根據本發明之混合物展現極寬之向列相範圍(其中澄清點≥70℃),極有利的電容臨限值,相對較高的保持率值及同時在-20℃及-30℃下之良好低溫穩定性,以及極低的旋轉黏度。另外,根據本發明之混合物之特點在於澄清點及旋轉黏度之良好比率及相對較高的正介電各向異性。 現已意外地發現,使用具有正介電各向異性之液晶的FFS型LC可使用經特殊選擇之液晶介質來實現。此等介質之特徵在於物理特性的特定組合。此等物理特性中最具決定性的為其介電特性及此處為高平均介電常數(ε
av .
)、垂直於液晶分子之指向矢之高介電常數(ε
⊥
)、高介電各向異性值(Δε)以及尤其相對較高的此等後兩個值之比率(ε
⊥
/Δε)。 一方面,較佳根據本發明之液晶介質之介電各向異性值為0.5或更高,較佳為1.0或更高,或更佳為1.5或更高。另一方面,其介電各向異性較佳為26或更低。 較佳根據本發明之液晶介質的垂直於指向矢之介電常數值一方面為2或更高,更佳為8或更高,且另一方面較佳為20或更低。 根據本發明之液晶介質較佳具有正介電各向異性,較佳在1.5或更高至20.0或更低之範圍內、更佳在3.0或更高至8.0或更低之範圍內,且最佳在4.0或更高至7.0或更低之範圍內。 根據本發明之液晶介質的垂直於液晶分子之指向矢之介電常數(ε
⊥
)較佳為5.0或更高,更佳為6.0或更高,更佳為7.0或更高,更佳為8.0或更高,更佳為9或更高,且最佳為10.0或更高。 根據本發明之液晶介質的介電比率(ε
⊥
/Δε)較佳為1.0或更高,更佳為1.5或更高且最佳為2.0或更高。 在本發明之一較佳實施例中,液晶介質較佳包含 a) 一或多種式IN化合物,其皆具有垂直於指向矢及平行於指向矢之高介電常數,該一或多種式IN化合物的濃度較佳在1%至60%之範圍內,更佳在5%至40%之範圍內,尤佳在8%至35%之範圍內,
其中
n 表示0、1或2, R
1
及R
2
彼此獨立地表示較佳具有1至7個C原子之烷基、烷氧基、氟化烷基或氟化烷氧基;具有2至7個C原子之烯基、烯氧基、烷氧烷基或氟化烯基,且R
2
替代地表示H或X
1
且較佳表示X
1
, X
1
表示F、Cl、氟化烷基、氟化烯基、氟化烷氧基或氟化烯氧基。 及 b) 選自式II及III之化合物之群,較佳選自介電各向異性各大於3之化合物之群的一或多種正介電性化合物:
其中 R
2
表示具有1至7個C原子之烷基、烷氧基、氟化烷基或氟化烷氧基;具有2至7個C原子之烯基、烯氧基、烷氧烷基或氟化烯基,且較佳表示烷基或烯基,
L
21
及L
22
表示H或F,較佳地L
21
表示F, X
2
表示鹵素;具有1至3個C原子之鹵化烷基或烷氧基或具有2或3個C原子之鹵化烯基或烯氧基,較佳表示F、Cl、-OCF
3
、-O-CH
2
CF
3
、-O-CH=CH
2
、-O-CH=CF
2
或-CF
3
,極佳表示F、Cl、-O-CH=CF
2
或-OCF
3
, m 表示0、1、2或3,較佳表示1或2且尤佳表示1, R
3
表示具有1至7個C原子之烷基、烷氧基、氟化烷基或氟化烷氧基;具有2至7個C原子之烯基、烯氧基、烷氧烷基或氟化烯基,且較佳表示烷基或烯基,
L
31
及L
32
彼此獨立地表示H或F,較佳L
31
表示F, X
3
表示鹵素;具有1至3個C原子之鹵化烷基或烷氧基;或具有2或3個C原子之鹵化烯基或烯氧基,較佳表示F、Cl、-OCF3、-OCHF2、-O-CH
2
CF
3
、-O-CH=CF
2
、-O-CH=CH
2
或-CF
3
,極佳表示F、Cl、-O-CH=CF
2
、-OCHF
2
或-OCF
3
, Z
3
表示-CH
2
CH
2
-、-CF
2
CF
2
-、-COO-、反式-CH=CH-、反式-CF=CF-、-CH
2
O-或單鍵,較佳表示-CH
2
CH
2
-、-COO-、反式-CH=CH-或單鍵,且極佳表示-COO-、反式-CH=CH-或單鍵,且 n 表示0、1、2或3,較佳表示1、2或3且尤佳表示1,且 c) 視情況選自式IV及V之群的一或多種中性介電性化合物:
其中 R
41
及R
42
彼此獨立地具有上文在式II下關於R
2
所指示之含義,較佳R
41
表示烷基且R
42
表示烷基或烷氧基,或R
41
表示烯基且R
42
表示烷基,
Z
41
及Z
42
彼此獨立地且若Z
41
出現兩次,則此等亦彼此獨立地表示-CH
2
CH
2
-、-COO-、反式-CH=CH-、反式-CF=CF-、-CH
2
O-、-CF
2
O-、-C≡C-或單鍵,較佳其中一或多者表示單鍵,且 p 表示0、1或2,較佳表示0或1,且 R
51
及R
52
彼此獨立,具有關於R
41
及R
42
所給出之含義中之一種,且較佳表示具有1至7個C原子之烷基,較佳為正烷基,尤佳為具有1至5個C原子之正烷基;具有1至7個C原子之烷氧基,尤其較佳為正烷氧基,尤佳為具有2至5個C原子之正烷氧基;具有2至7個C原子,較佳具有2至4個C原子之烷氧烷基、烯基或烯氧基,較佳為烯氧基,
Z
51
至Z
53
各自彼此獨立地表示-CH
2
-CH
2
-、-CH
2
-O-、-CH=CH-、-C≡C-、-COO-或單鍵,較佳表示-CH
2
-CH
2
-、-CH
2
-O-或單鍵,且尤佳表示單鍵, i及j 各自彼此獨立地表示0或1, (i+j) 較佳表示0、1或2,更佳表示0或1,且最佳表示1, d) 又視情況,替代地或另外,選自式VI至IX之群的一或多種負介電性化合物:
其中 R
61
表示具有1至7個C原子之未經取代烷基,較佳為直鏈烷基,更佳為正烷基,最佳為丙基或戊基;具有2至7個C原子之未經取代烯基,較佳為直鏈烯基,尤佳具有2至5個C原子;具有1至6個C原子之未經取代烷氧基或具有2至6個C原子之未經取代烯氧基, R
62
表示具有1至7個C原子之未經取代烷基、具有1至6個C原子之未經取代烷氧基或具有2至6個C原子之未經取代烯氧基,且 l 表示0或1, R
71
表示具有1至7個C原子的未經取代之烷基,較佳為直鏈烷基,更佳為正烷基,最佳為丙基或戊基;或具有2至7個C原子的未經取代之烯基,較佳為直鏈烯基,尤佳具有2至5個C原子, R
72
表示具有1至7個C原子,較佳具有2至5個C原子之未經取代烷基;具有1至6個C原子,較佳具有1、2、3或4個C原子之未經取代烷氧基;或具有2至6個C原子,較佳具有2、3或4個C原子之未經取代烯氧基,且
R
81
表示具有1至7個C原子之未經取代烷基,較佳為直鏈烷基,更佳為正烷基,最佳為丙基或戊基;或具有2至7個C原子之未經取代烯基,較佳為直鏈烯基,尤佳具有2至5個C原子, R
82
表示具有1至7個C原子,較佳具有2至5個C原子之未經取代烷基;具有1至6個C原子,較佳具有1、2、3或4個C原子之未經取代烷氧基;或具有2至6個C原子,較佳具有2、3或4個C原子之未經取代烯氧基,
Z
8
表示-(C=O)-O-、-CH
2
-O-、-CF
2
-O-或-CH
2
-CH
2
-,較佳表示-(C=O)-O-或-CH
2
-O-,且 o 表示0或1, R
91
及R
92
彼此獨立地具有上文關於R
72
所給出之含義, R
91
較佳表示具有2至5個C原子,較佳具有3至5個C原子之烷基, R
92
較佳表示具有2至5個C原子之烷基或烷氧基,更佳為具有2至4個C原子之烷氧基;或具有2至4個C原子之烯氧基。
p及q 彼此獨立地表示0或1,且 (p + q) 較佳表示0或1,且倘若
則替代地,較佳p = q = 1,且 e) 又視情況,一或多種式I化合物,其皆具有垂直於指向矢及平行於指向矢的高介電常數,該一或多種式I化合物的濃度較佳在1%至60%之範圍內,更佳在5%至40%之範圍內,尤佳在8%至35%之範圍內,
其中
n 表示0或1, R
11
及R
12
彼此獨立地表示較佳具有1至7個C原子之烷基、烷氧基、氟化烷基或氟化烷氧基;具有2至7個C原子之烯基、烯氧基、烷氧烷基或氟化烯基,且較佳為烷基、烷氧基、烯基或烯氧基,最佳為烷基、烷氧基或烯氧基,且R
11
替代地表示R
1
,且R
12
替代地表示X
1
, R
1
表示較佳具有1至7個C原子之烷基、烷氧基、氟化烷基或氟化烷氧基;具有2至7個C原子之烯基、烯氧基、烷氧烷基或氟化烯基,且較佳表示烷基或烯基,且 X
1
表示F、Cl、氟化烷基、氟化烯基、氟化烷氧基或氟化烯氧基,後四個基團較佳具有1至4個C原子;較佳表示F、Cl、CF
3
或OCF
3
。 根據本申請案之液晶介質較佳具有向列相。 在較佳實施例中,根據本發明之介質包含一或多種式IN之子式IN-A的化合物,其中
在另一個較佳實施例中,根據本發明之介質包含一或多種式IN-B化合物,其中
在另一較佳實施例中,根據本發明之介質包含一或多種式IN-A化合物及一或多種式IN-B化合物。 較佳地,式IN-A化合物係選自式IN-A-1至IN-A-5之化合物之群,較佳選自式IN-A-1及/或IN-A-2及/或IN-A-3及/或IN-A-5之群,且最佳選自式IN-A-1及/或IN-A-2:
其中參數具有上文所給出之各別含義,且較佳地 R
1
表示較佳具有1至7個C原子之烷基、烷氧基、氟化烷基或氟化烷氧基;具有2至7個C原子之烯基、烯氧基、烷氧烷基或氟化烯基,且較佳表示烷基或烯基,且 X
1
表示F、Cl、CN、NCS、氟化烷基、氟化烯基、氟化烷氧基或氟化烯氧基,後四個基團較佳具有1至4個C原子,較佳表示F、Cl、CF
3
或OCF
3
,更佳表示CF
3
或OCF
3
。 較佳地,式IN-B化合物選自式IN-B-1至IN-B-5之化合物之群,較佳選自式IN-B-1及/或IN-B-3及/或IN-B-4及/或IN-B-5之群,且最佳選自式IN-B-1及/或IN-B-4及/或IN-B-5:
其中參數具有上文所給出之各別含義,且較佳地 R
1
表示較佳具有1至7個C原子之烷基、烷氧基、氟化烷基或氟化烷氧基;具有2至7個C原子之烯基、烯氧基、烷氧烷基或氟化烯基,且較佳表示烷基或烯基,且 X
1
表示F、Cl、CN、NCS、氟化烷基、氟化烯基、氟化烷氧基或氟化烯氧基,後四個基團較佳具有1至4個C原子,較佳表示F、Cl、CF
3
或OCF
3
,更佳表示CF
3
或OCF
3
。 本發明亦關於式IN-A之新穎化合物
其中
且其他參數具有上文在式IN下所給出之各別含義,且較佳地 R
1
及R
2
彼此獨立地表示較佳具有1至7個C原子之烷基、烷氧基、氟化烷基或氟化烷氧基;具有2至7個C原子之烯基、烯氧基、烷氧烷基或氟化烯基,且R
2
替代地表示H或X
1
且較佳表示X
1
, X
1
表示F、Cl、氟化烷基、氟化烯基、氟化烷氧基或氟化烯氧基,後四個基團較佳具有1至4個C原子,較佳表示F、Cl、CF
3
或OCF
3
,更佳表示CF
3
或OCF
3
,且 n 表示1或2,較佳表示1,且
本發明亦關於式IN-B之新穎化合物
其中
R
1
及R
2
彼此獨立地表示較佳具有1至7個C原子之烷基、烷氧基、氟化烷基或氟化烷氧基;具有2至7個C原子之烯基、烯氧基、烷氧烷基或氟化烯基,且R
2
替代地表示H或X
1
且較佳表示X
1
, X
1
表示F、Cl、氟化烷基、氟化烯基、氟化烷氧基或氟化烯氧基,後四個基團較佳具有1至4個C原子,較佳表示F、Cl、CF
3
或OCF
3
,更佳表示CF
3
或OCF
3
,且 n 表示0,或 n 表示1或2,較佳表示1,且
較佳地,介質包含選自式I-1至I-4之化合物之群的一或多種式I化合物:
其中 R
11
及R
12
彼此獨立地表示較佳具有1至7個C原子之烷基、烷氧基、氟化烷基或氟化烷氧基;具有2至7個C原子之烯基、烯氧基、烷氧烷基或氟化烯基,且較佳表示烷基、烷氧基、烯基或烯氧基,最佳表示烷氧基或烯氧基, R
1
表示較佳具有1至7個C原子之烷基、烷氧基、氟化烷基或氟化烷氧基;具有2至7個C原子之烯基、烯氧基、烷氧烷基或氟化烯基,且較佳表示烷基或烯基,且 X
1
表示F、Cl、CN、NCS、氟化烷基、氟化烯基、氟化烷氧基或氟化烯氧基,後四個基團較佳具有1至4個C原子,較佳為F、Cl、CF
3
或OCF
3
,特定言之對於式I-1較佳為F且對於式I-2及I-4較佳為OCF
3
或CF
3
,特定言之對於式I-1較佳為F且在式I-2及I-4中較佳為OCF
3
或CF
3
。 較佳地,式I化合物係選自式I-5至I-10之化合物之群,較佳選自式I-5至I-8之群,且最佳選自式I-5及I-6:
其中參數具有上文所給出之各別含義,且較佳地 R
11
及R
12
彼此獨立地表示較佳具有1至7個C原子之烷基、烷氧基、氟化烷基或氟化烷氧基;具有2至7個C原子之烯基、烯氧基、烷氧烷基或氟化烯基,且較佳表示烷基、烷氧基、烯基或烯氧基,最佳表示烷氧基或烯氧基, R
1
表示較佳具有1至7個C原子之烷基、烷氧基、氟化烷基或氟化烷氧基;具有2至7個C原子之烯基、烯氧基、烷氧烷基或氟化烯基,且較佳表示烷基或烯基,且 X
1
表示F、Cl、CN、NCS、氟化烷基、氟化烯基、氟化烷氧基或氟化烯氧基,後四個基團較佳具有1至4個C原子,較佳表示F、Cl、CF
3
或OCF
3
,更佳表示CF
3
或OCF
3
。 較佳地,介質包含選自式I-1及I-2之化合物之群的一或多種式I化合物:
其中 R
11
及R
12
以及 R
1
彼此獨立地表示較佳具有1至7個C原子之烷基、烷氧基、氟化烷基或氟化烷氧基;具有2至7個C原子之烯基、烯氧基、烷氧烷基或氟化烯基,且較佳表示烷基、烷氧基、烯基或烯氧基,最佳表示烷氧基或烯氧基,且 X
1
表示F、Cl、CN、NCS、氟化烷基、氟化烯基、氟化烷氧基或氟化烯氧基,後四個基團較佳具有1至4個C原子,較佳表示F、Cl、CF
3
或OCF
3
,更佳表示CF
3
或OCF
3
。 較佳地,介質包含選自式I-3及I-4之化合物之群的一或多種式I化合物:
其中 R
11
及R
12
以及 R
1
彼此獨立地表示較佳具有1至7個C原子之烷基、烷氧基、氟化烷基或氟化烷氧基;具有2至7個C原子之烯基、烯氧基、烷氧烷基或氟化烯基,且較佳表示烷基、烷氧基、烯基或烯氧基,最佳表示烷氧基或烯氧基,且 X
1
表示F、Cl、CN、NCS、氟化烷基、氟化烯基、氟化烷氧基或氟化烯氧基,後四個基團較佳具有1至4個C原子,較佳表示F、Cl、CF
3
或OCF
3
,更佳表示CF
3
或OCF
3
。 式I-4化合物係類似於根據WO 02/055463之式I-2化合物的合成而製備,且含有兩個烷氧基之式I-3化合物(R
11
=> R
1
-O; R
12
=> R
1
-O)較佳自鹼性化合物二苯并噻吩根據以下流程:(
流程 1a
)製備。
-流程1a之延續-
流程 1a
.合成具有兩個烷氧基端基之式I-3化合物 含有一個烷氧基(R
1
-O)及一個烷基(R
1
)之式I-3化合物 (R
11
=> R
1
-O; R
12
=> R
2
)較佳自鹼性化合物二苯并噻吩根據以下流程:(
流程 2a
)製備。
流程 2a
.合成具有一個烷基及一個烷氧基端基之式I-3化合物。基團R對應於諸如相應地縮短一個碳原子之R
2
之基團。 含有兩個烷基之式I-3化合物(R
11
=> R
1
; R
12
=> R
2
)較佳自鹼性化合物二苯并噻吩根據以下流程:(
流程 3a
)製備。
流程 3a
.合成式I-3化合物。所採用醛之基團R對應於諸如相應地縮短一個碳原子之R
2
之基團。 式I-4化合物較佳例如根據以下流程(
流程 4a
)製備。
流程 4a
.合成式I-4化合物。 式I-4化合物根據WO 02/055463製備且含有兩個烷氧基之式I-2化合物(R
11
=>R
1
-O;R
12
=>R
2
-O)較佳自鹼性化合物二苯并呋喃根據以下流程:(
流程 1b
)製備。
-流程1b之延續-
流程 1b
.合成具有兩個烷氧基端基之式I-2化合物 含有一個烷氧基(R
1
-O)及一個烷基(R
2
)之式I-2化合物(R
11
=> R
1
-O;R
12
=> R
2
)較佳自鹼性化合物二苯并呋喃根據以下流程:(
流程 2B
)製備。
流程 2b
.合成具有一個烷基及一個烷氧基端基之式I-2化合物。基團R對應於諸如相應地縮短一個碳原子之R
2
之基團。 含有兩個烷基之式I-2化合物(R
11
=>R
1
;R
12
=>R
2
)較佳自鹼性化合物二苯并呋喃根據以下流程:(
流程 3b
)製備。
流程 3b
.合成式I-2化合物。所採用醛之基團R對應於諸如相應地縮短一個碳原子之R
2
之基團。 式I-2化合物較佳例如根據以下流程(
流程 4b
)製備。
流程 4b
.合成式I-2化合物。 下文參看
流程 5
解釋根據本發明使用之式I-1至I-4之化合物的特別適合之合成途徑。
流程 5
.合成式I-1至I-4之化合物。基團R、A、Z、X
1
、X
2
、Y及指數m具有關於式I所指示之含義。 流程5應僅視為說明性的。熟習此項技術者將能夠進行所呈現的合成之對應變化,且亦遵循其他適合之合成途徑,以便獲得式I-1至I-4之化合物。 根據上文所描繪之合成,在一實施例中,本發明亦涵蓋用於製備式IN-1至IN-4之化合物的一或多種方法。 因此,本發明涵蓋一種用於製備式I化合物之方法,其特徵在於其包含如
流程 6
中所展示在鹼基存在下將式II化合物轉化成式I-1至I-4之化合物,且其中R、A、Z、X
1
、X
2
、W及m具有上文所指示之含義,且G表示-OH、-SH或SG',且G'表示硫醇之鹼不穩定保護基的方法步驟。較佳保護基為乙醯基、二甲胺基羰基、2-四氫哌喃基、乙氧羰基乙基、第三丁基、甲基,尤佳為乙氧羰基乙基。
流程 6
.用於製備式I-1至I-4之化合物之方法。 該方法及反應混合物之後續處理可基本上以分批反應或連續反應程序之形式進行。連續反應程序涵蓋例如在連續攪拌槽反應器、級聯攪拌反應器、環流或交叉流反應器、流管或微反應器中反應。視需要,反應混合物視情況藉由以下方式處理:經由固相;層析;不可混溶相之間的分離(例如萃取);吸附至固體支撐物上;藉由蒸餾、選擇性蒸餾、昇華、結晶、共結晶或藉由膜上奈米過濾移除溶劑及/或共沸混合物。
流程 7
.用於製備包含四氫哌喃部分之式IN-A化合物之方法
CK-n-F之合成公開於例如M. Bremer及L. Lietzau,
New J . Chem .
2005, 29,第72至74頁中。類似地製備其中n為0之式IN-B化合物。
流程 8
.用於製備式IN-A化合物之方法。
本發明另外係關於根據本發明之液晶混合物及液晶介質之用途,其係用於IPS及FFS顯示器中,特定言之,用於含有液晶介質之SG-FFS顯示器中,以改善回應時間及/或透射率。 本發明另外係關於一種含有根據本發明之液晶介質的液晶顯示器,特定言之,IPS或FFS顯示器,尤佳為FFS或SG-FFS顯示器。 本發明另外係關於一種包含液晶單元之IPS或FFS型液晶顯示器,該液晶單元由以下各項組成:兩個基板,其中至少一個基板透光且至少一個基板具有電極層;及位於該等基板之間的液晶介質層,該液晶介質包含聚合組分及低分子量組分,其中該聚合組分可藉由使一或多種可聚合化合物在位於該液晶單元之基板之間的液晶介質中聚合,較佳同時施加電壓而獲得,且其中該低分子量組分為如上文及下文所描述的根據本發明之液晶混合物。 根據本發明之顯示器較佳係藉由主動矩陣(
a
ctive
m
atrix LC
D
,簡稱AMD),較佳藉由薄膜電晶體(TFT)矩陣定址。然而,根據本發明之液晶亦可以有利的方式用於具有其他已知定址方法之顯示器中。 本發明另外係關於一種用於藉由以下方式製備根據本發明之液晶介質的方法:使較佳選自式IN-1至IN-4之化合物之群的一或多種式IN化合物視情況與較佳選自式I-1至I-4及/或I-5至I-10之群的一或多種式I化合物,與一或多種低分子量液晶化合物或液晶混合物,及視情況與其他液晶化合物及/或添加劑混合。 上文及下文適用以下含義: 除非另外指明,否則術語「FFS」用於表示FFS及SG-FFS顯示器。 術語「液晶原基基團」為熟習此項技術者已知且描述於文獻中,且表示由於其吸引及排斥相互作用之各向異性而基本上有助於在低分子量或聚合物質中產生液晶(LC)相之基團。含有液晶原基基團之化合物(液晶原基化合物)本身不必具有液晶相。液晶原基化合物亦有可能僅在與其他化合物混合之後及/或在聚合之後展現出液晶相行為。典型液晶原基基團為例如剛性棒狀或圓盤狀單元。結合液晶原基或液晶化合物使用之術語及定義之概述在Pure Appl. Chem. 73(5), 888 (2001)及C. Tschierske, G. Pelzl, S. Diele, Angew. Chem. 2004, 116, 6340-6368中給出。 上文及下文之術語「間隔基團」或簡稱「間隔基」,亦稱為「Sp」,為熟習此項技術者已知且描述於文獻中,參見例如Pure Appl. Chem. 73(5), 888 (2001)及C. Tschierske, G. Pelzl, S. Diele, Angew. Chem. (2004), 116, 6340-6368。除非另外指明,否則上文及下文之術語「間隔基團」或「間隔基」表示在可聚合液晶原基化合物中將液晶原基基團及可聚合基團彼此連接之可撓性基團。 出於本發明之目的,術語「液晶介質」意欲表示包含液晶混合物及一或多種可聚合化合物(諸如反應性液晶原基)之介質。術語「液晶混合物」(或「主體混合物」)意欲表示僅由不可聚合之低分子量化合物組成,較佳由兩種或更多種液晶化合物及視情況其他添加劑,諸如對掌性摻雜劑或穩定劑組成之液晶混合物。 尤佳為具有向列相,特定言之室溫下之向列相的液晶混合物及液晶介質。 在本發明之一較佳實施例中,液晶介質包含介電各向異性大於3的一或多種正介電性化合物,其選自式II-1及II-2之化合物之群:
其中參數具有上文在式II下所指示之各別含義,且L
23
及L
24
彼此獨立地表示H或F,較佳L
23
表示F,且
且在式II-1及II-2之情況下,X
2
較佳表示F或OCF
3
,尤佳表示F,且在式II-2之情況下,
及/或選自式III-1及III-2之化合物之群:
其中參數具有在式III下所給出之含義, 且作為式III-1及/或III-2之化合物之替代方案或除該等化合物外,根據本發明之介質可包含一或多種式III-3化合物,
其中參數具有上文所指示之各別含義,且參數L
31
及L
32
彼此獨立且獨立於其他參數表示H或F。 液晶介質較佳包含選自式II-1及II-2之化合物之群的化合物,其中L
21
及L
22
及/或L
23
及L
24
均表示F。 在一較佳實施例中,液晶介質包含選自式II-1及II-2之化合物之群的化合物,其中L
21
、L
22
、L
23
及L
24
皆表示F。 液晶介質較佳包含一或多種式II-1化合物。式II-1化合物較佳選自式II-1a至II-1e之化合物之群,較佳為式II-1a及/或II-1b及/或II-1d,較佳式II-1a及/或II-1d或II-1b及/或II-1d,最佳式II-1d之一或多種化合物:
其中參數具有上文所指示之各別含義,且L
25
及L
26
彼此獨立地且獨立於其他參數表示H或F,且較佳 在式II-1a及II-1b中, L
21
及L
22
皆表示F, 在式II-1c及II-1d中, L
21
及L
22
皆表示F,及/或L
23
及L
24
皆表示F,且 在式II-1e中, L
21
、L
22
及L
23
表示F。 液晶介質較佳包含一或多種式II-2化合物,該等化合物較佳選自式II-2a至II-2k之化合物之群,較佳各自為式II-2a及/或II-2h及/或II-2j之一或多種化合物:
其中參數具有上文所指示之各別含義,且L
25
至L
28
彼此獨立地表示H或F,較佳L
27
及L
28
皆表示H,尤佳L
26
表示H。 液晶介質較佳包含選自式II-1a至II-1e之化合物之群的化合物,其中L
21
及L
22
皆表示F,及/或L
23
及L
24
皆表示F。 在一較佳實施例中,液晶介質包含選自式II-2a至II-2k之化合物之群的化合物,其中L
21
、L
22
、L
23
及L
24
皆表示F。 尤佳式II-2化合物為以下式之化合物,尤佳為式II-2a-1及/或II-2h-1及/或II-2k-2之化合物:
其中R
2
及X
2
具有上文所指示之含義,且X
2
較佳表示F。 液晶介質較佳包含一或多種式III-1化合物。式III-1化合物較佳選自式III-1a至III-1j之化合物之群,較佳選自式III-1c、III-1f、III-1g及III-1j:
其中參數具有上文所給出之含義且較佳其中參數具有上文所指示之各別含義,參數L
35
及L
36
彼此獨立地且獨立於其他參數表示H或F,且參數L
35
及L
36
彼此獨立地且獨立於其他參數表示H或F。 液晶介質較佳包含一或多種式III-1c化合物,該等化合物較佳選自式III-1c-1至III-1c-5之化合物之群,較佳為式III-1c-1及/或III-1c-2之化合物,最佳為式III-1c-1化合物:
其中R
3
具有上文所指示之含義。 液晶介質較佳包含一或多種式III-1f化合物,該等化合物較佳選自式III-1f-1至III-1f-6之化合物之群,較佳為式III-1f-1及/或III-1f-2及/或III-1f-3及/或III-1f-6之化合物,更佳為式III-1f-3及/或III-1f-6之化合物,更佳為式III-1f-6化合物:
其中R
3
具有上文所指示之含義。 液晶介質較佳包含一或多種式III-1g化合物,該等化合物較佳選自式III-1g-1至III-1g-5之化合物之群,較佳為式III-1g-3化合物:
其中R
3
具有上文所指示之含義。 液晶介質較佳包含一或多種式III-1h化合物,該等化合物較佳選自式III-1h-1至III-1h-3之化合物之群,較佳為式III-1h-3化合物:
其中參數具有上文所給出之含義,且X
3
較佳表示F。 液晶介質較佳包含一或多種式III-1i化合物,該等化合物較佳選自式III-1i-1及III-1i-2之化合物之群,較佳為式III-1i-2化合物:
其中參數具有上文所給出之含義,且X
3
較佳表示F。 液晶介質較佳包含一或多種式III-1j化合物,該等化合物較佳選自式III-1j-1及III-1j-2之化合物之群,較佳為式III-1j-1化合物:
其中參數具有上文所給出之含義, 液晶介質較佳包含一或多種式III-2化合物。式III-2化合物較佳選自式III-2a及III-2b之化合物之群,較佳為式III-2b之化合物:
其中參數具有上文所指示之各別含義,且參數L
33
及L
34
彼此獨立地且獨立於其他參數表示H或F。 液晶介質較佳包含一或多種式III-2a化合物,該等化合物較佳選自式III-2a-1至III-2a-6之化合物之群:
其中R
3
具有上文所指示之含義。 液晶介質較佳包含一或多種式III-2b化合物,該等化合物較佳選自式III-2b-1至III-2b-4之化合物之群,較佳為式III-2b-4化合物:
其中R
3
具有上文所指示之含義。 作為式III-1及/或III-2之化合物之替代方案或除該等化合物外,根據本發明之介質可包含一或多種式III-3化合物
其中參數具有上文在式III下所指示之各別含義。 該等化合物較佳選自式III-3a及III-3b之群:
其中R
3
具有上文所指示之含義。 根據本發明之液晶介質較佳包含介電各向異性在-1.5至3之範圍內的一或多種中性介電性化合物,較佳選自式IV及V之化合物之群。 除該等化合物外,根據本發明之液晶介質較佳包含介電各向異性小於-1.5之一或多種負介電性化合物,較佳選自式VI、VII、VIII及IX之化合物之群。 在本申請案中,元素皆包括其各別同位素。特定言之,該等化合物中之一或多個H可經D置換,且在一些實施例中,此亦為尤佳的。由相應化合物之氘取代氫之相應較高程度使得能夠例如偵測及識別化合物。在一些情況下,此為極有幫助的,特定言之在式I化合物之情況下。 在本申請案中, 烷基 尤佳表示直鏈烷基,特定言之,CH
3
-、C
2
H
5
-、正C
3
H
7
-、正C
4
H
9
-或正C
5
H
11
-,且 烯基 尤佳表示CH
2
=CH-、
E
-CH
3
-CH=CH-、CH
2
=CH-CH2-CH
2
-、
E
-CH
3
-CH=CH-CH
2
-CH
2
-或
E
-(正C
3
H
7
)-CH=CH-。 在本發明之一較佳實施例中,根據本發明之介質在各情況下包含選自式VI-1及VI-2之化合物之群的一或多種式VI化合物,較佳各自為一或多種式VI-1化合物及一或多種式VI-2化合物,
其中參數具有上文在式VI下所指示之各別含義,且較佳 在式VI-1中 R
61
及R
62
彼此獨立地表示甲氧基、乙氧基、丙氧基、丁氧基亦或戊氧基,較佳為乙氧基、丁氧基或戊氧基,更佳為乙氧基或丁氧基,且最佳為丁氧基。 在式VI-2中 R
61
較佳表示乙烯基、1-
E
-丙烯基、丁-4-烯-1-基、戊-1-烯-1-基或戊-3-烯-1-基及正丙基或正戊基,且 R
62
表示具有1至7個C原子,較佳具有2至5個C原子之未經取代烷基,或較佳具有1至6個C原子,尤佳具有2或4個C原子之未經取代烷氧基,且最佳為乙氧基,且 在本發明之一較佳實施例中,根據本發明之介質在各情況下包含選自式VII-1至VII-3之化合物之群的一或多種式VII化合物,較佳各自為一或多種式VII-1化合物及一或多種式VII-2化合物,
其中參數具有上文在式VII下所指示之各別含義,且較佳 R
71
表示乙烯基、1-
E
-丙烯基、丁-4-烯-1-基、戊-1-烯-1-基或戊-3-烯-1-基及正丙基或正戊基,且 R
72
表示具有1至7個C原子,較佳具有2至5個C原子之未經取代烷基,或較佳具有1至6個C原子,尤佳具有2或4個C原子之未經取代烷氧基,且最佳為乙氧基。 在本發明之一較佳實施例中,根據本發明之介質在各情況下包含選自以下化合物之群的一或多種式VI-1化合物:
在本發明之一較佳實施例中,根據本發明之介質在各情況下包含選自以下化合物之群的一或多種式VI-2化合物:
在本發明之一較佳實施例中,根據本發明之介質在各情況下包含選自以下化合物之群的一或多種式VII-1化合物:
在本發明之一較佳實施例中,根據本發明之介質在各情況下包含選自以下化合物之群的一或多種式VII-2化合物:
除式I或較佳其子式之化合物以外,根據本發明之介質較佳亦包含選自式VI及VII之化合物之群的一或多種負介電性化合物,其總濃度較佳在5%或更高至90%或更低、較佳10%或更高至80%或更低、尤佳20%或更高至70%或更低之範圍內。 在本發明之一較佳實施例中,根據本發明之介質在各情況下包含選自式VIII-1至VIII-3之化合物之群的一或多種式VIII化合物,較佳各自為一或多種式VIII-1化合物及/或一或多種式VIII-3化合物,
其中參數具有上文在式VII下所給出之各別含義,且較佳 R
81
表示乙烯基、1-
E
-丙烯基、丁-4-烯-1-基、戊-1-烯-1-基或戊-3-烯-1-基、乙基、正丙基或正戊基、烷基,較佳表示乙基、正丙基或正戊基,且 R
82
表示具有1至7個C原子,較佳具有1至5個C原子之未經取代烷基;或具有1至6個C原子之未經取代烷氧基。 在式VIII-1及VIII-2中,R
82
較佳表示具有2或4個C原子之烷氧基,且最佳表示乙氧基,且在式VIII-3中,其較佳表示烷基,較佳表示甲基、乙基或正丙基,最佳表示甲基。 在另一較佳實施例中,介質包含一或多種式IV化合物,較佳包含一或多種式IV-1化合物
其中 R
41
表示具有1至7個C原子之未取代烷基或具有2至7個C原子之未取代烯基,較佳表示正烷基,尤佳具有2、3、4或5個C原子,且 R
42
表示具有1至7個C原子之未經取代烷基;具有2至7個C原子之未經取代烯基或具有1至6個C原子之未經取代烷氧基,其皆較佳具有2至5個C原子;具有2至7個C原子,較佳具有2、3或4個C原子之未經取代烯基,更佳表示乙烯基或1-丙烯基,且特定言之,乙烯基。 在一尤佳實施例中,介質包含選自具有式IV-1-1至IV-1-4之化合物之群的一或多種式IV-1化合物,較佳為式IV-1-1化合物,
其中 烷基及烷基' 彼此獨立地表示具有1至7個C原子,較佳具有2至5個C原子之烷基, 烯基及烯基' 彼此獨立地表示具有2至5個C原子,較佳具有2至4個C原子,尤佳2個C原子之烯基。 烯基' 表示具有2至5個C原子,較佳具有2至4個C原子,尤佳具有2至3個C原子之烯基,且 烷氧基 表示具有1至5個C原子,較佳具有2至4個C原子之烷氧基。 在一尤佳實施例中,根據本發明之介質包含一或多種式IV-1化合物及/或一或多種式IV-2化合物。 在另一較佳實施例中,該介質包含一或多種式V化合物。 根據本發明之介質較佳包含總濃度如下所示之以下化合物: 1重量%至60重量%選自式IN化合物之群的一或多種化合物,及 0重量%至60重量%較佳1重量%至60重量%選自式I化合物之群的一或多種化合物,及/或 5重量%至60重量%較佳選自式II-1及II-2之化合物之群的一或多種式II化合物,及/或 5重量%至25重量%一或多種式III化合物,及/或 5重量%至45重量%一或多種式IV化合物,及/或 5重量%至25重量%一或多種式V化合物,及/或 5重量%至25重量%一或多種式VI化合物,及/或 5重量%至20重量%一或多種式VII化合物,及/或 5重量%至30重量%較佳選自式VIII-1及VIII-2之化合物之群的一或多種式VIII化合物,及/或 0重量%至60重量%一或多種式IX化合物, 其中存在於該介質中的式IN及I至IX之所有化合物的總含量較佳為95%或更高且更佳為100%。 後一情況適用於根據本申請案之所有介質。 在另一較佳實施例中,除式IN或較佳其子式及/或式I或較佳其子式之化合物,及式VI及/或VII及/或VIII及/或IX之化合物以外,根據本發明之介質較佳包含選自式IV及V之化合物之群的一或多種中性介電性化合物,其總濃度較佳在5%或更高至90%或更低、較佳10%或更高至80%或更低、尤佳20%或更高至70%或更低之範圍內。 在一尤佳實施例中,根據本發明之介質包含 總濃度在5%或更高至50%或更低之範圍內,較佳在10%或更高至40%或更低之範圍內的一或多種式II化合物,及/或 總濃度在5%或更高至30%或更低之範圍內的一或多種式VII-1化合物,及/或 總濃度在3%或更高至30%或更低之範圍內的一或多種式VII-2化合物。 較佳根據本發明之介質中的式IN化合物之濃度在1%或更高至60%或更低、更佳5%或更高至40%或更低、最佳8%或更高至35%或更低之範圍內。 若存在,則較佳根據本發明之介質中的式I化合物之濃度在1%或更高至60%或更低、更佳5%或更高至40%或更低、最佳8%或更高至35%或更低之範圍內。 在本發明之一較佳實施例中,該等介質包含較佳選自式IN-1、I-2、IN-3及IN-4之群的一或多種式IN化合物,及較佳選自式I-1至I-10之群,較佳式I-1及/或I-2及/或I-3及/或I-4之群,較佳式I-1及/或I-2、I-5、I-6、I-7、I-8、I-9及I-10之群的一或多種式I化合物。 在本發明之一較佳實施例中,該等介質中的式II化合物之濃度在3%或更高至60%或更低、更佳5%或更高至55%或更低、更佳10%或更高至50%或更低,且最佳15%或更高至45%或更低之範圍內。 在本發明之一較佳實施例中,該等介質中的式VII化合物之濃度在2%或更高至50%或更低、更佳5%或更高至40%或更低、更佳10%或更高至35%或更低,且最佳15%或更高至30%或更低之範圍內。 在本發明之一較佳實施例中,該等介質中式VII-1化合物之濃度在1%或更高至40%或更低、更佳2%或更高至35%或更低,或替代地15%或更高至25%或更低之範圍內。 在本發明之一較佳實施例中,若存在,則介質中的式VII-2化合物之濃度在1%或更高至40%或更低、更佳5%或更高至35%或更低,且最佳10%或更高至30%或更低之範圍內。 本發明亦關於含有根據本發明之液晶介質之電光顯示器或電光組件。較佳為基於VA、ECB、IPS或FFS效應,較佳基於VA、IPS或FFS效應之電光顯示器,且尤其係藉助於主動矩陣式定址裝置定址的該等顯示器。 因此,本發明同樣係關於根據本發明之液晶介質在電光顯示器中或電光組件中之用途,及用於製備根據本發明之液晶介質的方法,其特徵在於,將一或多種式I化合物與一或多種式II化合物,較佳與一或多種子式II-1及/或II-2之化合物,及/或與一或多種式VII化合物,較佳與一或多種子式VII-1及/或VII-2之化合物,尤佳與該等式II-1、II-2、VII-1及VII-2中之兩個或更多個,較佳三個或更多個不同式且尤佳全部四個式的一或多種化合物,及一或多種較佳選自式IV及V之化合物之群的其他化合物,更佳與一或多種式IV及式V兩者之化合物混合。 在另一較佳實施例中,該介質包含選自式IV-2及IV-3之化合物之群的一或多種式IV化合物,
其中 烷基及烷基' 彼此獨立地表示具有1至7個C原子,較佳具有2至5個C原子之烷基, 烷氧基 表示具有1至5個C原子,較佳具有2至4個C原子之烷氧基。 在另一較佳實施例中,該介質包含選自式V-1及V-2之化合物,較佳式V-1化合物之群的一或多種式V化合物,
其中參數具有上文在式V下所給出之各別含義,且較佳 R
51
表示具有1至7個C原子之烷基或具有2至7個C原子之烯基,且 R
52
表示具有1至7個C原子之烷基、具有2至7個C原子之烯基或具有1至6個C原子之烷氧基,較佳表示烷基或烯基,尤佳表示烷基。 在另一較佳實施例中,該介質包含選自式V-1a及V-1b之化合物之群的一或多種式V-1化合物,
其中 烷基及烷基' 彼此獨立地表示具有1至7個C原子,較佳具有2至5個C原子之烷基,且 烯基 表示具有2至7個C原子,較佳具有2至5個C原子之烯基。 此外,本發明係關於一種用於減小液晶介質之雙折射之波長色散的方法,該液晶介質包含一或多種式II化合物,視情況包含選自式VII-1及VII-2之化合物之群的一或多種化合物,及/或一或多種式IV化合物及/或一或多種式V化合物,該方法之特徵在於,將一或多種式I化合物用於該介質中。 除式I至V之化合物以外,亦可存在其他成分,例如其量佔混合物整體至多45%,但較佳佔至多35%,特定言之佔至多10%。 根據本發明之介質亦可視情況包含正介電性組分,其總濃度以整個介質計較佳為20%或更低,更佳為10%或更低。 在一較佳實施例中,以混合物作為整體計,根據本發明之液晶介質總計包含: 1%或更高至50%或更低、較佳2%或更高至35%或更低、尤佳3%或更高至25%或更低之式Y化合物, 1%或更高至20%或更低、較佳2%或更高至15%或更低、尤佳3%或更高至12%或更低之式I化合物, 20%或更高至50%或更低、較佳25%或更高至45%或更低、尤佳30%或更高至40%或更低之式II及/或III之化合物,及 0%或更高至35%或更低、較佳2%或更高至30%或更低、尤佳3%或更高至25%或更低之式IV及/或V之化合物,及 5%或至50%或更低、10%或更高至45%或更低、較佳15%或更高至40%或更低之式VI及/或VII及/或VIII及/或IX之化合物。 根據本發明之液晶介質可包含一或多種對掌性化合物。 尤佳本發明之實施例滿足以下條件中之一或多者, 其中字首語(縮寫)解釋於表A至C中且以表D中之實例說明。 較佳根據本發明之介質滿足以下條件中之一或多者。 i. 液晶介質之雙折射率為0.060或更高,尤佳為0.070或更高。 ii. 液晶介質之雙折射率為0.200或更低,尤佳為0.180或更低。 iii. 液晶介質之雙折射率在0.090或更高至0.160或更低、較佳至0.120或更低之範圍內。 iv. 液晶介質包含一或多種式I-2及/或I-4之尤佳化合物。 v. 混合物整體中式IV化合物之總濃度為25%或更高,較佳為30%或更高,且較佳在25%或更高至49%或更低之範圍內,尤佳在29%或更高至47%或更低之範圍內,且極佳在37%或更高至44%或更低之範圍內。 vi. 液晶介質包含選自下式之化合物之群的一或多種式IV化合物:CC-n-V及/或CC-n-Vm及/或CC-V-V及/或CC-V-Vn及/或CC-nV-Vn,尤佳為CC-3-V,其濃度較佳為至多60%或更低,尤佳為至多50%或更低;及視情況另外存在之CC-3-V1,其濃度較佳為至多15%或更低;及/或CC-4-V,其濃度較佳為至多24%或更低,尤佳為至多30%或更低。 vii. 該等介質包含式CC-n-V、較佳式CC-3-V之化合物,其濃度較佳為1%或更高至60%或更低,濃度更佳為3%或更高至35%或更低。 viii. 混合物整體中式CC-3-V化合物之總濃度較佳為15%或更低,較佳10%或更低,或20%或更高,較佳25%或更高。 ix. 混合物整體中式Y-nO-Om化合物之總濃度為2%或更高至30%或更低,較佳為5%或更高至15%或更低。 x. 混合物整體中式CY-n-Om化合物之總濃度為5%或更高至60%或更低,較佳為15%或更高至45%或更低。 xi. 整體混合物中式CCY-n-Om及/或CCY-n-m之化合物,較佳式CCY-n-Om化合物之總濃度為5%或更高至40%或更低,較佳為1%或更高至25%或更低。 xii. 混合物整體中式CLY-nO-Om化合物之總濃度為5%或更高至40%或更低,較佳為10%或更高至30%或更低。 xiii. 液晶介質包含一或多種式IV,較佳式IV-1及/或IV-2之化合物,其總濃度較佳為1%或更高,特定言之2%或更高,且極佳為3%或更高至50%或更低,較佳35%或更低。 xiv. 液晶介質包含一或多種式V化合物,較佳式V-1及/或V-2之化合物,其總濃度較佳為1%或更高,特定言之2%或更高,且極佳為15%或更高至35%或更低,較佳至30%或更低。 xv. 整體混合物中式CCP-V-n化合物,較佳式CCP-V-1化合物之總濃度較佳為5%或更高至30%或更低,較佳15%或更高至25%或更低。 xvi. 整體混合物中式CCP-V2-n化合物,較佳式CCP-V2-1化合物之總濃度為較佳1%或更高至15%或更低,較佳為2%或更高至10%或更低。 本發明另外係關於一種具有基於VA、ECB、IPS、FFS或UB-FFS效應而定址之主動矩陣的電光顯示器,其特徵在於,其含有根據本發明之液晶介質作為介電質。 液晶混合物之向列相範圍較佳具有至少70度之寬度。 旋轉黏度γ
1
較佳為350 mPa∙s或更低,較佳為250 mPa∙s或更低,且特定言之為150 mPa∙s或更低。 根據本發明之混合物適合於使用正介電性液晶介質之所有IPS及FFS-TFT應用,諸如超緊FFS (SG-FFS)。 根據本發明之液晶介質較佳幾乎完全由4至18種,特定言之,5至15種且尤佳12種或更少化合物組成。該等化合物較佳選自式Y、I、II、III、IV、V、VI、VII、VIII及IX之化合物之群。 根據本發明之液晶介質亦可視情況包含超過18種化合物。在此情況下,其較佳包含18至25種化合物。 在一較佳實施例中,根據本發明之液晶介質主要由不含氰基之化合物組成,較佳基本上由其組成且最佳幾乎完全由其組成。 在一較佳實施例中,根據本發明之液晶介質包含選自式IN、I、II及III、IV及V及VI至IX之化合物之群的化合物,較佳選自式IN-1、IN-2、IN-3、IN-4、I-1、I-2、I-3、I-4、I-5、I-6、I-7、I-8、I-9、I-10、II-1、II-2、III-1、III-2、IV、V、VII-1、VII-2、VIII及IX之化合物之群;該等液晶介質較佳主要由該等式之化合物組成,尤佳基本上由其組成,且極佳幾乎完全由其組成。 根據本發明之液晶介質的向列相在各情況下較佳為至少-10℃或更低至70℃或更高,尤佳為-20℃或更低至80℃或更高,極佳為-30℃或更低至85℃或更高且最佳為-40℃或更低至90℃或更高。 表述「具有向列相」在此意謂:一方面,在低溫在相應溫度下未觀察到近晶相及結晶,且另一方面,在加熱時在向列相外不發生清除。在低溫下之研究在相應溫度下在流量式黏度計中進行,且藉由在單元厚度對應於電光應用之測試單元中儲存至少100小時進行檢驗。若在相應測試單元中於-20℃溫度下之儲存穩定性為1000 h或更長時間,則認為該介質在此溫度下穩定。在-30℃及-40℃之溫度下,相應時間分別為500 h及250 h。在高溫下,藉由習知方法在毛細管中量測澄清點。 在一較佳實施例中,根據本發明之液晶介質之特徵在於中等至較低範圍中之光學各向異性值。雙折射率值較佳在0.075或更高至0.130或更低之範圍內,尤佳在0.085或更高至0.120或更低之範圍內且極佳在0.090或更高至0.115或更低之範圍內。 在此實施例中,根據本發明之液晶介質具有正介電各向異性及相對較高的介電各向異性Δε絕對值,Δε較佳在0.5或更高、較佳1.0或更高、更佳2.0或更高至20或更低、更佳至15或更低,更佳3.0或更高至10或更低,尤佳4.0或更高至9.0或更低,且極佳4.5或更高至8.0或更低之範圍內。 根據本發明之液晶介質較佳具有在1.0 V或更高至2.5 V或更低,較佳1.2 V或更高至2.2 V或更低,尤佳1.3 V或更高至2.0 V或更低範圍內的相對較低之臨限電壓(V
0
)值。 在另一較佳實施例中,根據本發明之液晶介質較佳具有相對較高的平均介電常數(ε
av.
≡ (ε
êê
+ 2ε
⊥
)/3)值,其較佳在8.0或更高至25.0或更低,較佳8.5或更高至20.0或更低,再更佳9.0或更高至19.0或更低,尤佳10.0或更高至18.0或更低,且極佳11.0或更高至16.5或更低之範圍內。 此外,根據本發明之液晶介質在液晶單元中具有較高VHR值。 在該等單元中的於20℃下之新填充之單元中,此等VHR值大於或等於95%,較佳大於或等於97%,尤佳大於或等於98%且極佳大於或等於99%,且在烘箱中在100℃下5分鐘之後,在該等單元中,該等VHR值大於或等於90%,較佳大於或等於93%,尤佳大於或等於96%且極佳大於或等於98%。 一般而言,具有低定址電壓或臨限電壓之液晶介質在此處具有比具有較高定址電壓或臨限電壓之彼等液晶介質更低的VHR,且反之亦然。 個別物理特性之該等較佳值較佳亦在各情況下係藉由根據本發明之介質彼此組合來維持。 在本申請案中,除非另外明確指明,否則術語「化合物(compounds/compound(s)」意謂一種以及複數種化合物。 在一較佳實施例中,根據本發明之液晶介質包含: 一或多種式IN化合物,及 一或多種式I化合物,及/或 一或多種式II化合物,較佳式PUQU-n-F、CDUQU-n-F、APUQU-n-F及PGUQU-n-F之化合物,及/或 一或多種式III化合物,較佳式CCP-n-OT、CLP-n-T、CGG-n-F及CGG-n-OD之化合物,及/或 一或多種式IV化合物,較佳式CC-n-V、CC-n-Vm、CC-n-m及CC-V-V之化合物,及/或 一或多種式V化合物,較佳式CCP-n-m、CCP-V-n、CCP-V2-n、CLP-V-n、CCVC-n-V及CGP-n-m之化合物,及/或 一或多種式VI化合物,較佳式Y-n-Om、Y-nO-Om及/或CY-n-Om之化合物,其選自式Y-3-O1、Y-4O-O4、CY-3-O2、CY-3-O4、CY-5-O2及CY-5-O4之化合物之群,及/或 視情況,較佳強制性地,一或多種式VII-1化合物,其較佳選自式CCY-n-m及CCY-n-Om、較佳式CCY-n-Om之化合物之群,較佳選自式CCY-3-O2、CCY-2-O2、CCY-3-O1、CCY-3-O3、CCY-4-O2、CCY-3-O2及CCY-5-O2之化合物之群,及/或 視情況,較佳強制性地,一或多種式VII-2化合物,較佳式CLY-n-Om化合物,其較佳選自式CLY-2-O4、CLY-3-O2、CLY-3-O3之化合物之群,及/或 一或多種式VIII化合物,較佳式CZY-n-On及CCOY-n-m之化合物,及/或 一或多種式IX化合物,較佳式PYP-n-m化合物,及/或 視情況,較佳強制性地,一或多種式IV化合物,其較佳選自式CC-n-V、CC-n-Vm及CC-nV-Vm,較佳CC-3-V、CC-3-V1、CC-4-V、CC-5-V及CC-V-V之化合物之群,尤佳選自化合物CC-3-V、CC-3-V1、CC-4-V及CC-V-V之群,極佳為化合物CC-3-V,及視情況另外存在之化合物CC-4-V及/或CC-3-V1及/或CC-V-V,及/或 視情況,較佳強制性地,一或多種式V化合物,較佳式CCP-V-1及/或CCP-V2-1之化合物。 在本發明之一尤佳實施例中,根據本發明之介質包含一或多種式IX化合物。 式IX化合物在液晶混合物中亦非常適合作為穩定劑,尤其在p = q = 1且環A
9
= 1,4-伸苯基時。特定言之,其使該等混合物之VHR對UV曝露穩定。 在一較佳實施例中,根據本發明之介質包含選自式IX-1至IX-4,極佳式IX-1至IX-3之化合物之群之一或多個式的一或多種式IX化合物,
其中參數具有在式IX下所給出之含義。 在另一較佳實施例中,該介質包含一或多種式IX-3化合物,較佳式IX-3-a化合物,
其中 烷基及烷基' 彼此獨立地表示具有1至7個C原子,較佳具有2至5個C原子之烷基。 倘若式IX化合物用於根據本申請案之液晶介質中,則該等化合物較佳以20%或更低之濃度,更佳10%或更低之濃度,且最佳5%或更低之濃度呈現,且對於個別亦即(同源)化合物,較佳濃度為10%或更低,且更佳為5%或更低。 對於本發明,除非在個別情況下另外指明,否則結合組合物各成分之說明應用以下定義: - 「包含」:組合物中所討論之成分之濃度較佳為5%或更高,尤佳為10%或更高,極佳為20%或更高, - 「主要由……組成」:組合物中所討論之成分之濃度較佳為50%或更高,尤佳為55%或更高且極佳為60%或更高, - 「基本上由……組成」:組合物中所討論之成分之濃度較佳為80%或更高,尤佳為90%或更高且極佳為95%或更高,及 - 「幾乎完全由……組成」:組合物中所討論之成分之濃度較佳為98%或更高,尤佳為99%或更高且極佳為100.0%。 此同時適用於呈具有其成分之組合物形式的介質,該等組合物可為組分及化合物,以及具有其成分之組分、化合物。僅就個別化合物相對於介質整體之濃度而言,術語包含意謂:所討論之化合物之濃度較佳為1%或更高,尤佳為2%或更高,極佳為4%或更高。 對於本發明,「≤」意謂小於或等於,較佳為小於,且「≥」意謂大於或等於,較佳為大於。 對於本發明,
表示反式-1,4-伸環己基,且
表示1,4-伸苯基。 對於本發明,表述「正介電性化合物」意謂Δε > 1.5之化合物,表述「中性介電性化合物」意謂-1.5 ≤ Δε ≤ 1.5之彼等化合物,且表述「負介電性化合物」意謂Δε < -1.5之彼等化合物。化合物之介電各向異性在此藉由以下步驟測定:將10%化合物溶解於液晶主體中;且在各情況下測定所得混合物在至少一個測試單元中之電容,該測試單元之單元厚度為20 µm,且在1 kHz下具有垂直及均勻表面配向。量測電壓通常為0.5 V至1.0 V,但始終低於所研究之各別液晶混合物之電容臨限值。 用於正介電性及中性介電性化合物之主體混合物為ZLI-4792且用於負介電性化合物之主體混合物為ZLI-2857,兩者均來自Merck KGaA, Germany。待研究之各別化合物的值係自添加待研究化合物且外插至100%所用化合物之後的主體混合物之介電常數的變化獲得。將待研究化合物溶解於呈10%之量的主體混合物中。若該物質之溶解度過低而無法用於此目的,則在各步驟中濃度減半,直至可在所需溫度下進行該研究。 必要時,根據本發明之液晶介質亦可進一步包含常用量之添加劑,諸如穩定劑及/或多色(例如雙色)染料及/或對掌性摻雜劑。以整個混合物之量計,所用的此等添加劑之量較佳為總計0%或更高至10%或更低,尤佳為0.1%或更高至6%或更低。所用個別化合物之濃度較佳為0.1%或更高至3%或更低。當指定液晶介質中液晶化合物之濃度及濃度範圍時,一般不考慮該等添加劑及類似添加劑之濃度。 在一較佳實施例中,根據本發明之液晶介質包含聚合物前驅物,該聚合物前驅物包含一或多種反應性化合物,較佳反應性液晶原基,且必要時,亦進一步包含常用量之添加劑,諸如聚合反應引發劑及/或聚合反應減速劑。以整個混合物之量計,所用該等添加劑之量總計為0%或更高至10%或更低,較佳為0.1%或更高至2%或更低。當指定液晶介質中液晶化合物之濃度及濃度範圍時,不考慮該等添加劑及類似添加劑之濃度。 該等組合物由複數種化合物,較佳3種或更多至30種或更少,尤佳6種或更多至20種或更少,且極佳10種或更多至16種或更少化合物組成,該等化合物以習知方式混合。一般而言,將以較少量使用的組分之所需量溶解於構成該混合物之主要成分的組分中。此有利地在高溫下進行。若所選溫度高於主要成分之澄清點,則特別容易觀察到溶解操作之完成。然而,亦可以其他習知方式,例如使用預混物,或由所謂的「多瓶系統(multi-bottle system)」製備液晶混合物。 根據本發明之混合物展現澄清點為65℃或更高之極寬向列相範圍、極有利的電容臨限值、相對較高的保持率值及同時在-30℃及-40℃下極佳之低溫穩定性。另外,根據本發明之混合物係藉由低旋轉黏度γ
1
區分。 對於熟習此項技術者不言而喻的是,用於VA、IPS、FFS或PALC顯示器中的根據本發明之介質亦可包含例如H、N、O、Cl、F已經相應同位素置換之化合物。 根據本發明之液晶顯示器之結構對應於如例如EP-A 0 240 379中所描述之常見幾何結構。 根據本發明之液晶相可藉助於適合添加劑改質,其方式為使其可用於例如迄今已揭示之任何類型之IPS及FFSLCD顯示器中。 下表E指示可添加至根據本發明之混合物中的可能摻雜劑。若該等混合物包含一或多種摻雜劑,則其用量為0.01%至4%,較佳為0.1%至1.0%。 可例如以較佳0.01%至6%,特定言之0.1%至3%之量添加至根據本發明之混合物中的穩定劑展示於下表F中。 出於本發明之目的,除非另外明確指出,否則所有濃度均以重量百分比指示,且除非另外明確指明,否則該等濃度係關於作為整體之相應混合物或係關於同樣作為整體之各別混合物組分。在此上下文中,術語「混合物」描述液晶介質。 除非另外明確指明,否則本申請案中所指示之所有溫度值,諸如熔點T (C,N)、近晶相(S)至向列相(N)之相變T(S,N)及清澈點T (N,I),均以攝氏度(℃)指示,且所有溫度差異相應地均以度數差異(°或度)指示。 對於本發明,除非另外明確指明,否則術語「臨限電壓」係關於電容臨限值(V
0
),亦稱為弗雷德里克(Freedericks)臨限值。 除非在各情況下另外明確指明,否則所有物理特性均係且已根據「Merck Liquid Crystals, Physical Properties of Liquid Crystals」,1997年11月說明,Merck KGaA, Germany來測定且適用於20℃之溫度,且Δn在436 nm、589 nm及633 nm下測定且Δε在1 kHz下測定。 電光特性,例如臨限電壓(V
0
) (電容量測),以及轉換行為,均在Merck Japan製造之測試單元中測定。量測單元具有鈉鈣玻璃基板,且利用聚醯亞胺配向層(SE-1211及稀釋劑**26 (混合比1:1),兩者皆來自Nissan Chemicals, Japan)以ECB或VA組態構建,該等聚醯亞胺配向層已彼此垂直摩擦且實現液晶之垂直配向。透明的實際上呈正方形之ITO電極之表面積為1 cm
2
。 除非另外指明,否則對掌性摻雜劑並未添加至所用液晶混合物中,但後者亦特別適於需要此類型摻雜之應用。 旋轉黏度係使用旋轉永久磁體方法及流量式黏度在改良之烏氏黏度計(Ubbelohde viscometer)中測定。對於液晶混合物ZLI-2293、ZLI-4792及MLC-6608 (所有產品均來自Merck KGaA, Darmstadt, Germany),在20℃下測定之旋轉黏度值分別為161 mPa·s、133 mPa·s及186 mPa·s,且流量式黏度值(ν)分別為21 mm
2
·s
- 1
、14 mm
2
·s
- 1
及27 mm
2
·s
- 1
。 除非另外明確規定,否則出於實用目的,該等材料之折射率之色散可方便地以貫穿本申請案使用的以下方式表徵。雙折射率值在20℃溫度下在若干固定波長下,於接觸該材料之稜鏡側面上使用改良之阿貝折射計(Abbé refractometer)以垂直配向之表面測定。雙折射率值在特定波長值436 nm (低壓汞燈之各別所選光譜線)、589 nm (鈉「D」線)及633 nm (HE-Ne雷射器(與衰減器/擴散器組合使用以防止損害觀測者之眼睛)之波長)下測定。在下表中,Δn在589 nm下給出且Δ(Δn)給出為Δ(Δn) = Δn(436 nm) - Δn(633 nm)。 除非另外明確指明,否則使用以下符號: V
0
臨限電壓,在20℃下之電容[V], n
e
在20℃及589 nm下量測之異常折射率, n
o
在20℃及589 nm下量測之尋常折射率, Dn 在20℃及589 nm下量測之光學各向異性, l 波長l [nm], Dn(l) 在20℃及波長λ下量測之光學各向異性, D(Dn) 如下所定義之光學各向異性變化: Dn(20℃, 436 nm) - Dn(20℃, 633 nm), D(Dn*) 如下所定義之「光學各向異性之相對變化」: D(Dn)/Dn(20℃, 589 nm), e
^
在20℃及1 kHz下,垂直於指向矢之介電磁化率, e
÷÷
在20℃及1 kHz下,平行於指向矢之介電磁化率, De 在20℃及1 kHz下之介電各向異性, T(N,I)或clp. 澄清點[℃], n 在20℃下量測之流量式黏度[mm
2
·s
- 1
], g
1
在20℃下量測之旋轉黏度[mPa∙s], k
11
彈性常數,在20℃下之「傾斜」變形[pN]; k
22
彈性常數,在20℃下之「扭轉」變形[pN], k
33
彈性常數,在20℃下之「彎曲」變形[pN], LTS 在測試單元中測定之相的低溫穩定性, VHR 電壓保持率, DVHR 電壓保持率之降低,及 S
rel
VHR之相對穩定性。 以下實例解釋本發明,而不限制本發明。然而,其向熟習此項技術者展示較佳混合物概念與較佳採用之化合物及其各別濃度及其彼此之組合。此外,實例說明可獲得的特性及特性組合。 在本發明及以下實例中,藉助於字首語指示液晶化合物之結構,其中根據下表A至C進行化學式之轉化。所有基團C
n
H
2n+1
、C
m
H
2m+1
及C
l
H
2l+1
或C
n
H
2n
、C
m
H
2m
及C
l
H
2l
均為直鏈烷基或伸烷基,在各情況下分別具有n、m及l個C原子。較佳地,n、m及l彼此獨立地為1、2、3、4、5、6或7。表A展示化合物之原子核之環形元素的編碼,表B列出橋聯單元,且表C列出分子之左右端基之符號的含義。字首語由以下組成:具有視情況鍵聯基團之環形元素的編碼,接著第一連字符及左側端基之編碼,以及第二連字符及右側端基之編碼。表D展示化合物之說明性結構及其各別縮寫。
表 A : 環 形元素 表 B : 橋聯單 元 表 C :端基
其中n及m各為整數,且三點「...」為來自此表之其他縮寫之占位符。 除式I化合物以外,根據本發明之混合物較佳包含如下所提及之化合物中之一或多種化合物。 使用以下縮寫: (n、m及l彼此獨立地各為整數,較佳為1至6,l亦可為0且較佳為0或2)
表 D
具有較高e
^
之較佳例示性式IN-A化合物:
具有較高ε
^
之較佳例示性式IN-B化合物:
具有高ε
⊥
之較佳例示性式I化合物:
例示性較佳正介電性化合物
例示性較佳中性介電性化合物
例示性較佳負介電性化合物
表E展示較佳用於根據本發明之混合物中的對掌性摻雜劑。
表 E 在本發明之一較佳實施例中,根據本發明之介質包含選自表E中之化合物之群的一或多種化合物。 表F展示除式I化合物外,亦可較佳用於根據本發明之混合物中的穩定劑。此處參數n表示1至12範圍內之整數。特定言之,所示苯酚衍生物可因其充當抗氧化劑而用作另外的穩定劑。
表 F 其中n為1、2、3、4、5、6或7,且較佳為3。 在本發明之一較佳實施例中,根據本發明之介質包含選自表F中之化合物之群的一或多種化合物,特定言之,選自以下兩式之化合物之群的一或多種化合物
實例
以下實例解釋本發明而不以任何方式限制本發明。然而,物理特性使得可實現何種特性及可在何種範圍內修改其對於熟習此項技術者來說為明確的。特定言之,因此為熟習此項技術者充分定義可較佳獲得之各種特性之組合。
合成實例
例示性化合物在式IN-A具有垂直於指向矢(e
^
)之較高介電常數及較高平均介電常數(e
av.
)時合成。
合成實例 1
合成1,1,5,6,7-五氟-2-(反式-4-正丙基-環己基)-茚滿:
步驟1.1:
使600 ml四氫呋喃中之二異丙胺(59.6ml, 420 mmol)冷卻至-40℃,並在15分鐘內逐滴添加264 ml (420 mmol)的15%丁基鋰於己烷中之溶液,且隨後在該溫度下將反應混合物攪拌30分鐘。隨後使混合物冷卻至-75℃,且1-溴-3,4,5-三氟苯(化合物
1
,84.9 g, 403mmol)以110 ml四氫呋喃溶液之形式加入。在攪拌1 h之後,在-70℃下在110 ml四氫呋喃中逐滴添加醛
2
(69.6 g, 350 mmol)。(如在M. Bremer及L. Lietzau,
New J . Chem . 2005
,
29
,第72至74頁中所描述之製備醛(化合物
2
))。在此溫度下將反應混合物再攪拌30分鐘,且隨後升溫至環境溫度並照常處理。貫穿本申請案,除非另外明確規定,否則術語環境溫度表示大致20℃,比如20℃ +/- 2℃之溫度。獲得呈黃色油狀之烯丙醇(化合物
3
)。 步驟1.2:
將來自先前步驟之烯丙醇
3
(298 mmol)溶解於530 ml的1,4-二噁烷中,並添加N-乙基-二異丙基胺(206,4 ml)、氯化鈀(II) (2.6 g, 15 mmol)及參(鄰甲苯基膦) (13.7 g, 45 mmol)。將混合物加熱至回流16 h。在照常處理之後,獲得粗製茚酮(化合物
4
)。 步驟1.3:
將來自先前步驟之茚酮
4
(143 mmol)及1,2-乙二醇(16.8 ml, 200 mmol)溶解於360 ml甲苯中,添加2.1 ml三氟甲烷磺酸,並將混合物加熱至回流4 h,同時將所產生的水收集在迪恩-斯達克裝置(Dean-Stark apparatus)中。在照常處理之後,獲得作為無色結晶之中間產物硫縮酮(化合物
5 )
。 步驟1.4:
在鐵氟龍容器中,將N-碘琥珀醯亞胺(91.9 g, 369 mmol)懸浮於550 ml二氯甲烷中,冷卻至-70℃,並添加含氟化氫之吡啶(65%溶液,96.0 ml),以此方式使得溫度始終保持低於-35℃。接著使混合物同樣冷卻至-70℃。接著,逐滴添加先前步驟的溶解於180 ml二氯甲烷中之硫縮酮
5
(35 g, 89 mmol)。攪拌混合物2 h且隨後升溫至環境溫度。製備420 ml氫氧化鈉水溶液(32%)、200 ml亞硫酸氫鈉水溶液(39%)及4.4 L冰水之混合物,並將反應溶液倒入至該混合物中。在照常處理之後,獲得作為無色結晶之產物:化合物
6
。經由
1
H NMR光譜學鑑別如下:
1
H NMR (500 MHz, 氯仿-
d
) δ 6.84 (t,
J
= 7.5 Hz, 1H), 3.04 (ddd,
J
= 16.2, 8.2, 3.5 Hz, 1H), 2.70 (d,
J
= 11.5 Hz, 1H), 2.39 (ddt,
J
= 25.5, 17.4, 9.0 Hz, 1H), 2.18 (dq,
J
= 13.0, 3.1 Hz, 1H), 1.83 - 1.73 (m, 2H), 1.76 - 1.62 (m, 1H), 1.32 (h,
J
= 7.3 Hz, 2H), 1.26 - 0.85 (m, 8H)。 此化合物(CfK-3-F)具有K 72℃ I之相變、0.072之Δn、-2.1之Δε及12.2之高ε
^
。
合成實例 2
合成1,1,6,7-四氟-2-辛基茚滿:
步驟2.1: 將新蒸餾的癸醛(39 g, 250 mmol)及二甲基亞甲基氯化亞銨(73 g, 757 mmol)在環境溫度下懸浮於250 ml之二氯甲烷中。緩慢地添加三乙胺(35.7 ml, 250 mmol)同時溫度上升至45℃。在攪拌16 h之後,將混合物照常處理且在減壓下蒸餾。此步驟之產物在0.1 bar之壓力下沸點為65℃。 步驟2.2:
將3,4-二氟-1-溴苯(38 g, 197 mmol)溶解於350 ml四氫呋喃中並冷卻至-74℃。添加二異丙基鋰醯胺(100 ml之2 M環己烷、乙苯及四氫呋喃的溶液,194 mmol)並攪拌1 h。在75 ml四氫呋喃中緩慢地添加2-亞甲基癸醛(26.8 g)且使混合物升溫至環境溫度整夜。在照常處理之後,獲得烯丙醇。 步驟2.3至2.5:
隨後如先前在M. Bremer, L. Lietzau,
New J . Chem . 2005
,
29
,第72至74頁中所描述之進行Heck環化(a)、硫縮醛化(b)及氟化(c)。 此化合物(K-8-F)具有K 17℃ I之相變、-3.2之Δε及14.2之高ε
^
。
合成實例 3
合成2-正戊基-5-(1,1,6,7-四氟茚滿-2基)-四氫-哌喃:
步驟3.1:合成6-正戊基-四氫-哌喃-2-醇:
將127 g (0.727 mol) 6-正戊基-四氫-哌喃-2-酮溶解於800 ml二氯甲烷中並在氬氣氛圍下冷卻至-70℃。在-70℃至-65℃範圍內之溫度下在1h內逐滴添加800 ml二異丁基氫化鋁(1 M二氯甲烷溶液)。接著在-70℃下攪拌反應混合物3 h,且隨後仍在相同溫度下在10分鐘內逐滴添加800 ml飽和碳酸氫鈉溶液,從而在-70℃至0℃範圍內之溫度下水解中間產物。使用「Seitz」過濾器過濾粗產物且用二氯甲烷充分洗滌。將有機相分離、乾燥、過濾,且在40℃及400 mbar之最大壓力下蒸發溶劑。 蒸餾粗產物。此步驟之產物在0.1 mbar下沸點為約143℃至148℃。 步驟3.2:合成2-正戊基-3,4-二氫-2H-哌喃:
將1 mol 6-正戊基-四氫-哌喃-2-醇溶解於750 ml二氯甲烷中,添加2.5 mol三乙胺及0.02 mol 4-(二甲胺基)-吡啶。使反應混合物冷卻至10℃且在10℃至15℃之溫度下逐滴添加1.1 mol甲烷磺醯氯。接著將混合物攪拌30 min。接著將其在回流下加熱2 h,且隨後冷卻並倒入至1,000 ml之冰水混合物中,且隨後攪拌15 min。將有機相分離、乾燥並餾出二氯甲烷。以尋常方式處理粗產物。 步驟3.3:合成6-正戊基-四氫-哌喃-3-醇:
將1 mol 2-正戊基-3,4-二氫-2H-哌喃溶解於500 ml THF中並冷卻至-18℃。在-18至-13℃之溫度下逐滴添加1.35 mol甲硼烷-THF-複合物(1 M THF溶液)。在-15℃下攪拌反應混合物1 h。接著使其升溫至環境溫度並再攪拌1h。接著在氣體之強力逸出下逐滴添加5 mol乙醇。溫度上升至48℃。接著逐滴添加溶解於250 ml水中之1.75 mol氫氧化鈉,並形成白色糊狀沈澱物。接著逐滴添加4 mol過氧化氫(35%水溶液)。反應混合物開始劇烈起泡且加熱達至其沸點溫度。在回流下將其加熱2 h並在攪拌超過16 h之情況下使其冷卻至環境溫度。將反應混合物倒入水中,分離有機相並將其還原至經受照常處理之剩餘粗產物。 步驟3.4:合成6-正戊基-二氫-哌喃-3-酮:
將1.5 mol氯鉻酸吡啶及500 g矽藻土(Celite) (Merck # 102693)與2,000 ml二氯甲烷一起置放於反應容器中。接著在22℃至32℃之溫度下逐滴添加溶解於500 ml二氯甲烷中之1 mol 6-正戊基-四氫-哌喃-3-醇。在環境溫度下將反應混合物攪拌16 h。接著將其過濾並用二氯甲烷充分洗滌。以照常方式處理濾液。此步驟之產物在4 mbar之壓力下沸點約為94℃至95℃。 步驟3.5:合成5-(甲氧基-甲基-(
E
)-亞基)-2-正戊基-四氫哌喃:
將1 mol 6-正戊基-二氫-哌喃-3-酮及1.2 mol甲氧基甲基三苯基氯化鏻與2000 ml THF溶液一起置放於反應容器中並冷卻至-15℃。接著在-15℃至最高-10℃範圍內之溫度下以小份添加1.1 mol第三丁酸鉀。使反應混合物升溫至環境溫度且在環境溫度下攪拌16 h。接著將其倒入至2,000 ml之冰水混合物中,中和(至pH = 6.8),分離有機相,且使產物經受照常處理。 步驟3.6:合成6-正戊基-四氫-哌喃-3-甲醛:
在惰性氛圍下將1 mol 5-(甲氧基-甲基-(
E
)-亞基)-2-正戊基-四氫哌喃溶解於600 ml THF中,添加0.6 mol鹽酸(HCl,濃度= 2 mol/L)。在環境溫度下將反應混合物攪拌16 h。接著添加40 ml之濃鹽酸。接著添加1 L之飽和氯化鈉溶液,且用MTB-醚萃取產物。將有機相分離、乾燥,移除溶劑,且使粗產物經受照常處理。此步驟之產物純度為97.7% (藉由GC)且各別立體異構體之分佈為順式/反式= 3:2。 步驟3.7:合成反式-6-正戊基-四氫-哌喃-3-甲醛:
將1 mol 6-正戊基-四氫-哌喃-3-甲醛溶解於1,000 ml甲醇中,且添加作為16%水溶液之0.35 mol的NaOH。在環境溫度下將反應混合物攪拌4 h,接著用1 L之冰水混合物處理,且用1 N鹽酸中和(至pH = 7)。用MTB-醚萃取反應混合物三次。將有機相分離、還原,且以尋常方式處理粗產物。在此處,此步驟之產物之各別立體異構體的分佈為順式/反式= 2:8。 步驟3.8:合成5-((
E
)-2-甲氧基-乙烯基)-2-正戊基-四氫-哌喃:
在惰性氣氛下將1 mol反式6-正戊基-四氫-哌喃-3-甲醛及1.2 mol甲氧基甲基三苯基氯化鏻與2.000 ml THF置放於反應容器中並冷卻至-10℃。在-10℃至最高0℃之溫度範圍內添加1.2 mol第三丁酸鉀。接著在環境溫度下將反應混合物攪拌24 h。隨後,將反應混合物倒入至2,000 ml之飽和氯化銨溶液中。將有機相分離、還原,且照常處理粗產物。此步驟之產物之純度為91.5% (藉由GC)。 步驟3.9:合成6-正戊基-四氫-哌喃-3-基-乙醛:
將0.15 mol 5-((E)-2-甲氧基-乙烯基)-2-正戊基-四氫哌喃溶解於300 ml THF中,添加25 ml之鹽酸(濃度= 18%),且在環境溫度下將反應混合物攪拌2 h。藉由薄層層析法不定期監測反應之進展。接著添加氯化鉀溶液,且用MTB-醚萃取反應混合物三次。將有機相分離、還原,且照常處理粗產物。此步驟之產物之純度為87% (藉由GC)。 步驟3.10:合成2-(6-正戊基-四氫-哌喃-基)-丙烯醛:
將0.1 mol 6-正戊基-四氫-哌喃-3-基-乙醛及0.4 mol N, N-二甲基亞甲基氯化亞銨及300 ml二氯甲烷置放於反應容器中,且在環境溫度下緩慢地逐滴添加0.1 mol三乙胺。將反應混合物倒入至500 ml水中。有機相經分離,且用稀鹽酸及用氯化鈉溶液各洗滌一次,乾燥,過濾,還原,且照常處理粗產物。此步驟之產物之純度為88% (藉由GC)。 步驟3.11:合成1-(6-溴-2,3-二氟-苯基)-2-(6-正戊基-四氫-哌喃并-3-基)丙-2-烯-1-醇:
使用兩個單獨裝置同時執行此反應步驟。
在第一個裝置中
,將0.14 mol二異丙胺及125 ml四氫呋喃置放於反應容器中,冷卻至-50℃,且逐滴添加0.14 mol丁基鋰(15%,於己烷中。接著在-50℃下將反應混合物攪拌30分鐘,接著使其冷卻至-75℃。生成溶液稱為溶液1。
在第二個裝置中
,0.12 mol1-溴-3,4-二氟苯與125 ml THF組合,且冷卻至-75℃。接著逐滴添加溶液1。在-75℃下將反應混合物攪拌1 h。接著在相同溫度下,逐滴添加溶解於125 ml THF中之0.1 mol 2-(6-正戊基-四氫-哌喃-基)-丙烯醛。在-70℃下將反應混合物攪拌1 h,使其升溫至環境溫度,且在此溫度下攪拌16 h。接著將反應混合物倒入至500 ml之冰水混合物中,其包含75 ml鹽酸(濃度為18%)。將有機相分離及還原。照常處理粗產物。此步驟之產物之純度為84% (藉由GC)。 步驟3.12:合成6,7-二氟-2-(6-正戊基-四氫-哌喃-3-基)茚滿-1-酮:
在惰性氛圍下將0.1 mol 1-(6-溴-2,3-二氟-苯基)-2-(6-正戊基-四氫-哌喃-3-基)丙-2-烯-1-醇及250 ml二噁烷置放於反應容器中。添加0.05 mol氯化鈀(II)及0.1 mol參(鄰甲苯基)膦及0.4 mol N-乙基二異丙胺。在回流下將反應混合物加熱24 h,冷卻並還原。將殘餘物溶解於200 ml的MTB-醚及水中之各者中並攪拌10 min。將有機相分離、乾燥、過濾及還原。照常處理粗產物。此步驟之產物之純度為98.7% (藉由GC)。 步驟3.13:合成:5-(6',7'-二氟螺[1,3-二硫雜環戊烷-2,1'-茚滿]-2'-基)-2-戊基-四氫哌喃:
將0.02 mol 6,7-二氟-2-(6-正戊基-四氫-哌喃-3-基)茚滿-1-酮及0.08 mol 1,2-乙二醇溶解於100 ml二氯甲烷中,且在環境溫度下添加0.04 mol
過氯酸 / 矽膠;
0.5 mmol/g。在環境溫度下將反應混合物攪拌4 h。添加另外0.12 mol
過氯酸 / 矽膠
;0.5 mmol/g,且在環境溫度下將反應混合物再攪拌48 h,過濾,並用二氯甲烷洗滌。將二氯甲烷溶液還原,且照常處理粗產物。此步驟之產物之純度為99.8% (藉由GC)。 步驟3.14:合成:2-正戊基-5-(1,1,6,7-四氟茚滿-2基)-四氫-哌喃:
將0.08 mol 1,3-二溴-5,5-二甲基乙內醯脲及100 ml二氯甲烷置放於反應容器中,並冷卻至-50℃。在-50℃至-45℃範圍內之溫度下,逐滴添加0.8 mol呈吡啶溶液(濃度為65%)之形式的氟化氫(HF)。使混合物冷卻至-75℃,且在此溫度下逐滴添加溶解於100 ml二氯甲烷中之0.02 mol 5-(6',7'-二氟螺[1,3-二硫雜環戊烷-2,1'-茚滿]-2'-基)-2-戊基-四氫哌喃達超過30 min的時間。在-75℃下將反應混合物攪拌6 h且使其升溫至環境溫度16 h。將反應混合物倒入至500 ml之冰冷的2 N NaOH中,其含有80 ml之亞硫酸氫鉀於水中之溶液(濃度= 39%)。將有機相分離、乾燥、過濾、還原,且照常處理粗產物。此最後步驟之最終產物之純度為99.8% (藉由GC)。 此化合物(AIK-5-F0)具有K 79℃之相變、0.068之Δn、-15.1之Δε及高ε
^
。
化合物實例
具有垂直於指向矢之高介電常數(ε
⊥
)及高平均介電常數(ε
av .
)之例示性化合物例示於以下化合物實例中。已測定純化合物之轉變溫度。除非另外明確規定,否則主體混合物ZLI-4792中之化合物之各別混合物的所有其他各別值已經外插。
化合物實例 I . 此化合物(CfK-3-F)具有K 72℃ I之相變、0.072之Δn、-2.1之Δε及12.2之高ε
^
。
化合物實例 A 至 Z 此化合物,合成實例1之化合物(K-8-F)具有K17℃I之相變、-3.2之Δε及14.2之高ε
^
。
此化合物(K-5-5)具有T
g
-86℃ K -14℃ I之相變、-3.8之Δε及14.2之高ε
^
。
此化合物(CK-2-F)具有K 98℃ I之相變、0.075之Δn、-7.9之Δε及極高ε
^
。
此化合物(CK-3-F)具有K 85℃ I之相變、0.075之Δn、-8.4之Δε及16.2之極高ε
^
。
此化合物(CK-4-F)具有K 89℃ I之相變、0.61之Δn、-7.4之Δε及高ε
^
。
此化合物(CK-5-F)具有K 74℃ N (63.7℃) I之相變、0.070之Δn、-7.8之Δε及14.8之高ε
^
。
此化合物(CK-6-F)具有K 89℃ N (62.3℃) I之相變、0.071之Δn、-7.4之Δε及高ε
^
。
此化合物(CK-7-F)具有K 78℃ N (68.2℃) I之相變、0.063之Δn、-7.3之Δε及高ε
^
。
此化合物(CK-3-CL)具有K 99℃ I之相變、0.100之Δn、-7.7之Δε及極高ε
^
。
此化合物(CK-3-0)具有K 100℃ I之相變、0.068之Δn、-6.4之Δε及極高ε
^
。
此化合物(CK-4-0)具有K 59℃ I之相變、0.62之Δn、-6.3之Δε及高ε
^
。
此化合物(CK-5-0)具有K 72℃之相變、0.066之Δn、-6.5之Δε及高ε
^
。
此化合物(CK-3-1)具有K 102℃ I之相變、0.086之Δn、-6.8之Δε及極高ε
^
。
此化合物(CK-5-1)具有K 88℃ N (61.7℃) I之相變、0.089之Δn、-6.18之Δε及高ε
^
。
此化合物(CK-3-O2)具有K 104℃ I之相變、0.099之Δn、-10.6之Δε及極高ε
^
。
此化合物(AIK-3-F)具有合適之相變、適中Δn、負Δε及高ε
^
。
此化合物(AIK-4-F)具有K 70℃ I之相變、0.60之Δn、-15.1之Δε及高ε
^
。
此化合物,合成實例2之化合物(AIK-5-F0)具有K 79℃之相變、0.068之Δn、-15.1之Δε及高ε
^
。
此化合物(CCK-3-F)具有K 130℃ S
B
168℃ N 203.7℃ I之相變、0.099之Δn、-8.9之Δε及極高ε
^
。
此化合物(CCK-4-F)具有K 110℃ S
B
181℃ N 200.2℃ I之相變、0.098之Δn、-8.1之Δε及極高ε
^
。
此化合物(CCK-5-F)具有K 110℃ S
B
183℃ N 203.2℃ I之相變、0.095之Δn、-8.2之Δε及極高ε
^
。
此化合物(CCK-3-0)具有K 171℃ S
B
(170℃) N (170.7℃) I之相變、0.099之Δn、-8.9之Δε及極高ε
^
。
此化合物(CCK-4-0)具有K 112℃ S
B
178℃ I之相變、0.100之Δn、-6.3之Δε及極高ε
^
。
此化合物(CCK-5-0)具有K 108℃ S
B
178℃ I之相變、0.098之Δn、-6.0之Δε及極高ε
^
。
此化合物(CCK-3-1)具有K 110℃ S
A
(A) 168℃ SA 171℃ N 207.0℃ I之相變、0.106之Δn、-6.1之Δε及極高ε
^
。
此化合物(CCK-3-O2)具有K 109℃ S
A
(A) 156℃ S
A
183℃ N 220.7℃ I之相變、0.121之Δn、-7.4之Δε及極高ε
^
。
化合物實例 1 至 28 此化合物(YG-3-1)具有T
g
-79℃ K -3℃之相變、0.088之Δn、-3.4之Δε及8.3之高ε
^
。
此化合物(YG-2O-F)具有69℃之熔點、0.105之Δn、4.1之Δε及13.5之高ε
^
。
此化合物(YG-3O-F)具有50℃之熔點、0.094之Δn、3.3之Δε及13.0之高ε
^
。
此化合物(YG-4O-F)具有37℃之熔點、0.094之Δn、2.4之Δε及12.5之高ε
^
。
此化合物(YG-5O-F)具有29℃之熔點、0.089之Δn、1.9之Δε及12.1之高ε
^
。
此化合物(YG-6O-F)具有25℃之熔點、0.089之Δn、1.4之Δε及11.6之高ε
^
。
此化合物(YG-V2O-F)具有51℃之熔點、0.079之Δn、2.7之Δε及12.0之高ε
^
。
此化合物(YG-3-F)具有T
g
-82℃ K -5℃之相變、0.075之Δn、2.6之Δε及9.5之高ε
^
。
此化合物(YG-5-T)具有-79℃之玻璃態化溫度(T
g
)、0.060之Δn、8.3之Δε及9.3之高ε
^
。
此化合物(YG-2O-T)具有73℃之熔點、0.099之Δn、11.1之Δε及13.6之高ε
^
。
此化合物(YG-5-OT)具有-86℃之玻璃態化溫度(T
g
)、0.068之Δn、5.3之Δε及8.3之高ε
^
。
此化合物(YG-2O-OT)具有48℃之熔點、0.107之Δn、6.0之Δε及12.3之高ε
^
。
此化合物(YP-2O-1Cl)具有87℃之熔點、0.141之Δn、-1.8之Δε及12.7之高ε
^
。
此化合物(PY-3-F)具有7℃之熔點、0.083之Δn、2.7之Δε及8.0之相對較高ε
^
。
此化合物(PY-5-OT)具有-21℃之熔點、0.082之Δn、3.4之Δε及7.1之相對較高ε
^
。
此化合物(PY-5O-OT)具有K 39℃ S
A
(22℃) I之相序(亦即,39℃之熔點)、0.108之Δn、5.5之Δε及7.3之相對較高ε
^
。
此化合物(PGIY-2-O4)具有K 85℃ N 122.2℃之相序(亦即,85℃之熔點)、0.228之Δn、2.0之Δε及6.1之相對較高ε
^
。
此化合物(PGIY-3-O2)具有K 106℃ N 153℃ I之相序(亦即,106℃之熔點)、0.248之Δn、-1.4之Δε及9.9之高ε
^
。
此化合物(PGIY-3-O4)具有K 74℃ N 136℃ I之相序(亦即,74℃之熔點)、0.230之Δn、-1.5之Δε及9.4之高ε
^
。
此化合物(PGY-3-1)具有K 75℃ N 84.2℃之相序(亦即,75℃之熔點)、0.234之Δn、1.7之Δε及6.8之相對較高ε
^
。
此化合物(PGY-3-O2)具有K 107℃ N 138.7℃之相序(亦即,107℃之熔點)、0.249之Δn、-2.5之Δε及10.0之相對較高ε
^
。
此化合物(B(S)-2O-O4)具有79℃之熔點、0.213之Δn、-4.0之Δε及17.1之高ε
^
。
此化合物(B(S)-2O-O5)具有77℃之熔點、0.196之Δn、-4.9之Δε及16.7之高ε
^
。
此化合物(B(S)-5-F)具有53℃之熔點、0.129之Δn、+0.74之Δε及10.3之高ε
^
。
此化合物(B(S)-5-T)具有65℃之熔點、0.139之Δn、6.8之Δε及10.7之高ε
^
。
此化合物(B-2O-O5)具有57℃之熔點、0.181之Δn、-6.1之Δε及18.8之高ε
^
。
此化合物(B-4O-O5)具有76℃之熔點及0.181之Δn。
此化合物(B-5O-OT)具有68℃之熔點、0.136之Δn、2.3之Δε及15.7之高ε
^
。
混合物 實 例
以下揭示例示性混合物。
實例 1
製備且研究以下混合物(M-1)。
此混合物,混合物M-1,具有0.85之介電比率(e
^
/De)、9.54 mPa∙s/pN之(γ
1
/k
11
)比率,且特徵為FFS顯示器之極佳透射率,且顯示極短的回應時間。
比較實例 1
製備且研究以下混合物(C-1)。
此混合物,混合物C-1,具有0.50之介電比率(e
^
/De)、4.74 mPa∙s/pN之(γ
1
/k
11
)比率,且特徵為FFS顯示器之恰好可接受透射率,且顯示極短的回應時間。
比較實例 2
製備且研究以下混合物(C-2)。
此對比混合物,混合物C-2,具有0.85之介電比率(e
^
/De)、5.04 mPa∙s/pN之(γ
1
/k
11
)比率,且特徵為FFS顯示器之中度良好透射率,但顯示相較於比較實例1之顯著更長回應時間。
實例 2
製備且研究以下混合物(M-2)。
此混合物,混合物M-2,具有1.03之介電比率(e
^
/De)、9.58 mPa∙s/pN之(γ
1
/k
11
)比率,且特徵為FFS顯示器之良好透射率,且考慮到其較低臨限電壓而顯示較短回應時間。
實例 3
製備且研究以下混合物(M-3)。
此混合物,混合物M-3,具有1.71之介電比率(e
^
/De)、27.3 mPa∙s/pN之(γ
1
/k
11
)比率,且特徵為FFS顯示器之良好透射率,且考慮到其較低臨限電壓而顯示較短回應時間。
實例 4
製備且研究以下混合物(M-4)。
此混合物,混合物M-4,具有1.70之介電比率(e
^
/De)、24.9 mPa∙s/pN之(γ
1
/k
11
)比率,且特徵為FFS顯示器之良好透射率,且顯示較短回應時間。
實例 5
製備且研究以下混合物(M-5)。
此混合物,混合物M-5,具有2.0之介電比率(e
^
/De)、28.3 mPa∙s/pN之(γ
1
/k
11
)比率,且特徵為FFS顯示器之良好透射率,且顯示較短回應時間。
實例 6
製備且研究以下混合物(M-6)。
此混合物,混合物M-6具有2.81之介電比率(e
^
/De)、28.2 mPa∙s/pN之(γ
1
/k
11
)比率,且特徵為FFS顯示器之良好透射率,且顯示較短回應時間。
實例 7
製備且研究以下混合物(M-7)。
此混合物,混合物M-7,具有0.84之介電比率(e
^
/De)、8.46 mPa∙s/pN之(γ
1
/k
11
)比率,且特徵為FFS顯示器之良好透射率,且顯示較短回應時間。
實例 8
製備且研究以下混合物(M-8)。
此混合物,混合物M-8,具有0.89之介電比率(e
^
/De)、9.39 mPa∙s/pN之(γ
1
/k
11
)比率,且特徵為FFS顯示器之良好透射率,且顯示較短回應時間。
實例 9
製備且研究以下混合物(M-9)。
此混合物,混合物M-9,具有0.76之良好介電比率(e
^
/De)、5.20之良好(γ
1
/k
11
)比率,且特徵為FFS顯示器之良好透射率,且顯示較短回應時間。
實例 10
製備且研究以下混合物(M-10)。
此混合物,混合物M-10具有1.08之良好介電比率(e
^
/De)、良好(γ
1
/k
11
)比率,且特徵為FFS顯示器之良好透射率,且顯示較短回應時間。
實例 11
製備且研究以下混合物(M-11)。
此混合物,混合物M-11,具有4.5之介電比率(e
^
/De),且特徵為FFS顯示器之極高透射率。
實例 12
製備且研究以下混合物(M-12)。
此混合物,混合物M-12,具有0.97之介電比率(e
^
/De)、6.79 mPa∙s/pN之(γ
1
/k
11
)比率,且特徵為FFS顯示器之良好透射率,且顯示較短回應時間。
實例 13
製備且研究以下混合物(M-13)。
此混合物,混合物M-13,具有0.92之介電比率(e
^
/De)、7.81 mPa∙s/pN之(γ
1
/k
11
)比率,且特徵為FFS顯示器之良好透射率,且顯示較短回應時間。
實例 14
製備且研究以下混合物(M-14)。
此混合物,混合物M-14,具有0.85之介電比率(e
^
/De)、7.32 mPa∙s/pN之(γ
1
/k
11
)比率,且特徵為FFS顯示器之良好透射率,且顯示較短回應時間。
實例 M - 15
製備且研究以下混合物(M-15)。
此混合物,混合物M-15,具有0.94之良好介電比率(e
^
/De)、7.08之良好(γ
1
/k
11
)比率,且特徵為FFS顯示器之良好透射率,且顯示較短回應時間。
實例 16
製備且研究以下混合物(M-16)。
此混合物,混合物M-16,具有0.83之良好介電比率(e
^
/De)、7.18之良好(γ
1
/k
11
)比率,且特徵為FFS顯示器之良好透射率,且顯示較短回應時間。
實例 17
製備且研究以下混合物(M-17)。
此混合物,混合物M-17,具有0.91之良好介電比率(e
^
/De)、6.67之良好(γ
1
/k
11
)比率,且特徵為FFS顯示器之良好透射率,且顯示較短回應時間。
實例 18
製備且研究以下混合物(M-18)。
此混合物,混合物M-18具有0.96之良好介電比率(e
^
/De)、7.21之良好(γ
1
/k
11
)比率,且特徵為FFS顯示器之良好透射率,且顯示較短回應時間。
實例 19
製備且研究以下混合物(M-19)。
此混合物,混合物M-19,具有17.2之良好介電比率(e
^
/De),且特徵為FFS顯示器之極佳透射率。