
TW201909226A TW107123868A TW107123868A TW201909226A TW 201909226 A TW201909226 A TW 201909226A TW 107123868 A TW107123868 A TW 107123868A TW 107123868 A TW107123868 A TW 107123868A TW 201909226 A TW201909226 A TW 201909226A
Authority
TW
Taiwan
Prior art keywords
source
patent application
cathode
item
scope
Prior art date
Application number
TW107123868A
Other languages
English (en)
Other versions
TWI783006B (zh
Inventor
帕斯卡 波納德
Original Assignee
法商達樂股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法商達樂股份有限公司 filed Critical 法商達樂股份有限公司
Publication of TW201909226A publication Critical patent/TW201909226A/zh
Application granted granted Critical
Publication of TWI783006B publication Critical patent/TWI783006B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/065Field emission, photo emission or secondary emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/066Details of electron optical components, e.g. cathode cups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • H01J35/147Spot size control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • H01J35/153Spot position control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/12Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/02Electrical arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • X-Ray Techniques (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本發明係關於用於產生游離輻射且,更明確地,x射線的微型源、關於包含複數個源的總成、以及關於用於製造該源的製程。用於產生游離輻射之源,包含:   · 真空室(12);   · 陰極(14),其能發射電子束(18)進入該真空室(12)中;   · 陽極(16),其接收該電子束(18)且其包含能夠從自該電子束(18)接收的能量產生游離輻射(22)之靶材(20);以及   · 電極(24),其被置於該陰極(14)鄰近處且形成未乃耳特。   根據本發明,該電極(24)是由黏附至介電質之凹面(26)的導電表面所形成。

Description

用於產生游離輻射的微型源、包含複數個源的總成、以及用於製造該源的製程
本發明係關於用於產生游離輻射且,更明確地,x射線的微型源、關於包含複數個源的總成、以及關於用於製造該源的製程。
當下X射線具有許多用途,特別係在成像及放射治療方面。在業界,特別係在醫療領域,廣為採用X射線成像以執行非破壞性檢驗,以及在保全領域係用以偵測危險物質或物件。   來自X射線的影像之產生已進步不少。原本僅使用光敏薄膜。此後,出現數位偵測器。當結合軟體套件時,此等偵測器允許得以藉由掃描器之機構快速重建二維或三維影像。   相比之下,自從Röntgen於1895年發現X射線,X射線產生器之改變極小。同步加速器,其於第二次世界大戰之後出現,允許產生強及集中的發射。該發射係由帶電粒子之加速或減速所引起,該帶電粒子可選地在磁場中移動。   線性加速器及X射線管實作轟擊靶材之加速的電子束。由靶材的核(nuclei)的電場引起的電子束之減速允許產生制動輻射(bremsstrahlung)X射線。   X射線管一般由波封(envelope)組成,在該波封中產生真空。該波封係由金屬結構及一般由氧化鋁(alumina)或玻璃製成之電性絕緣體所形成。兩電極被置於此波封中。偏壓至負電位之陰極電極係配有電子發射器。相對於該第一電極偏壓至正電位之陽極第二電極係與靶材結合。透過兩電極間之電位差而加速之電子在衝擊靶材時透過減速(制動輻射)而產生連續譜的游離輻射。金屬電極係具有適當大尺寸的及具有大的曲率半徑,以為了最小化表面上之電場。   取決於X射線管之功率,後者可配有固定陽極或旋轉陽極,以使其可以擴散熱功率。固定陽極管具有幾千瓦之功率且更明確係用於低功率醫療、安全與工業應用中。旋轉陽極管可超越100千瓦且可主要採用於醫療領域中,用於需要高X射線通量之成像,以允許改善對比度。作為實例,工業管之直徑在450 kV約為150 mm,在220 kV約為100 mm,以及在160 kV約為80 mm。所示電壓對應於施加於兩電極間之電位差。針對醫療旋轉陽極管,取決於在陽極上消散的功率該直徑為150至300 mm不等。   因此已知X射線管之維度保持係大的,約為幾百毫米。成像系統已經歷具有越來越迅速及高性能3-D重建軟體套件之數位偵測器的出現,而X射線管技術卻實質上維持不變達一世紀之久,因此這對X射線成像系統而言為大的技術限制。   若干因素是將當前X射線管小型化之障礙。   電性絕緣體之維度必需是夠大的以確保相對於30 kV至300 kV之高電壓的優良電性絕緣。燒結氧化鋁,其通常用以製造此等絕緣體,典型上具有約18 MV/m之介電強度。   該金屬電極之曲率半徑必需不能太小,以將施加到表面之靜電場保持在可接受限制以下,典型上25 MV/m。由上,經由穿隧效應發射寄生電子變得難以控制並且導致壁面之加熱,導致不期望X射線之發射以及導致微放電。因此在高電壓處,諸如在X射線管中所遭遇的,陰極電極之維度為大的以限制電子之寄生發射。   熱離子陰極通常被用於習知管中。此類型陰極之維度及其操作溫度,典型上在1000℃以上,導致膨脹問題及導致諸如鋇等導電元素之蒸發。這使得接觸介電絕緣體的此類陰極之小型化及整合困難。   在介電質(氧化鋁或玻璃)表面上發生與庫侖交互作用(coulomb interaction)相關之表面電荷效應,該介電質被使用於當此表面在電子束鄰近處時。為避免電子束與介電質表面接近,使用置於介電質前部之金屬屏形成靜電遮蔽或者增加電子束與介電質之間的距離。該屏之存在或者此增加之距離亦趨向於增加X射線管之維度。   形成靶材之陽極必需消散高熱功率。可使用傳熱液之流動或透過製造大尺寸之旋轉陽極來實現此消散。對此消散之需求亦需要將X射線管之維度增加。   在新興技術解決方案之間,該文獻描述在X射線管結構中使用碳奈米管為基冷陰極,但當前提出之解決方案仍維持著根據實作包圍冷陰極之金屬未乃耳特的習知X射線管結構。此未乃耳特是提升到高電壓之電極,且在限制電子之寄生發射方面,總是受限於嚴峻的維度限制條件。
本發明標的在於透過提供游離輻射源,舉例而言其採取高電壓三極體或二極體之形式,其中該源之維度遠小於習知X射線管之維度,來減輕所有或若干上述問題。產生游離輻射之機制維持類似於在已知管中所實作者,亦即轟擊靶材之電子束。電子束在陰極與陽極之間加速,在該陰極與陽極之間施加例如高於100 kV之電位差。針對給定電位差,本發明允許根據本發明的源之維度得以相對於已知管而實質上減少。   為達成此目標,本發明允許放鬆對陰極電極或未乃耳特表面處的電場層級之嚴峻限制條件。上述限制條件係相關於電極與室中存在的真空之間的界面之金屬性質,該電子束通過該室而傳播。本發明主要包括:將電極之金屬/真空界面替換成介電質/真空界面,該介電質/真空界面不會允許經由穿隧效應發生電子之寄生發射。因此可以接受比使用金屬/真空界面可接受者更高的電場。初始內部試驗已顯示可以實現高於30 MV/m的靜態場而無電子之寄生發射。可舉例而言透過將該金屬電極替換成由介電質組成的電極以獲得此介電質/真空界面,該經替換的電極之外部表面受到電場的作用,該替換成的電極之表面受到電場的作用以及其內部表面經塗佈有完全黏附的導電沉積物,並且執行靜電未乃耳特功能(electrostatic wehnelt function)。亦可以使用介電質覆蓋受電場作用的金屬電極之外部表面,以為了將已知電極之金屬/真空界面替換成介電質/真空界面,其中電場為高。此配置明確而言允許在其下不會發生電子之寄生發射的最大電場得以增加。   可允許電場之增加允許X射線源,且更一般而言游離輻射源,被小型化。   更精確地,本發明一標的係用於產生游離輻射之源,其包含:   · 真空室;   · 陰極,其能發射電子束進入該真空室中;   · 陽極,其接收該電子束且其包含能夠從自該電子束接收的能量產生游離輻射之靶材;以及   · 電極,其被置於該陰極鄰近處且形成未乃耳特,   其中,該電極是由黏附至介電質之凹面的導電表面所形成。   較佳的是,源包含由介電質製成之機械部,且其包含凹面。   較佳的是,導電表面是由置於該凹面上的金屬沉積物形成的。   較佳的是,機械部包含具有在1×109 Ω∙平方與1×1013 Ω∙平方之間的表面電阻率之內部面。   較佳的是,介電質是由氮化物基陶瓷形成。   可透過沉積半導體於機械部之介電質上來獲得內部面之表面電阻率。替代地,可透過對氮化物為基陶瓷之體積增加會使得氮化物為基陶瓷固有電阻率(intrinsic resistivity)降低之物質,來獲得內部面之表面電阻率。   較佳的是,陰極經由場效發射電子束,且其中電極被設置成與該陰極接觸。   較佳的是,機械部形成陰極之固持器。   較佳的是,機械部形成真空室之部分。   較佳的是,機械部形成陽極之固持器。   較佳的是,機械部包含內部截頭圓錐形狀之外部表面。源包含固持器,其外部截頭圓錐形狀表面與內部截頭圓錐形狀之外部表面互補,且至少一高電壓接觸件供電該陰極。接觸件及截頭圓錐形狀之表面形成源的高電壓連接器。   較佳的是,源包含置於固持器之截頭圓錐形狀表面與機械部之截頭圓錐形狀表面之間的柔軟接頭。固持器之截頭圓錐形狀表面在頂點處具有比機械部之截頭圓錐形狀表面角度更大的角度。高電壓連接器經組態以令位於兩個截頭圓錐形狀表面之間的空氣可從高電壓連接器內部逸出進入不受由連接器傳輸的高電壓所產生的電場作用之空腔中。   較佳的是,機械部包含外部截頭圓錐形狀之外部表面。固持器包含與外部截頭圓錐形狀的外部表面互補之內部截頭圓錐形狀表面。   較佳的是,陽極是可密封地固定至機械部。   較佳的是,介電質具有高於30 MV/m之介電強度。   本發明之另一標的係用於產生游離輻射之總成,其包含:   · 複數個源,其並列及固定於該總成中;以及   · 驅動模組,其經組態以預設序列切換此等源之各者。   較佳的是,在包含複數個源之總成中,機械部是對所有源為共用的。   該等源可對準於穿過各陰極之軸。接著,電極較佳地對各源為共用的。   所有源之陽極較佳地為共用的。   本發明之另一標的為製造源之製程,包含透過沿著電子束之軸在一方面平移陽極且在另一方面平移陰極來與機械部組裝,由凹面形成之空腔係由阻塞器封閉。
圖1以橫截面圖顯示X射線產生源10。源10包含真空室12,在該源中置有陰極14及陽極16。陰極14目的在於朝陽極16之方向發射電子束18進入室12中。陽極16包含靶材20,該靶材被電子束18轟擊以及取決於電子束18之能量而發射X射線22。電子束18係繞通過陰極14與陽極16之軸19而產生。   X射線產生管習知係採用在高溫操作之熱離子陰極,該高溫典型上約1000℃。此類型的陰極一般被稱作熱陰極。此類型之陰極係由發射電子通量的金屬或金屬氧化物矩陣所組成,該電子通量之射出係由於高溫所引起的原子振動所導致。然而,熱陰極受限於複數個缺點,諸如用以控制之電流的緩慢動態響應、與熱製程之時間常數相關、以及諸如為了控制電流而需要使用位於陰極與陽極之間的柵極(grid)並且將其偏壓至高電壓。因此,此等柵極被置於具有極高電場之區,且其亦承受約1000℃之高操作溫度。所有此等限制條件將大幅限制有關整合之選項且導致具有大尺寸之電子槍。   近期已研發出採用場放射機制之陰極。此等陰極在室溫下操作且一般被稱作冷陰極。其大部分而言是由設有起伏結構之導電平面表面組成,在該起伏結構上集中電場。此等起伏結構在其尖端的電場足夠高時發射電子。該起伏發射器可由碳奈米管形成。舉例而言,此等發射器被描述於公開號為WO 2006/063982 A1且以申請人名義提出申請之專利公開案中。冷陰極不具有熱陰極之缺點且除此之外還更微型。在所示實例中,陰極14係冷陰極且因此經由場效而發射電子束18。圖1中未示出控制陰極14之機構。可電性或光學地控制該陰極,如亦在文件WO 2006/063982 A1中所述者。   受陰極14與陽極16之間電位差之影響,電子束18經加速並衝擊靶材20,該靶材舉例而言包含膜片(membrane) 20a,該膜片舉例而言是由鑽石或鈹製成且塗佈有薄層20b,該薄層由基於高原子序的材料,諸如特別是鎢或鉬,之合金製成。舉例而言取決於電子束18之能量,層20b可具有包含在1與12 µm之間的可變厚度。電子束18的電子與薄層20b的材料之間的交互作用會允許產生X射線22,其中該電子束的電子經加速到高速。在所示實例中,靶材20較佳地形成真空室12之窗口。換言之,靶材20形成真空室12之壁面的部分。該配置尤其係針對操作傳輸的靶材實作。就此配置而言,膜片20a係由低原子序的物質所形成,諸如鑽石或鈹,這是針對其對X射線22之透明性。膜片20a經組態以,連同陽極16,確保室12之真空緊密度。   替代地,靶材20,或至少由高原子序合金製成的層,可被完全置於真空室12內部,X射線接著透過穿過形成真空室12壁面部分之窗口而從室12離開。此配置尤其係針對操作反射的靶材實作。靶材接著自窗口分離。在其中產生X射線之層可能是厚的。靶材可為固定的或為可旋轉,以允許在與將被擴散的束18之電子交互作用期間產生熱功率。   源10包含:電極24,其被置於該陰極14鄰近處且其允許該電子束18集中。電極24形成未乃耳特。本發明較佳地使用所謂的冷陰極來實作。重要的是能經由場效發射電子束之陰極。舉例而言,此類型的陰極被描述於以申請人名義提出申請的文件WO 2006/063982 A1中。在冷陰極之情況下,電極24經設置成接觸陰極14。機械部28較佳地形成陰極14之固持器。電極24是由置於介電質之凹面26上的連續導電區域所形成。介電質之凹面26形成面向陽極16的電極24之凸面。為執行未乃耳特功能,電極24具有基本上是凸起的形狀。面26凹部之外部係定向朝向陽極16。局部地,在陰極14與電極接觸處,電極24之凸度(convexity)可為零或些微倒置的。   是在電極24之此凸面上發展出高電場。在先前技藝中,金屬-真空界面存在於電極之此凸面上。因此,受真空室內部中電場之影響下,此界面可以是發射電子之處。將此電極與室中真空之界面移除並替換成介電質/真空界面。由於介電質沒有包含自由電荷,因此介電質不會是持續發射電子之處。   重要的是避免形成充滿空氣或真空的空腔於電極24與介電質之凹面26之間。更明確地,在電極24與介電質之不確定接觸的情況下,界面處之電場可能被非常高度放大且可能發生電子發射或可能在此處形成電漿。就此緣故,源10包含由介電質製成之機械部28。機械部28之該等面之一為凹面26。在此情況下,電極24係由導電體沉積物構成,其完全黏附到凹面26。可採用各種技術以產生此沉積物,該等技術諸如特別係物理氣相沉積(PVD)、或可選地係電漿加強(PECVD)的化學氣相沉積(CVD)。   替代地,可以產生位於塊狀金屬電極表面上的介電質沉積物。介電質沉積物,其黏附到塊狀金屬電極,再次允許在電極/介電質界面處避免充滿空氣或真空的空腔。此介電質沉積物經選擇以承受高電場,特別係高於30 MV/m,以及經選擇以具備與塊狀金屬電極的潛在熱膨脹相容之足夠柔軟性。然而,該倒置配置,實作在由介電質製成塊狀部分的內部面上導電體之沉積,有其他優勢,明確而言具有允許機械部28得以被使用以執行其他功能之優勢。   更精確地,機械部28可形成真空室12之部分。此真空室之部分可甚至係真空室12之顯著部分。在所示實例中,機械部28在一方面形成陰極14之固持器,且在另一方面形成陽極16之固持器。機械部28確保陽極16與陰極電極24之間的電性絕緣。   有關機械部28之製造方面,僅使用習知介電質,諸如舉例而言燒結氧化鋁,就可以避免任何金屬/真空界面。然而,此類型物質之介電強度,約為18 MV/m,仍限制源10之小型化。為了進一步小型化源10,選擇具備高於20 MV/m且較佳地高於30 MV/m之介電強度的介電質。舉例而言,該介電強度之值在包含20及200℃之間的溫度範圍下係維持在30 MV/m以上。複合氮化物陶瓷允許達成此標準。內部試驗已顯示此種性質之一種陶瓷甚至允許超越60 MV/m。   在源10之小型化方面,當建立電子束18時,表面電荷可能累積於真空室12之內部面30上,且更明確地累積在機械部28之內部面上。將此等電荷排出係有用的,且就此緣故內部面30具有在室溫下測量為在1×109 Ω∙平方與1×1013 Ω∙平方之間的表面電阻率,且該表面電阻率典型上在1×1011 Ω∙平方附近。可透過將與介電質相容的導電體或半導體添加到介電質之表面上而獲得此類電阻率。透過半導體,例如可以將矽沉積於內部面30上。例如針對氮化物為基陶瓷而言,為獲得正確的電阻率範圍,可以透過對其添加些許百分比(典型上少於10%)之氮化鈦粉末或諸如碳化矽SiC等半導體以調整其本質特性,該氮化鈦以其低電阻率(約4×10-3 Ω.m)而聞名。   可以將氮化鈦散布於介電質體積中以便橫跨整個機械部28之材料獲得一致電阻率。替代地,可以透過經由溫度在1500℃以上之高溫度熱處理而從內部面30擴散氮化鈦以獲得電阻率梯度。   源10包含阻塞器32,該阻塞器確保該真空室12之密封性。該機械部28包含其中置有該陰極14之空腔34。該空腔34係透過凹面26而界定。該阻塞器32封閉該空腔34。該電極24包含沿著軸19而相離之兩端部36及38。該第一端部36與該陰極14接觸且與其保持電性連續性。該第二端部38相對於該第一端部。該機械部28包含繞束18之軸19放置的具有圓形橫截面之內部截頭圓錐40。該截頭圓錐40係位於該電極24之第二端部38處。該截頭圓錐隨著與陰極14相距之距離增長而變寬。該阻塞器32具有與該截頭圓錐40互補之形狀,以使該阻塞器得以被置放於其中。該截頭圓錐40確保該阻塞器32於該機械部28之中的定位。可獨立於該電極24是否採取置於介電質凹面26上的導電區域之形式(如本實施例中一般),而實作該阻塞器32。   較佳的是,該阻塞器32係由與機械部28相同的介電質製成。這允許限制在使用該源時該機械部28與該阻塞器32之間微分熱膨脹之潛在效應。   舉例而言,該阻塞器32係藉由銅焊薄膜42之機構而被固定至該機械部28,該銅焊薄膜係被製造於截頭圓錐40中且更一般而言係被製造於該阻塞器32與該機械部28之間的界面區中。可以將期望被銅焊的阻塞器32與機械部28之表面金屬化,接著藉由金屬合金之機構執行銅焊,該金屬合金之熔點比源10所使用之最高溫度而更高。該金屬化與銅焊薄膜42與電極24之端部38保持電性連續性。在該阻塞器32與機械部28之間的金屬化界面之截頭圓錐形狀允許避免對電極24與對延伸電極24之導電區而言太顯著角度之形狀,以限制對電場之潛在邊緣效應。   替代地,可以透過將會與阻塞器32之材料以及與機械部28之材料反應的活性元素併入銅焊合金中以避免需要將該等表面金屬化。就氮化物為基陶瓷而言,鈦被整合於銅焊合金中。鈦是一種會與氮反應之物質,且允許與陶瓷建立強健化學鍵。可使用其他反應性金屬,諸如釩、鈮或鋯。   較佳的是,銅焊薄膜42為導電的且被用以將電極24電性連接到源10之電源。可使用其他類型之電極來實作藉由銅焊薄膜42之機構的電極24之電性連接,更明確而言可使用覆有介電質沉積物之金屬電極。為了增強與電極24之連接,可以將金屬接觸嵌入銅焊薄膜42中。此接觸是有用於連接覆有介電質沉積物之塊狀金屬電極。透過此電性接觸而確保電極24之電性連接。替代地,可以將阻塞器32之表面43部分金屬化。該表面43係位於真空室12端部處。該表面43之金屬化與銅焊薄膜42電性接觸。可以在表面43之金屬化上銅焊可與源10之電源電性連接的接觸。   銅焊薄膜42延伸電極24之軸對稱形狀且因此對電極24之主要功能有所貢獻。當電極24是由置於凹面26上的導電區域形成時,這是特別有利的。銅焊薄膜42直接延伸形成電極24之導電區域,且遠離自軸19而延伸時沒有不連續性或角度邊緣。當銅焊薄膜為導電時而與銅焊薄膜42結合之電極24,形成用以幫助集中電子束18與用以偏壓陰極14之等電位區域。這允許將本地電場最小化,以為了增加源10之微型性。   面26可包含局部為凸的區,諸如舉例而言在其與截頭圓錐40接面處。實際上,面26是至少部分為凹的。面26整體上是凹的。   在圖1中,藉由高電壓源50之機構而將源10偏壓,該高電壓源50之負端係例如透過銅焊薄膜42之金屬化而連接到電極24而其正端係連接到陽極16。此類型連接之特徵在於以單極模式操作源10,其中陽極16係連接到地面52。亦可以將高電壓源50替換成串聯的兩個高電壓源56與58,以確保源10以雙極模式操作,如圖2所示。此類型之操作優勢在於其簡化了相關高電壓發電機(generator)之製造。舉例而言,在高電壓高頻率脈衝操作模式下,透過將源10處之兩個,正與負,半電壓相加來降低絕對電壓可能係有利的。就此緣故,高電壓源可包含經由半H橋接器所驅動之輸出變壓器。   透過使用如圖1所顯示之源10,可透過將發電機56與58之共通點連接到地面52以實現雙極操作模式。替代地,如圖2中所示亦可以將高電壓源50相對於地面52保持浮動的。   透過將兩個串聯連接之高電壓源的共通點保持浮動的,利用諸如圖1所示之源而實現雙極操作模式。替代地如圖2所示,共通點可用以將源10之另一電極偏壓。在此變體中,源10包含將機械部28分成兩部分28a與28b之中間電極54。該中間電極54垂直延伸於束18之軸19且該中間電極被束18穿透。電極54之存在允許透過將電極54連接到兩個串聯連接之高電壓源56與58之共通點來實現雙極操作模式。在圖2中,透過兩高電壓源56與58所形成之總成係相對於地面52為浮動的。如圖1所示,亦可以將源10之該等電極之一,例如中間電極54,連接到地面52。   圖3係源10在陰極14周圍的部分與放大圖。陰極14被置於空腔34中抵靠電極24之端部36。固持器60使陰極14得以相對於電極24而為同軸的。由於電極24繞軸19而為軸對稱,故陰極14與軸19同軸,使其得以沿著軸19發射電子束18。固持器60包含與軸19同軸之埋頭柱孔61且其中置有陰極14。在其周圍處,固持器60包含與電極24同軸之環狀區63。彈簧64抵著固持器60,以將陰極14抵靠著電極24而固持住。固持器60是由絕緣體製成。彈簧64可具有電性功能,以允許將控制訊號傳輸到陰極14。更準確的,陰極14經由面65發射電子束18,該面稱作正面且定向於陽極16之方向中。陰極14經由其背面66而被電性控制,該背面亦即相對於正面65之面。固持器60可包含孔徑67,該孔徑與軸19同軸且具有圓形橫截面。孔徑67可被金屬化以將彈簧64與陰極14之背面66電性連接。阻塞器32可允許用於控制陰極14之機構得以透過穿過其中之金屬化通孔68以及透過安全地固定至阻塞器32之接觸件69而電性連接。接觸件69沿著軸19而抵著彈簧64,以將陰極14維持抵靠著電極24。接觸件69確保通孔68與彈簧64之間的電性連續性。   阻塞器32位於真空室12外部的該表面43可被金屬化成兩分離區:與軸19同軸之區43a以及繞軸19之週邊環狀區43b。金屬化區43a與金屬化通孔68具有電性連續性。金屬化區43b與銅焊薄膜42具有電性連續性。中央接觸件70抵著區43a,且週邊接觸件71抵著區43b。兩接觸件70與71形成同軸連接器,其透過金屬化區43a與43b以及透過金屬化通孔68與銅焊薄膜42而電性連接陰極14與電極24。   陰極14可包含可個別應對(separately addressable)之複數個分離發射區。背面66接著具有複數個分離電性接觸區。相應地調整固持器60與彈簧64。與接觸件69相似之複數個接觸件以及與通孔68相似之複數個金屬化通孔使得背面66之各區得以被連接。將阻塞器32之表面43、接觸件69、以及彈簧64相應地分隔,以在其中提供與區43a相似並且與各金屬化通孔有電性連續性之複數個區。   至少一集氣劑35可置於空腔34中,介於陰極14與阻塞器32之間,以將可能將真空品質降極之任何粒子捕獲於室12中。集氣劑35通常通過化學吸附起作用。可採用基於鋯或鈦之合金以捕獲被源10中包圍空腔34的各種組件所發射之任何粒子。在所示實例中,將集氣劑35固定至阻塞器32。集氣劑35由環狀盤組成,該等環狀盤堆疊並包圍接觸件69。   圖4a顯示游離輻射之變體源75,在該源其中上述陽極16被替換成陽極76。圖4a係源75在陽極76周圍的部分與放大圖。與陽極16相同,陽極76包含靶材20,該靶材被電子束18轟擊以及發射X射線22。與陽極16不同,陽極76包含空腔80,電子束18穿透該空腔以到達靶材20。更精確地,電子束18經由靶材承載薄層20b之內部面84衝擊該靶材20並且經由其外部面86發射X射線22。在所示實例中,空腔80之壁面繞軸19具有在兩端部88a與88b之間延伸的圓柱部分88。端部88a與靶材20接觸以及端部88b較靠近陰極14。空腔80之壁面亦具有包含孔89並且在端部88b處封閉圓柱部分之環狀部分90。電子束18經由部分90中的孔89穿透進入空腔80中。   在透過電子束18對靶材20轟擊期間,靶材20溫度之增加可能導致分子從靶材2脫氣,其受X射線22之影響會被游離化。假若出現在靶材20內部面84處的離子91遷移至位於陽極與陰極之間的加速電場中,該離子可能會損害該陰極。較佳的是,空腔80之壁面可用以捕獲該離子91。為此,空腔80之壁面88與90為導電體並且形成相對於可從靶材20發射到真空室12內部的寄生離子之法拉第籠(faraday cage)。可能從靶材20發射到真空室12內部的離子91在很大程度上被捕獲於空腔80中。僅有部分90之孔89允許此等離子從空腔80離開,且該等離子可能接著加速朝向陰極14。為了更佳捕獲離子於空腔80中,至少一集氣劑92被置於空腔80中。集氣劑92被分離自空腔80之壁面88與90。集氣劑92係被置於空腔80中的特定組件。如同集氣劑35一般,集氣劑92通常通過化學吸附起作用。可使用基於鋯或鈦之合金以將發射出的離子91捕獲。   除了捕獲離子以外,空腔80之壁面可形成對於在真空室12內部產生的寄生游離輻射82之屏幕,且較佳形成對於在陰極14與陽極76之間產生的電場之靜電遮蔽。X射線22形成由源75發射出的有效發射。然而,寄生X射線可能會經由內部面84而從靶材20離開。此寄生發射不係有用也不係不期望的。習知地,阻擋此類型寄生輻射之屏幕被置於X射線產生器周圍。然而,此類型之實施例有缺點。更明確地,屏幕越遠離X射線源設置的話,亦即屏幕離靶材越遠,由於其距離之緣故該屏幕之面積需要越大。該發明之此態樣建議將此等屏幕盡可能地置於靠近寄生源,藉此允許其可被小型化。   陽極76以及更明確地空腔80之壁面較佳地由具有高原子序之物質製成以停止寄生發射82,該物質舉例而言由基於鎢或鉬的合金製成。鎢或鉬對寄生離子之捕獲幾乎沒有影響。與空腔80壁面分離地製造集氣劑92允許可以自由地選擇其材料,以確保盡可能為佳地執行由集氣劑92所執行將寄生離子捕獲之功能以及執行由空腔80壁面所執行將寄生發射92屏蔽之功能,並且在中沒有妥協。為此,集氣劑92與空腔80之壁面由不同物質製成,其物質各適用於指定給其之功能。集氣劑35相對於空腔34的壁面也是如此。   空腔80之壁面在靶材20鄰近處包圍電子束18。   較佳的是,空腔80之壁面形成真空室12之部分。   較佳的是,空腔80之壁面被配置成與軸19同軸,以固定距離繞軸19徑向地設置,且因此盡可能靠近寄生輻射。在端部88a,圓柱部分88可部分或完全地包圍靶材20,因此避免任何寄生X射線相對於軸19徑向地從靶材20逸出。   因此,陽極76執行若干功能:其電性功能、阻擋可能從靶材20發射到真空室12內部中的寄生離子之法拉地籠功能、對寄生X射線遮蔽之功能、以及真空室12壁面之功能。藉由透過單一機械部,在此情況下為陽極76,之機構而執行若干功能,可增加源75之微型性並且減少其重量。   此外,可以將至少一磁鐵或電磁鐵94置於空腔80周圍以允許將電子束18集中於靶材20。較佳的是,亦可將磁鐵或電磁鐵94配置以令寄生離子91朝一或多集氣劑92偏離(deviate),以避免此等寄生離子經由部分90中的孔89而從空腔離開,或至少將其相對於穿過陰極14之軸19偏離。為此,磁鐵或電磁鐵94產生沿著軸19定向之磁場B。在圖4a中,朝集氣劑92偏離之離子91遵循路徑91a以及離開空腔80之離子遵循路徑91b。   有多種用於捕獲可能從靶材20所發射之寄生離子91的機構:由空腔80壁面形成之法拉第籠、在空腔80中存在集氣劑92、以及存在用於將寄生離子偏離之磁鐵或電磁鐵94。可獨立實作此等機構或可在針對寄生X射線遮蔽之功能與真空室12壁面之功能以外實作此等機構。   陽極76較佳地採取一件式機械部之形式,其較佳為繞著軸19為軸對稱的。空腔80形成陽極76之中央管狀部分。磁鐵或電磁鐵94圍繞著空腔80被置於環狀空間95中,該空間較佳地位於真空室12外部。為確保磁鐵或電磁鐵94之磁通量會影響電子束18與被靶材20脫氣並進入室12內部之離子,空腔80之壁面係由磁性物質製成。更一般而言,整個陽極76係由相同物質製成以及舉例而言被加工。   集氣劑92係位於空腔80中且磁鐵或電磁鐵94係位於空腔外部上。較佳的是,集氣劑92之機械式固持器97固持集氣劑92且係由磁性物質製成。固持器97係置於空腔中,以導引由磁鐵或電磁鐵94產生之磁通量。在電磁鐵94之情況下,其可能繞磁鐵電路99形成。固持器97較佳地被置於磁鐵電路99延伸部中。使用機械式固持器97之事實在於執行兩功能:固持集氣劑92以及導引磁通量,以允許將陽極76之維度以及進一步地源75之維度進一步減少。   在環狀空間95周圍處,陽極包含抵著機械部28之區96。舉例而言此支撐區(bearing zone)96採取之平面環形式,其垂直延伸於軸19。   在圖4a中,界定了正交座標系統X, Y, Z。Z是軸19之方向。沿著Z軸之場Bz允許將電子束18集中於靶材20上。在靶材20上電子點18a之尺寸被顯示為接近XY平面中的靶材20。電子點18a為圓形的。由靶材20發射出的X射線點22a之尺寸亦被顯示為接近XY平面中的靶材20。由於靶材20係垂直於軸19,故X射線點22a亦係圓形的。   圖4b顯示陽極76之變體,其中靶材21係相對於與軸19垂直的XY平面傾斜。此傾斜將允許將靶材20被電子束18轟擊之面積增大。透過增大此面積,靶材20由於與電子交互作用而增加的溫度將能被較佳地分配。當採用源75用於成像時,有利的是盡可能將X射線點22a保持成點狀或至少將其維持如圖4a變體中之圓形狀。為了在傾斜靶材21情況下保持該點22a,調整XY平面中的電子點的形狀是有用的。在圖4b之變體中,以參考編號18b來參照電子點,且該電子點被顯示成在XY平面上接近靶材21。該點較佳地為橢圓形狀。可使用陰極發射區獲得此種點形狀,該陰極發射區以類似點18b所需形狀的形狀而經分布到陰極平面中。替代地或額外地,可以藉由沿著Y軸定向之磁場By的機構而將電子束18之橫截面形狀調整,該磁場By舉例而言是由亦位於環狀空間95中具備繞組98之四極磁鐵所產生的。四極磁鐵形成產生橫向於軸19的磁場之主動磁鐵系統,允許獲得針對電子點18b所期望之形狀。舉例而言,針對相對於X方向傾斜之靶材,電子束18擴散於X方向中並且集中於Y方向中以確保圓形X射線點22a。主動磁鐵系統亦可經驅動以獲得其他電子點形狀以及可選地其他X射線點形狀。當靶材21為傾斜時,主動磁鐵系統特別係有利的。亦可採用主動磁鐵系統其中具有垂直於軸19之靶材20。   可以無視電極24是否採取置於介電質凹面26上的導電區域之形式以及無視阻塞器32是否被採用而實作陽極16與76之每個變體。   在圖1至4中所說明之變體中,所有組件之各者可透過沿著同一軸平移而組裝,在本情況下該軸為軸19。這允許透過自動化其製造而簡化根據本發明之源的製造。   更精確地,由介電質製成之機械部28以及其上產生的各種金屬化,特別是形成電極24之金屬化,形成單體固持器。可以將陰極14與阻塞器32組裝於此固持器一側上。在此固持器另一側,可以組裝陽極16或76。陽極16或17以及阻塞器32可藉由超高真空銅焊而被固定至機械部。透過沿著軸19平移,靶材20或21亦可被組裝成具有陽極76。   圖5顯示安裝於同一固持器100中的兩個相同的源75。此類型之安裝可被採用以安裝多於兩個源。此實例亦適用於源10。諸如圖1及2所示之源10亦可被安裝於固持器100中。針對固持器100及互補部之說明仍屬實,不論源之數量為何。在機械部28的真空室12外部的表面較佳地包含繞軸19延伸之兩個截頭圓錐形狀102及104。形狀102為外部截頭圓錐,其朝陽極16擴張。形狀104為內部截頭圓錐,其從陰極14且更明確地從阻塞器32外部面43擴張。兩截頭圓錐102及104於冠部(crown)106處相遇,該冠部亦與軸19同軸。冠部106形成截頭圓錐102之最小直徑以及截頭圓錐104之最大直徑。冠部106舉例而言為環形圓(torus)一部分之形狀,允許兩個截頭圓錐102及104得以連接而無銳緣。機械部28外部表面之形狀促進源75之置入於固持器100中,該固持器具有亦包含兩個截頭圓錐形狀108及110之互補表面。固持器100之截頭圓錐108係與機械部28之截頭圓錐102互補的。同理,固持器100之截頭圓錐110係與機械部28之截頭圓錐104互補的。固持器100具有與機械部28的冠部106互補之冠部112。   為了避免於固持器100與機械部28之間的高電壓界面處形成任何充滿空氣之空腔,舉例而言基於矽之柔軟密封件114被置於固持器100與機械部28之間,且更明確而言被置於互補截頭圓錐與冠部之間。較佳的是,固持器100之截頭圓錐108在頂點處具有比機械部28之截頭圓錐102角度更大的角度。相似地,固持器100之截頭圓錐110在頂點處具有比機械部28之截頭圓錐104角度更大的角度。該等截頭圓錐之間於頂點處之角度值之差可小於一度且舉例而言約0.5度。因此,當源75被安裝於其固持器100中時,且更明確地當密封件114在固持器100與機械部28之間被壓碎時,空氣可能會從冠部106與112之間的界面逸出,並在一方面於往陽極16之方向上朝兩個截頭圓錐102與108較擴張部分逸出且在另一方面於往陰極14之方向上,且更明確係往阻塞器32之方向上,朝兩個截頭圓錐104與110之較窄部分逸出。位於兩截頭圓錐102與108間的空氣逸出至周圍環境中且位於兩截頭圓錐104與110之間的空氣逸出至阻塞器32。為了避免經捕獲空氣受高電場作用,源75及其固持器100經組態以使位於兩截頭圓錐104及110間的空氣逸出進入由兩接觸件70及71形成之同軸連接(coaxial link)內部並且供電陰極14。為達成此,確保電極24供電之外部接觸件71藉由彈簧116之機構而與金屬化區43b接觸,該彈簧允許接觸件71與阻塞器32之間的功能型遊戲(functional play)。除此之外,阻塞器32可包含將兩金屬化區43a及43b分隔開的環狀凹槽118。因此,從截頭圓錐104與110之間逸出之空氣通過接觸件71與阻塞器32之間的功能性遊戲並到達位於接觸件70與71之間的空腔120。此空腔120受保護免於高電場,因為該空腔係位於同軸接觸件71內部。換言之,空腔120係被遮蔽自源10之主電場,亦即由於陽極16與陰極電極24之間的電位差所發生的電場。   在安裝好設有其陰極14與其陽極76之機械部28之後,封閉板130可將設有其陰極14與其陽極76之機械部28固持於固持器100中。板130可由導電物質製成或可包含金屬化面,以確保陽極76之電性連接。板130可允許冷卻陽極76。藉助陽極76與例如陽極76的空腔80之圓柱部分88之間的接觸而進行之傳導,可達成此冷卻。為強化此冷卻效果,可以於板130中設置通道132並且該通道包圍圓柱部分88。傳熱液流動通過通道132以冷卻陽極76。   在圖5中,源75都具有分離機械部28。圖6a顯示多源總成150之變體,其中複數個(在本實例中為四個)源75共用之機械部152執行機械部28的所有功能。真空室153係共用於各源75。固持器152較佳地係由介電質製成,其中針對此等源75各者製造凹面26。針對此等源各者,電極24 (未顯示)係置於對應凹面26上。為了不使該圖式過度複雜,未顯示各源75之陰極14。   在圖6a之變體中,所有源75之陽極有利地為共用的且一起被給定參考編號154。為促進其製造,該等陽極包含與機械部152接觸之板156,該板鑽有四個孔158,該等各孔允許由源75的各個陰極所產生的電子束18通過。板156針對該等源75之各者執行上述部分90之功能。由其壁面88與靶材20界定之空腔80被置於各孔口158上方。替代地,可以保留分離陽極,從而允許將其電性連接去結合(disassociated)。   圖6b顯示多源總成160之另一變體,其中機械部162亦係由複數個源共用,且其個別陰極14對準於穿過該等陰極14各者之軸164上。軸164與該等源各者之軸19垂直。允許由各陰極14發射電子束得以集中之電極166係對所有陰極14共用的。圖6b之變體允許將兩相鄰源分隔開之距離可以進一步減少。   在所示實例中,機械部162係由介電質製成且包含置於各陰極14鄰近處之凹面168。電極166是由置於凹面168上的導電區域形成的。電極166執行所有上述電極24之功能。   替代地,可以令對複數個源為共用之電極採取與介電質無關的金屬電極之形式,亦即其具備金屬/真空界面。相似地,陰極可為熱離子。   多源總成160可包含阻塞器170,該阻塞器為對所有源為共用的。阻塞器170可執行所有上述阻塞器32之功能。阻塞器170可更明確藉由導電銅焊薄膜172之機構而固定至該機械部162,該導電銅焊薄膜172係用以電性連接該電極166。   作為圖6a之變體,多源總成160可包含陽極174,該陽極為對各源為共用的。陽極174與圖6a變體之陽極154相似。陽極174包含板176,該板執行參照圖6a所描述之板156的所有功能。為了避免使圖6b過度複雜,針對陽極174僅顯示板176。   在所示實例中,軸164是直線性的。亦可以將陰極置於彎曲軸上,該彎曲軸舉例而言諸如圓弧,以允許所有源之X射線22得以集中在位於該圓弧中心處之點上。其他形狀之彎曲軸,明確而言拋物線形狀,亦允許X射線得以集中於一點上。彎曲軸維持局部垂直於該等軸19之各者,各源之電子束係繞著該等軸19而產生。   陰極14在軸上的配置允許獲得經分布於一方向中之該等源。亦可以製造其中沿著複數個相交軸分布陰極之多源總成。舉例而言,可以沿著複數個彎曲軸放置該等源,其中各位於一平面中,該等平面經正割。作為實例,舉例而言可以設置經分布在旋轉拋物面上之複數個軸。這允許所有源之X射線22得以集中於拋物面的焦點上。   圖7a及7b顯示於圖6a所示總成之電力供應的兩實施例。圖7a及7b為穿過各源75之複數個軸19的平面所截出之橫截面。圖7a中顯示兩個源,且在圖7b中顯示三個源。當然,不論源75或可選地10之數量為何,對多源總成150之說明仍屬實。   在此等兩實施例中,陽極114對總成150之所有源75為共用的且其電位相同,例如地面52者。在兩實施例中,該等源10之各者可被個別地驅動。在圖7a中,兩個高電壓源V1及V2個別供電該等源10之各者的電極24。機械部152之絕緣性質允許兩個高電壓源V1、V2得以被分離,其中該等兩個高電壓源可舉例而言被兩不同的能量脈衝。相似地,分離的電流源I1 與I2 各允許各陰極14之一者可被控制。   在圖7b之實施例中,所有源75之電極24係透過被製造於機械部152上之金屬化的機構而被連接在一起。高電壓源VCommun 供電所有的電極24。各陰極14仍經由分離的電流源I1 及I2 控制。參照圖7b所述多源總成之電力供應極其適用於參照圖6b所述之變體。   圖8a、8b、及8c顯示用於產生游離輻射並各包含複數個源10或75的總成之複數個實例。在此等各種實例中,諸如參照圖5所說明之固持器係對所有源10為共用的。高電壓連接器140允許供應各源10電力。驅動器連接器142允許將該等總成之各者連接到驅動模組(未示出),該驅動模組經組態以預設序列切換此等源10之各者。   在圖8a中,固持器144具有圓弧形狀且各源10經對準於該圓弧形狀上。此類型之配置舉例而言係有用於醫療掃描器,以避免需要繞著病患移動X射線源。各源10各依序發射X射線。掃描器亦包含輻射偵測器及允許將從偵測器擷取之資訊重建成三維影像之模組。為了不使該圖式過度複雜,未顯示偵測器及重建模型。在圖8b中,固持器146及源10對準於直線區段上。在圖8c中,固持器148具有板的形狀且該等源經分布於固持器148上的兩方向中。針對圖8a與8b所示用於產生游離輻射之總成,圖6b之變體係特別有利的。此變體允許各源之間的節距可被減少。
10‧‧‧源
12‧‧‧真空室
14‧‧‧陰極
16‧‧‧陽極
18‧‧‧電子束
18a‧‧‧電子點
18b‧‧‧電子點
19‧‧‧軸
20‧‧‧靶材
20a‧‧‧膜片
20b‧‧‧薄層
21‧‧‧靶材
22‧‧‧X射線
22a‧‧‧X射線點
24‧‧‧電極
26‧‧‧凹面
28‧‧‧機械部
28a‧‧‧部分
28b‧‧‧部分
30‧‧‧內部面
32‧‧‧阻塞器
34‧‧‧空腔
35‧‧‧集氣劑
36‧‧‧端部
38‧‧‧端部
40‧‧‧內部截頭圓錐
42‧‧‧銅焊薄膜
43‧‧‧表面
43a‧‧‧區
43b‧‧‧區
50‧‧‧高電壓源
52‧‧‧地面
54‧‧‧電極
56‧‧‧高電壓源
58‧‧‧高電壓源
60‧‧‧固持器
61‧‧‧埋頭柱孔
63‧‧‧環狀區
64‧‧‧彈簧
65‧‧‧正面
66‧‧‧背面
67‧‧‧孔徑
68‧‧‧通孔
69‧‧‧接觸件
70‧‧‧中央接觸件
71‧‧‧週邊接觸件
75‧‧‧源
76‧‧‧陽極
80‧‧‧空腔
82‧‧‧發射
84‧‧‧內部面
86‧‧‧外部面
88‧‧‧圓柱部分
88a‧‧‧端部
88b‧‧‧端部
89‧‧‧孔
90‧‧‧環狀部分
91‧‧‧離子
91a‧‧‧路徑
91b‧‧‧路徑
92‧‧‧集氣劑
94‧‧‧磁鐵
95‧‧‧環狀空間
96‧‧‧支撐區
97‧‧‧機械式固持器
98‧‧‧繞組
99‧‧‧磁鐵電路
100‧‧‧固持器
102‧‧‧截頭圓錐
104‧‧‧截頭圓錐
106‧‧‧冠部
108‧‧‧截頭圓錐
110‧‧‧截頭圓錐
112‧‧‧冠部
114‧‧‧柔軟密封件
116‧‧‧彈簧
118‧‧‧環狀凹槽
120‧‧‧空腔
130‧‧‧封閉板
132‧‧‧通道
140‧‧‧高電壓連接器
142‧‧‧驅動器連接器
144‧‧‧固持器
146‧‧‧固持器
148‧‧‧固持器
150‧‧‧多源總成
152‧‧‧機械部
153‧‧‧真空室
154‧‧‧陽極
156‧‧‧板
158‧‧‧孔
160‧‧‧多源總成
162‧‧‧機械部
164‧‧‧軸
166‧‧‧電極
168‧‧‧凹面
170‧‧‧阻塞器
172‧‧‧銅焊薄膜
174‧‧‧陽極
176‧‧‧板
180‧‧‧軸
182‧‧‧軸
184‧‧‧旋轉拋物面
190‧‧‧軸
192‧‧‧軸
194‧‧‧軸
在閱讀作為示例而被給定的一實施例之詳細說明後將能更佳理解本發明且其它優勢將趨向明顯,其中透過所附圖式解說該說明,在該等圖式中:   圖1概略地顯示根據本發明X射線產生源之主要元件;   圖2顯示允許其它電性連接模式的圖1之源的變體;   圖3係圖1之源在其陰極周圍的部分與放大圖;   圖4a與4b係根據兩變體的圖1之源在其陽極周圍的部分與放大圖;   圖5以橫截面圖顯示包含根據本發明之複數個源的整合模式;   圖6a、6b、6c、6d、及6e顯示包含在同一個真空室中複數個源的總成之變體;   圖7a與7b顯示包含複數個源的總成之複數個電性連接模式;以及   圖8a、8b、及8c顯示包含根據本發明之複數個源並且能夠根據圖5與圖6中說明的變體被製造的總成之三個實例。   為了清晰之目的,在各圖式中的相同元件被給予相同參考編號。

Claims (21)

  1. 一種用於產生游離輻射之源,其包含:   真空室(12;153);   陰極(14),其能發射電子束(18)進入該真空室(12;153)中;   陽極(16;76;154;174),其接收該電子束(18)且其包含能夠從自該電子束(18)接收的能量產生游離輻射(22)之靶材(20;21);以及   電極(24;166),其被置於該陰極(14)鄰近處且形成未乃耳特,   其特徵在於,該電極(24)是由黏附至介電質之凹面(26;168)的導電表面所形成。
  2. 如申請專利範圍第1項所述之源,其中該源包含由該介電質製成之機械部(28;152;162),且其包含該凹面(26;168)。
  3. 如申請專利範圍第2項所述之源,其中該導電表面是由置於該凹面(26;168)上的金屬沉積物形成。
  4. 如申請專利範圍第2項所述之源,其中該機械部(28;152;162)包含具有在1×109 Ω∙平方與1×1013 Ω∙平方之間的表面電阻率之內部面(30)。
  5. 如申請專利範圍第1項所述之源,其中該介電質是由氮化物基陶瓷形成。
  6. 如申請專利範圍第4項或第5項所述之源,其中透過沉積半導體於該機械部(28;152;162)之該介電質上以獲得該內部面(30)之該表面電阻率。
  7. 如申請專利範圍第4項或第5項所述之源,其中透過對該氮化物為基陶瓷之體積增加會使得該氮化物為基陶瓷固有電阻率降低之物質,以獲得該內部面(30)之該表面電阻率。
  8. 如申請專利範圍第1項所述之源,其中該陰極(14)經由場效發射該電子束(18),且其中該電極(24;166)被設置成與該陰極(14)接觸。
  9. 如申請專利範圍第2項所述之源,其中該機械部(28;152;162)形成該陰極(14)之固持器。
  10. 如申請專利範圍第2項所述之源,其中該機械部(28;152;162)形成該真空室(12)之部分。
  11. 如申請專利範圍第2項所述之源,其中該機械部(28;152;162)形成該陽極(16;76;154)之固持器。
  12. 如申請專利範圍第2項所述之源,其中該機械部(28;152;162)包含內部截頭圓錐形狀之外部表面(104),其中該源(10;76;154)包含固持器(100),該固持器(100)之外部截頭圓錐形狀表面(110)與該內部截頭圓錐形狀之外部表面(104)互補,以及供電該陰極(14)且與該截頭圓錐形狀表面(104、110)接觸之至少一高電壓接觸件(71)形成該源(10;76;154)之高電壓連接器。
  13. 如申請專利範圍第12項所述之源,其中該源包含置於該固持器(100)之該截頭圓錐形狀表面(110)與該機械部(28;152)之該截頭圓錐形狀表面(104)之間的柔軟接頭(114),其中該固持器(100)之該截頭圓錐形狀表面(110)在頂點處具有比該機械部(28;152)之該截頭圓錐形狀表面(104)角度更大的角度,以及其中該高電壓連接器經組態以令位於該兩個截頭圓錐形狀表面(104、110)之間的空氣可從該高電壓連接器內部逸出進入不受由該連接器傳輸的高電壓所產生的電場作用之空腔(120)中。
  14. 如申請專利範圍第12項或第13項所述之源,其中該機械部(28;152;162)包含外部截頭圓錐形狀之外部表面(102),以及其中該固持器(100)包含與該外部截頭圓錐形狀之外部表面(102)互補之內部截頭圓錐形狀表面(108)。
  15. 如申請專利範圍第2項所述之源,其中該陽極(16;76;154;174)是可密封地固定至該機械部(28;152;162)。
  16. 如申請專利範圍第1項所述之源,其中該介電質具有高於30 MV/m之介電強度。
  17. 一種用於產生游離輻射之總成,其特徵在於其包含:   複數個根據申請專利範圍第1項至第16項中一項之源(10、75),該源並列及固定於該總成中;以及   驅動模組,其經組態以預設序列切換該源之各者。
  18. 如申請專利範圍第17項所述之總成,該總成包含複數個根據申請專利範圍第2項之源,其中該機械部(152;162)是對該所有的源(10、75)為共用的。
  19. 如申請專利範圍第18項所述之總成,其中該源對準於穿過該等陰極(14)之各者的軸,以及其中該電極(166)是對該各源為共用的。
  20. 如申請專利範圍第17項至第19項中一項所述之總成,其中該所有的源(10、75)之該陽極(154;174)為共用的。
  21. 一種用於製造根據申請專利範圍第4項或第6項之源的製程,其特徵在於其透過沿著該電子束(18)之軸(19)在一方面平移該陽極(16;76;154;174)且在另一方面平移該陰極(14)來與該機械部(28;152;162)組裝,由該凹面(26)形成之空腔(34)係由阻塞器(32;170)封閉。
TW107123868A 2017-07-11 2018-07-10 用於產生游離輻射的微型源、包含複數個源的總成、以及用於製造該源的製程 TWI783006B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1700741 2017-07-11
FR1700741A FR3069098B1 (fr) 2017-07-11 2017-07-11 Source generatrice de rayons ionisants compacte, ensemble comprenant plusieurs sources et procede de realisation de la source
??1700741 2017-07-11

Publications (2)

Publication Number Publication Date
TW201909226A true TW201909226A (zh) 2019-03-01
TWI783006B TWI783006B (zh) 2022-11-11

Family

ID=61258269

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107123868A TWI783006B (zh) 2017-07-11 2018-07-10 用於產生游離輻射的微型源、包含複數個源的總成、以及用於製造該源的製程

Country Status (12)

Country Link
US (1) US11004647B2 (zh)
EP (1) EP3652773B1 (zh)
JP (1) JP7073407B2 (zh)
KR (1) KR102584667B1 (zh)
CN (1) CN110870036B (zh)
AU (1) AU2018298781B2 (zh)
ES (1) ES2881314T3 (zh)
FR (1) FR3069098B1 (zh)
IL (1) IL271796B2 (zh)
SG (1) SG11201912205QA (zh)
TW (1) TWI783006B (zh)
WO (1) WO2019011980A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
US10989822B2 (en) 2018-06-04 2021-04-27 Sigray, Inc. Wavelength dispersive x-ray spectrometer
CN112470245A (zh) 2018-07-26 2021-03-09 斯格瑞公司 高亮度x射线反射源
WO2020051221A2 (en) 2018-09-07 2020-03-12 Sigray, Inc. System and method for depth-selectable x-ray analysis
US11152183B2 (en) 2019-07-15 2021-10-19 Sigray, Inc. X-ray source with rotating anode at atmospheric pressure
FR3102055B1 (fr) 2019-10-17 2024-03-08 Thales Sa Dispositif de radiologie à plusieurs sources de rayons ionisants et procédé mettant en oeuvre le dispositif
FR3113132B1 (fr) 2020-07-30 2022-12-02 Thales Sa Dispositif d’imagerie par photons X rétrodiffusés
US11837428B2 (en) * 2020-07-31 2023-12-05 General Electric Company Systems and methods for electron beam focusing in electron beam additive manufacturing
FR3115452B1 (fr) 2020-10-26 2024-06-21 Thales Sa Dispositif de radiologie à sources et détecteur disposés en hélice
CN113649360B (zh) * 2021-08-16 2023-08-08 上海交通大学 一种消除物体表面沾污的方法及装置
FR3137812A1 (fr) 2022-07-07 2024-01-12 Thales Antenne d’émission à rayons X comprenant une pluralité de sources de rayons X

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134173A (ja) * 2002-10-09 2004-04-30 Mitsubishi Electric Corp 冷陰極電子源及びそれを用いた表示装置
FR2879342B1 (fr) 2004-12-15 2008-09-26 Thales Sa Cathode a emission de champ, a commande optique
KR100789592B1 (ko) * 2006-03-24 2007-12-27 박래준 탄소나노튜브를 이용한 전계방출 냉음극 연엑스선 발생관
CN102007563B (zh) * 2008-04-17 2013-07-17 皇家飞利浦电子股份有限公司 具有无源离子收集电极的x射线管
WO2009151197A1 (ko) * 2008-06-13 2009-12-17 한국전기연구원 나노-구조 물질을 이용하는 엑스선관 및 이를 이용한 시스템
JP5963453B2 (ja) * 2011-03-15 2016-08-03 株式会社荏原製作所 検査装置
CN103227082B (zh) * 2012-12-22 2015-07-29 深圳先进技术研究院 X射线发射装置及x射线产生方法
JP6526014B2 (ja) * 2013-09-18 2019-06-05 清華大学Tsinghua University X線装置及び該x線装置を有するctデバイス
WO2015099561A1 (en) * 2013-12-24 2015-07-02 Siemens Research Center Limited Liability Company Arrangement and method for field emission
JP6363864B2 (ja) * 2014-04-16 2018-07-25 株式会社ニューフレアテクノロジー 電子ビーム描画装置、及び電子ビームの収束半角調整方法
US9490099B2 (en) * 2014-08-20 2016-11-08 Wisconsin Alumni Research Foundation System and method for multi-source X-ray-based imaging
DE102014226812A1 (de) 2014-12-22 2016-06-23 Siemens Aktiengesellschaft Vorrichtung zum Erzeugen eines Elektronenstrahls
KR20160102748A (ko) * 2015-02-23 2016-08-31 주식회사바텍 전계 방출 엑스선 소스 장치
KR102188055B1 (ko) * 2015-08-21 2020-12-07 한국전자통신연구원 엑스선 소스

Also Published As

Publication number Publication date
EP3652773A1 (fr) 2020-05-20
JP7073407B2 (ja) 2022-05-23
ES2881314T3 (es) 2021-11-29
CN110870036B (zh) 2023-06-02
EP3652773B1 (fr) 2021-05-26
AU2018298781B2 (en) 2023-03-02
KR102584667B1 (ko) 2023-10-05
IL271796A (en) 2020-02-27
IL271796B2 (en) 2024-06-01
CN110870036A (zh) 2020-03-06
TWI783006B (zh) 2022-11-11
KR20200024211A (ko) 2020-03-06
FR3069098B1 (fr) 2020-11-06
JP2020526868A (ja) 2020-08-31
WO2019011980A1 (fr) 2019-01-17
SG11201912205QA (en) 2020-01-30
FR3069098A1 (fr) 2019-01-18
AU2018298781A1 (en) 2019-12-19
IL271796B1 (en) 2024-02-01
US20200203113A1 (en) 2020-06-25
US11004647B2 (en) 2021-05-11

Similar Documents

Publication Publication Date Title
TWI783006B (zh) 用於產生游離輻射的微型源、包含複數個源的總成、以及用於製造該源的製程
EP2649635B1 (en) Radiation generating apparatus and radiation imaging apparatus
US7978824B2 (en) X-ray tube having transmission anode
KR102584668B1 (ko) 이온화 선을 생성하기 위한 컴팩트한 소스
TW201909228A (zh) 用於產生游離輻射的微型源、包含複數個源的總成、以及用於製造該源的製程
JP2007287501A (ja) 透過型x線管
US10468222B2 (en) Angled flat emitter for high power cathode with electrostatic emission control
CN109671605B (zh) 固定阳极型x射线管
JP7167196B2 (ja) X線発生管、x線発生装置およびx線撮影システム