TW201839795A - 改良式電子束缺陷偵測之關注區域 - Google Patents
改良式電子束缺陷偵測之關注區域 Download PDFInfo
- Publication number
- TW201839795A TW201839795A TW107110186A TW107110186A TW201839795A TW 201839795 A TW201839795 A TW 201839795A TW 107110186 A TW107110186 A TW 107110186A TW 107110186 A TW107110186 A TW 107110186A TW 201839795 A TW201839795 A TW 201839795A
- Authority
- TW
- Taiwan
- Prior art keywords
- interest
- region
- scanning electron
- tool
- electron microscope
- Prior art date
Links
- 230000007547 defect Effects 0.000 title claims abstract description 109
- 238000010894 electron beam technology Methods 0.000 title claims description 31
- 238000001514 detection method Methods 0.000 title description 109
- 238000013461 design Methods 0.000 claims abstract description 49
- 238000001000 micrograph Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 57
- 230000003287 optical effect Effects 0.000 claims description 20
- 238000004891 communication Methods 0.000 claims description 5
- 230000035945 sensitivity Effects 0.000 abstract description 6
- 239000004065 semiconductor Substances 0.000 description 23
- 239000010410 layer Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000015654 memory Effects 0.000 description 9
- 238000007689 inspection Methods 0.000 description 8
- 238000001878 scanning electron micrograph Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 238000005457 optimization Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000013102 re-test Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000002950 deficient Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000011960 computer-aided design Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 235000006719 Cassia obtusifolia Nutrition 0.000 description 1
- 235000014552 Cassia tora Nutrition 0.000 description 1
- 244000201986 Cassia tora Species 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/244—Detectors; Associated components or circuits therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/20—Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/26—Electron or ion microscopes; Electron or ion diffraction tubes
- H01J37/28—Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/245—Detection characterised by the variable being measured
- H01J2237/24592—Inspection and quality control of devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/26—Electron or ion microscopes
- H01J2237/28—Scanning microscopes
- H01J2237/2813—Scanning microscopes characterised by the application
- H01J2237/2817—Pattern inspection
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
在掃描電子顯微鏡或其他再檢測工具中使用關注區域可提供經改良敏感度及通量。在一掃描電子顯微鏡之一控制器處自例如一檢測器工具接收一關注區域。該檢測器工具可係一寬頻電漿工具。將該關注區域應用於一掃描電子顯微鏡影像之一視域以識別至少一個感興趣區域。使用該掃描電子顯微鏡來僅在該感興趣區域內偵測缺陷。該等關注區域可係基於設計之關注區域或某一其他類型之關注區域。在SEM工具中使用關注區域可提供經改良敏感度及通量。
Description
本發明係關於利用一再檢測工具之缺陷偵測。
可使用諸如電子設計自動化(EDA)、電腦輔助設計(CAD)及其他IC設計軟體之一方法或系統來開發一積體電路(IC)設計。此類方法及系統可用於自IC設計產生一電路圖案資料庫。電路圖案資料庫包含表示IC之各種層之複數個佈局之資料。電路圖案資料庫中之資料可用於判定複數個倍縮光罩之佈局。一倍縮光罩之一佈局通常包含界定倍縮光罩上之一圖案中之特徵之複數個形狀(多邊形)。每一倍縮光罩用於製作IC之各種層中之一者。舉例而言,IC之各層可包含一半導體基板中之一接面圖案、一閘極介電質圖案、一閘極電極圖案、一層間介電質中之一觸點圖案或者一金屬化層上之一互連圖案。 製作諸如邏輯及記憶體裝置等半導體裝置通常包含使用眾多半導體製作製程來處理例如一半導體晶圓之一基板以形成半導體裝置之各種特徵及多個層級。舉例而言,微影係涉及將一圖案自一倍縮光罩轉印至配置於一半導體晶圓上之一抗蝕劑的一半導體製作製程。半導體製作製程之額外實例包含但不限於化學機械拋光、蝕刻、沈積及離子植入。可將多個半導體裝置製作於一單個半導體晶圓上之一配置中且然後將其分離成若干個別半導體裝置。 在一半導體製造製程期間在各種步驟處使用檢測方法來偵測晶圓上之缺陷以促成製造製程中之較高良率。隨著半導體裝置之尺寸減小,檢測對可接受半導體裝置之成功製造變得甚至更加重要,此乃因較小缺陷可導致裝置不合格。 在製造期間對一半導體晶圓之光學檢測通常係一緩慢手動製程。半導體製作廠(工廠)處之負責缺陷之團隊通常使用基於光學之工具來進行晶圓檢測,但通常對缺陷執行掃描電子顯微鏡(SEM)再檢測以進行驗證。因此,針對在一光學檢測工具上檢測之每一層,然後在一SEM工具上再檢測缺陷之一經取樣群體。經再檢測缺陷之手動分類係繁瑣且耗時的。工廠使用許多自動偵測與分類方案來節省缺陷分類中所牽涉之時間及力氣。然而,自動偵測與分類方案具有限制且並非係對一人工分類之一替代。此流程之一項態樣係自動缺陷偵測,其涉及參考及缺陷位點減法來定位缺陷。一先前技術涉及減去具有缺陷影像之特定視域(FOV)內之全部影像。除需要強大計算能力外,此技術亦增加包含一擾亂或多個非重要缺陷之例項之機率。此減法技術亦係非選擇性的且將具有SEM偵測之降低之感興趣缺陷(DOI)選擇性。 並且,當半導體工廠使用光學檢測器工具來監測晶圓上之缺陷時,針對DOI將光學檢測器工具上之檢測處方最佳化。若針對來自一光學檢測器源之缺陷使用一自動化SEM偵測與分類系統,則晶圓上之一擾亂可具有一不利影響。在此一情形中,儘管光學檢測器工具找出DOI,但其可能被自動化SEM偵測與分類系統報告至一擾亂分格中。亦可能在一缺陷分格中報告一擾亂。 用於再檢測來自一光學檢測源之缺陷之SEM自動晶圓偵測與分類之先前方法不具有一有效機制來控制對存在於晶圓上之顯著擾亂之偵測。此等方法至少具有以下限制。第一,此等方法缺少區特有(例如,關注區域)缺陷選擇性。第二,此等方法具有較高偵測通量成本,此乃因即使FOV之部分並非係一感興趣區域,此等方法仍處理FOV內之完整SEM影像以進行偵測。第三,此等方法具有導致較高誤分類之誤偵測問題。第四,SEM偵測最佳化係麻煩的,此乃因當前演算法被迫處理FOV中之所有像素,其中許多不感興趣像素會貢獻於誤偵測問題。 用於將設計整合至一再檢測工具(諸如一SEM)中之方法尚未解決先前方法之問題及缺點。因此,需要一種利用一再檢測工具之改良式缺陷偵測技術,且更特定而言,且需要改良式電子束缺陷偵測技術。
在一第一實施例中,提供一種方法。在用於一掃描電子顯微鏡之一控制器處接收一關注區域。該關注區域係由與該掃描電子顯微鏡分開之一檢測器工具界定。使用該控制器將該關注區域應用於掃描電子顯微鏡影像之一視域以識別至少一個感興趣區域。使用該掃描電子顯微鏡來僅在該感興趣區域內偵測缺陷。該檢測器工具可係一寬頻電漿工具。 該關注區域可基於對應於該感興趣區域之一設計檔案而界定。該關注區域亦可係一多邊形形狀區帶或設計座標。 偵測可包含將來自該檢測器工具之參考設計之缺陷位置準確度缺陷座標與一定界框一起使用。 可在該應用期間將由該檢測器工具識別之每一缺陷之一所估計缺陷位置準確度編碼為一缺陷屬性。 可使用該控制器基於該關注區域而將用於該掃描電子顯微鏡之一處方最佳化。 可使用該控制器基於該關注區域而將缺陷分格。 在一第二實施例中,提供一種掃描電子顯微鏡。該掃描電子顯微鏡包含:一電子束源,其經組態以產生一電子束;一置物台,其經組態以固持一晶圓;複數個光學元件,其沿著該電子束之一路徑位於該電子束源與該置物台之間;一偵測器;及一控制器,其與該偵測器進行電子通信。該控制器經組態以:自與該掃描電子顯微鏡分開之一檢測器工具接收一關注區域;將該關注區域應用於一影像之一視域以識別該晶圓之一表面上之至少一個感興趣區域;及僅在該感興趣區域內偵測該晶圓上之缺陷。該檢測器工具可係一寬頻電漿工具。該寬頻電漿工具可與該控制器進行電子通信。 在一第三實施例中,提供一種非暫時性電腦可讀媒體。該非暫時性電腦可讀媒體儲存一程式,該程式經組態以指示一處理器進行以下操作:接收一掃描電子顯微鏡之一關注區域,其中該關注區域係由與該掃描電子顯微鏡分開之一檢測器工具界定;將該關注區域應用於一掃描電子顯微鏡影像之一視域以識別至少一個感興趣區域;及使用一掃描電子顯微鏡來僅在該感興趣區域內偵測缺陷。 該關注區域可基於對應於該感興趣區域之一設計檔案而界定。該關注區域亦可係一多邊形形狀區帶或設計座標。 偵測該等缺陷可包含將來自該檢測器工具之參考設計之缺陷位置準確度缺陷座標與一定界框一起使用。 可在應用該關注區域時將由該檢測器工具識別之每一缺陷之一所估計缺陷位置準確度編碼為一缺陷屬性。 可基於該關注區域而將用於該掃描電子顯微鏡之一處方最佳化。 可基於該關注區域而將該等缺陷分格。
相關申請案之交叉參考本申請案主張對2017年3月27日提出申請且被指派為美國申請案第62/477,270號之臨時專利申請案之優先權,該臨時專利申請案之揭示內容據此以引用方式併入。 儘管將依據某些實施例闡述所主張之標的物,但包含不提供本文中所述之全部益處及特徵之實施例的其他實施例亦在本發明之範疇內。可在不背離本發明之範疇之情況下做出各種結構、邏輯、製程步驟及電子改變。因此,本發明之範疇僅參考隨附申請專利範圍來定義。 本文中所揭示之實施例藉由使用關注區域降低所需之影像處理量且增加篩選重要DOI之機率而改良偵測演算法之效率。該等關注區域可係基於設計之關注區域或某一其他類型之關注區域。舉例而言,關注區域可由一使用者手動設定。在SEM工具中使用關注區域可提供經改良敏感度及通量。 偵測演算法效能受存在於晶圓上之擾亂限制。此針對光學以及SEM偵測演算法皆係一問題。檢測之微小關注區域(CA)可潛在地克服此問題。可能界定檢測之250 nm x 250 nm關注區域。寬頻電漿(BBP)與電子束工具之間的經改良缺陷位置準確度(DLA)可實現較佳偵測。DLA係關於兩個工具之座標系統可準確匹配使得由一個工具報告之缺陷可由另一工具訪問之程度。舉例而言,DLA可係一SEM再檢測工具可定位一檢測器報告之缺陷之準確度。儘管具有經改良DLA,但偵測問題未完全解決,此乃因DOI及擾亂仍可存在於用於偵測之SEM影像之FOV內。若擾亂在SEM影像上較明顯,則即使其並非使用者所感興趣的,SEM偵測仍可導致偵測到擾亂。由於缺陷分類依賴於缺陷偵測,因此其亦可導致缺陷之不正確分類。 一擾亂可係對於製程並不關鍵之任何變形。變形仍可不同於參考位點但其不影響良率。常見擾亂包含線邊緣粗糙度或並不關鍵之任何其他小的變化。 圖1係一方法100之一實施例之一流程圖。在101處,在用於一SEM之一控制器處接收至少一個關注區域。關注區域可由與SEM分開之一檢測器工具(諸如一BBP工具)界定。除BBP工具關注區域外,來自任何檢測工具(諸如暗視域(雷射掃描)檢測工具)之關注區域亦可用於SEM缺陷偵測。亦可基於對應於感興趣區域(AOI)之一設計檔案來界定關注區域。雖然基於設計之關注區域可係特別有效的,但亦可使用檢測之常規關注區域。 如本文中所使用,一「設計檔案」通常係指一IC之實體設計(佈局)及透過複雜模擬或簡單幾何及布林(Boolean)運算而自實體設計導出之資料。在生產IC之前藉由不同程序對一半導體裝置設計進行驗證。舉例而言,可藉由軟體模擬而檢查半導體裝置設計以驗證在製造時於微影之後將正確地印刷所有特徵。另外,藉由一倍縮光罩檢測系統獲取的一倍縮光罩之一影像及/或其導出物可用作設計檔案之一或若干代理。在使用一設計檔案之本文中所闡述之實施例中,此一倍縮光罩影像或其一導出物可用作設計佈局之一替代物。 一關注區域係期望藉由SEM工具或其他再檢測工具檢測的晶圓(或晶圓上之晶粒)之一區域。關注區域通常小於FOV。一FOV可包含一或多個關注區域。 設計檔案可包含關注區域。相同關注區域可用於檢測器工具(例如,BBP工具)及再檢測工具(例如,SEM)上。 在一例項中,關注區域係一多邊形形狀區帶。關注區域之其他區帶形狀係可能的。關注區域亦可表示為檢測之設計座標或屬性。諸如藉由使用一影像對準演算法在具有獨特特徵之各種錨位點處將光學影像與一設計檔案或設計夾對準。亦可使用具有獨特特徵之錨位點將關注區域與SEM再檢測工具座標系統對準。 在102處,使用控制器將關注區域中之每一者應用於一掃描電子顯微鏡影像之一FOV以識別至少一個AOI。在103處,使用掃描電子顯微鏡來僅在AOI內偵測缺陷。在將設計與SEM再檢測工具對準之後,可將關注區域(例如,標記於一設計檔案上)投影於SEM上。AOI係關注區域內之區域,由檢測器捕捉之缺陷將可能僅位於此區內。使用本文中所揭示之實施例,藉由使用關注區域進行缺陷偵測而限定AOI。先前,可再偵測整個SEM FOV中之任何事物且將其報告為缺陷。利用關注區域,關注區域內部的SEM FOV之僅一小部分將用於偵測。將不藉由SEM再偵測或報告關注區域外之任何事物。 微小關注區域與BBP檢測可用於改良式缺陷偵測。如同一BBP檢測,微小關注區域之能力可應用於SEM偵測。在一實施例中,針對一AOI建立一檢測工具(例如,一BBP工具)關注區域或設計資訊。設計資訊之一實例係NanoPoint設計關注區域(NPDCA)。NPDCA可係一靶向圖案檢測,其改良良率關鍵性缺陷之訊雜比。舉例而言,美國專利第7,877,722號中揭示NPDCA,該專利以全文引用之方式併入。NPDCA之大小可取決於目標晶圓、感興趣圖案或其他因素而變化。 BBP工具使用關注區域或NPDCA檢測一晶圓,諸如以找出一批量結果。然後,發送缺陷以供在一再檢測工具(諸如一SEM)處進行再檢測。一關注區域群組(CAG)係一KLARF檔案中之一屬性。設計資訊(例如,NPDCA)可在檢測工具與再檢測工具之間共用。可以再檢測工具利用一指定FOV對來自光學源之缺陷進行再檢測。關注區域或NPDCA可用於利用FOV識別AOI。自動SEM偵測可僅在AOI中執行。此減少擾亂且可提供改良式分類。 FOV可視為具有可接受像差及電子束光學器件之效能的電子束成像柱之最大可用觀看區域。電子束可由設備偏轉至FOV中之任一點。雖然FOV可係圓形形狀的,但通常出於在檢測時成像之目的而使用圓圈內之一最大內接正方形。FOV之寬度可以微米量測。 關注區域可用於SEM缺陷偵測、SEM處方最佳化、分格或其他技術。配置關注區域以進行檢測之次序可對敏感度具有一影響且CAG可用於分格。 使用關注區域資訊與SEM偵測(包含一缺陷所屬之關注區域群組)可提供執行至少一個分格等級之能力且亦可有助於粒度分格能力。舉例而言,一BBP工具可將DOI分至NMOS區與PMOS區中。然而,來自此等區中之一者之擾亂(例如,線邊緣粗糙度)可在SEM偵測期間影響另一區之敏感度。利用本文中所揭示之實施例,可能在SEM偵測期間聚焦於一感興趣區上且提供比之前更準確之分格。 可執行用於改良式SEM偵測之圖案匹配。圖案匹配可用於找出一特定圖案之晶片設計檔案(GDS)中之所有位置。此功能性可用於基於設計中之一已知圖案(諸如熱點關注區域)而界定BBP檢測之關注區域。可找出一系統性設計缺陷(例如,來自SEM影像)。可手動地界定缺陷周圍之圖案之相關程度。此可係缺陷周圍具有大約200 nm至300 nm之大小之一矩形,但其他形狀或大小係可能的。然後可跨整個設計檔案執行一圖案搜尋以找出晶粒上之此圖案之所有例項,且可在找出位置中自動建立關注區域。在一例項中,在一電子束工具上使用一圖案搜尋來識別可偵測到缺陷之處的SEM影像之FOV中之相關部分。此可針對熱點再檢測(諸如針對一已知熱點)而執行。 在一實例中,來自一BBP工具之參考設計之缺陷位置準確度(DDLA)缺陷座標可與基於座標不確定性之一定界框一起用於達成SEM工具上之最大DLA。基於不確定性之定界框可取決於像素設計對準(PDA)分數而在缺陷當中有變化,像素設計對準(PDA)係指設計與光學影像對準且分數指示對準程度。甚至在NanoPoint關注區域較大時之情形中,使用不確定性定界框可提供SEM再偵測之經改良座標準確度。 圖2圖解說明使用BBP工具關注區域來進行自動SEM偵測之益處。在本實例中,自動SEM偵測演算法總是指向FOV內之多個缺陷。舉例而言,參見圖2底部處標記為自動SEM偵測之一雜訊源之畫圈區域。由於此層上之DOI係最接近於雜訊源之DOI,因此降低FOV以完全避免雜訊可係不可能的。雖然BBP工具可成功地偵測缺陷,但自動SEM缺陷偵測方案將不能有效地指向DOI。 圖3係圖解說明藉由SEM偵測在一BBP工具關注區域外捕捉之缺陷之一圖式。圖3展示BBP中之偵測以及一SEM影像中之偵測,但在SEM影像中偵測多個位置且一遮罩對應於關注區域並展示在BBP關注區域內及外偵測之缺陷。 圖4係圖解說明用於BBP檢測之BBP工具關注區域之一圖式。當使用設計關注區域時,可確保在BBP關注區域內偵測缺陷且避免來自關注區域外之缺陷。 在SEM缺陷偵測中可使用針對BBP工具檢測建立之基於設計之關注區域,使得偵測聚焦於DOI上。用於SEM偵測之光學檢測關注區域提供大的靈活性以最佳化關注區域群組中之每一者中之SEM成像與偵測,其可在需要時單獨執行。此靈活性可係特別有幫助的,乃因DOI通常來自特定感興趣區。舉例而言,不同成像條件及不同偵測參數可用於來自一檢測器工具之不同CAG。 在一實例中,一使用者可在SEM工具上界定關注區域且彼等關注區域可用於缺陷偵測。此能力可經由出於使用在SEM影像上界定之關注區域進行缺陷偵測(例如,熱點檢測之再檢測)之目的而整合圖案匹配演算法來支持。若在用於熱點再檢測之一FOV內一檢測器工具不提供關注區域,則一使用者可在缺陷偵測設置期間界定關注區域。運行時間圖案匹配演算法可聯合本文中所揭示之其他實施例一起使用。 在另一實例中,將BBP工具上之每一缺陷之一所估計DLA編碼為一缺陷屬性。此技術可提供額外益處。一新缺陷屬性之值可取決於NanoPoint檢測之影像與設計對準分數,且可針對非NanoPoint檢測係恆定的。使用此技術,所提出缺陷屬性永不會大於關注區域,且因此可永不提供比基於關注區域之方法差之DLA。可達成大的NanoPoint關注區域之DLA改良。甚至在此等情形中,此方法可利用DDLA及PDA分數來將經改良DLA資訊提供至SEM再檢測工具。其亦可適用於非NanoPoint檢測。在此一例項中,DLA定界框可係大的,但仍小於用於SEM工具上之偵測之典型FOV。 缺陷位置可永不在其關注區域外,此乃因檢測通常不在關注區域外執行。因此,若NanoPoint關注區域小於彼缺陷之DLA,則關注區域本身將位置不準確度定界。若NanoPoint關注區域係大的,則使用PDA分數可係有用的,PDA分數係在檢測期間產生且作為一缺陷級屬性而儲存以估計DLA定界框。PDA分數越好,DLA便越好。此等技術亦可應用於並非NanoPoint關注區域之關注區域。 SEM偵測演算法之效能可取決於該偵測演算法之最佳化。舉例而言,可將演算法設置最佳化以實現經改良效能。利用關注區域SEM偵測,演算法可僅需要偵測關注區域內之缺陷。關注區域外之任何事物可不藉由偵測演算法處理,此減少計算時間及捕捉關注區域外之任何擾亂之可能性。 本文中所揭示之實施例提供多個益處。第一,用於缺陷偵測之一經聚焦關注區域使得能夠在SEM偵測期間進行擾亂抑制。當前自動缺陷偵測技術在多個缺陷位於一FOV內時具有限制。跨越一FOV之限制擾亂可被抑制。不感興趣之真實缺陷可被抑制。此可實現對關鍵DOI之一較準確報告。 第二,可提供使用關注區域資訊之偵測最佳化中之較大靈活性。利用較小關注區域,SEM偵測演算法可被微調為對在不增加捕捉擾亂之風險之情況下偵測一缺陷更敏感。不必單獨關注位於關注區域外之擾亂(例如線邊緣粗糙度)以將其自偵測移除,此乃因演算法將不處理關注區域外之任何事物。類似地,不必關注位於關注區域外之任何其他缺陷類型,此乃因演算法將不處理影像之彼等部分。 第三,可利用指向式關注區域SEM缺陷偵測而部分地減輕參考與缺陷影像對準問題。參考與缺陷影像不對準可導致FOV中之任一處之假缺陷捕獲。關注區域減少其中可捕獲假缺陷之區域。 第四,由於針對缺陷偵測處理較少數目個像素,通量可被改良,偵測最佳化之複雜性降低,且分類得以改良。 第五,SEM工具可與檢測器工具(諸如BBP工具)更加整合。此使得能夠在檢測器工具與SEM工具之間傳遞關注區域。尤其在其中NanoPoint關注區域相對較大之情形中,連同所提出缺陷特有DLA定界框一起使用來自BBP工具之DDLA能力會提供優點,此乃因其可甚至用於非NanoPoint檢測。不確定性可以一特定置信級將座標準確度編碼,且可在SEM工具上提供最佳可能DLA資訊以實現經改良SEM敏感度。 本文中所闡述之實施例可包含諸如圖5之系統200之一系統或在該系統中執行。系統200包含一輸出獲取子系統,該輸出獲取子系統包含至少一能量源及一偵測器。輸出獲取子系統可係一基於電子束之輸出獲取子系統。舉例而言,在一項實施例中,被引導至晶圓204之能量包含電子,且自晶圓204所偵測之能量包含電子。以此方式,能量源可係一電子束源202,其可包含如本文中所揭示之一提取器或提取器系統或者與該提取器或提取器系統耦合。在圖5中所展示之一項此類實施例中,輸出獲取子系統包含電子光學柱201,電子光學柱201耦合至控制器207。控制器207可包含一或多個處理器208及一或多個記憶體209。在一實施例中,一或多個處理器208係通信地耦合。在此方面中,一或多個處理器208可接收晶圓204之影像且將該影像儲存於控制器207之記憶體209中。 亦如圖5中所展示,電子光學柱201包含電子束源202,電子束源202經組態以產生由一或多個元件203聚焦至晶圓204之電子。電子束源202可包含一發射器及一或多個元件203,一或多個元件203可包含(舉例而言)一槍式透鏡、一陽極、一射束限制孔徑、一閘閥、一射束電流選擇孔徑、一物鏡及/或一掃描子系統。電子柱201可包含此項技術中已知之任何其他適合元件。雖然僅圖解說明一個電子束源202,但系統200可包含多個電子束源202。 自晶圓204返回之電子(例如,次級電子)可由一或多個元件205聚焦至偵測器206。舉例而言,一或多個元件205可包含一掃描子系統,該掃描子系統可係元件203中所包含之相同掃描子系統。電子柱201可包含此項技術中已知之任何其他適合元件。 儘管電子柱201在圖5中展示為經組態使得電子以一傾斜入射角被引導至晶圓204且以另一傾斜角自該晶圓散射,但應理解電子束可以任何適合角度被引導至晶圓及自該晶圓散射。另外,基於電子束之輸出獲取子系統可經組態以使用多個模式來產生晶圓204之影像(例如,依不同照明角度、收集角度等)。基於電子束之輸出獲取子系統之多個模式可在輸出獲取子系統之任何影像產生參數上不同。 控制器207可與偵測器206進行電子通信。偵測器206可偵測自晶圓204之表面返回之電子,藉此形成晶圓204之電子束影像。該等電子束影像可包含任何適合電子束影像。控制器207可經組態以使用偵測器206之輸出及/或電子束影像執行其他功能或額外步驟。舉例而言,控制器207可經程式化以執行圖1之步驟中之某些或所有步驟。 應注意,本文中提供圖5以大體圖解說明一基於電子束之輸出獲取子系統之一組態。本文中所闡述之基於電子束之輸出獲取子系統組態可經更改以最佳化輸出獲取子系統之效能,如在設計一商業輸出獲取系統時通常所執行。另外,本文中所闡述之系統或其組件可使用一現有系統(例如,藉由將本文中所闡述之功能性添加至一現有系統)來實施。針對某些此等系統,可將本文中所闡述之方法作為系統之選用功能性(例如,除系統之其他功能性之外)而提供。 雖然揭示為一缺陷再檢測系統之部分,但本文中所闡述之控制器205或方法可經組態以供與檢測系統一起使用。在另一實施例中,本文中所闡述之控制器205或方法可經組態以供與一度量系統一起使用。因此,本文中所揭示之實施例闡述某些分類組態,其可針對具有較適合於或較不適合於不同應用之不同成像能力之系統以若干種方式修整。 特定而言,本文中所闡述之實施例可安裝於一電腦節點或電腦叢集上,該電腦節點或電腦叢集係偵測器206之一組件或耦合至偵測器206,或者係一缺陷再檢測工具、一遮罩檢測器、一虛擬檢測器或其他裝置之另一組件。以此方式,本文中所闡述之實施例可產生可用於各種應用之輸出,該等應用包含但不限於晶圓檢測、遮罩檢測、電子束檢測與再檢測、度量或其他應用。圖5中所展示之系統200之特性可如上文所闡述基於其將產生輸出所針對之樣品而修改。 本文中所闡述之控制器207、其他系統或其他子系統可採取各種形式,包含一個人電腦系統、工作站、影像電腦、主機電腦系統、工作站、網路器具、網際網路器具、並行處理器或其他裝置。一般而言,術語「控制器」可廣泛定義為涵蓋具有執行來自一記憶體媒體之指令之一或多個處理器之任何裝置。子系統或系統亦可包含此項技術中已知之任何適合處理器,諸如一並行處理器。另外,子系統或系統可包含具有高速度處理及軟體之一平台作為一獨立工具或一經網路連線工具。 若該系統包含多於一個子系統,則不同子系統可耦合至彼此使得影像、資料、資訊、指令等可在子系統之間發送。舉例而言,一個子系統可藉由可包含此項技術中已知之任何適合有線及/或無線傳輸媒體之任何適合傳輸媒體而耦合至額外子系統。此等子系統中之兩者或多於兩者亦可藉由一共用電腦可讀儲存媒體(未展示)而有效地耦合。 在另一實施例中,控制器207可以此項技術中已知之任一方式通信地耦合至系統200之各種組件或子系統中之任一者。此外,控制器207可經組態以藉由可包含有線及/或無線部分之一傳輸媒體而自其他系統接收及/或獲取資料或資訊(例如,來自一檢測系統(諸如一BBP工具)之檢測結果、包含設計資料之一遠端資料庫及諸如此類)。以此方式,傳輸媒體可用作控制器207與系統200之其他子系統或系統200外部之系統之間的一資料鏈路。 一額外實施例係關於儲存程式指令之一非暫時性電腦可讀媒體,該等程式指令可在一控制器上執行以執行如本文中所揭示之用於使用關注區域與一SEM工具之一電腦實施之方法。特定而言,如圖5中所展示,控制器207可包含一記憶體209或具有非暫時性電腦可讀媒體之其他電子資料儲存媒體,該非暫時性電腦可讀媒體包含可在控制器205上執行之程式指令。電腦實施之方法可包含本文中所闡述之任何方法之任何步驟。記憶體209或其他電子資料儲存媒體可係一儲存媒體,諸如一磁碟或光碟、一磁帶或此項技術中已知之任何其他適合非暫時性電腦可讀媒體。 可以包含基於程序之技術、基於組件之技術及/或物件導向技術以及其他技術之各種方式中之任一者來實施程式指令。舉例而言,可視需要使用ActiveX控制項、C++物件、JavaBeans、微軟基礎類別(「MFC」)、SSE (流式SIMD擴展)或者其他技術或方法來實施程式指令。 在某些實施例中,由以下各項中之一或多者執行本文中所揭示之系統200及方法之各種步驟、功能及/或操作:電子電路、邏輯閘、多工器、可程式化邏輯裝置、ASIC、類比或數位控制項/開關、微控制器或計算系統。實施方法(諸如本文中所闡述之彼等方法)之程式指令可經由載體媒體傳輸或儲存於載體媒體上。載體媒體可包含一儲存媒體,諸如一唯讀記憶體、一隨機存取記憶體、一磁碟或光碟、一非揮發性記憶體、一固態記憶體、一磁帶及諸如此類。一載體媒體可包含一傳輸媒體,諸如一導線、纜線或無線傳輸鏈路。例如,遍及本發明所闡述之各種步驟可由一單個控制器207 (或電腦系統)或者替代地由多個控制器207 (或多個電腦系統)執行。此外,系統200之不同子系統可包含一或多個計算或邏輯系統。因此,以上說明不應解釋為對本發明之一限制,而是僅係一圖解說明。 如遍及本發明所使用,一「晶圓」可指由一半導體或非半導體材料形成之一基板。舉例而言,一半導體或非半導體材料可包含但不限於單晶矽、砷化鎵或磷化銦。一晶圓可包含一或多個層。舉例而言,此等層可包含但不限於一抗蝕劑、一介電質材料、一導電材料或一半導電材料。此項技術中已知許多不同類型之此等層,諸如但不限於隔離層、植入層及諸如此類。如本文中所使用之術語「晶圓」意欲涵蓋上面可形成此等層中之任一者之一基板。 可如本文中所闡述地執行該方法之步驟中之每一者。該等方法亦可包含可由本文中所闡述之控制器及/或電腦子系統或系統執行之任何其他步驟。該等步驟可由一或多個電腦系統執行,該一或多個電腦系統可根據本文中所闡述之實施例中之任一者而組態。另外,可藉由本文中所闡述之系統實施例中之任一者來執行上文所闡述之方法。 儘管已關於一或多項特定實施例闡述本發明,但將理解可在不背離本發明之範疇之情況下做出本發明之其他實施例。因此,認為本發明僅受隨附申請專利範圍及其合理解釋限制。
200‧‧‧系統
201‧‧‧電子光學柱/電子柱
202‧‧‧電子束源
203‧‧‧元件
204‧‧‧晶圓
205‧‧‧元件
206‧‧‧偵測器
207‧‧‧控制器
208‧‧‧處理器
209‧‧‧記憶體
為實現對本發明之性質及目標之一更全面理解,應參考聯合附圖做出之以下詳細說明,在附圖中: 圖1係根據本發明之一方法之一實施例之一流程圖; 圖2係圖解說明使用BBP工具關注區域來進行自動SEM偵測之益處之一圖式; 圖3係圖解說明在一BBP工具關注區域外藉由SEM偵測捕捉之缺陷之一圖式; 圖4係圖解說明用於BBP檢測之BBP工具關注區域之一圖式;及 圖5係可執行本文中所揭示之實施例之一例示性掃描電子顯微鏡之一方塊圖。
Claims (19)
- 一種方法,其包括: 在用於一掃描電子顯微鏡之一控制器處接收一關注區域,其中該關注區域係由與該掃描電子顯微鏡分開之一檢測器工具界定; 使用該控制器將該關注區域應用於掃描電子顯微鏡影像之一視域以識別至少一個感興趣區域;及 使用該掃描電子顯微鏡來僅在該感興趣區域內偵測缺陷。
- 如請求項1之方法,其中該檢測器工具係一寬頻電漿工具。
- 如請求項1之方法,其中該關注區域係基於對應於該感興趣區域之一設計檔案而界定。
- 如請求項1之方法,其中該關注區域係一多邊形形狀區帶。
- 如請求項1之方法,其中該關注區域係設計座標。
- 如請求項1之方法,其中該偵測包含將來自該檢測器工具之參考設計之缺陷位置準確度缺陷座標與一定界框一起使用。
- 如請求項1之方法,其中在該應用期間將由該檢測器工具識別之每一缺陷之一所估計缺陷位置準確度編碼為一缺陷屬性。
- 如請求項1之方法,其進一步包括使用該控制器基於該關注區域而將用於該掃描電子顯微鏡之一處方最佳化。
- 如請求項1之方法,其進一步包括使用該控制器基於該關注區域而將該等缺陷分格。
- 一種掃描電子顯微鏡,其包括: 一電子束源,其經組態以產生一電子束; 一置物台,其經組態以固持一晶圓; 複數個光學元件,其沿著該電子束之一路徑位於該電子束源與該置物台之間; 一偵測器;及 一控制器,其與該偵測器進行電子通信,其中該控制器經組態以: 自與該掃描電子顯微鏡分開之一檢測器工具接收一關注區域;將該關注區域應用於一影像之一視域以識別該晶圓之一表面上之至少一個感興趣區域;及僅在該感興趣區域內偵測該晶圓上之缺陷。
- 如請求項10之掃描電子顯微鏡,其中該檢測器工具係一寬頻電漿工具,且其中該寬頻電漿工具與該控制器進行電子通信。
- 一種儲存一程式之非暫時性電腦可讀媒體,該程式經組態以指示一處理器進行以下操作: 接收一掃描電子顯微鏡之一關注區域,其中該關注區域係由與該掃描電子顯微鏡分開之一檢測器工具界定; 將該關注區域應用於掃描電子顯微鏡影像之一視域以識別至少一個感興趣區域;及 使用一掃描電子顯微鏡來僅在該感興趣區域內偵測缺陷。
- 如請求項12之非暫時性電腦可讀媒體,其中該關注區域係基於對應於該感興趣區域之一設計檔案而界定。
- 如請求項12之非暫時性電腦可讀媒體,其中該關注區域係一多邊形形狀區帶。
- 如請求項12之非暫時性電腦可讀媒體,其中該關注區域係設計座標。
- 如請求項12之非暫時性電腦可讀媒體,其中該偵測該等缺陷包含將來自該檢測器工具之參考設計之缺陷位置準確度缺陷座標與一定界框一起使用。
- 如請求項12之非暫時性電腦可讀媒體,其中在應用該關注區域時將由該檢測器工具識別之每一缺陷之一所估計缺陷位置準確度編碼為一缺陷屬性。
- 如請求項12之非暫時性電腦可讀媒體,其進一步包括基於該關注區域而將用於該掃描電子顯微鏡之一處方最佳化。
- 如請求項12之非暫時性電腦可讀媒體,其進一步包括基於該關注區域而將該等缺陷分格。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762477270P | 2017-03-27 | 2017-03-27 | |
US62/477,270 | 2017-03-27 | ||
US15/639,311 | 2017-06-30 | ||
US15/639,311 US10692690B2 (en) | 2017-03-27 | 2017-06-30 | Care areas for improved electron beam defect detection |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201839795A true TW201839795A (zh) | 2018-11-01 |
TWI743340B TWI743340B (zh) | 2021-10-21 |
Family
ID=63583531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107110186A TWI743340B (zh) | 2017-03-27 | 2018-03-26 | 用於偵測缺陷之方法、掃描電子顯微鏡及儲存一程式之非暫時性電腦可讀媒體 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10692690B2 (zh) |
TW (1) | TWI743340B (zh) |
WO (1) | WO2018183096A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI782707B (zh) * | 2021-09-15 | 2022-11-01 | 英業達股份有限公司 | 訊號路徑搜尋方法、電子裝置和非暫態計算機可讀取媒體 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11776859B2 (en) | 2018-12-19 | 2023-10-03 | Kla Corporation | Care area based swath speed for throughput and sensitivity improvement |
WO2020135996A1 (en) | 2018-12-28 | 2020-07-02 | Asml Netherlands B.V. | Improved scanning efficiency by individual beam steering of multi-beam apparatus |
US11308606B2 (en) | 2019-08-16 | 2022-04-19 | Kla Corporation | Design-assisted inspection for DRAM and 3D NAND devices |
US11231376B2 (en) * | 2019-08-29 | 2022-01-25 | Taiwan Semiconductor Manufacturing Company Ltd. | Method for semiconductor wafer inspection and system thereof |
TW202142863A (zh) * | 2020-04-10 | 2021-11-16 | 荷蘭商Asml荷蘭公司 | 處理用於晶圓檢測之參考資料 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004044596A2 (en) * | 2002-11-12 | 2004-05-27 | Fei Company | Defect analyzer |
WO2008077100A2 (en) | 2006-12-19 | 2008-06-26 | Kla-Tencor Corporation | Systems and methods for creating inspection recipes |
JP5695917B2 (ja) * | 2011-01-26 | 2015-04-08 | 株式会社日立ハイテクノロジーズ | 荷電粒子線装置 |
US9780004B2 (en) | 2011-03-25 | 2017-10-03 | Kla-Tencor Corporation | Methods and apparatus for optimization of inspection speed by generation of stage speed profile and selection of care areas for automated wafer inspection |
JP5951324B2 (ja) * | 2012-04-05 | 2016-07-13 | 東京エレクトロン株式会社 | プラズマ処理装置 |
US10043264B2 (en) | 2012-04-19 | 2018-08-07 | Applied Materials Israel Ltd. | Integration of automatic and manual defect classification |
KR102019534B1 (ko) * | 2013-02-01 | 2019-09-09 | 케이엘에이 코포레이션 | 결함 특유의, 다중 채널 정보를 이용한 웨이퍼 상의 결함 검출 |
US8984450B2 (en) | 2013-03-14 | 2015-03-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and apparatus for extracting systematic defects |
US9275450B2 (en) * | 2013-04-09 | 2016-03-01 | Kla-Tencor Corp. | High accuracy design based classification |
US9171364B2 (en) | 2013-06-21 | 2015-10-27 | Kla-Tencor Corp. | Wafer inspection using free-form care areas |
US10114368B2 (en) | 2013-07-22 | 2018-10-30 | Applied Materials Israel Ltd. | Closed-loop automatic defect inspection and classification |
US9347862B2 (en) * | 2013-08-06 | 2016-05-24 | Kla-Tencor Corp. | Setting up a wafer inspection process using programmed defects |
US10410338B2 (en) * | 2013-11-04 | 2019-09-10 | Kla-Tencor Corporation | Method and system for correlating optical images with scanning electron microscopy images |
US9490183B2 (en) * | 2014-05-16 | 2016-11-08 | Tokyo Electron Limited | Nondestructive inline X-ray metrology with model-based library method |
US10127653B2 (en) * | 2014-07-22 | 2018-11-13 | Kla-Tencor Corp. | Determining coordinates for an area of interest on a specimen |
US10483081B2 (en) * | 2014-10-22 | 2019-11-19 | Kla-Tencor Corp. | Self directed metrology and pattern classification |
US10012599B2 (en) * | 2015-04-03 | 2018-07-03 | Kla-Tencor Corp. | Optical die to database inspection |
US9767548B2 (en) * | 2015-04-24 | 2017-09-19 | Kla-Tencor Corp. | Outlier detection on pattern of interest image populations |
-
2017
- 2017-06-30 US US15/639,311 patent/US10692690B2/en active Active
-
2018
- 2018-03-23 WO PCT/US2018/023910 patent/WO2018183096A1/en active Application Filing
- 2018-03-26 TW TW107110186A patent/TWI743340B/zh active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI782707B (zh) * | 2021-09-15 | 2022-11-01 | 英業達股份有限公司 | 訊號路徑搜尋方法、電子裝置和非暫態計算機可讀取媒體 |
Also Published As
Publication number | Publication date |
---|---|
US20180277337A1 (en) | 2018-09-27 |
WO2018183096A1 (en) | 2018-10-04 |
US10692690B2 (en) | 2020-06-23 |
TWI743340B (zh) | 2021-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI743340B (zh) | 用於偵測缺陷之方法、掃描電子顯微鏡及儲存一程式之非暫時性電腦可讀媒體 | |
TWI751376B (zh) | 識別在一晶圓上偵測到之缺陷中之損害及所關注缺陷 | |
TWI670685B (zh) | 在圖案化晶圓上缺陷之子像素及子解析度局部化 | |
CN106537449B (zh) | 确定样本上的关注区域的坐标 | |
US9767548B2 (en) | Outlier detection on pattern of interest image populations | |
US10074167B2 (en) | Reducing registration and design vicinity induced noise for intra-die inspection | |
TWI663665B (zh) | 用於在一單一檢驗程序中之多個程序步驟之檢驗 | |
JP2009206453A (ja) | 製造プロセスモニタリングシステム | |
CN109923654B (zh) | 通过跨层图像相减的晶片噪声减少 | |
CN110892516B (zh) | 识别晶片上的干扰缺陷的来源 | |
TW201939634A (zh) | 使用電子束檢測及具有即時情報之深度學習以減少損害的缺陷探索 | |
TWI844777B (zh) | 針對具有樣品內及樣品間變異之樣品使用無監督學習及適應性資料庫產生方法之影像對準設定 | |
CN111837227B (zh) | 用于确定在晶片上所检测到的缺陷位于上面的层的系统 | |
JP7030856B2 (ja) | 走査電子顕微鏡対物レンズ較正 | |
TWI750368B (zh) | 光學檢驗結果之計量導引檢驗樣品成形 | |
CN110637356B (zh) | 用于重复缺陷分析的相对缺陷位置的高精准度 | |
US20220285226A1 (en) | Apparatus and methods for three dimensional reticle defect smart repair | |
JP2021501886A (ja) | 視野サイズ削減による不要漏洩光低減 | |
US20220059316A1 (en) | Scanning Electron Microscope Image Anchoring to Design for Array | |
KR20220153067A (ko) | 웨이퍼 검사를 위한 기준 데이터 처리 | |
TWI785065B (zh) | 基於妨害地圖之寬帶電漿檢查 | |
US11610296B2 (en) | Projection and distance segmentation algorithm for wafer defect detection | |
TW202141210A (zh) | 使用檢測工具以判定用於樣本之類計量(metrology-like)之資訊 | |
WO2024199881A2 (en) | A method to monitor the cgi model performance without ground truth information |