TW201905487A - 用於超音波應用之具有內建時間增益補償之放大器 - Google Patents

用於超音波應用之具有內建時間增益補償之放大器

Info

Publication number
TW201905487A
TW201905487A TW107121009A TW107121009A TW201905487A TW 201905487 A TW201905487 A TW 201905487A TW 107121009 A TW107121009 A TW 107121009A TW 107121009 A TW107121009 A TW 107121009A TW 201905487 A TW201905487 A TW 201905487A
Authority
TW
Taiwan
Prior art keywords
ultrasonic
circuit
amplifier
tgc
tia
Prior art date
Application number
TW107121009A
Other languages
English (en)
Inventor
亞曼蒂普 辛格
陳凱亮
泰勒 S 拉司頓
Original Assignee
美商蝴蝶網路公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商蝴蝶網路公司 filed Critical 美商蝴蝶網路公司
Publication of TW201905487A publication Critical patent/TW201905487A/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2406Electrostatic or capacitive probes, e.g. electret or cMUT-probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4463Signal correction, e.g. distance amplitude correction [DAC], distance gain size [DGS], noise filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52033Gain control of receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/129Indexing scheme relating to amplifiers there being a feedback over the complete amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45524Indexing scheme relating to differential amplifiers the FBC comprising one or more active resistors and being coupled between the LC and the IC
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Theoretical Computer Science (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Amplifiers (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

一種包括一具有內建的時間增益補償功能的跨阻抗放大器(TIA)之超音波電路係被描述。該TIA係耦接至一超音波換能器以放大藉由該超音波換能器響應於接收一超音波信號所產生的一電性信號。在某些情形中,接在該TIA之後的是進一步的類比及數位處理電路。

Description

用於超音波應用之具有內建時間增益補償之放大器
本申請案係大致有關於超音波裝置,其係具有一用於放大接收到的超音波信號的放大器。
相關申請案之交互參照
此申請案係根據第35號美國法典第119條(e)項主張2017年6月20日申請、代理人文件編號B1348.70048US00並且名稱為"用於超音波應用之具有內建時間增益補償之放大器"的美國臨時專利申請案序號62/522,622的益處,該美國臨時申請案茲在此以其整體納入作為參考。
超音波探針係包含一或多個超音波感測器,其係感測超音波信號並且產生對應的電性信號。該些電性信號係在類比或數位領域中加以處理。有時,超音波影像係從該些經處理的電性信號來加以產生的。
根據本申請案的一特點,一種超音波設備係被提出,其係包括一超音波感測器、以及一跨阻抗放大器(TIA),該TIA係耦接至該超音波感測器,並且被配置以接收及放大來自該超音波感測器的一輸出信號。該TIA可包含時間增益補償(TGC)功能,並且因此該超音波裝置可以在該類比信號處理鏈中的下游缺少一獨立的TGC電路。儘管一TIA是一適當的放大器的一個例子,但是其它類型的放大器亦可被使用,例如是低雜訊放大器(LNA)或跨導放大器。
根據本申請案的一特點,一種超音波設備係被提出,其係包括一超音波換能器以提供一類比電性信號、以及一具有時間增益補償(TGC)功能的放大器,其係耦接至該超音波換能器並且被配置以接收及放大該類比電性信號一時間相依的量。
根據本申請案的一特點,一種超音波電路係被提出,其係包括一超音波換能器、一耦接至該超音波換能器的類比信號處理鏈、以及一類比至數位轉換器(ADC),其中該類比信號處理鏈係被電性耦接在該超音波換能器與該ADC之間,其中該類比信號處理鏈係包含一組合的跨阻抗放大器(TIA)及時間增益補償(TGC)電路。
本揭露內容的特點係有關用於一超音波裝置的放大電路。一種超音波裝置可包含一或多個超音波換能器,其係被配置以接收超音波信號並且產生電性輸出信號。因此,該些超音波換能器可以操作為超音波感測器。該超音波裝置可包含一或多個用於放大該些電性輸出信號的放大器。在某些實施例中,該(些)放大器可以是一跨阻抗放大器(TIA),並且可包含時間增益補償(TGC)功能。類比處理級(或者是在此被稱為"區塊"或"構件")可以接在該TIA之後以執行各種的類比處理功能,例如是平均藉由該超音波裝置的多個TIA所產生的電性信號。在至少某些實施例中,該超音波裝置係在該TIA的下游缺少一獨立的TGC級或電路。儘管一TIA係代表一適當的放大器類型的一個例子,但是其它類型的放大器可以替代地被採用,其係包含LNA或是跨導放大器。
根據本申請案的一特點,一種處理超音波信號之方法係被提出。該方法係包括利用一超音波換能器來產生一電性信號,接著是利用一TIA、LNA、跨導放大器、或是其它適當的放大器來放大及時間增益補償該電性信號。為了討論的簡化起見,一TIA係明確地在此加以敘述。在某些實施例中,多個TIA係被設置,並且進一步的處理係包括平均由多個TIA所提供的信號。該平均的信號接著可以藉由一適當的類比至數位轉換器(ADC)來加以數位化。在某些實施方式中,多個TIA(或是其它放大器)係被設置,並且進一步的處理係包括利用交叉耦接的開關以翻轉某些信號的極性來致能編碼的接收,例如哈達馬德(Hadamard)編碼的使用。
上述的特點及實施例、以及額外的特點及實施例係在以下進一步加以描述。這些特點及/或實施例可以個別地、全部一起、或是用兩個或多個的任意組合來加以利用,因為本申請案在此方面並未受到限制。
圖1是描繪根據本申請案之一非限制性的實施例的一種用於處理接收到的超音波信號的電路。該電路100係包含N個超音波換能器102a…102n,其中N是一整數。該些超音波換能器在某些實施例中是感測器,其係產生代表接收到的超音波信號的電性信號。該些超音波換能器在某些實施例中亦可以發送超音波信號。該些超音波換能器在某些實施例中可以是電容式微加工超音波換能器(CMUT)。該些超音波換能器在某些實施例中可以是壓電式微加工超音波換能器(PMUT)。替代的類型的超音波換能器在其它實施例中亦可被利用。
該電路100進一步包括N個電路通道104a…104n。該些電路通道可以對應於一個別的超音波換能器102a…102n。例如,可以有八個超音波換能器102a…102n以及八個對應的電路通道104a…104n。在某些實施例中,超音波換能器102a…102n的數量可以是大於電路通道的數量。
該些電路通道104a…104n可包含發送電路、接收電路、或是兩者。該發送電路可包含耦接至個別的脈衝產生器108a…108n的發送解碼器106a…106n。該些脈衝產生器108a…108n可以控制該個別的超音波換能器102a…102n來發射超音波信號。
該些電路通道104a…104n的接收電路可以接收從個別的超音波換能器102a…102n輸出的(類比)電性信號。在該舉例說明的例子中,每一個電路通道104a…104n係包含一個別的接收電路110a…110n以及一放大器112a…112n。該接收電路110a…110n可被控制以啟動/停止一電性信號從一給定的超音波換能器102a…102n的讀出。適當的接收電路110a…110n的一個例子是開關。換言之,在一實施例中,該些接收電路是可控制的開關,其係在發送模式期間被切換以從該接收電路斷開連接該些超音波換能器,並且在接收模式期間將該些超音波換能器連接至該接收電路。開關的替代方案亦可被採用以執行相同的功能。
該些放大器112a…112n在某些實施例中可以是具有內建的TGC功能的TIA,其係輸出被放大及時間增益補償的類比信號。相較於替代的放大器設計的使用,具有內建的TGC功能的TIA的使用可以使得該電路100的低功率操作變得容易。再者,一具有內建的TGC功能的TIA的使用可以容許省略任何下游的TGC級或電路,此可以進一步有助於功率的降低。
該電路100進一步包括一平均電路114,其在此亦被稱為一加總器或是一加總放大器。在某些實施例中,該平均電路114是一緩衝器或是一放大器。該平均電路114可以接收來自該些放大器112a…112n中的一或多個的輸出信號,並且可以提供一平均的輸出信號。該平均的輸出信號可以部分是藉由相加或是相減來自該各種的放大器112a…112n的信號來加以形成。該平均電路114可包含一可變的回授電阻。該可變的回授電阻的值可以根據該平均電路接收信號所來自的放大器112a…112n的數量來動態地加以調整。在某些實施例中,該可變電阻可包含N個電阻設定。換言之,該可變電阻可以具有對應於電路通道104a…104n的數量之數量的電阻設定。因此,該平均輸出信號亦可以部分藉由所選的電阻至在該平均電路114的輸入處所接收到的組合的信號的施加來加以形成。
在某些實施例中,該平均電路114亦包含內建的TGC功能。此種功能可以擴充藉由該些放大器112所執行的TGC功能,並且因此可以進一步使得一個別的下游TGC電路的省略變得容易。任何適當的TGC電路都可以內含在該平均電路114中。
該平均電路114係經由ADC驅動器124而耦接至一ADC 126。如同從圖1應該體認到的,在某些實施例中,該平均電路的輸出端子係在無介於中間的處理級之下直接耦接至該ADC驅動器。在該舉例說明的例子中,該些ADC驅動器124係包含一第一ADC驅動器125a以及一第二ADC驅動器125b。該ADC 126係數位化來自該平均電路114的信號。
儘管圖1是描繪一些構件為一超音波裝置的一電路的部分,但應該體認到的是在此所述的各種特點並不限於所描繪的確切的構件或是構件的配置。例如,本申請案的特點係有關於該些放大器112a…112n,因而在電路100中被描繪在那些放大器的下游的構件在某些實施例中是選配的。
圖1的構件可以是位在單一基板上、或是在不同的基板上。例如,如同所繪的,該些超音波換能器102a…102n可以是在一第一基板128a上,並且其餘所描繪的構件可以是在一第二基板128b上。該第一及/或第二基板可以是半導體基板,例如是矽基板。在一替代實施例中,圖1的構件可以是在單一基板上。例如,該些超音波換能器102a…102n以及所舉例說明的電路可以是單石地整合在相同的晶粒(例如,一半導體晶粒,例如是矽)上。此種整合可以藉由利用CMUT為該些超音波換能器而變得容易。
根據一實施例,圖1的構件係構成一超音波探針的部分。該超音波探針可以是手持式的。在某些實施例中,圖1的構件係構成一被配置以被病患戴上的超音波貼片的部分、或是一將被病患吞入的超音波藥丸的部分。
圖2是描繪根據本申請案之一非限制性的實施例的一超音波信號接收電路鏈,其係包含一具有時間增益補償(TGC)功能的TIA、以及複數個接在該TIA之後的類比信號處理級。圖2係包含放大器112a、平均電路114、ADC驅動器124、以及ADC 126,其中的後面兩者係為了便於解說而被描繪為單一區塊。
在某些實施方式中,該放大器112a是一具有內建的TGC功能的TIA,其係輸出被放大及時間增益補償的類比信號。相較於替代的放大器設計的使用,將TGC功能整合到放大器112a中可以使得該電路100的低功率操作變得容易。如同在圖2中的例子,一具有內建的TGC功能的放大器112a的使用可以容許有任何下游TGC級或電路的省略,此可以進一步有助於功率的降低以及設計的簡化。該放大器112a係接收一代表藉由該超音波換能器所接收到的一超音波信號的電性信號。該放大器112a係至少施加一最小的增益至該電性信號以作為TIA功能的部分。此外,放大器112a將會提供一代表TGC功能的額外的時間相依的量的增益,以補償信號的衰減。
由該舉例說明的具有TGC功能的TIA所提供的增益可以採用任何適當的值。例如,來自該TIA功能的增益可以是90分貝的數量級(例如,介於50到100dB之間),並且來自TGC功能的增益可以是該數量級的一分數(例如,從零到18dB、或是任何其它適當的值)。因此,作為一非限制性的例子,由該舉例說明的具有TGC功能的TIA所提供的總增益範圍可以顯著地根據該超音波信號的接收的時點而定。舉例而言,在一信號的接收期間,該增益範圍可以是介於90到108dB之間。
儘管圖2是描繪TIA 112a,但應該體認到的是該些TIA 112a…112n的任一個都可以具有在圖2中所示的配置。
該平均電路114係接收該些放大器112a…112n的輸出。在某些實施例中,該平均電路可以改善該超音波的信號對雜訊比,且/或可以提供TGC功能。作為一非限制性的例子,該平均電路係提供介於5dB到20dB之間(例如,一9dB)的改善至該信號對雜訊比、以及高達一額外的10-20dB(例如,11dB)的TGC。該平均電路114係經由ADC驅動器124而耦接至一ADC 126。如同從圖1應該體認到的,在某些實施例中,該平均電路的輸出端子係在無介於中間的處理級之下直接耦接至該ADC驅動器。該ADC 126係數位化來自該平均電路114的信號。
圖3是根據本申請案之一非限制性的實施例的一具有TGC功能的TIA(例如,該些放大器112a…112n中之一)的方塊圖。圖3是包含輸入端子330、放大器332、輸出端子336、以及可變阻抗的回授電路334。該輸入端子330係接收代表超音波信號的類比電性信號。在某些實施方式中,該輸入端子330係透過一直接的耦接、或是透過一開關(例如是該些開關110a...110n的任一個),來和一超音波換能器(例如是該些換能器102a…102n的任一個)電性連通。
在該輸入端子330接收到的信號係藉由該放大器332來加以放大。增益的量可被選擇以提供充分的動態範圍以用於在輸出端子336輸出的信號的後續的處理及數位化。在某些實施方式中,該放大器將會提供一介於90dB到120dB之間的增益,此係作為一非限制性的例子。在某些實施方式中,增益的量係隨著時間而動態地加以改變,以提供補償超音波信號衰減的TGC。
在輸出端子336的信號係透過該可變阻抗的回授電路334而被回授到該放大器332的輸入端子330,該可變阻抗的回授電路334係被用來修改TIA 112的增益。可變阻抗的回授電路334可被配置以產生(利用時序電路或者是其它方式)、或者替代的是(從一數位控制器、處理器、或是其它來源)接收一或多個控制信號,其係動態地調整放大器332所看到的回授阻抗,以便於提供一可被利用來提供TGC功能的時變的增益量。在某些實施方式中,放大器332可以是一種除了TIA之外的放大器,例如是一低雜訊放大器(LNA)或跨導放大器。在某些實施方式中,放大器332可以是一電壓放大器,並且輸入端子330可以連接至一壓電換能器。
圖4A係描繪根據本申請案之一非限制性的實施例的用於一具有TGC功能的TIA(例如是該些放大器112中之一)的電路圖。圖4A係包含輸入端子330、放大器332、可變阻抗的回授電路334、以及輸出端子336。放大器332係包含一NMOS電晶體440、NMOS電晶體442、電流源444、PMOS電晶體446、以及電流源448。可變阻抗的回授電路334係包含數量N個的NMOS電晶體450a...450n,其係被配置以接收N個別的控制信號CTRL[0]...CTRL[N]、數量N個的電阻器452a...452n、以及數量M個的電容器454a...454m。
來自一超音波換能器的一類比電性信號係在該輸入端子330加以接收。該輸入係連接至該NMOS電晶體440的閘極,該源極係連接至接地,並且該汲極係連接至該NMOS電晶體442。該NMOS電晶體442的閘極係連接至一偏壓電壓,該偏壓電壓可被配置以改變該放大器的增益。在某些實施方式中,該NMOS電晶體442係被省略,並且NMOS電晶體440係直接耦接至該電流源444。在某些實施方式中,電流源444可以利用一或多個電晶體(例如,一個、兩個或是更多個PMOS電晶體)來加以實施,該些電晶體並未顯示在圖4A中。電流源444可以利用任何適當的電流源電路來加以實施。
該NMOS電晶體446的閘極係連接至該電流源444的輸出、以及該NMOS電晶體442的汲極。NMOS電晶體446的汲極係連接至一正電源供應電壓,並且NMOS電晶體446的源極係連接至電流源448、該輸出336、以及該可變阻抗的回授電路334。該電流源448可被實施為一或多個電晶體、一電阻器、或是任何適當的電路。
該可變阻抗的回授電路334係耦接至該輸出端子336以及該輸入端子330。該可變阻抗的回授電路334係在該些NMOS電晶體450a…450n之處接收該N個控制信號CTRL[0]、CTRL[1]...CTRL[N],該些NMOS電晶體450a…450n係被用來組態設定從該輸出336至該輸入330的回授路徑的阻抗。當該控制信號CTRL[0]是高的(一個邏輯1)時,該NMOS電晶體450a係完成從該輸出端子336至該輸入端子330的一回授路徑,其係包含電阻器452a。當該控制信號CTRL[0]是低的(一個邏輯0)時,該NMOS電晶體452a係斷開該回授路徑。若CTRL[1]是在CTRL[0]係低的時候被發出為高的,則該NMOS電晶體450b係完成從該輸出端子336至該輸入端子330的一回授路徑,其係包含該電阻器452b以及該電阻器452a,相對於以該電阻器452a為該唯一的電阻器的回授路徑,此係具有增大的阻抗。以此種方式,該放大器的增益可被增大。
該些電阻器452a…452n可以具有任何適當的關係,以提供變化的增益。例如,在某些實施方式中,該些電阻器452a…452n係提供依序地從電阻器452a至電阻器452n改變的電阻值。在某些實施方式中,該些電阻器452a...452n係被製作尺寸以使得增加一額外的電阻器至該回授路徑,例如是藉由將該些NMOS電晶體450a…450n的一第一電晶體切換關斷,並且將該些NMOS電晶體450a...450n的一第二電晶體(其係相鄰該第一電晶體而且較靠近第N個電晶體)切換導通,此係在該放大器112的增益上產生一對數尺度的增加。例如,該電阻器452a可以被製作尺寸以提供90dB的增益,並且每一個被加到該回授路徑的電阻器接著可以增加該增益一分貝。在某些實施方式中,該些電阻器452a...452n、或是該些電阻器452a...452n的一子集合的每一個電阻器的電阻係被縮放一固定的縮放因數,例如,在該些電阻器452a...452n的一子集合中的每一個電阻器都具有比更接近該輸入330的相鄰的電阻器大10%、20%、30%、或是更大的電阻。在某些實施方式中,一或多個(例如,每一個)電阻器的電阻係被縮放以使得該可變阻抗的回授電路334的特徵RC時間常數係在該回授路徑上的每一個額外的電阻器下被縮放一固定的因數。用所述方式的任一種來組態設定該些電阻器都可以使得提供可變的增益變得容易,並且因此達成TGC功能。
該電容器454a係被展示並聯連接該電阻器452a及452b。在某些實施方式中,每一個電阻器、電晶體以及控制信號的分組可以有一電容器。例如,在某些實施例中,電容器的數量M係等於電阻器的數量N。在某些實施方式中,每一個電容器係並聯一或多個電阻器。例如,每一個電容器可以並聯兩個電阻器,因而M可以是N的一半。該些電容器454a…454m可以和一或多個電阻器一起被製作尺寸及配置,以分別解決例如是面積、成本及頻寬的各種設計考量,而不脫離本申請案的範疇。
圖4B係描繪用於根據本申請案之一非限制性的實施例的一TGC控制信號切換電路、充電泵電路460的電路圖。圖4B係包含開關信號輸入462、開關464、電流源470、電流源472、電容器474、以及控制信號輸出476。為了啟動或是解除啟動一給定的控制信號(例如,參考圖4A所論述的CTRL[0]…CTRL[N]中之一),一切換信號SW0係在該開關信號輸入462之處加以接收。該開關464係包含PMOS電晶體466以及NMOS電晶體468,其都使得個別的閘極連接以接收該開關信號輸入462。該PMOS電晶體466以及該NMOS電晶體468係被展示為具有一反相器的配置,使得該控制信號輸出476將會是開關信號輸入462的邏輯相反者。然而,任何適當的切換機構都可被用在該開關464。
該開關464的輸出係連接至該電容器474,其係被配置以在邏輯位準之間的轉換期間放慢控制信號輸出476的邊緣。由於該超音波換能器是正在接收一連續的信號,因此在該控制信號以及因此的增益放大器112a(或是放大器112b…112n的任一個)上的突然的改變可能會在超音波量測中產生暫態的誤差,例如是一突波(glitch)。藉由放慢在該控制信號輸出476的邏輯位準之間的轉換,電容器474可以避免、降低、及/或實質消除來自超音波量測的暫態切換誤差,使得對於改變放大器112的增益的超音波量測的影響係由在增益上的所要的增加所主宰,因而切換誤差是相對可忽略的。
在從低至高的輸出的轉換期間,該電容器係充電並且放慢該輸出的上升時間。在從高至低的輸出的轉換期間,該電容器係隨著時間來放電以放慢該轉換。一用於該輸出的最大轉換時間可以被指定以達成一足夠快速的TGC控制轉換的速率,例如是每10奈秒0.005dB、每10奈秒0.01dB、每奈秒0.01dB、每奈秒0.1dB、或是每奈秒0.2dB、或是任何其它適當的值。應該體認到的是,藉由該放大器112以及TGC電路(例如334及460)所決定的轉換輪廓(增益/衰減曲線)在藉由該ADC(例如126)數位化之後應該在數位域中加以呈現。由於所牽涉到的電路的物理的緣故,該數位化的轉換輪廓可能會不同於一理想或是目標的轉換輪廓,並且在該實際與目標輪廓之間的差異可以在該數位域中加以校正,其例如是藉由建立該增益電路的模型並且施加一被配置以消除該差異的數位增益。在某些實施方式中,針對於該數位信號來做成調整是根據該增益電路的一模型,例如是在被用來增加該增益的阻抗回授的位準之間的轉換的一模型,而不是根據任何特定所要的增益/衰減曲線。
電容器474可以是任何適當尺寸的電容器。例如,該電容器可以具有100毫微微法拉、200毫微微法拉、500毫微微法拉、1微微法拉、或是任何其它適當的電容值的一尺寸。在某些實施方式中,電容器474可以利用多個配置成一陣列的電容器來加以實施。在某些實施方式中,電容的量可以動態地利用控制信號來加以切換、或是以其它方式可組態設定或可程式化的,例如是藉由利用電晶體來連接在該陣列中的每一個電晶體至該控制信號輸出476。連接在接地與控制信號輸出476之間的電容量可被改變,以控制該放大器的轉換率以及TGC,此係根據在該量測中可以容忍的突波誤差能量的量而定。例如,當快速的TGC操作是所需的,而且可以容忍相當高位準的突波能量時,較小的電容值可以從一陣列的電容器中加以選擇。或者是,其它的電路可被實施來儲存及釋放電荷(以充分的量以及有充分的持續時間),以避免使得該些控制信號的轉換帶來將會劣化超音波讀數的暫態誤差。
圖4C係描繪根據本申請案之一非限制性的實施例的一TGC控制信號切換電路、充電泵電路461的電路圖。圖4C係包含和圖4B的充電泵電路相同的構件,但是其係不同地被配置。因此,充電泵電路461係包含開關信號輸入462、PMOS電晶體466、NMOS電晶體468、電流源470、電流源472、電容器474、以及控制信號輸出476。為了啟動或是解除啟動一給定的控制信號(例如,參考圖4A所論述的CTRL[0]…CTRL[N]中之一),一切換信號SW0係在該開關信號輸入462之處被接收到。PMOS電晶體466以及NMOS電晶體468(其係在圖4B中參考開關464來加以論述的)都使得個別的閘極連接以接收該開關信號輸入462。該PMOS電晶體466以及該NMOS電晶體468係被展示為具有一反相器配置,使得該控制信號輸出476將會是開關信號輸入462的邏輯相反者。然而,任何適當的切換機構都可被用來切換該些電晶體466及468。圖4C的電路圖與圖4B的電路圖不同在於將電流源470以及電流源472描繪為是在PMOS電晶體466與NMOS電晶體468之間。應瞭解的是,充電泵461可以利用各種的電路配置來加以實施,其係能夠控制該些控制信號輸出(例如是476)的上升及下降的速率,使得該些改變是足夠緩慢到實質降低或消除突波誤差,但是又足夠快速到提供一足夠高的放大器轉換率。
圖4D係描繪根據本申請案之一非限制性的實施例的一用於TGC控制信號的範例的操作順序。圖4D係展示三個控制信號的切換信號、SW0信號480、SW1信號482、以及SW2信號484的時間變化。該些切換信號480、482、484可以藉由一微控制器、時序電路、一處理器、或是任何其它適當的控制電路來加以產生。在某些實施方式中,該些切換信號中的一或多個(例如,每一個)係具有一個別對應的控制信號。例如,該SW0信號可以對應於參考圖4A及4B所論述的CTRL[0]信號,該SW1信號可以對應該CTRL[1]信號,並且該SW2信號可以對應於一CTRL[2]信號或是該CTRL[N]信號。最初,該SW0信號480是一個邏輯0(一可以是等同於接地的低的信號),而其它信號是邏輯1(可以是等同於該供應電壓的高的信號)。當被輸出至參考圖4B所論述的TGC控制信號切換電路460時,一邏輯低的SW0切換信號將會使得該對應的CTRL[0]控制信號被發出為邏輯1,其於是開路一如同參考圖4A所論述的回授路徑。在此例子中,只使得該SW0信號480為邏輯0係產生單一電阻器的回授路徑,並且啟動在該放大器112中的最低增益設定。在時間T1,該SW0信號480係被切換至一邏輯1,例如是如同參考圖4B所論述的,並且該SW1信號482係被切換至一個邏輯0,而該SW2信號484係維持邏輯1。此係增加如同參考圖4A所論述的範例的可變阻抗的回授電路334的電阻,並且藉此增加該放大器112的增益。在一比時間T1稍後的時間T2,該SW0信號480係維持邏輯1,該SW1信號482係從邏輯0被切換至邏輯1,並且該SW2信號484係從邏輯1被切換至邏輯0,藉此進一步增加可變阻抗的回授電路334的阻抗,並且進一步增加該放大器112的增益。此序列的在時間上依序地增加增益係提供TGC功能給該放大器112。
應該體認到的是,在圖4D中所描繪的序列是非限制性的。例如,所展示的時間週期的數量以及切換信號並非限制性的。在某些實施方式中,多個切換信號以及對應的控制信號可以在一給定的時間被發出為高的或是低的,例如是允許切換及可變阻抗電路的不同的配置、或是相較於電阻器的一串聯配置所容許的,其係容許該阻抗及增益的更細微粒度的控制。
至此已經敘述此申請案的技術的數個特點及實施例,所體認到的是各種的改變、修改、以及改良都將會被該項技術中具有通常技能者輕易地思及。此種改變、修改、以及改良係欲在本申請案中所述技術的精神及範疇之內。因此,將理解到的是先前的實施例只是藉由舉例來加以提出而已,並且在所附的申請專利範圍及其等同者的範疇之內,本發明的實施例可以與明確所述者不同地加以實施。例如,儘管數個實施例已經被敘述為採用一TIA,但是其它包含LNA及跨導放大器的放大器可以替代地加以利用。更一般而言,電壓放大器可被實施,並且在該超音波裝置包含一輸出一電壓信號的換能器,例如是一壓電式晶體換能器時可能是有利的。其它的變化也是可行的。
如先前所述,某些特點可以被體現為一或多種方法。被執行作為該(些)方法的部分的動作可以用任何適當的方式來加以排序。於是,其中動作係以一不同於所描繪的順序來加以執行的實施例可加以建構,其可包含同時執行某些動作,即使該些動作在舉例說明的實施例中是被展示為依序的動作。
如同在此所界定及使用的所有定義都應該被理解為優於字典的定義、在被納入作為參考的文件中的定義、及/或所定義的術語之普通的意義。
如同在此的說明書中以及在申請專利範圍中所用的措辭"及/或"應該被理解為表示該些因此聯合的元件的"任一或是兩者",亦即元件在某些情形中是結合地存在,而在其它情形中則是分離地存在。
如同在此的說明書中以及在申請專利範圍中所用的,關於一或多個元件的一表列的措辭"至少一個"應該被理解為表示至少一選自該表列的元件中的任一個或多個元件之元件,但是不一定包含明確地被表列在該表列的元件內的每一個元件的至少一個,而且並不排除在該表列的元件中之元件的任意組合。
如同在此所用的,除非另有指出,否則用在一數字的背景的術語"介於…之間"係為含括性的。例如,除非另有指出,否則"介於A與B之間"係包含A及B。
在該申請專利範圍中、以及在以上的說明書中,例如是"包括"、"包含"、"載有"、"具有"、"內含"、"涉及"、"保有"、"由…所構成"與類似者的所有連接的措辭欲被理解為開放式的,亦即表示包含但不限於。只有該些連接的措辭"由…所組成"以及"實質由…所組成"分別應該是封閉式或半封閉式的連接的措辭。
100‧‧‧電路
102a…102n‧‧‧超音波換能器
104a…104n‧‧‧電路通道
106a…106n‧‧‧發送解碼器
108a…108n‧‧‧脈衝產生器
110a…110n‧‧‧接收電路
112a…112n‧‧‧放大器
114‧‧‧平均電路
124‧‧‧ADC驅動器
125a‧‧‧第一ADC驅動器
125b‧‧‧第二ADC驅動器
126‧‧‧ADC
128a‧‧‧第一基板
128b‧‧‧第二基板
330‧‧‧輸入端子
332‧‧‧放大器
334‧‧‧可變阻抗的回授電路
336‧‧‧輸出端子
440‧‧‧NMOS電晶體
442‧‧‧NMOS電晶體
444‧‧‧電流源
446‧‧‧PMOS電晶體
448‧‧‧電流源
450a...450n‧‧‧NMOS電晶體
452a...452n‧‧‧電阻器
454a...454m‧‧‧電容器
460‧‧‧TGC控制信號切換電路、充電泵電路
461‧‧‧TGC控制信號切換電路、充電泵電路
462‧‧‧開關信號輸入
464‧‧‧開關
466‧‧‧PMOS電晶體
468‧‧‧NMOS電晶體
470‧‧‧電流源
472‧‧‧電流源
474‧‧‧電容器
476‧‧‧控制信號輸出
480‧‧‧SW0信號
482‧‧‧SW1信號
484‧‧‧SW2信號
CTRL[0]...CTRL[N]‧‧‧控制信號
SW0‧‧‧切換信號
本申請案的各種特點及實施例將會參考以下的圖來加以描述。應該體認到的是,該些圖並不一定按照比例繪製。出現在多個圖中的項目係在它們出現的所有圖中都藉由相同的元件符號來加以指示。 圖1是根據本申請案之一非限制性的實施例的一種超音波裝置的方塊圖,其係包含一用於放大一超音波信號的放大器。 圖2是描繪根據本申請案之一非限制性的實施例的一超音波信號接收電路鏈,其係包含一具有時間增益補償(TGC)功能的跨阻抗放大器(TIA)以及複數個接在該TIA之後的類比信號處理級。 圖3是根據本申請案之一非限制性的實施例的一具有TGC功能的TIA的方塊圖。 圖4A是根據本申請案之一非限制性的實施例的一具有TGC功能的TIA的一實施方式的電路圖。 圖4B是根據本申請案之一非限制性的實施例的一TGC控制信號切換電路的一實施方式的電路圖。 圖4C是根據本申請案之一非限制性的實施例的一TGC控制信號切換電路的一實施方式的電路圖。 圖4D係描繪根據本申請案之一非限制性的實施例的一用於TGC控制信號的範例的操作順序。

Claims (24)

  1. 一種超音波設備,其係包括: 一超音波換能器,其係用以提供一類比電性信號; 一具有時間增益補償(TGC)功能的放大器,其係耦接至該超音波換能器,並且被配置以接收及放大該類比電性信號一時間相依的量。
  2. 如請求項1所述之超音波設備,其中該放大器是一跨阻抗放大器(TIA)。
  3. 如請求項1所述之超音波設備,其中該放大器是一跨導放大器。
  4. 如請求項1所述之超音波設備,其中該放大器是一低雜訊放大器(LNA)。
  5. 如請求項1所述之超音波設備,其中該超音波換能器是一第一超音波換能器,並且該放大器是一第一放大器,該超音波設備係包括含有該第一超音波換能器的複數個超音波換能器、以及複數個耦接至該個別的超音波換能器的個別的放大器,該複數個個別的放大器係包含該第一放大器,其中該超音波設備進一步包括一耦接至該複數個個別的放大器的平均電路。
  6. 如請求項5所述之超音波設備,其中該平均電路係包括獨立於該放大器的該TGC功能的TGC電路。
  7. 如請求項1所述之超音波設備,其中該超音波換能器以及該放大器係被整合在一相同的基板上,以形成一整合的電子裝置。
  8. 如請求項1所述之超音波設備,其中該放大器係被配置以接收複數個控制信號,並且其中該時間相依的增益量係根據該複數個控制信號的至少一控制信號來加以決定。
  9. 如請求項8所述之超音波設備,其中該至少一控制信號係代表來自一充電泵的一信號。
  10. 如請求項9所述之超音波設備,其中該充電泵係包括一電容器。
  11. 如請求項1所述之超音波設備,其中該放大器係包括放大電路以及具有一可變的阻抗的回授電路。
  12. 如請求項11所述之超音波設備,其中該回授電路係包括複數個具有一串聯配置的電阻器,並且其中該複數個電阻器的一子集合係具有以一對數的方式依序地增加的個別的電阻值。
  13. 如請求項1所述之超音波設備,其中該類比電性信號係包括超音波影像資料。
  14. 如請求項1所述之超音波設備,其進一步包括一耦接在該超音波換能器與該放大器之間的開關。
  15. 一種超音波電路,其係包括: 一超音波換能器; 一類比信號處理鏈,其係耦接至該超音波換能器;以及 一類比至數位轉換器(ADC),其中該類比信號處理鏈係被電性耦接在該超音波換能器與該ADC之間, 其中該類比信號處理鏈係包含一組合的跨阻抗放大器(TIA)及時間增益補償(TGC)電路。
  16. 如請求項15所述之超音波電路,其中該類比信號處理鏈係在該組合的TIA及TGC電路與該ADC之間缺少一獨立的TGC電路。
  17. 如請求項15所述之超音波電路,其進一步包括一耦接在該超音波換能器與該組合的TIA及TGC電路之間的開關。
  18. 如請求項15所述之超音波電路,其進一步包括含有該超音波換能器的複數個超音波換能器、以及複數個耦接至個別的超音波換能器的個別的組合的TIA及TGC電路,該複數個個別的組合的TIA及TGC電路係包含該組合的TIA及TGC電路,其中該超音波設備進一步包括一耦接至該複數個個別的組合的TIA及TGC電路的平均電路。
  19. 如請求項18所述之超音波電路,其中該平均電路係包括一TGC電路。
  20. 如請求項15所述之超音波電路,其中該組合的TIA及TGC電路係被配置以施加一隨時間變化的增益量至來自該超音波換能器的一類比電性信號。
  21. 如請求項20所述之超音波電路,其中該組合的TIA及TGC電路係被配置以接收複數個控制信號,其係決定該隨時間變化的增益量的一大小。
  22. 如請求項21所述之超音波電路,其進一步包括充電泵電路,其係被配置以延遲該複數個控制信號的至少一控制信號的邏輯位準轉換。
  23. 如請求項21所述之超音波電路,其進一步包括被配置以接收複數個切換信號的切換電路,該切換電路係被配置以用一依序的順序來發出該些控制信號。
  24. 如請求項21所述之超音波電路,其進一步包括可選的電阻性區段,其係被配置以藉由該複數個控制信號來加以選擇,以對數地縮放的增量來增加該隨時間變化的增益量的大小。
TW107121009A 2017-06-20 2018-06-19 用於超音波應用之具有內建時間增益補償之放大器 TW201905487A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762522622P 2017-06-20 2017-06-20
US62/522,622 2017-06-20

Publications (1)

Publication Number Publication Date
TW201905487A true TW201905487A (zh) 2019-02-01

Family

ID=64656652

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107121009A TW201905487A (zh) 2017-06-20 2018-06-19 用於超音波應用之具有內建時間增益補償之放大器

Country Status (9)

Country Link
US (3) US11005435B2 (zh)
EP (1) EP3641656A4 (zh)
JP (1) JP2020524014A (zh)
KR (1) KR20200018812A (zh)
CN (1) CN110769753A (zh)
AU (1) AU2018289337A1 (zh)
CA (1) CA3066100A1 (zh)
TW (1) TW201905487A (zh)
WO (1) WO2018236779A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10009036B2 (en) * 2016-09-09 2018-06-26 Samsung Electronics Co., Ltd System and method of calibrating input signal to successive approximation register (SAR) analog-to-digital converter (ADC) in ADC-assisted time-to-digital converter (TDC)
AU2018289337A1 (en) * 2017-06-20 2019-12-19 Butterfly Network, Inc. Amplifier with built in time gain compensation for ultrasound applications
CN110771044A (zh) 2017-06-20 2020-02-07 蝴蝶网络有限公司 超声装置中模拟信号到数字信号的转换
KR20200019210A (ko) * 2017-06-20 2020-02-21 버터플라이 네트워크, 인크. 초음파 디바이스를 위한 단일-종단 트랜스-임피던스 증폭기(tia)
CA3064045A1 (en) 2017-06-20 2018-12-27 Butterfly Network, Inc. Multi-stage trans-impedance amplifier (tia) for an ultrasound device
US20190142387A1 (en) * 2017-11-15 2019-05-16 Butterfly Network, Inc. Ultrasound apparatuses and methods for fabricating ultrasound devices
CN110057921B (zh) * 2019-04-11 2021-07-02 成都华芯微医疗科技有限公司 一种三维超声成像系统
NL2023557B1 (en) 2019-07-23 2021-02-10 Univ Delft Tech Amplifier with continuous gain control
CN114173671A (zh) 2019-07-25 2022-03-11 布弗莱运营公司 用于打开和关闭超声设备中的adc驱动器的方法和装置
CN114556140A (zh) 2019-09-19 2022-05-27 布弗莱运营公司 用于超声设备的对称接收器开关
KR20210105187A (ko) * 2020-02-18 2021-08-26 에스케이하이닉스 주식회사 전압 생성 회로 및 이를 이용하는 비휘발성 메모리 장치
TW202210830A (zh) 2020-04-16 2022-03-16 美商蝴蝶網路公司 用於超音波裝置中之電路系統及/或換能器之內建自測試的方法和電路系統
FR3110270B1 (fr) * 2020-05-13 2022-04-15 Moduleus Circuit de contrôle d'un transducteur ultrasonore
DE102020120716A1 (de) * 2020-08-05 2022-02-10 Elmos Semiconductor Se Transformatorlose Ansteuerung eines Ultraschallwandlers mit nur einem externen Energiespeicher
US11808897B2 (en) 2020-10-05 2023-11-07 Bfly Operations, Inc. Methods and apparatuses for azimuthal summing of ultrasound data
CN113873401A (zh) * 2021-10-27 2021-12-31 珠海和佳医疗设备股份有限公司 一种超声换能器模拟前端电路和工作方法
CN115347876A (zh) * 2022-10-17 2022-11-15 电子科技大学 一种超声回声信号接收的模拟前端电路

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417496A (en) * 1981-06-15 1983-11-29 The Wurlitzer Company Velocity sensitive keyer control circuit for an electronic musical instrument
DE3425705A1 (de) 1984-07-12 1986-01-16 Siemens AG, 1000 Berlin und 8000 München Phased-array-geraet
US5585626A (en) 1992-07-28 1996-12-17 Patchen, Inc. Apparatus and method for determining a distance to an object in a field for the controlled release of chemicals on plants, weeds, trees or soil and/or guidance of farm vehicles
JP3418654B2 (ja) 1995-10-27 2003-06-23 株式会社日立製作所 プリアンプ
US5684431A (en) 1995-12-13 1997-11-04 Analog Devices Differential-input single-supply variable gain amplifier having linear-in-dB gain control
US5610709A (en) 1996-02-02 1997-03-11 Eastman Kodak Company Automatic ranging optical power monitoring system
US6826369B1 (en) 1999-04-23 2004-11-30 System To Asic, Inc. Intelligent sensor platform
US6356152B1 (en) 1999-07-14 2002-03-12 Texas Instruments Incorporated Amplifier with folded super-followers
US6927851B2 (en) 2000-03-31 2005-08-09 Neogen Corporation Methods and apparatus to improve the sensitivity and reproducibility of bioluminescent analytical methods
US6404281B1 (en) 2000-11-14 2002-06-11 Sirenza Microdevices, Inc. Wide dynamic range transimpedance amplifier
US7551024B2 (en) 2001-03-13 2009-06-23 Marvell World Trade Ltd. Nested transimpedance amplifier
US6720830B2 (en) 2001-06-11 2004-04-13 Johns Hopkins University Low-power, differential optical receiver in silicon on insulator
US7098774B2 (en) 2002-12-19 2006-08-29 General Electric Company Method and apparatus for monitoring and controlling warning systems
US7313053B2 (en) 2003-03-06 2007-12-25 General Electric Company Method and apparatus for controlling scanning of mosaic sensor array
US7006864B2 (en) 2003-06-17 2006-02-28 Ebr Systems, Inc. Methods and systems for vibrational treatment of cardiac arrhythmias
US6995613B2 (en) 2003-07-30 2006-02-07 Tropian, Inc. Power distribution and biasing in RF switch-mode power amplifiers
US6806744B1 (en) 2003-10-03 2004-10-19 National Semiconductor Corporation High speed low voltage differential to rail-to-rail single ended converter
US7998072B2 (en) 2003-12-19 2011-08-16 Siemens Medical Solutions Usa, Inc. Probe based digitizing or compression system and method for medical ultrasound
US7657185B2 (en) 2004-01-26 2010-02-02 Opnext, Inc. Electronic interface for long reach optical transceiver
US7888709B2 (en) 2004-09-15 2011-02-15 Sonetics Ultrasound, Inc. Capacitive micromachined ultrasonic transducer and manufacturing method
US7200503B2 (en) 2004-12-29 2007-04-03 Endrss + Hauser Flowtec Ag Field device electronics fed by an external electrical energy supply
WO2006130828A2 (en) 2005-06-02 2006-12-07 Georgia Tech Research Corporation System and method for sensing capacitance change of a capacitive sensor
US7259628B2 (en) 2005-06-30 2007-08-21 Silicon Laboratories Inc. Signal dependent biasing scheme for an amplifier
US7874988B2 (en) 2005-08-09 2011-01-25 Kabushiki Kaisha Toshiba Ultrasonic diagnostic apparatus and ultrasonic transmission method
US7449958B1 (en) 2005-08-17 2008-11-11 Marvell International Ltd. Open loop DC control for a transimpedance feedback amplifier
EP1770694A3 (en) 2005-09-01 2008-10-15 Kabushiki Kaisha Toshiba Photodetector circuit, method for deriving laser light emission amount control signal, optical pickup device, and optical disk apparatus
US8465431B2 (en) 2005-12-07 2013-06-18 Siemens Medical Solutions Usa, Inc. Multi-dimensional CMUT array with integrated beamformation
GB2454603B (en) 2006-02-24 2010-05-05 Wolfson Microelectronics Plc Mems device
KR100947824B1 (ko) 2006-03-29 2010-03-18 주식회사 메디슨 초음파 시스템에서 시그마-델타 아날로그-디지털 변환기를이용한 수신 집속 장치
US20070287923A1 (en) 2006-05-15 2007-12-13 Charles Adkins Wrist plethysmograph
KR101051531B1 (ko) 2007-06-29 2011-07-22 주식회사 하이볼릭 클리핑 기능의 광대역 증폭기
US7605660B1 (en) 2007-11-12 2009-10-20 Rf Micro Devices, Inc. Linear multi-stage transimpedance amplifier
US7986992B2 (en) 2007-11-16 2011-07-26 Ruse Technologies, Llc Apparatus and method for treating atrial fibrillation and atrial tachycardia
CN102138338B (zh) 2008-06-30 2015-01-14 密执安大学评议会 压电mems麦克风
CA2734768C (en) * 2008-08-18 2017-06-27 University Of Virginia Patent Foundation Front end circuitry for imaging systems and methods of use
PL2178025T3 (pl) 2008-10-14 2012-07-31 Dolphitech As Ultradźwiękowe urządzenie obrazujące do czytania i dekodowania dających się odczytać maszynowo symboli matrycowych
GB0821940D0 (en) 2008-12-01 2009-01-07 Ntnu Technology Transfer As Analogue to digital converter
US8176787B2 (en) 2008-12-17 2012-05-15 General Electric Company Systems and methods for operating a two-dimensional transducer array
GB2466648B (en) 2008-12-30 2011-09-28 Wolfson Microelectronics Plc Apparatus and method for biasing a transducer
WO2010093942A1 (en) 2009-02-12 2010-08-19 Gigle Networks Inc. External ac-dc coupling for communication interfaces
US8403856B2 (en) 2009-03-11 2013-03-26 Volcano Corporation Rotational intravascular ultrasound probe with an active spinning element
US8315125B2 (en) 2009-03-18 2012-11-20 Sonetics Ultrasound, Inc. System and method for biasing CMUT elements
US8207652B2 (en) 2009-06-16 2012-06-26 General Electric Company Ultrasound transducer with improved acoustic performance
WO2011023210A1 (en) * 2009-08-27 2011-03-03 Verigy ( Singapore) Pte. Ltd. Adjustable gain amplifier, automated test equipment and method for adjusting a gain of an amplifier
US8610501B2 (en) 2009-11-16 2013-12-17 Covidien Lp Class resonant-H electrosurgical generators
JP5355366B2 (ja) 2009-12-02 2013-11-27 株式会社東芝 差動増幅回路および無線受信機
US8568319B1 (en) * 2010-02-11 2013-10-29 Mitchell Kaplan Ultrasound imaging system apparatus and method with ADC saturation monitor
FR2958430A1 (fr) 2010-04-02 2011-10-07 Univ Paris 13 Circuit electronique analogique de traitement d'un signal lumineux, systeme et procede de traitement correspondants
US8633766B2 (en) * 2010-04-19 2014-01-21 Rf Micro Devices, Inc. Pseudo-envelope follower power management system with high frequency ripple current compensation
US8498178B2 (en) 2010-12-23 2013-07-30 Analog Devices, Inc. Acoustic transducer chip
US8891334B2 (en) 2011-03-04 2014-11-18 Georgia Tech Research Corporation Compact, energy-efficient ultrasound imaging probes using CMUT arrays with integrated electronics
US8670952B2 (en) 2011-04-18 2014-03-11 Olympus Ndt Inc. Non-destructive inspection instrument employing multiple sensor technologies in an integral enclosure
JP5813776B2 (ja) 2011-09-15 2015-11-17 株式会社日立メディコ 超音波撮像装置
WO2013059358A2 (en) 2011-10-17 2013-04-25 Butterfly Network, Inc. Transmissive imaging and related apparatus and methods
GB2511556A (en) 2013-03-07 2014-09-10 Sharp Kk Ultrasound imaging
KR20220097541A (ko) 2013-03-15 2022-07-07 버터플라이 네트워크, 인크. 모놀리식 초음파 이미징 디바이스, 시스템 및 방법
US9041453B2 (en) 2013-04-04 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Pulse generation circuit and semiconductor device
CN104242937B (zh) 2013-06-17 2017-03-29 上海华虹宏力半导体制造有限公司 用于流水线型模数转换器的模拟参考电平缓冲器
CA2919183A1 (en) 2013-07-23 2015-01-29 Butterfly Network, Inc. Interconnectable ultrasound transducer probes and related methods and apparatus
WO2015040524A1 (en) 2013-09-19 2015-03-26 Koninklijke Philips N.V. Tgc controls for an ultrasonic diagnostic imaging system
EP3050214B1 (en) * 2013-09-25 2019-03-20 Georgia Tech Research Corporation Mri compatible 3-d intracardiac echography catheter and system
US9264001B2 (en) 2013-09-25 2016-02-16 Inphi Corporation Self biased dual mode differential CMOS TIA for 400G fiber optic links
WO2015077773A1 (en) * 2013-11-25 2015-05-28 Massachusetts Eye & Ear Infirmary Low power cochlear implants
US9407218B2 (en) 2013-11-25 2016-08-02 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-stage transimpedance amplifier and a method of using the same
CN103607130B (zh) 2013-11-26 2016-01-13 徐州中矿大传动与自动化有限公司 基于fpga的dspace的三电平脉冲扩展的控制方法及其装置
US20150280662A1 (en) * 2014-03-27 2015-10-01 Texas Instruments Incorporated Time gain compensation circuit in an ultrasound receiver
EP3132441B1 (en) 2014-04-18 2020-11-25 Butterfly Network, Inc. Architecture of single substrate ultrasonic imaging devices, related apparatuses
AU2015247501B2 (en) 2014-04-18 2018-11-29 Butterfly Network, Inc. Ultrasonic imaging compression methods and apparatus
KR102237662B1 (ko) 2014-04-18 2021-04-09 버터플라이 네트워크, 인크. 상보적 금속 산화물 반도체(cmos) 웨이퍼들 내의 초음파 트랜스듀서들 및 관련 장치 및 방법들
US10044328B2 (en) 2015-07-20 2018-08-07 Macom Technology Solutions Holdings, Inc. Transimpedance amplifier with bandwidth extender
US10039526B2 (en) 2015-09-17 2018-08-07 Qualcomm Incorporated Pixel receiver with low frequency noise reduction for ultrasonic imaging apparatus
US10082488B2 (en) * 2015-12-02 2018-09-25 Butterfly Network, Inc. Time gain compensation circuit and related apparatus and methods
US10187020B2 (en) * 2015-12-02 2019-01-22 Butterfly Network, Inc. Trans-impedance amplifier for ultrasound device and related apparatus and methods
US9473136B1 (en) 2015-12-02 2016-10-18 Butterfly Network, Inc. Level shifter and related methods and apparatus
US9492144B1 (en) 2015-12-02 2016-11-15 Butterfly Network, Inc. Multi-level pulser and related apparatus and methods
US10175347B2 (en) 2015-12-02 2019-01-08 Butterfly Network, Inc. Ultrasound receiver circuitry and related apparatus and methods
US9705518B2 (en) 2015-12-02 2017-07-11 Butterfly Network, Inc. Asynchronous successive approximation analog-to-digital converter and related methods and apparatus
US10624613B2 (en) 2016-01-15 2020-04-21 Butterfly Network, Inc. Ultrasound signal processing circuitry and related apparatus and methods
US10469043B2 (en) 2016-03-22 2019-11-05 Microchip Technology Incorporated Class AB common-source amplifier with constant transconductance
US10082565B2 (en) 2016-03-31 2018-09-25 Butterfly Network, Inc. Multilevel bipolar pulser
US10231713B2 (en) * 2016-09-13 2019-03-19 Butterfly Network, Inc. Analog-to-digital drive circuitry having built-in time gain compensation functionality for ultrasound applications
US10263031B2 (en) 2017-02-01 2019-04-16 Omnivision Technologies, Inc. Feedback capacitor and method for readout of hybrid bonded image sensors
US10116263B1 (en) 2017-05-16 2018-10-30 Inphi Corporation Method and device for TIA overload control in low power applications
AU2018289337A1 (en) * 2017-06-20 2019-12-19 Butterfly Network, Inc. Amplifier with built in time gain compensation for ultrasound applications
KR20200019210A (ko) 2017-06-20 2020-02-21 버터플라이 네트워크, 인크. 초음파 디바이스를 위한 단일-종단 트랜스-임피던스 증폭기(tia)
CA3064045A1 (en) 2017-06-20 2018-12-27 Butterfly Network, Inc. Multi-stage trans-impedance amplifier (tia) for an ultrasound device
CN110771044A (zh) 2017-06-20 2020-02-07 蝴蝶网络有限公司 超声装置中模拟信号到数字信号的转换
WO2019032587A1 (en) 2017-08-09 2019-02-14 The Board Of Trustees Of The Leland Stanford Junior University ULTRASONIC BIOMETRIC DETECTION DEVICE INTEGRATED WITH AN OPTICAL SYSTEM
US10476452B2 (en) 2017-11-01 2019-11-12 The Boeing Company Adjustable load line power amplifier circuits and methods
JP2020096294A (ja) 2018-12-13 2020-06-18 株式会社村田製作所 電力増幅回路

Also Published As

Publication number Publication date
EP3641656A4 (en) 2021-03-17
US20190149110A1 (en) 2019-05-16
US20180367111A1 (en) 2018-12-20
EP3641656A1 (en) 2020-04-29
WO2018236779A8 (en) 2019-01-24
AU2018289337A1 (en) 2019-12-19
US20210313939A1 (en) 2021-10-07
US11545946B2 (en) 2023-01-03
CA3066100A1 (en) 2018-12-27
CN110769753A (zh) 2020-02-07
US10340867B2 (en) 2019-07-02
KR20200018812A (ko) 2020-02-20
US11005435B2 (en) 2021-05-11
JP2020524014A (ja) 2020-08-13
WO2018236779A1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
TW201905487A (zh) 用於超音波應用之具有內建時間增益補償之放大器
TWI715688B (zh) 用於超音波裝置的跨阻抗放大器及相關設備和方法
TW201906312A (zh) 用於超音波裝置之多級跨阻抗放大器
TW201906314A (zh) 用於超音波裝置之單端跨阻抗放大器
TW201724782A (zh) 超音波接收器電路及相關的設備和方法