TW201826592A - 用於電池之陽極、陰極及隔板,以及其製造和使用方法 - Google Patents

用於電池之陽極、陰極及隔板,以及其製造和使用方法 Download PDF

Info

Publication number
TW201826592A
TW201826592A TW106129755A TW106129755A TW201826592A TW 201826592 A TW201826592 A TW 201826592A TW 106129755 A TW106129755 A TW 106129755A TW 106129755 A TW106129755 A TW 106129755A TW 201826592 A TW201826592 A TW 201826592A
Authority
TW
Taiwan
Prior art keywords
carbon
cathode
anode
gnr
lithium metal
Prior art date
Application number
TW106129755A
Other languages
English (en)
Inventor
詹姆斯M 圖爾
羅德里戈 維勒加斯 薩爾瓦鐵拉
格拉迪斯 安娜希 洛佩斯希爾瓦
Original Assignee
威廉馬歇爾萊斯大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 威廉馬歇爾萊斯大學 filed Critical 威廉馬歇爾萊斯大學
Publication of TW201826592A publication Critical patent/TW201826592A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本發明係關於用於電池(電化學能量儲存裝置)之陽極、陰極及隔板。該等陽極為具有經鋰化之碳膜(如用於Li金屬陽極之枝晶抑制劑及保護塗層)之Li金屬陽極(Li-MWCNT)。該等陰極為經硫化之碳陰極。該等隔板為經石墨烯奈米帶塗佈(經GNR塗佈)(或改質)之隔板。本發明包括此等者中之單獨每一者(以及彼此的組合及與其他陽極、陰極及隔板的組合)及單獨(及組合地)製造此等者中之每一者的方法。本發明進一步包括一種使用以下各者中之至少一者的電池:(a)呈該陽極/陰極/隔板配置的具有經鋰化之碳膜之該陽極,(b)該經硫化之碳陰極,及(c)經GNR改質之隔板。舉例而言,全電池可包括與該Li-MWCNT陽極組合之該經硫化之碳陰極,或全電池可包括與其他陽極(諸如GCNT-Li陽極)組合之該經硫化之碳陰極。

Description

用於電池之陽極、陰極及隔板,以及其製造和使用方法 【相關專利申請案之交叉參考】
本申請案主張2016年8月31日申請之題為「作為高濃縮電解質中之穩定高容量陰極的經硫化之碳(Sulfurized Carbon As Stable High Capacity Cathodes In High Concentrated Electrolytes)」之美國專利申請案62/381,782及2017年2月20日申請之題為「用於電池之陽極、陰極及隔板,以及其製造和使用方法(Anode,Cathodes,and Separators For Batteries And Methods To Make And Use Same)」之美國專利申請案62/460,985的優先權,該等專利申請案由本發明之擁有者共同擁有。本專利申請案出於所有目的特此以全文引用之方式併入。
本發明係關於用於電池(電化學能量儲存裝置)之陽極、陰極及隔板,且更特定言之係關於(a)具有經鋰化之碳膜(如用於Li金屬陽極之枝晶抑制劑及保護塗層)之Li金屬陽極,(b)經硫化之碳陰極,(c)經石墨烯奈米帶(graphene nanoribbon;GNR)塗佈(或改質)之隔板。此包括此等陽極、陰極及隔板中之每一者之製造方法及諸如在電池中單獨或彼此組合地使用此等者中之每一者的方法。
政府利益
本發明係在政府支持下藉由美國國防部空軍科學研究局授予之授權號FA9550-14-1-0111及FA9550-12-1-0035而完成。美國政府擁有本發明之某些權利。
鋰離子電池為當今選擇用於電子裝置及電動車輛之能量儲存裝置技術。由於其在1991年商業化,因此鋰離子電池(lithium-ion battery;LIB)使得無線電子裝置徹底改變了全球通信。將近三十年後,LIB被預期為促進可再生能量整合至電網中,以及允許負擔得起的電輸送。[Goodenough 2013Noorden 2014Dunn 2011J.Zhang 2017]。然而,此等應用需要LIB無法滿足之能量儲存容量,即使達至理論能量密度亦如此。因此,具有較高能量密度之新的電池化學物質已吸引科學界之注意。正在努力開發具有較高能量密度之新的電池化學物質,諸如鋰-空氣(Li-O2)及鋰-硫(Li-S),同時亦解決關於純鋰(通常被稱作金屬鋰)之電流限制。鋰-空氣(Li-O2)及鋰-硫(Li-S)體系已展示出極大前景,此係因為能量密度比LIB之能量密度高近似一個數量級。[Noorden 2014;Bruce 2011Girishkumar 2010Manthiram 2015Armand2008]。
在Li-空氣及Li-硫電池中,正電極或陰極與作為負電極或陽極之Li耦合。[Bruce 2011]Li金屬(與鋰離子=Li+相反)擁有所有可能陽極材料之最高理論比容量(3860mAh g-1)及最低電化學電位(相對於標準氫氣電極-3.040V)中之一者[Xu 2014];遠超過當前在LIB中使用之石墨陽極。雖然Li金屬在1980年代晚期作為陽極材料而得以充分研究,但與其使 用相關聯之安全問題及電池之短暫壽命妨礙了其商業化。Li金屬最終被石墨及鋰離子替代。[Goodenough 2013Xu 2014Whittingham 2012]。隨著對能量儲存之需要日益增長,已重新開始嘗試克服Li金屬陽極之安全及壽命問題。
Li金屬陽極之主要挑戰為其傾向於在充電過程期間形成晶鬚及針狀結構,其通常被稱作「枝晶(dendrite)」。此等枝晶可隔離Li、縮短電池壽命或滲透穿過隔板,從而形成內部短路。枝晶之形成與Li與電解質之間的反應性有關;Li之低電化學電位使得其表面上之電解質有可能瞬時減少,從而產生鈍化層或固體電解質界面(solid electrolyte interface;SEI)。此SEI層典型地為不均質的,且由於在充電-放電循環期間之體積變化而可易於斷裂,此促進枝晶由於破裂而生長以及促進產生無電(dead)Li(經電隔離之Li)。[Xu 2014Cohen 2000Lin 12017].
因此,儘管有此等優點,但在商用電池中使用Li金屬之實際應用已受到與在重複的充電/放電循環後之Li枝晶生長相關聯的安全問題阻礙。與電解質接觸之Li形成不均質固體電解質相界,除了進行之寄生反應之外,該不均質固體電解質相界為任何電流密度之枝晶形成提供長晶部位。此等問題導致低庫侖效率,在陽極與界面層之間形成間隙,電解質耗盡及可能產生火災及爆炸之短路。
已嘗試的用以抑制Li形成之不同方法可劃分成三種不同類別。第一類別係基於電解質組成物之改質以改良離子輸送及因此SEI之屬性。[Qian 2015Besenhard 1993Ding 12013Osaka 1997Li 2015Jin 2015Ding II 2013]。第二類別涉及充當障壁以阻止枝晶增長而不損害離子輸送之 固體電解質的開發。[Bates 1993Zhou 2016Wang 2017]。第三類別集中於藉由形成將控制Li沉積之保護層來保護界面Li-電解質。[Zheng 2014;Lee 2015Kim 2015Kozen 2015Li 2016]。為了確保Li均質沉積,此保護層需要為機械強度高、化學穩定的,且能夠控制Li離子之流動。已使用及證實不同的碳材料、金屬氧化物及聚合物以形成防止Li枝晶形成之穩定保護層。然而,在大多數情況下,需要集電器及複雜製造方法,且在大多數情況下,仍導致在陽極與保護層之間形成間隙,從而導致枝晶形成。
另一受關注策略為將三維(three dimensional;3D)多孔構架用作Li金屬之主結構。在此方法中,在3D結構中電沉積Li金屬,其中該3D結構容納且分佈於多孔構架之空置體積中,此減小了局部電流密度且使Li枝晶形成最小化。[Zhang 2016;Yang 2015Y.Zhang 12017Lin 2016;Liu 2016Lin II 2017Y.Zhang II 2017Tour PCT '052 Application]。架構或3D構架暗示藉由包括構架組件之質量或體積來減小Li金屬陽極之重量或體積容量。Li枝晶抑制之理想構架結構將涉及具有用於Li沉積之均質導電表面的高表面積、低密度材料,其將使Li金屬陽極之重量容量最大化。另外,需要Li電鍍/剝離之非彎曲路徑以用於可逆操作及高速率應用。
另外,需要經改良高容量陰極,以便實現具有經改良能量密度及較低成本效益之電池。需要開發鋰離子電池(lithium ion battery;LIB)之高容量陰極以達成具有經改良能量密度之電池。諸如鋰化金屬氧化物(例如,LiCoO2、LiMnO2、LiFePO4及其類似者)之市售陰極呈現較低重量容量。然而,此類陰極在充電/放電過程期間顯示高電壓操作(相對於Li/Li+>3V),從而產生相比於其他電池技術具有相對較高能量密度之電池。
較新的陰極(諸如基於元素硫之彼等陰極)可產生高得多的能量密度,此係因為用以存儲Li離子之比容量相比於鋰化金屬氧化物陰極(<200mAh g-1)高得多(1675mAh g-1),即使硫之電壓操作較低(相對於Li/Li+約2.1V)亦如此。
當與金屬氧化物陰極相比時,考慮到硫陰極之成本、低毒性及豐度,硫陰極亦尤其有吸引力。然而,由硫陰極提出之挑戰為控制及抑制「穿梭(shuttle)」效應,硫之鋰化物種(即,多硫化鋰)(亦即,在其端部處鍵結至鋰離子的硫之直鏈,LixSy,其中x=2,y=4至8)可藉由該穿梭效應溶解於電池電解質中。
此外,多硫化Li溶解至電解質具有兩個主要有害影響:一個影響為其耗盡來自陰極之硫含量,且第二個影響為在Li金屬陽極之表面上方存在多硫化Li之累積反應。此兩個因素導致Li-S電池之容量快速下降同時電阻增大,以鋰化/脫鋰化(delithiate)陰極。
用以減輕多硫化Li溶解之方法已集中於四個主要策略:(1)用以減緩/阻止多硫化Li擴散之化學/物理阻擋障壁,(2)用以抑制多硫化Li溶解之經塗佈硫粒子,(3)固體電解質,及(4)經硫化之碳物種。在此等選項當中,經硫化之碳物種涉及硫與碳物種之間的化學共價鍵結,其中元素硫不再存在。
隔板大體上為用以保持陽極與陰極電分離同時仍允許在其間輸送離子電荷載流子之多孔隔膜。亦需要經改良或經改質之隔板以改良循環穩定性且減少電池中之自放電效應。隔板之表面改質防止非所要材料在電池之陽極與陰極之間擴散。
本發明包括新的陽極及用於改質Li金屬表面從而實現其在鋰金屬電池中之安全使用的新製程。改質包括藉由多壁碳奈米管(multi-walled carbon nanotube;MWCNT)(或石墨烯奈米帶、單壁奈米管,或超薄碳膜)自支撐薄膜(「Li-MWCNT」及替代地「Li-MWCNT」及「rLi」)及電解質塗佈Li金屬表面。(「rLi」(即,「紅色鋰(red lithium)」)指示MWCNT由於鋰化(摻雜)製程而獲取暗紅色)。薄膜之厚度典型地為20微米至80微米,但其可按需要更薄或更厚。此薄膜塗層變成藉由Li金屬與MWCNT膜之間的表面反應驅動之Li表面之頂部上的經鋰化之碳奈米管層。整個MWCNT薄膜接著變得經Li金屬摻雜。接著,經Li摻雜之MWCNT變成在放電後朝向陰極噴射Li離子之表面。經Li摻雜之MWCNT層保護下伏Li金屬免受寄生反應,從而防止在Li之表面上形成具有1mA cm-2及2mA cm-2之實際電流密度及高面積容量(諸如2mAh cm-2及4mAh cm-2)的枝晶。與鋰金屬直接接觸之鋰化MWCNT層亦消除固體電解質相界層與Li金屬陽極之間的電位間隙或不均質性,此係因為藉由摻雜方法將MWCNT層靜電牽拉至鋰金屬,從而進一步降低枝晶形成之可能性及庫侖效率之損耗。
因此,Li-MWCNT尤其保護鋰遠離Li-S電池中之電解質及多硫化鋰。Li-MWCNT亦可用於鋰-空氣(LiO2)電池中以保護鋰遠離溶解氧。
在一些具體實例中,本發明涵蓋全電池及藉由將陽極與作為穩定高容量陰極之經硫化之碳組合的新製程。在一些具體實例中,本發明 包括全電池(full battery;FB),其將GCNT-Li陽極與具有高硫含量(高達60wt%)之經硫化之碳(sulfurized carbon;SC)陰極組合。此得到具有2.15V之操作電壓、高能量密度(752Wh kg-1總電極,總電極=GCNT-Li+SC+黏合劑)、高面積容量(2mAh cm-2)及良好循環特性(在>500循環下80%保持性)的穩定裝置,且該系統不含會導致嚴重容量衰減之多硫化Li及枝晶。在一些具體實例中,本發明之全電池亦包括高濃度電解質。在一些具體實例中,本發明之陰極亦包括額外添加劑,諸如石墨烯奈米帶(graphene nanoribbon;GNR)(SC/GNR)。
本發明進一步包括新的隔板及用於製造具有薄石墨烯奈米帶(graphene nanoribbon;GNR)塗層之隔板的新製程。此薄塗層亦可由MWCNT、單壁碳奈米管(single-walled carbon nanotube;SWCNT)或石墨烯製成,石墨烯不呈帶狀,並非石墨烯氧化物或可形成障壁以防止硫物種遷移穿過隔膜的其他形式之碳。此處,帶被定義為具有至少3:1之長度對寬度縱橫比。
本發明進一步包括電池及其使用方法,該等電池包括上文所描述之陽極、陰極及隔板中之一或多者。
大體而言,在一個具體實例中,本發明之特徵在於一種鋰金屬陽極,其包括藉由經鋰化之碳材料塗佈之鋰金屬。
大體而言,在另一具體實例中,本發明之特徵在於一種陰極,其包括經硫化之碳陰極。
大體而言,在另一具體實例中,本發明之特徵在於一種經GNR改質之隔板,其包括藉由GNR層塗佈之聚合物材料。該經GNR改質 之隔板可操作以用作電池中之隔板。
大體而言,在另一具體實例中,本發明之特徵在於一種電池,其包括陽極、陰極及定位於該陽極與該陰極之間的隔板。該電池包含選自由以下各者組成之群的組件:(a)鋰金屬陽極,其包括藉由經鋰化之碳材料塗佈之鋰金屬;(b)陰極,其包括經硫化之碳陰極;(c)經GNR改質之隔板,其包括藉由GNR層塗佈之聚合物材料,其中該經GNR改質之隔板可操作以用作電池中之隔板;及(d)其組合。
本發明之實施可包括以下特徵中之一或多者:該電池可包括鋰金屬陽極,該鋰金屬陽極包括藉由經鋰化之碳材料塗佈之鋰金屬。
該電池可包括(a)鋰金屬陽極,其包括藉由經鋰化之碳材料塗佈之鋰金屬,及(b)陰極,其包括經硫化之碳陰極。
該電池可包括(a)鋰金屬陽極,其包括藉由經鋰化之碳材料塗佈之鋰金屬,(b)陰極,其包括經硫化之碳陰極,及(c)經GNR改質之隔板,其包括藉由GNR層塗佈之聚合物材料,其中該經GNR改質之隔板可操作以用作電池中之隔板。
該電池可包括陰極,該陰極包括經硫化之碳陰極。
該電池可包括(a)陰極,其包括經硫化之碳陰極,及(b)經GNR改質之隔板,其包括藉由GNR層塗佈之聚合物材料,其中該經GNR改質之隔板可操作以用作電池中之隔板。
該電池可包括經GNR改質之隔板,其包括藉由GNR層塗佈之聚合物材料,其中該經GNR改質之隔板可操作以用作電池中之隔板。
大體而言,在另一具體實例中,本發明之特徵在於一種方法,其包括製造鋰金屬陽極。該方法包括選擇具有表面之鋰金屬。該方法進一步包括藉由碳材料及電解質塗佈該鋰金屬之該表面。該方法進一步包括執行涉及該鋰金屬、碳材料及該電解質之反應以在該鋰金屬之頂部上形成鋰化層。
大體而言,在另一具體實例中,本發明之特徵在於一種方法,其包括製造經硫化之碳陰極。
大體而言,在另一具體實例中,本發明之特徵在於一種方法,其包括選擇可操作以用作電池中之隔板的聚合物材料,及藉由添加GNR層而改質該聚合物材料以形成經GNR改質之隔板。
大體而言,在另一具體實例中,本發明之特徵在於一種形成電池之方法,其包括組合陽極、陰極及定位於該陽極與陰極之間的隔板之步驟。該方法進一步包括選自由以下各者組成之群的步驟:(a)製造如上文所闡述之鋰金屬陽極,(b)製造如上文所闡述之經硫化之碳陰極;(c)製造如上文所闡述之經GNR改質之隔板;及(d)其組合。
本發明之實施可包括以下特徵中之一或多者:在形成電池之方法中,可藉由製造如上文所闡述之鋰金屬陽極來製造陽極。
在形成電池之方法中,(a)可藉由製造如上文所闡述之鋰金屬陽極來製造陽極,且(b)可藉由製造如上文所闡述之經硫化之碳陰極來製造陰極。
在形成電池之方法中,(a)可藉由製造如上文所闡述之鋰金屬陽極來製造陽極,(b)可藉由製造如上文所闡述之經硫化之碳陰極來製造陰極,且(c)可如上文所闡述製造經GNR改質之隔板。
在形成電池之方法中,可藉由製造如上文所闡述之經硫化之碳陰極來製造陰極。
在形成電池之方法中,(a)可藉由製造如上文所闡述之經硫化之碳陰極來製造陰極,且(b)可如上文所闡述製造經GNR改質之隔板。
在形成電池之方法中,可如上文所闡述製造經GNR改質之隔板。
大體而言,在另一具體實例中,本發明之特徵在於一種形成電池之方法,其包括組合陽極、陰極及定位於該陽極與該陰極之間的隔板之步驟。該電池包含選自由以下各者組成之群的組件:(a)鋰金屬陽極,其包括藉由經鋰化之碳材料塗佈之鋰金屬;(b)陰極,其包括經硫化之碳陰極;(c)經GNR改質之隔板,其包括藉由GNR層塗佈之聚合物材料,其中該經GNR改質之隔板可操作以用作電池中之隔板;及(d)其組合。
本發明之實施可包括以下特徵中之一或多者:形成電池之方法可包括鋰金屬陽極,該鋰金屬陽極包括藉由經鋰化之碳材料塗佈之鋰金屬。
形成電池之方法可包括(a)鋰金屬陽極,其包括藉由經鋰化之碳材料塗佈之鋰金屬,及(b)陰極,其包括經硫化之碳陰極。
形成電池之方法可包括(a)鋰金屬陽極,其包括藉由經鋰化之碳材料塗佈之鋰金屬,(b)陰極,其包括經硫化之碳陰極,及(c)經 GNR改質之隔板,其包括藉由GNR層塗佈之聚合物材料,其中經GNR改質之隔板可操作以用作電池中之隔板。
形成電池之方法可包括陰極,該陰極包括經硫化之碳陰極。
形成電池之方法可包括(a)陰極,其包括經硫化之碳陰極,及(b)經GNR改質之隔板,其包括藉由GNR層塗佈之聚合物材料,其中該經GNR改質之隔板可操作以用作電池中之隔板。
形成電池之方法可包括經GNR改質之隔板,該經GNR改質之隔板包括藉由GNR層塗佈之聚合物材料,其中該經GNR改質之隔板可操作以用作電池中之隔板。
本發明之實施可包括以下特徵中之一或多者:鋰金屬可呈鋰箔形式。
碳材料可包括多壁碳奈米管。
該多壁碳奈米管可呈巴克紙(bucky paper)形式。
碳材料可包括石墨烯奈米帶。
奈米帶可呈經過濾奈米帶紙形式。
碳材料可選自由以下各者組成之群:多壁碳奈米管、單壁碳奈米管、少壁(few-walled)碳奈米管、石墨烯奈米帶、石墨烯氧化物、石墨烯氧化物奈米帶、天然石墨(graphoil)、石墨烯奈米片、石墨、活性碳、經熱處理之瀝青、非晶碳、碳黑及其混合物。
碳材料可藉由聚合物進一步處理以使碳材料更具可撓性而不開裂。
聚合物可包括聚二甲基矽氧烷。
聚合物可選自由以下各者組成之群:聚二甲基矽氧烷、聚胺酯、熱塑性聚胺甲酸酯、聚丁二烯、聚(苯乙烯丁二烯)、聚(苯乙烯丁二烯苯乙烯)、聚丙烯腈、聚苯胺、聚氟化體系、聚(甲基丙烯酸甲酯)、聚(乙二醇)、聚(環氧乙烷)、聚丙烯酸酯、乙烯聚合物、鏈式生長聚合物、階段生長聚合物、縮合聚合物及其混合物。
電解質可選自由以下各者組成之群:雙(三氟甲烷磺醯基)醯亞胺鋰(lithium bis(trifluoromethanesulfonyl)imide;LiTFSI)、二甲氧乙烷(dimethoxyethane;DME)及1,3-二氧戊環(dioxolane;DOL),以及其混合物。
電解質可包括在呈1:1比率之二甲氧乙烷(dimethoxyethane;DME)與1,3-二氧戊環(dioxolane;DOL)中之1mol L-1雙(三氟甲烷磺醯基)醯亞胺鋰(lithium bis(trifluoromethanesulfonyl)imide;LiTFSI)的混合物。
電解質可為離子液體或離子液體與有機溶劑之混合物。
電解質可由溶劑中之鹽形成。該鹽可選自由以下各者組成之群:六氟磷酸鋰、過氯酸鋰、雙(氟磺醯基)醯亞胺鋰、雙(乙二酸)硼酸鋰、四氟硼酸鋰,及其組合。溶劑可選自由以下各者組成之群:碳酸伸乙酯、碳酸伸丙酯、碳酸伸丁酯、碳酸乙烯伸乙酯、碳酸二甲酯、甲基乙基碳酸酯、二乙醚碳酸酯、四乙二醇二甲醚及其組合。
在方法之初始階段中,電解質可置放於碳材料及鋰金屬上或置放於碳材料與鋰金屬之間。
電解質可呈高濃度。
電解質可為二甲氧乙烷(dimethoxyethane;DME)中之0.5mol/L與10mol/L之間的雙(氟磺醯基)醯亞胺鋰(lithium bis(fluorosulfonyl)imide;LIFSI)。
電解質可為二甲氧乙烷(dimethoxyethane;DME)中之2mol/L與8mol/L之間的雙(氟磺醯基)醯亞胺鋰(lithium bis(fluorosulfonyl)imide;LIFSI)。
電解質可為二甲氧乙烷(dimethoxyethane;DME)中之3mol/L與5mol/L之間的雙(氟磺醯基)醯亞胺鋰(lithium bis(fluorosulfonyl)imide;LIFSI)。
電解質可為二甲氧乙烷(dimethoxyethane;DME)中之4mol/L雙(氟磺醯基)醯亞胺鋰(lithium bis(fluorosulfonyl)imide;LIFSI)。
電解質可與陽極組合地添加至電池。
電解質可為二甲氧乙烷(dimethoxyethane;DME)中之0.5mol/L與10mol/L之間的雙(氟磺醯基)醯亞胺鋰(lithium bis(fluorosulfonyl)imide;LIFSI)。
鋰金屬可摻雜碳材料。
碳材料之顏色可變成紅色或銀色。
碳材料可操作以抑制鋰金屬陽極之鋰枝晶形成。
經摻雜碳材料可變成注入至電解質中且接著注入至陰極中之鋰離子的源。
鋰金屬可為金屬Li箔。經摻雜碳材料可充當SEI層與金屬Li箔之間的緩衝劑。
緩衝劑可消除SEI層與金屬Li箔之間的任何間隙形成。
鋰金屬、碳材料及電解質可為電池之部分。
鋰金屬、碳材料及電解質可為電池陽極之部分。
電池可包括硫陰極。
經硫化之碳陰極可包括硫、碳及經熱處理之聚丙烯腈。
經硫化之碳陰極可包括呈約47wt%與約60wt%之間的量之硫。
經硫化之碳陰極中之硫的量可在約47wt%與約57wt%之間。
經硫化之碳陰極中之硫的量可在約55wt%與約60wt%之間。
陰極可不含元素硫。
陰極可包括為導電填充劑之碳添加劑。
碳添加劑可選自由以下各者組成之群:碳黑、石墨烯、碳奈米管、石墨烯奈米帶及其組合。
製造經硫化之碳陰極之方法可包括藉由碳源熱處理元素硫。
碳源可包括PAN。
熱處理之步驟可在存在添加劑之情況下進行。
添加劑可選自由以下各者組成之群:碳黑、石墨烯、碳奈米管、石墨烯奈米帶及其組合。
熱處理之步驟可在至少約100℃之溫度下進行。
熱處理之步驟可在至少約450℃之溫度下進行。
熱處理之步驟可進行至少約3個小時。
製造經硫化之碳陰極之方法可包括形成包括元素硫、碳源及添加劑之粉末。製造經硫化之碳陰極之方法可包括在至少約450℃之溫度下熱處理粉末至少三個小時。
碳源可包括PAN。添加劑可包括石墨烯奈米帶。
經硫化之碳陰極可為自石墨烯層生長之奈米管的無縫混成物之部分。
聚合物材料可包括聚丙烯(polypropylene;PP)及聚乙烯(polyethylene;PE)中之至少一者。
大體而言,在另一具體實例中,本發明之特徵在於一種用以形成陽極之方法,其包括選擇具有表面之鋰金屬。該方法進一步包括藉由碳材料及電解質塗佈該鋰金屬之該表面。該方法進一步包括藉由用來自該鋰金屬之鋰鋰化該碳材料來形成經鋰化之碳材料。
本發明之實施可包括以下特徵中之一或多者:該方法可進一步包括繼續鋰化該碳材料之步驟,直至在鋰金屬中不存在剩餘的鋰為止。經鋰化之碳材料可為陽極。
大體而言,在另一具體實例中,本發明之特徵在於一種鋰金屬陽極。鋰金屬係藉由薄膜材料及電解質塗佈。
前文已相當廣泛地概述本發明之特徵及技術優點,以便可更好理解如下的本發明之詳細描述。下文將描述本發明之額外特徵及優點,該等額外特徵及優點形成本發明之申請專利範圍之主題。熟習此項技術者應瞭解,所揭示之概念及具體具體實例可易於用作修改或設計用於進行本 發明之相同目的之其他結構的基礎。熟習此項技術者亦應意識到,此類等效構造不脫離如在所附申請專利範圍中所闡述的本發明之精神及範疇。
亦應理解,本發明之應用不受構造之細節及以下描述中所闡述或圖式中所說明之組件之配置限制。本發明能夠具有其他具體實例且能夠以各種方式加以實踐或進行。此外,應理解,本文中所使用的措詞及術語係出於描述目的且不應被視為限制性的。
圖1為可利用本文中所揭示之新的陽極、陰極及隔板中之一或多者的電池中之陽極、陰極及隔板之配置的圖。
圖2A圖2B為可利用本文中所揭示之新的陽極、陰極及隔板中之一或多者的本發明之一具體實例之說明。圖2A說明在放電/充電循環之放電部分期間的具體實例。圖2B說明在放電/充電循環之充電部分期間的具體實例。
圖3為歸因於枝晶而具有短路路徑之先前技術電池的圖。
圖4A圖4D為在Li電鍍/剝離循環之後的未經改質及鋰化之MWCNT經改質Li箔表面的SEM影像。4A至4B分別為(a)原始Li表面之低放大率影像及(b)Li-MWCNT表面之低放大率影像。圖4C圖4D分別為(c)原始Li表面之高放大率影像及(d)Li-MWCNT表面之高放大率影像。枝晶401展示於圖4C中。
圖5為展示Li-MWCNT與裸Li對稱單元(cell)針對2mAh cm-2之總容量在1mA cm-2之電流密度下之循環穩定性之比較的圖式。
圖6為展示裸Li與Li-MWCNT在2mA cm-2之電流密度及 4mAh cm-2之總容量下之循環穩定性之比較的圖式。將2mg S以多硫化鋰(Li2S6)形式添加至電解質以用於耐化學性測試。
圖7為展示裸Li 701與Li-MWCNT 702針對4mAh cm-2之總容量(電流密度為1mAh cm-2至5Ah cm-2)之速率效能的圖式。
圖8為展示作為薄膜之其他碳奈米材料之電鍍/剝離測試的圖式,該等碳奈米材料即CNT 801-MWCNT 70nm至80nm直徑(NTL複合物);SWCNT 802-HiPco單壁CNT(萊斯(Rice));GO 803-石墨烯氧化物(AZ電子件/EMD默克(Merck));及GNR 804-原始石墨烯奈米帶(AZ電子工業/EMD默克(Merck))。
圖9A為展示在不同放電時段內在本發明之陽極中使用之經鋰化之碳層之原位拉曼量測的圖式。
圖9B為展示在不同充電時段內在本發明之陽極中使用之經鋰化之碳層之原位拉曼量測的圖式。
圖10A圖10B為具有分別在電鍍鋰之前及之後的經鋰化之碳奈米管膜之不鏽鋼基板的說明。
圖11A圖11E為展示具有在電鍍鋰之後的經鋰化之碳奈米管膜之不鏽鋼基板的SEM影像。
圖12為展示在不同時間(3h、6h及15h)處理之SC/GNR及元素硫/碳(硫/C)陰極之熱解重量曲線的圖式。
圖13為展示在不同時間(3h、6h及15h)使用DME中之4mol L-1 LiFSI來處理之SC/GNR之恆電流充電/放電曲線的圖式。
圖14A圖14B為分別展示SC/GNR-3h、SC/GNR-6h及 SC/GNR-15h之循環穩定性及庫侖效率。
圖15為展示在不同電解質中測試之SC/GNR-6h之恆電流充電/放電曲線的圖式。
圖16為展示電池之放電/充電循環之恆電流充電/放電曲線(充電和放電部分)的圖式,該電池具有(a)陽極,其具有Li箔/經鋰化之碳膜,及(b)經硫化之碳陰極。
圖17為展示用於以不同循環速率產生圖16中之曲線之電池之速率測試的圖式。圖17展示整個單元之速率效能(0.2 C至60 C)。
圖18為經GNR塗佈之隔板之說明。
圖19為經GNR塗佈之隔板之SEM影像。
圖20為在利用基於元素硫之陰極時比較標準隔板與經GNR塗佈之隔板之間的循環穩定性之圖式。
圖21A圖21D為分別在時間0分鐘、30分鐘、60分鐘及180分鐘處所拍攝以展示多硫化Li隨時間擴散之標準隔板的像片。
圖22A圖22D為分別在時間0分鐘、30分鐘、60分鐘及180分鐘處所拍攝以展示多硫化Li隨時間擴散之經GNR塗佈之隔板的像片。
圖23A圖23F為與具有GCNT-Li陽極及SC陰極之全電池(full battery;FB)有關之圖式及影像。圖23A為展示在0.5mV s-1下4M LiFSI/DME中之GCNT-Li及SC陰極半單元之CV的圖式。圖23B為展示在0.1 C以及2mAh cm-2之面積容量下FB之恆電流充電/放電曲線的圖式。圖23C為對LED供電之FB原型之像片。圖23D為展示FB之依序速率效 能測試(0.2 C至9 C)及循環穩定性的圖式。插圖展示速率及穩定性測試之CE(%)。參考藍色虛線被設定成99.9%。圖23E為展示FB在8h及1週之後的自放電(self-discharge;SD)測試的圖式,其展示在斷路時段期間及之後的充電曲線後接連續放電曲線。該插圖展示SD測試之電壓相對於容量。圖23F為展示考慮到陽極及陰極活性材料(Li及S)之經組合質量及全部電極質量(包括黏合劑、碳添加劑、GCNT、過量Li)(不包括集電器)之GCNT-Li/SC FB之拉貢曲線的圖式。
圖24A圖24C為由藉由經Li摻雜之MWCNT膜(Li-MWCNT)塗佈之Li金屬組成之電極之製造的示意圖及影像。圖24A展示Li-MWCNT電極之製造製程,其包括藉由高濃縮電解質潤濕MWCNT膜且抵靠Li箔按壓MWCNT膜以摻雜碳奈米管。圖24B為在藉由Li(暗紅色)摻雜之後的MWCNT膜之像片。圖24C為MWCNT之自發鋰化及對應氧化還原反應之方案。
圖25A圖25C展示Li-MWCNT膜之形態。圖25A展示特徵為SEM之原始MWCNT膜之形態。圖29B圖29C展示特徵為SEM之經Li摻雜之MWCNT膜之形態。
圖26A圖26B為分別展示MWCNT及Li-MWCNT之電子順磁共振(electron paramagnetic resonance;EPR)及拉曼光譜法的圖式。在Li剝離/電鍍之不同階段,在Li-MWCNT對稱單元中採用拉曼光譜法(532nm)以研究MWCNT結構變化。
圖27為展示Li-MWCNT/SC電池在不同電流密度(循環穩定性)下之循環的圖式。
圖28A圖28D為展示交替速率測試之圖式。圖28A為展示Li-MWCNT/SC全電池之單次放電的圖式。圖28B圖28D為展示電流相對於時間之變化的圖式。
圖29A圖29B為展示具有Li-MWCNT作為陽極且具有S(經硫化之碳)作為陰極之全單元之電化學特徵化的圖式。圖29A為展示基於陰極及陽極-陰極重量之拉貢曲線的圖式。圖29B為展示電化學阻抗光譜之圖式。
本發明係針對用於經改良電池(電化學能量儲存裝置)之陽極、陰極及隔板,且更特定言之係針對(a)具有經鋰化之碳膜(如用於Li金屬陽極之枝晶抑制劑及保護塗層)之Li金屬陽極,(b)經硫化之碳陰極,(c)經GNR塗佈之隔板。此包括每一者之製造方法及此等者中之每一者諸如在電池中單獨或彼此組合地使用之方法。
如本文中所使用,「經鋰化之碳膜(lithiated carbon film)」為碳膜,鋰鍵結至該碳膜或摻雜有該碳膜中之碳材料。另外,當鍵結至碳材料時,作為鋰金屬或鋰離子之鋰可呈0或+1氧化態。
圖1為可利用本文中所揭示之新的陽極、陰極及隔板中之一或多者的電池103中之陽極101、陰極102及隔板103之配置的圖。隔板103使陽極101與陰極102電絕緣,但可在陽極101與陰極102之間輸送離子。
圖2A圖2B為具有陽極201、陰極202及隔板203之電池200的說明。陽極201、陰極202及隔板203中之一或多者可為本文中所 揭示之陽極、陰極或隔板。在圖2A中,展示在放電/充電循環之放電部分期間的電池200。負載204提供用以如箭頭205所展示自陽極201流動至陰極202之電子流,其中電流如箭頭206所展示自陰極202流動至陽極201
圖2B說明在放電/充電循環之充電部分期間的電池200。充電器207提供用以如箭頭208所展示自陰極202流動至陽極201之電子流,其中電流如箭頭209所展示自陽極201流動至陰極202。舉例而言,當陽極201為具有鋰化MWCNT膜之Li金屬陽極(如本文中所描述)時,咸信形成MWCNT自由基陰離子及鋰陽離子,且在放電後,Li陽離子移動至陰極。
如上文所提及,圖1圖2A圖2B中所展示之電池可單獨或彼此組合地用於此處所描述之陽極、陰極及隔板中。此種做法之一個優點為(例如)防止枝晶在陽極上生長,此生長會使電池短路。舉例而言,如圖3中所展示,在電池300中之先前技術陽極301、陰極302及隔板303的組合中,已形成有滲透隔板303從而產生短路路徑305之枝晶304
具有經鋰化之碳膜之陽極
作為一實例,本發明表明鋰化MWCNT可充當有效地保護Li表面抵禦寄生反應且抑制Li枝晶在Li箔之表面上形成的層。作為一實例,藉由使用電解質(二甲氧乙烷中之4mol L-1雙(氟磺醯基)醯亞胺鋰(lithium bis(fluorosulfonyl)imide;LIFSI))接觸Li表面及MWCNT膜來達成MWCNT膜之鋰化。鋰化反應為自發的(在少於30分鐘內完成),且MWCNT由於鋰化(摻雜)製程而變成紅色。咸信,經鋰化之碳層可充當離子/電子輸送介質,從而介導Li電鍍及剝離製程,因此抑制枝晶且使Li顯現經改質表面,該經改質表面對於與液體電解質進行之寄生反應較耐化 學性。藉由2032硬幣電池組態中之兩個Li箔之間的Li電鍍/剝離實驗來觀測枝晶抑制能力。圖4A圖4D展示Li表面及經鋰化MWCNT改質之Li表面(Li-MWCNT)在相同條件下進行相同數目個循環(連續Li電鍍/剝離)之後的掃描電子顯微術(scanning electron microscopy;SEM)影像。由於非均質Li沉積而在無保護Li箔(圖4C)中清晰地觀測到Li枝晶101。Li-MWCNT表面不展示Li枝晶之符號,實際上Li遍及鋰化CNT層均勻分佈。
使用硫陰極常用的電解質來研究剝離/電鍍製程,該電解質為:呈1:1比率之二甲氧乙烷(dimethoxyethane;DME)與1,3-二氧戊環(dioxolane;DOL)中之1M雙(三氟甲烷磺醯基)醯亞胺鋰(lithium bis(trifluoromethanesulfonyl)imide;LiTFSI)。此外,為了研究抵禦寄生反應之保護,使用添加有呈多硫化鋰(Li2S6)形式之S的相同電解質。控制實驗由相同條件下之裸Li箔組成。在電解質中不使用用於保護Li之添加劑硝酸鋰(LiNO3)。
圖5圖6展示針對4mAh cm-2之總容量在2mA cm-2之電流密度下的循環效能。在圖5中,曲線501502分別展示Li-MWCNT與裸Li對稱單元之循環穩定性的比較,且插圖503展示曲線501502之放大部分。裸Li之對稱單元展示大於Li-MWCNT(相對於Li+/Li<40mV)之Li剝離/電鍍過電位(相對於Li+/Li>40mV)。裸Li單元之電壓特徵展示可歸因於可能的枝晶誘發之輕微短路的波動。在圖6中,曲線601602分別針對Li-MWCNT及裸Li。將2mg S以多硫化鋰(Li2S6)形式添加至電解質以用於耐化學性測試。對稱單元暴露於LiSx以模擬Li-S電池之化學 環境。裸Li之單元展示大於Li-MWCNT(相對於Li+/Li<110mV)之Li剝離/電鍍過電位(相對於Li+/Li>300mV)。Li-MWCNT之電壓平台受到較多界定且較穩定,此指示枝晶形成之抑制。Li-MWCNT展現小於裸Li之剝離/電鍍過電位(小約16倍)。另外,裸Li陽極在幾個循環之後展示較多電壓波動,此波動可歸因於Li枝晶之形成及Li箔與界面層之間的間隙增大,同時Li-MWCNT陽極維持恆定電壓特徵。當硫呈現於電解質中時,觀測到相同行為,從而模擬Li-S電池之化學環境。
儘管已發現多硫化鋰藉由形成強SEI層而改良Li之穩定性,但裸Li陽極仍展現電壓特徵之波動及較大過電位,從而指示Li-MWCNT之增強的耐化學性。研究在不同電流密度下之循環穩定性,Li-MWCNT展現小於裸Li之過電位及少於裸Li之波動(圖7)。圖8展示在使用單壁碳奈米管802以及石墨烯氧化物803及石墨烯奈米帶804時之比較。石墨烯奈米帶可良好地工作,其幾乎等效於MWCNT 801。亦可使用單壁與MWCNT之混合物,以及化學縮短或機械縮短的版本,或雙壁或三壁碳奈米管版本。
對於本發明之某些陽極,MWCNT膜製備被如下執行:使用尖端超音波處理將原始MWCNT(直徑=70nm至80nm;M級;奈米技術實驗室公司(NanoTech Labs,Inc.))分散於A-甲基-2-吡咯啶酮(西格瑪-奧德里奇(Sigma-Aldrich))中。替代地,可在水與2-丙醇混合物(分別以4:1體積比例比率)中達成MWCNT之分散。經由多孔鋁隔膜真空過濾均質分散液以產生均質膜(1.5mg/cm2),該均質膜通常被稱作巴克紙。為了獲得自支撐膜,將鋁溶解於1N氫氧化鈉溶液中。
對於本發明之某些陽極,在填充有氬氣之手套工作箱中進行Li塗佈;將DME(西格瑪-奧德里奇(Sigma-Aldrich))中之25μL 4M LiFSI(奧克伍德產品公司(Oakwoods Products,Inc.))置放於Li箔(厚度=0.45mm,MTI公司)上,繼之以MWCNT膜。在反應之前藉由刮擦表面以移除氧化物層來清潔Li箔表面。添加4M LiFSI之另一25μL部分,繼之以具有與第一Li箔相同的厚度之第二Li箔。在30分鐘之後,移除上部Li箔,從而導致Li箔由鋰化MWCNT膜覆蓋。參見圖4B圖4D
對於關於本發明之某些具體實例的電池總成,為了研究Li剝離/電鍍,藉由將Li-MWCNT電極組裝至2032型硬幣電池中來製備對稱單元。所採用之電解質為呈1:1比率之DME與DOL(西格瑪-奧德里奇(Sigma-Aldrich))中之1M LiTFSI(西格瑪-奧德里奇(Sigma-Aldrich))或DME中之4M LiFSI。所使用之隔板為格德(Celgard)K2045。作為對照,組裝使用經新近刮擦之Li箔的對稱單元。將恆定電流施加於電極,且隨時間記錄電位及庫侖效率。
對於此等具體實例,已發現,MWCNT膜較佳良好地附接至Li表面。另外,MWCNT膜在鋰化之後可能變脆。此外,儘管不需要,但高濃縮電解質有助於MWCNT之鋰化製程。
在本發明之其他陽極中,可使用不同碳奈米材料(單壁CNT、石墨烯氧化物、石墨烯奈米帶、高孔隙率超薄石墨膜、多孔超薄導電膜)。對於此等替代碳材料,石墨烯奈米帶似乎在此等所選者當中提供最佳效能,且其亦似乎與使用MWCNT之情況一樣好。
另外,在本發明之其他具體實例中,可將具有MWCNT之 薄且多孔的聚合物塗層(諸如聚二甲基矽氧烷(polydimethylsiloxane;PDMS))塗佈至MWCNT膜上以使其較具可撓性和可摺疊性(其大體上對於大型電池、滾動電極及可撓性電池係所要的)。
本發明將實現下一代高能量密度電池(諸如金屬可充電硫及氧電池)所需之進階電池技術中之純Li金屬陽極的安全使用。藉由用簡單製造製程解決鋰枝晶形成,可安全地提供較多能量儲存之電池的製造將為可能的。另外,製造製程係簡單的,且允許可擴展生產。此保護(緩衝)層亦可用於保護其他類型之金屬電極,諸如鈉,或鉀,或鎂,或硫,或硒。
此外,經鋰化之碳膜不僅為保護層,其亦幫助介導鋰化(電鍍及剝離反應)。圖9A展示在放電期間在0分鐘至50分鐘之時段內(每10分鐘)的經鋰化之碳奈米管之原位拉曼量測,其揭露C-C模式之頻率變化(大致在1580cm-1下,即在1569cm-1及1608cm-1下之峰值)。圖9B展示在充電期間在0分鐘至50分鐘之相同時段內(每10分鐘)的經鋰化之碳奈米管之原位拉曼量測,其揭露C-C模式之頻率變化(大致在1580cm-1下,即在1585cm-1及1610cm-1下之峰值)。此等者指示經鋰化之碳奈米管參與鋰化/去鋰化反應。
圖10A圖10B為具有分別在電鍍鋰之前及之後的經鋰化之碳奈米管膜1002之不鏽鋼基板1001的說明。針對8mAh之總量在4mAh每cm2下藉由鋰電鍍經鋰化之碳奈米管膜1002(如圖10A中所說明)。圖11A圖11E為具有在針對8mAh之總量在4mAh每cm2下電鍍鋰之後的經鋰化之碳奈米管膜1002之不鏽鋼基板1001的SEM影像。圖11A展示不鏽鋼基板。圖11C展示經鋰化之碳奈米管膜1002之進一步放大頂部。圖11D 展示示出CNT 1103之進一步放大部分。此等者指示,如圖10B中所展示,經電鍍Li金屬1003主要位於經鋰化之碳奈米管膜1102之下。
在本發明之其他具體實例中,MWCNT墊可定位於不具有鋰之陽極上。以電化學方式或藉由蒸發,可將Li層塗覆於MWCNT層頂上,該Li層可擴散至MWCNT層之底側。在一些具體實例中,藉由用電解質進行初始或後續處理可有助於擴散通過MWCNT層。
除了簡單製造製程之外,本發明亦具有優於先前技術之優點,該等優點包括:使用介導鋰化進行Li枝晶抑制;在充電/放電循環期間藉由MWCNT來介導Li沉積;及產生均勻分佈Li金屬沉積之離子/電子導電/保護層。
應進一步注意,在極端放電中,所有鋰金屬可終止於經鋰化之碳材料中,使得在鋰碳材料之下不存在剩餘鋰金屬(諸如鋰箔)。此類經鋰化之碳材料(不具有任何下伏鋰金屬)在本發明中可用作陽極。
經硫化之碳陰極
本發明之其他具體實例利用經硫化之碳陰極。陰極可進一步包括高濃度之電解質。陰極亦可進一步包括額外添加劑,諸如石墨烯奈米帶(graphene nanoribbon;GNR)(SC/GNR)。
陰極可具有大於約50wt%之硫含量(例如,相對於不包括集電器之質量貢獻之電極質量,S質量在約47wt%與約56wt%之間)。陰極之硫含量可缺少任何元素硫。陰極之硫含量可含有最小量之元素硫。
陰極可與大於約1mol L-1(例如,約4mol L-1)之電解質濃度相關聯。陰極可與各種類型之電解質相關聯。電解質可包括商用電解質, 諸如碳酸伸乙酯:碳酸二乙酯中之六氟磷酸鋰(EC:DEC中之LiPF6)、二甲氧乙烷中之雙(氟磺醯基)醯亞胺鋰,及其組合。
陰極可包括為導電填充劑之各種類型的碳添加劑。舉例而言,在一些具體實例中,添加劑可為碳黑、石墨烯、碳奈米管、石墨烯奈米帶,以及其他者。
可藉由各種方法製造陰極。舉例而言,在一些具體實例中,可藉由用碳源(例如,PAN)熱處理元素硫來製造本發明之陰極。在一些具體實例中,亦可在存在諸如GNR之添加劑的情況下進行熱處理。在一些具體實例中,可在大於約100℃(例如,約450℃及更高)之溫度下進行熱處理。在更具體具體實例中,可藉由在密封容器及惰性氛圍中緩慢熱處理元素硫、PAN及GNR(諸如在450℃下)來製造陰極。最終材料可具有約55wt%至約60wt%之S質量。
舉例而言,經硫化之碳陰極可被如下製備:可藉由以55:11:1之質量比例研磨元素硫、PAN(西格瑪-奧德里奇(Sigma-Aldrich),150000分子量)及GNR 10分鐘來製備粉末。接著在450℃下在密封管中對粉末進行熱處理。首先,將粉末裝載至氧化鋁舟皿中。將氧化鋁舟皿插入於管中,且將管抽空以移除空氣。接著,藉由氬氣填充管,直至其達至室壓為止。此時,密封管。以5℃ min-1之速率進行自室溫(25℃)至450℃之加熱。在450℃下熱處理3h至15h,且接著使混合物冷卻至室溫。
舉例而言,若此經硫化之碳陰極應包括於電池總成中,則此可進一步如下執行:可藉由80wt% SC/GNR、10wt%碳黑(黑珍珠2000)及作為黏合劑之10wt%聚偏二氟乙烯(polyvinylidene fluoride;PVDF)將 電極製備為漿料。遍及鋼箔塗佈漿料,且在60℃下使其真空乾燥12個小時。半單元作為硬幣電池(2032)組裝在手套工作箱(氧及水含量<2ppm)內部,其具有作為隔板之格德(Celgard)K2045及作為相對電極及參考電極(兩個電極組態)之Li箔。電解質可為EC:DEC中之1mol L-1 LiPF6或DME中之4mol L-1 LiFSI。可在0.1 C(其僅被視為用以計算電流密度之硫質量)以及1V至3V之電壓限制(相對於Li/Li+)下測試充電-放電。
陰極可具有各種有利的屬性。舉例而言,在一些具體實例中,陰極在連續充電/放電循環期間顯示極穩定行為(亦即,循環內最小容量損耗)且在不同電解質中顯示相容性,其中在高濃度電解質中觀測到較佳效能(亦即,高容量及穩定性)。在更具體具體實例中,本發明之陰極能夠使用共同商用電解質(例如,EC:DEC中之1mol L-1 LiPF6(碳酸伸乙酯:碳酸二乙酯中之六氟磷酸鋰))遞送704mAh g-1之容量,且使用高濃度電解質(例如,二甲氧乙烷中之4mol L-1雙(氟磺醯基)醯亞胺鋰)遞送1050mAh g-1之容量。
另外,經硫化之碳陰極中之碳可為自石墨烯層生長之奈米管的無縫混成物之部分,該石墨烯層在2016年9月27日頒予Tour等人之美國專利第9,455,094號中得以揭示及教示(「'094 Tour專利」)。亦參見附錄A第7頁處(論述若干共同擁有的專利申請案,包括美國專利申請案第2014/0313636號,該美國專利申請案頒予為'094 Tour專利)。
所產生之含GNR陰極(SC/GNR)可充當高效陰極而無與典型元素硫陰極相關聯之問題。根據熱解重量(thermogravimetric;TG)曲線(圖12),此陰極具體實例中之硫物種對應於材料質量之55%至60%。
根據文獻,經硫化之碳物種中之硫被認為主要由小的硫鏈(S2-S3)組成,該等硫鏈化學鍵結至藉由分解PAN而產生之sp2碳晶格,因此抑制多硫化Li溶解。圖12中之TG曲線(曲線12011203)展示元素硫不存在於SC/GNR樣品中。歸因於C-S物種之鍵結斷裂,在700℃之後觀測到質量損耗(見於曲線12011203中)。對於比較,在圖12之同一圖式中(在曲線1204中)呈現硫與碳黑(黑珍珠2000)之混合物,以展示歸因於元素硫之質量損耗在低得多的溫度(亦即,約300℃)下發生。
S、PAN及GNR之熱處理時間在3個小時至15個小時之間變化。根據圖12,加熱時間並不顯著影響SC/GNR中之S的量,只要加熱時間不比三個小時快得多即可,否則硫在與PAN反應之前可能昇華。
然而,使用在3個小時、6個小時及15個小時熱處理時間下產生之SC/GNR陰極(SC/GNR-3h、SC/GNR-6h及SC/GNR-15h)的半單元電池之容量呈現極為不同的電化學行為,如在圖13中所觀測。曲線13011303分別為SC/GNR-3h、SC/GNR-6h及SC/GNR-15h之恆電流充電曲線。曲線13041306分別為SC/GNR-3h、SC/GNR-6h及SC/GNR-15h之恆電流放電曲線。
在作為電解質之4mol L-1 LiFSI(二甲氧乙烷(dimethoxyethane;DME)中之雙(氟磺醯基)醯亞胺鋰)中進行測試。樣品SC/GNR-15h之容量(約600mAh g-1)小於樣品SC/GNR-3h/6h(約1000mAh g-1)。此等測試之循環穩定性及庫侖效率(coulombic efficiency;CE)分別呈現於圖14A圖14B之圖式中。三角形1401、圓形1402及正方形1403分別反映SC/GNR-3h、SC/GNR-6h及SC/GNR-15h之循環穩定性。 深色正方形1404、三角形1405及淺色正方形1406分別反映SC/GNR-3h、SC/GNR-6h及SC/GNR-15h之庫侖效率。
與樣品SC/GNR-3h相比,樣品SC/GNR-6h及SC/GNR-15h在連續循環期間呈現穩定行為。參見圖14A。此亦以CE表達。參見圖14B。SC/GNR樣品呈現高CE:在SC/GNR-15h中達成99.99%且在SC/GNR-6h中達成99.9%。樣品SC/GNR-6h在此等樣品當中呈現穩定性與容量之間的最佳折衷。
使用樣品SC/GNR-6h而在共同商用電解質(由1mol L-1 LiPF6(六氟磷酸鋰)組成)中測試陰極之相容性,且將效能與高濃度電解質(DME中之4mol L-1 LiFSI)相比較。參見圖15(展示分別在電解質EC:DEC及DME中測試之SC/GNR-6h的恆電流充電曲線15011502,且進一步展示分別在電解質EC:DEC及DME中測試之SC/GNR-6h的恆電流放電充電曲線15031504)。該比較表明,在相同速率(0.1 C,其中1 C=1675mA g-1)下測試之情況下,此陰極材料具有比商用電解質高42%之高濃縮電解質容量(與700mAh g-1相比為約1000mAh g-1)。此強調高電解質濃度之進展。
圖16為展示電池之放電/充電循環之放電及充電部分的圖式,該電池具有(a)陽極,其具有Li箔/經鋰化之碳膜,及(b)經硫化之碳陰極。Li箔係自商用Li金屬一次性電池(Energizer Ultimate Lithum®)提取,且具有約130μm之厚度。Li金屬在4mol L-1 LiFSI/DME電解質(二甲氧乙烷中之雙(氟磺醯基)醯亞胺鋰鹽)中與經硫化之碳(sulfurized-carbon;SC)陰極配對。
曲線1601為在第一循環期間之放電曲線。曲線1602反映後續放電曲線(自約3伏至1伏特,其中比容量為約800mAh g-1)。曲線1603反映後續放電曲線(自約1伏至3伏特,其中比容量同樣為大約800mAh g-1)。此電池中之相同陰極及陽極亦可在其他濃度(0.5M至10M)、Li鹽及其他電解質組成物下操作。
圖17為展示用於以不同循環速率產生圖16中之曲線之相同電池之速率測試的圖式。曲線17011705分別對應於0.2C、0.6C、3C、13C及60C之循環速率,其中C表示一小時時段內的完全充電。因此,循環速率0.2C、0.6C、3C、13C及60C分別對應於以下時段內之完全充電:5個小時、100分鐘、20分鐘、大於4.6分鐘及1分鐘。曲線中之空心圓對應於循環之放電速率,且曲線中之實心正方形對應於循環之充電速率。
經硫化之碳陰極具有各種效用。舉例而言,需要具有高容量及最佳速率效能之陽極及陰極以組成具有與當前技術相比高得多的能量密度之電池。在一些具體實例中,具有高濃度電解質之經硫化之碳陰極的相容性及最佳效能使其與高容量及諸如Li金屬陽極之進階陽極相容,從而允許替換兩個陽極之可能性。
此外,經硫化之碳陰極之製造方法較為便捷,進而允許陰極之可擴展生產。在一些具體實例中,所得材料亦具有高比例之S(約55wt%至約60wt%)及N(12wt%),此可在其他催化應用中受關注。
經硫化之碳陰極藉由使用在存在高電解質濃度之情況下共價鍵結至碳之硫的調配物組合來解決與陰極有關之問題。
經硫化之碳陰極補充了陽極中之許多進展,從而提供電池組 態中必需的另一半。經硫化之碳陰極表明,若所使用之電解質的濃度比文獻中之其他者典型地所揭示之濃度高得多,則共價硫碳物種可得到穩定高容量陰極。
在一些具體實例中,此類高濃度之電解質連同硫基陰極之使用產生增強的效應。
在一些具體實例中,經硫化之碳陰極可結合申請人之整體無縫石墨烯-碳奈米管混成物電極(graphene-carbon nanotube hybrid electrode;GCNT)使用,以得到陰極中之GCNT的最佳屬性,如先前所揭示之受益於GCNT之陽極。[參見例如,Tour '052申請案及Tour '636申請案]。在一些具體實例中,經硫化之碳陰極亦可結合超高表面積碳(例如,由瀝青及KOH活化製成之uGil-900)使用,以得到經瀝青衍生之陰極的最佳屬性,正如先前所揭示之受益於經瀝青衍生之陽極。[參見,例如,Tour PCT '950申請案]。
在一些具體實例中,經硫化之碳陰極之高濃度電解質類似於已展示為對於Li-GCNT陽極良好工作之電解質濃度及類型[例如,Tour PCT '052申請案]及經Li-瀝青衍生之陽極[例如,Tour PCT '950申請案]。由此,在一些具體實例中,經硫化之碳陰極補充前述系統,視需要,現准許該等經硫化之碳陰極作為陰極及陽極兩者一致地工作。
在利用GCNT電極之一些具體實例中,可藉由本發明之方法經由使用硫、PAN及GCNT(在具有或不具有GNR之情況下)來製造經硫化之碳陰極。在利用經瀝青衍生之電極的一些具體實例中,可接著藉由使用硫、PAN及來自瀝青之KOH活化的uGil-900高表面積碳(在具有或 不具有GNR之情況下)來製造經硫化之碳陰極。
在一些具體實例中,包括小比例之元素S對SC/GNR可增大經硫化之碳陰極之總容量。在一些具體實例中,可利用除GNR以外的添加劑。在一些具體實例中,添加劑可包括(但不限於)碳奈米管、石墨烯、碳黑及其組合。在一些具體實例中,在經硫化之碳之製備期間可包括Se與S之混合物。在一些具體實例中,在具有或不具有GNR添加劑之情況下,GCNT與PAN及S之使用可為有效的。在一些具體實例中,在具有或不具有GNR之情況下,諸如uGil900之超高表面積碳可結合PAN及S使用。在一些具體實例中,硫含量為約55wt%至約60wt%,從而使得經硫化之碳陰極中之S的總含量為約45wt%至約50wt%(包括黏合劑及碳添加劑),此減小了陰極之總容量。在一些具體實例中,放電之電壓(約2V)相比於元素硫陰極更不平坦,即使其穩定得多亦如此。
經GNR改質之隔板
利用隔板以保持陰極與陽極彼此電絕緣,但允許在其內輸送電解質及離子。標準隔板係由諸如聚丙烯(polypropylene;PP)及聚乙烯(polyethylene;PE)之材料製成。
本發明可利用在一側或兩側上具有塗層之隔板,該塗層進一步選擇性地允許或組織材料自一側移動至另一側(亦即,自陽極側移動至陰極側,或反之亦然)。如圖18中所展示,可藉由添加石墨烯奈米帶(graphene nanoribbon;GNR)層1802以得到輕型經GNR塗佈之隔板1802來改進此類隔板1801圖19為經GNR塗佈之隔板之SEM影像。雖然在經GNR塗佈之隔板1800之一側上說明石墨烯奈米帶層1802,但可在兩側 上提供此類層。在一些具體實例中,經GNR塗佈之隔板1802定向於電池內,諸如當陰極為經硫化之碳陰極或基於元素硫之陰極時,該電池具有面向陰極之石墨烯奈米帶層。
經GNR塗佈之隔板被如下製造:經由10min之尖端超音波處理將原始GNR(AZ電子材料(AZ Electronic Materials))分散於A-甲基-2-吡咯啶酮(A-methyl-2-pyrrolidone;NMP)中。接著,經由格德(Celgard)隔板真空過濾分散液,且在60℃下使其真空乾燥12h。此製造方法使得大規模應用係可能的,且可僅藉由改變分散液中之GNR濃度來產生具有不同厚度的經GNR塗佈之隔板。
此類經GNR塗佈之隔板減少了非所需材料自電池之一側橫穿至另一側的擴散(諸如來自穿過隔板橫穿至陽極之硫基陰極的多硫化鋰)。另外,GNR之電導性提供再活化經截獲材料之新的電子路徑,因此改良容量保持性。此意謂,因為GNR係導電的,因此其可將電子轉移至經截留物種(多硫化鋰及硫化鋰)。在未再活化此等經截斷材料之情況下,將觀測到Li2S在循環之後的嚴重聚結,且容量保持性將實際上類似於不具有經塗佈隔板之單元。
圖20為在利用基於元素硫之陰極時比較標準隔板(展示充電及放電之曲線2001)與經GNR塗佈之隔板(展示充電及放電之曲線2002)之間的循環穩定性之圖式。此類曲線展示,在100個循環之後,使用標準隔板之容量已自大約800mAh g-1降至400mAh g-1,而使用經GNR塗佈之隔板的容量已藉由經GNR塗佈之隔板自大約900降至800。曲線2003為標準隔板及經GNR塗佈之隔板兩者之庫侖效率,以反映此等庫侖效率保持相 同而無關於所利用之隔板。圖20之此圖式因此展示在基於元素硫之陰極的經GNR改質之隔板之情況下的經改良循環穩定性。經改良經GNR改質之隔板同樣可用於上文所描述之經硫化之碳(sulfurized-carbon;SC)。
圖21A圖21D為分別在時間0分鐘、30分鐘、60分鐘及180分鐘處所拍攝以展示多硫化Li隨時間擴散之標準隔板的像片。圖22A圖22D為分別在時間0分鐘、30分鐘、60分鐘及180分鐘處所拍攝以展示多硫化Li隨時間擴散之經GNR塗佈之隔板的像片。在時間零(展示於圖21A圖22A中)處,此等圖反映(a)在設備之左側1702,DME-DOL中之LiTFSI(1M)及LiNO3(0.16M)的相對透明流體,及(b)在設備之右側1701,DME-DOL中之Li2S6(1M)、LiTFSI(1M)及LiNO3(0.16M)的相對深色流體。此等設備之差異為,圖21A圖21D之設備利用標準(或未經改質)隔板2103,而圖22A圖22D之設備利用經GNR改質之隔板2203。如自以下各者顯而易見,對於具有經GNR改質之隔板(用於圖22A圖22D中)的設備,擴散速率減小:(b)將圖21B圖22B相比較(兩者皆係在時間t=30分鐘處拍攝),(c)將圖21C圖22C相比較(兩者皆係在時間t=60分鐘處拍攝),及(d)將圖21D圖22D相比較(兩者皆係在時間t=180分鐘處拍攝)。
藉由減小此類非所需材料(諸如硫或鋰化多硫化物)之擴散,此較好地實現此類材料在陰極及陽極(諸如硫基陰極)中之使用。
電池
可利用利用本文中所描述之經改良陽極、陰極及隔板及其改質中之一或多者的電池。在一些具體實例中,該電池包括具有經鋰化之碳 膜之陽極、經硫化之碳陰極及經GNR改質之隔板。在其他具體實例中,電池按需要藉由其他標準/商用組件補充該三者中之僅兩者(亦即,具有經鋰化之碳膜之陽極及經硫化之碳陰極;具有經鋰化之碳膜之陽極及經GNR改質之隔板;或經硫化之碳陰極及經GNR改質之隔板)。在另其他具體實例中,電池具有該三者中之僅一者(具有經鋰化之碳膜之陽極、經硫化之碳陰極及經GNR改質之隔板)。
具有GCNT-Li陽極及經硫化之碳陰極之FB
全電池(full battery;FB)係藉由將GCNT-Li陽極[Zhu 2012;Lin 2015]與經硫化之碳陰極組合來組裝。
對於石墨烯-碳奈米管製備,GCNT之製備類似於先前所報告之方法。[Zhu 2012;Lin 2015]。首先,使用如在別處所報告之CVD方法使經伯納爾(Bernal)堆疊之多層石墨烯生長於銅箔(25μm)上。[Sun 2012]。在石墨烯/Cu箔上方以石墨烯/Fe(1nm)/Al2O3(3nm)次序藉由電子束蒸發而沉積用於CNT生長之催化劑。在750℃下使用水輔助CVD方法於減小之壓力下進行CNT生長。首先,在25托(210sccm H2、2sccm C2H2及藉由經由超純水對200sccm H2進行起泡而產生之水蒸氣)下,藉由使用藉由熱絲(0.25mm W線,10A,30W)表面上之H2分解而原位產生的原子氫(H‧)來活化催化劑30s。在活化催化劑30s之後,壓力減小至8.3托,且生長進行15min。
對於Li至GCNT中/自GCNT之電化學電鍍/剝離,使用GCNT基板及Li箔作為相對電極及參考電極兩者而在2032硬幣型單元中執行電化學反應。GCNT基板為具有約2cm2之總面積的圓形。所使用之電解 質為1,2-二甲氧乙烷(dimethoxyethane;DME)中之4M雙(氟磺醯基)醯亞胺鋰(lithium bis(fluorosulfonyl)imide;LiFSI)(奧克伍德公司(Oakwood Inc.))。在100℃下使LiFSI鹽真空乾燥(<20托)24h,且經由Na條蒸餾DME。藉由以下步驟來預鋰化(prelithiate)GCNT基板:將一滴電解質置放於GCNT之表面上,抵靠GCNT平緩地按壓Li硬幣,且使Li硬幣在頂部上3h。發現在預處理期間添加過量電解質溶液歸因於GCNT與Li之間的不良接觸而得到無效的預鋰化。在預鋰化之後,使用與在預鋰化中所使用之Li晶片相同的Li晶片將GCNT組裝於硬幣電池中。
對於經硫化之碳陰極製備,藉由在存在過量元素硫之情況下分解聚丙烯腈(PAN)(西格瑪-奧德里奇(Sigma-Aldrich),Mw 150k)來製備經硫化之碳陰極。使用研缽及研杵以55:11:1之質量比將PAN、S及石墨烯奈米帶(graphene nanoribbon;GNR)(EMD-默克(Merck))研磨在一起。(GNR改良了最終材料之導電性)。在氬氣氛圍(1atm)中以5℃ min-1之速率將所得粉末自室溫加熱至450℃。在6h之後,不經純化即移除並使用經硫化之碳粉末。經硫化之碳粉末具有大致60wt% S。藉由以8:1:1之質量比例將SC粉末與碳黑(黑珍珠2000(Black Pearls 2000),卡博特(Cabot)公司)及聚偏二氟乙烯(polyvinylidene fluoride;PVDF,(西格瑪-奧德里奇(Sigma-Aldrich))混合來製備經硫化之碳陰極,從而產生電極中48wt%的總S含量。典型質量負載為1cm2電極中4mg至5mg。
對於全電池總成,藉由使用4M LiFSI/DME電解質及格德(Celgard)K2045作為隔板而組合GCNT-Li及經硫化之碳陰極來組裝FB。電極為約1cm2。GCNT-Li之面積容量被設定成匹配經硫化之碳陰極之第一 循環的30%不可逆容量損耗。
藉由此總成,可獲得將無枝晶GCNT-Li陽極與S含量為約60wt%之經硫化之碳陰極匹配的FB。藉由添加黏合劑及碳添加劑,陰極中之S含量減小至48wt%。基於經硫化之碳之陰極具有由於元素硫(S8)陰極之優點,諸如與不同電解質高度相容且不存在多硫化Li擴散[Wei 2015];後者一般導致元素硫陰極中隨循環之容量衰減[Yang 2013]。
圖23A展示GCNT-Li及經硫化之碳陰極(第三循環)半單元之循環伏安圖(cyclic voltammogram;CV),該等GCNT-Li及經硫化之碳陰極各自具有約2mAh cm-2之總面積容量。經硫化之碳陰極半單元之第一循環(曲線2301)具有83%之CE,且GCNT-Li陽極半單元之第一循環(曲線2302)具有85%之平均CE,此兩者皆需要來自FB中之陽極之稍微過量的Li。圖22B中之FB之恆電流充電/放電曲線(分別為曲線2303至2304)展示自2.1V擴展至1.7V之放電曲線2304。基於S質量之比容量極接近半單元中所觀測到之比容量。
圖22C中展示基於GCNT-Li/SC之袋狀FB 2305。該FB可以0.2 C至9 C(分別為曲線23062310)之不同速率(1 C=1/放電時間(h))持續循環。在1 C以及約80%容量保持性(曲線2311)及接近99.9%之CE(插圖2312中之曲線2313)下獲得超過500個循環之循環穩定性。
圖22E中所展示,亦在FB中測試自放電(self-discharge;SD),其中甚至在1週之後亦可達成2.15V之穩定電壓(曲線2315)。(曲線2314為前8h之電壓)。分別在SD之8h及1週之後量測到94%及81%之容量保持性(展示於插入圖2318之曲線23162317中)。最終,在圖 23F中計算及呈現一系列能量及功率密度之拉貢曲線(分別為FB(活性材料)及FB(全電極)之曲線23192320)。
在最低功率密度下,GCNT-Li/SC全單元之能量密度為1423Wh kg-1 active materials(752Wh kg-1 total electrodes),其中active materials僅=Li+S,且total electrodes=GCNT-Li+經硫化之碳+碳添加劑+黏合劑。相對於活性材料(Li-S)之質量,此GCNT-Li/SC全單元比Li-S全單元中所見之能量密度高3倍[Jin 2016]。此外,該資料在與具有310Wh kg-1 active material(220Wh kg-1total electrodes)[Zhang 2006]之商用LIB效能相比時呈現出吸引力,其中active materials=graphite+LiCoO2;total electrodes=石墨+LiCoO2+碳添加劑+黏合劑。
然而,與商用單元之決定性比較在此階段係困難的,此係因為商用單元係兩側及堆疊式的,其經設計以最小化集電器及包裝材料之貢獻。
在非最佳化裝置中,達成234Wh/Ltotal electrodes之體積能量密度。在500個循環之後,在全單元電極中不存在枝晶狀或苔狀Li。此等結果表示無多硫化Li且無枝晶電池之顯著成就。
本發明因此達成歸因於近理論Li儲存容量之優良能量密度且充當高濃度電解質中之所表明經硫化之碳∥GCNT-Li全單元產生安全、穩定且高效能電池之基礎。
具有Li-MWCNT陽極及經硫化之碳陰極之FB
藉由將Li-MWCNT陽極與經硫化之碳陰極組合來組裝全電池(full battery;FB)。
對於MWCNT膜製備,藉由將MWCNT(NTL,C級,70nm至80nm直徑)分散於W-甲基吡咯啶酮(NMP)中來製備自支撐碳奈米管膜。不經進一步純化即按原樣使用MWCNT。使用尖端超音波處理將MWCNT(68mg)分散於NMP(250mL)中;經由多孔Al隔膜(9cm直徑)真空過濾所製備之分散液。在表面上截留MWCNT從而形成MWCNT膜。藉由甲醇沖洗此所得膜且在70℃下使其乾燥過夜。稍後在室溫下使用HF(2.5v/v%)及HCl(2.5v/v%)之蝕刻水溶液來溶解Al膜。在Al完全溶解之後,自溶液移除MWCNT膜,藉由水及乙醇對其沖洗,且在70℃下使其乾燥過夜。多孔Al隔膜係先前藉由在上文所提及之蝕刻水溶液中蝕刻商用Al箔(60μm厚度,飛世爾科技公司(Fisher Scientific Inc.))大致10min而製備。
對於鋰化MWCNT製備,使用來自MTI公司之Li金屬箔(1.6cm直徑晶片,230μm厚度),或自金霸王公司(Duracell Inc.)之終極鋰AA電池(Ultimate Lithium AA battery)提取Li金屬箔(25cm×3.5cm,130μm厚)。在使用Li箔之前藉由刮擦表面直至呈現光亮金屬表面為止來清潔Li箔。藉由將MWCNT膜置放於藉由二甲氧乙烷(dimethoxyethane;DME)中之50μL 4M雙(氟磺醯基)醯亞胺鋰(lithium bis(fluorosulfonyl)imide;LiFSI)潤濕的兩個Li箔之間而產生鋰化MWCNT膜(Li-MWCNT)。鋰化製程大致花費10min,且其可藉由CNT膜所獲取之淡紅色而觀察到。
對於經硫化之碳製備,藉由以55:11:1(分別為S:PAN:GNR)之質量比研磨聚丙烯腈(polyacrylonitrile;PAN)(西格瑪-奧德里奇 (Sigma-Aldrich),Mw 150k)、元素硫(S8)及石墨烯奈米帶(GNR、EMD-默克(Merck))來製備經硫化之碳粉末。在氬氣氛圍(1atm)下在450℃下以5℃ min-2之加熱速率加熱混合物6h。在熱處理之後,不經進一步純化即使用所得經硫化之碳粉末。藉由熱解重量分析(thermogravimetric analysis;TGA)在經硫化之碳粉末中量測到約60wt%之S含量。藉由在NMP中以8:1:1之質量比混合SC、碳黑(黑珍珠2000(Black Pearls 2000),卡博特(Cabot)公司)及聚偏二氟乙烯(polyvinylidene fluoride;PVDF,(西格瑪-奧德里奇(Sigma-Aldrich))來製備陰極漿料。該漿料用於塗佈不鏽鋼箔(30μm厚,40mg cm-2)或經碳塗佈之Al箔(10μm,5.5mg cm-2,MTI公司)。經硫化之碳陰極之典型質量負載為3mg至5mg每cm-2,其中最終S含量為47wt%至57wt%。
圖24A展示Li-MWCNT電極2404之製造製程,其包括藉由高濃縮電解質2403潤濕MWCNT膜2402且抵靠Li箔2401按壓MWCNT膜以摻雜碳奈米管。在鋰化反應之後,MWCNT薄膜變成紅色。該紅色係歸因於經Li摻雜之MWCNT。完成反應至少花費10min。僅在高濃度之電解質的情況下可觀測到紅色。此Li箔改質係可擴展的。經Li摻雜之MWCNT充當Li箔之保護層。經Li摻雜之MWCNT充當增強型固體電解質相界(solid electrolyte interphase;SEI)層。
圖28B為在藉由Li(暗紅色)摻雜之後的MWCNT膜之像片。同樣,由於鋰化反應,MWCNT變成紅色。紅色顏色僅在存在可用的Li箔表面之情況下呈現。
圖28C為MWCNT之自發鋰化及對應氧化還原反應之方 案。能量圖表明,用於減少MWCNT之驅動力係基於Li金屬(相對於真空-2.9eV)與MWCNT(相對於真空-5eV)之有關於真空(功函數)的費米(Fermi)能階之差。由於每種金屬(Li及MWCNT)之費米能階之差而產生電壓電位。電子自具有最高費米能階之金屬(Li-2.9eV)流動。當兩種金屬接觸時,反應發生。當兩個費米能階平衡時,反應結束。高濃縮之電解質實現最大鋰化。同一反應不可能僅使用純(乾燥)Li箔之1M電解質。
圖25A圖25C展示Li-MWCNT膜之形態。圖25A展示特徵為SEM之原始MWCNT膜之形態。圖25B圖25C展示特徵為SEM之經Li摻雜之MWCNT膜之形態。MWCNT之形態不受MWCNT之鋰化影響。由於鋰化,MWCNT看起來較膨脹。鋰化產生緊密的MWCNT層。MWCNT薄膜之墊結構不受鋰化影響。
圖26A圖26B為分別展示MWCNT及Li-MWCNT之電子順磁共振(electron paramagnetic resonance;EPR)及拉曼光譜法的圖式。在Li剝離/電鍍之不同階段,在Li-MWCNT對稱單元中採用拉曼光譜法(532nm)以研究MWCNT結構變化。
對於圖26A,EPR量測闡明經Li摻雜之MWCNT的性質。原始MWCNT之EPR(曲線2601)指示MWCNT樣品之高純度(未觀測到信號)。經Li摻雜之MWCNT之EPR(曲線2602)產生高強度峰值。g因數1.988指示藉由MWCNT減少誘發之穩定自由基的形成。g因數(1.988)遠非自由電子體系所預期之因數(g=2.0023)。經Li摻雜之MWCNT中之電子可處於較局部化電子狀態。
對於圖26B,經Li摻雜之MWCNT之拉曼光譜(曲線2603) 呈現低強度之sp碳模式(D,G,2D)。隨著經Li摻雜之MWCNT形成而更改MWCNT鍵結結構之性質。(曲線26042605分別針對Li金屬及MWCNT)。拉曼光譜證實EPR及XPS資料。
如上文所論述,圖5圖6展示在將裸Li與Li-MWCNT對稱單元相比較時針對4mAh cm-2之總容量在2mA cm-2之電流密度下的循環效能。在圖5中,裸Li單元之電壓特徵展示可歸因於可能的枝晶誘發之輕微短路的波動。在圖6中,Li-MWCNT之電壓平台受到較多界定且較穩定,此指示枝晶形成之抑制。
7為展示針對2mAh cm-2之總容量(電流密度為1mAh cm-2至5Ah cm-2)之速率效能的圖式。曲線701702分別針對Li-MWCNT及裸Li。裸Li之對稱單元在不同電流密度下展示大於Li-MWCNT之Li剝離/電鍍過電位。在回至2mA cm-2之後,裸Li單元過電位高出約2.7倍。在Li-MWCNT單元之情況下,過電位大致相同。
圖27展示Li-MWCNT/SC(「rLi/SC」)電池在不同電流密度(循環穩定性)下之循環,其中曲線27012704分別對應於在0.4 C、1 C、2 C及3 C(C/D)下之rLi/SC。以相同速率執行充電及放電。實例「在1C下之rLi/SC(C/D)」意謂在相同電流密度下執行充電及放電,從而分別實現在大致1h內之完全充電及放電。
圖28A圖28D為展示交替速率測試之圖式。圖28A為展示rLi/SC全電池之單次放電的圖式,其中持續交替電流密度,在0.1C電流密度處開始10分鐘,接著在較高電流密度下放電10s(曲線28012803分別為初始電流密度之20倍、40倍或60倍),接著在0.1C下回至初始速 率,直至電池達至截止下限(1V)為止。在交替速率測試之間在0.4C下3次循環(充電及放電)電池。圖28B圖28D為展示電流相對於時間之變化的圖式(分別為原始電流密度之20倍、40倍或60倍)。
圖16圖17圖29A圖29B為展示具有Li-MWCNT作為陽極且具有S(經硫化之碳)作為陰極之全單元之電化學特徵化的圖式。
圖16為展示恆電流充電/放電曲線之圖式。該等曲線係針對全單元。圖16展示高可逆容量(基於S質量為約1000mAh g-1)、第一循環下之較低不可逆容量(約30%)、1.9V下之平均平坦放電電壓,且展示僅第一循環呈現較低電壓(約1.5V)。較低電壓與經硫化之碳陰極中之硫物種的活化有關。電荷擴展至3V(在2.3V下之平坦電壓)。
圖17為展示全單元之速率效能(0.2C至60C)的圖式。曲線17011705分別針對0.2C、0.6C、3C、13C及60C。此展示0.2 C至60 C之速率係可能的。在高速率測試之後可恢復較低速率。圖17亦展示長期穩定性(亦即,電池將運行至最終呈遞為止)。
圖29A為展示基於陰極及陽極-陰極重量之拉貢曲線的圖式。依據陰極活性材料之質量(S質量(曲線2901)、經硫化之碳電極之質量(曲線2902)及兩個電極(陽極+陰極,包括集電器)之質量(曲線2903)而計算能量及功率密度。電池具有高功率及能量密度容量(對假設陰極電流收集器之兩側經塗佈之340Wh kg-1全單元的預計)。考慮全質量(包括集電器)以用於計算。
29B為展示電化學阻抗光譜之圖式(其中曲線2904自0 Q至48 Q之放大部分展示於插圖2905中)。經由實驗資料裝配等效電路。此 揭露低內部電阻(約8 Q)及低電荷轉移電阻(約13 Q)。
雖然已展示且描述本發明之具體實例,但熟習此項技術者可在不脫離本發明之精神或教示之情況下對其進行修改。本文中所提供之具體實例及實例僅為例示性的,且不意欲為限制性的。本文中所揭示之本發明之許多變化及修改係可能的且在本發明之範疇內。因此,其他具體實例係在以下申請專利範圍之範疇內。保護之範疇不受上文所闡明之描述限制。
本文中所引用之所有專利、專利申請案及公開案的揭示內容之全文特此以引用之方式併入本文中,其在一定程度上對本文中所闡述之內容提供例示性、程序化或其他細節補充。
濃度、量及其他數值資料在本文中可以範圍格式來呈現。應理解,此範圍格式僅係出於便利及簡潔目的而使用,且因此應以靈活方式解釋為不僅包括如該範圍之界限所明確敍述之數值,且亦包括該範圍內所涵蓋之所有個別數值或子範圍,如同各數值及子範圍被明確敍述一樣。舉例而言,大致1至大致4.5之數值範圍應解釋為不僅包括1至大致4.5之明確敍述界限,且亦包括諸如2、3、4之個別數字及諸如1至3、2至4等子範圍。相同原理適用於僅列舉一個數值之範圍,諸如「小於大致4.5」,其應解釋為包括上文所敍述之所有值及範圍。另外,無論考慮正描述之範圍之廣度或特性如何,此解釋都應適用。
除非另外定義,否則本文中所使用之所有技術及科學術語具有與本發明主題所屬領域之一般熟習此項技術者通常所理解相同的含義。儘管在本發明主題之實踐或測試中可使用與本文中所描述之方法、裝置及材料類似或等效之任何方法、裝置及材料,但現描述代表性代表性方法、 裝置及材料。
遵循存在已久的專利法公約,在用於本申請案(包括申請專利範圍)中時,術語「一」意謂「一或多個」。
除非另外指示,否則本說明書及申請專利範圍中所使用之表達成分數量、反應條件等之所有數字應理解為在所有情況下皆由術語「約」修飾。因此,除非有相反指示,否則本說明書及所附申請專利範圍中所闡述之數值參數為近似值,其可視本發明主題設法獲得之所要屬性而變化。
如本文中所使用,當提及值或質量、重量、時間、體積濃度或百分比之量時,術語「約」意謂涵蓋指定量在一些具體實例中±20%、在一些具體實例中±10%、在一些具體實例中±5%、在一些具體實例中±1%、在一些具體實例中±0.5%且在一些具體實例中±0.1%之變化,此係因為此等變化適於執行所揭示之方法。
如本文中所使用,當用於實體清單之上下文中時,術語「和/或」指實體單獨存在或組合地存在。因此,舉例而言,短語「A、B、C和/或D」個別地包括A、B、C及D,且亦包括A、B、C及D之任何及所有組合及子組合。
參考文獻
Tour J. M.等人,美國專利第9,455,094號,「Graphene-Carbon Nanotube Hybrid Materials And Use As Electrodes」, 2016年9月27日頒予。(「'094 Tour專利」)。
Tour J. M.等人,Vertically Aligned Carbon Nanotube Arrays As Electrodes, PCT國際專利公開案第WO/2017/011052號,2016年4月25日申 請(「Tour PCT '052申請案」)。
Tour J. M.等人,High Surface Area Porous Carbon Materials As Electrodes, PCT國際專利公開案第WO/2017/062950號,2015年10月8日申請(「Tour PCT '950申請案」)。
Tour J. M.等人,Graphene-Carbon Nanotube Hybrid Materials And Use As Electrodes,美國專利公開案第20140313636號,2014年10月23日公開(「Tour '636申請案」)。
Eustace, D. J.等人,Li/TiS2 Current Producing System.美國專利第4,416,960號,1983年11月22日頒予(「Eustace '960專利」)。
Armand, M.等人,Building Better Batteries. Nature 2008, 451 (7179), 652至657 (「Armand 2008」)。
Aurbach, D.等人,A Short Review of Failure Mechanisms of Lithium Metal and Lithiated Graphite Anodes in Liquid Electrolyte Solutions. Solid State Ionics 2002, 148, 405至416 (「Aurbach 2002」)
Bai, P.等人,Transition of Lithium Growth Mechanisms in Liquid Electrolytes. Energy Environ. Sci. 2016, 9, 3221至3229 (「Bai 2016」)。
Bates, J. B.等人,Fabrication and Characterization of Amorphous Lithium Electrolyte Thin Films and Rechargeable Thin-Film Batteries. J. Power Sources 1993, 43 (1-3), 103至110 (「Bates 1993」)。
Besenhard, J. O.等人,Inorganic Film-Forming Electrolyte Additives Improving the Cycling Behaviour of Metallic Lithium Electrodes and the Self-Discharge of Carbon-Lithium Electrodes. J. Power Sources 1993, 44 (1-3), 413至420 (「Besenhard 1993」)。
Bouchet, R., Batteries: A Stable Lithium Metal Interface. Nat. Nanotechnol. 2014, 9, 572至573 (「Bouchet 2014」)。
Bruce, P. G.等人,Li-O2 and Li-S Batteries with High Energy Storage. Nat. Mater. 2011, 11 (2), 172至172 (「Bruce 2011」)。
Claye, A. S.等人,Solid-State Electrochemistry of the Li Single Wall Carbon Nanotube System. J. Electrochem. Soc. 2000, 147, 2845至2852 (「Claye 2000」)。
Cohen, Y. S.等人,Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy. J. Phys. Chem. B 2000, 104 (51), 12282至12291 (「Cohen 2000」)。
Crowther, O.等人,Effect of Electrolyte Composition on Lithium Dendrite Growth. J. Electrochem. Soc. 2008, 155, A806至A811 (「Crowther 2008」)。
Ding, F.等人,Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode. J. Electrochem. Soc. 2013, 160 (10), A1894至A1901 (「Ding I 2013」)。
Ding, F.等人,Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism. J. Am. Chem. Soc. 2013, 135 (11), 4450至4456 (「Ding II 2013」)。
Dresselhaus, M. S.等人,Raman Spectroscopy on Isolated Single Wall Carbon Nanotubes. Carbon 2002, 40, 2043至2061 (「Dresselhaus 2002」)。
Dunn, B.; Kamath, H.等人,Electrical Energy Storage for the Grid: A Battery of Choices. Science (80). 2011, 334 (6058), 928至935 (「Dunn 2011」)。
Ebbesen, T. W.等人,Electrical Conductivity of Individual Carbon Nanotubes. Nature 1996, 382, 54至56 (「Ebbesen 1996」)。
Evarts, E. C., Lithium Batteries: To the Limits of Lithium. Nature 2015, 526, S93至S95 (「Evarts 2015」)。
Goodenough, J. B.等人,The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135 (4), 1167至1176 (「Goodenough 2013」)。
Girishkumar, G.等人,Lithium-Air Battery: Promise and Challenges. J. Phys. Chem. Lett. 2010, 1 (14), 2193至2203 (「Girishkumar 2010」)。
Hao, X.等人,Ultrastrong Polyoxyzole Nanofiber Membranes for Dendrite-Proof and Heat-Resistant Battery Separators. Nano Lett. 2016, 16, 2981至2987 (「Hao 2016」)。
Hirai, T.等人,Effect of Additives on Lithium Cycling Efficiency. J. Electrochem. Soc. 1994, 141, 2300至2305 (「Hirai 1994」)。
Jin, F.等人,Efficient Activation of High-Loading Sulfur by Small CNTs Confined Inside a Large CNT for High-Capacity and High-Rate Lithium-Sulfur Batteries. Nano Lett. 2015, acs.nanolett.5b04105 (「Jin 2015」)。
Jin, S.等人,Covalently Connected Carbon Nanostructures for Current Collectors in Both the Cathode and Anode of Li-S Batteries. Adv. Mater. 2016, 28, 9094至9102 (「Jin 2016」)。
Kim, J. S.等人,Controlled Lithium Dendrite Growth by a Synergistic Effect of Multilayered Graphene Coating and an Electrolyte Additive. Chem. Mater. 2015, 27 (8), 27802787 (「Kim 2015」)。
Kozen, A. C.;等人,Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition. ACS Nano 2015, 9 (6), 5884至5892 (「Kozen 2015」)。
Landi, B. J.等人,Carbon Nanotubes for Lithium Ion Batteries. Energy Environ. Sci. 2009, 2, 638至654 (「Landi 2009」)。
Landi, B. J.等人,Lithium Ion Capacity of Single Wall Carbon Nanotube Paper Electrodes. J. Phys. Chem. C 2008, 112, 7509至7515 (「Landi 2008」)。
Lee, H.;等人,Simple Composite Protective Layer Coating That Enhances the Cycling Stability of Lithium Metal Batteries. J. Power Sources 2015, 284, 103至108 (「Lee 2015」)。
Li, F.等人,Identification of the Constituents of Double-Walled Carbon Nanotubes Using Raman Spectra Taken with Different Laser-Excitation Energies. J. Mater. Res. 2003, 18, 1251至1258 (「Li 2003」)。
Li, N. W.等人,An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes. Adv. Mater. 2016, 28 (9), 1853至1858 (「Li 2016」)。
Li, W., The Synergetic Effect of Lithium Polysulfide and Lithium Nitrate to Prevent Lithium Dendrite Growth. Nat. Commun. 2015, 6 (5月),7436 (「Li 2015」)。
Liang, Z.等人,Composite Lithium Metal Anode by Melt Infusion of Lithium into a 3D Conducting Scaffold with Lithiophilic Coating. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 2862至2867 (「Liang 2016」)。
Lin, D.等人,Reviving the Lithium Metal Anode for High-Energy Batteries. Nat. Publ. Gr. 2017, 12 (3), 194至206 (「Lin 12017」)。
Lin, D.等人,Three-Dimensional Stable Lithium Metal Anode with Nanoscale Lithium Islands Embedded in Ionically Conductive Solid Matrix. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 4613至4618 (「Lin II 2017」)。
Lin, D.等人,Layered Reduced Graphene Oxide with Nanoscale Interlayer Gaps as a Stable Host for Lithium Metal Anodes. Nat. Nanotechnol. 2016, 11, 626至632 (「Lin 2016」)。
Lin, J.等人,3-Dimensional Graphene Carbon Nanotube Carpet-Based Microsupercapacitors with High Electrochemical Performance. Nano Lett. 2013, 13, 72至78 (「Lin 2015」)。
Liu, Y.等人,An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes. Adv. Mater. 2017, 29, 1605531 (「Liu 2017」)。
Liu, Y.等人,Lithium-Coated Polymeric Matrix as a Minimum Volume-Change and Dendrite-Free Lithium Metal Anode. Nat. Commun. 2016, 7, 10992 (「Liu 2016」)。
Lu, Y.等人,Stable Lithium Electrodeposition in Liquid and Nanoporous Solid Electrolytes. Nat. Mater. 2014, 13, 961至969 (「Lu 2014」)。
Mahmood, N.等人,Nanostructured Anode Materials for Lithium Ion Batteries: Progress, Challenge and Perspective. Adv. Energy Mater. 2016, 6, 1600374 (「Mahmood 2016」)。
Manthiram, A.等人,Lithium-Sulfur Batteries: Progress and Prospects. Adv. Mater. 2015, 27 (12), 1980至2006 (「Manthiram 2015」)。
Noorden, R. Van, The Rechargeable Revolution: A Better Battery. Nature 2014, 507, 2628 (「Noorden 2014」)。
Osaka, T., Surface Characterization of Electrodeposited Lithium Anode with Enhanced Cycleability Obtained by CO[sub 2] Addition. J. Electrochem. Soc. 1997, 144 (5), 1709 (「Osaka 1997」)。
Peigney, A.等人,Specific Surface Area of Carbon Nanotubes and Bundles of Carbon Nanotubes. Carbon 2001, 39, 507至514 (「Peigney 2001」)。
Qian, J.等人,High Rate and Stable Cycling of Lithium Metal Anode. Nat. Commun. 2015, 6, 6362 (「Qian 2015」)。
Ren, Z. F.等人,Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass. Science 1998, 282, 1105至1107 (「Ren 1998」)。
Roy, P.等人,Nanostructured Anode Materials for Lithium Ion Batteries. J. Mater. Chem. A 2015, 3, 2454至2484 (「Roy 2015」)。
Salvatierra, R. V.等人,Graphene Carbon Nanotube Carpets Grown Using Binary Catalysts for High-Performance Lithium-Ion Capacitors. ACS Nano 2017, 11, 2724至2733 (「Salvatierra 2017」)。
Sun, Z.等人,Large-Area Bernal-Stacked Bi-, Tri-, and Tetralayer Graphene. ACS Nano 2012, 6, 9790至9796 (「Sun 2012」)。
Thess, A.等人,Crystalline Ropes of Metallic Carbon Nanotubes. Science 1996, 273, 483至487 (「Thess 1996」)。
Tung, S.-O.等人,A Dendrite-Suppressing Composite Ion Conductor from Aramid Nanofibres. Nat. Commun. 2015, 6, 6152 (「Tung 2015」)。
Wang, C.等人,Suppression of Lithium-Dendrite Formation by Using LAGP-PEO (LiTFSI) Composite Solid Electrolyte and Lithium Metal Anode Modified by PEO (LiTFSI) in All-Solid-State Lithium Batteries. ACS Appl. Mater. Interfaces 2017, acsami. 7b00336 (「Wang 2017」)。
Wei, S.等人,Metal-Sulfur Battery Cathodes Based on Pan-Sulfur Composites. J. Am. Chem. Soc. 2015, 137, 12143至12152 (「Wei 2015」)。
Whittingham, M. S., History, Evolution, and Future Status of Energy Storage. Proc. IEEE 2012, 100 (Special Centennial Issue), 1518至1534 (「Whittingham 2012」)。
Xu, W.等人,Lithium Metal Anodes for Rechargeable Batteries. Energy Environ. Sci. 2014, 7 (2), 513至537 (「Xu 2014」)。
Yan, K.等人,Selective Deposition and Stable Encapsulation of Lithium through Heterogeneous Seeded Growth. Nat. Energy 2016, 1, 16010 (「Yan 2016」)。
Yang, C.-P.等人,Accommodating Lithium into 3D Current Collectors with a Submicron Skeleton Towards Long-Life Lithium Metal Anodes. Nat. Commun. 2015, 6, 8058 (「Yang 2015」)。
Yang, Y.等人,Nanostructured Sulfur Cathodes. Chem. Soc. Rev. 2013, 42, 3018至3032 (「Yang 2013」)。
Yazami, R.等人,A Reversible Graphite-Lithium Negative Electrode for Electrochemical Generators. J. Power Sources 1983, 9, 365至371 (「Yazami 1983」)。
Zhang, H.等人,Three-Dimensional Bicontinuous Ultrafast-Charge and -Discharge Bulk Battery Electrodes. Nat. Nanotechnol. 2011, 6, 277至281 (「Zhang 2011」)。
Zhang, J.-G.等人,Lithium Metal Anodes and Rechargeable Lithium Metal Batteries,第一版;Hull, R.等人,編著;Springer International Publishing, 2017 (「J. Zhang 2017」)。
Zhang, R.等人,Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth. Adv. Mater. 2016, 28, 2155至2162 (「Zhang 2016」)。
Zhang, S. S.等人,Charge and Discharge Characteristics of a Commercial LiCoO2-Based 18650 Li-Ion Battery. J. Power Sources 2006, 160, 1403至1409 (「Zhang 2006」)。
Zhang, Y.等人,High-Capacity, Low-Tortuosity, and Channel-Guided Lithium Metal Anode. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 3584至3589 (「Y. Zhang I 2017」)。
Zhang, Y.等人,A Carbon-Based 3d Current Collector with Surface Protection for Li Metal Anode. Nano Res. 2017, 10, 1356至1365 (「Y. Zhang II 2017」)。
Zheng, G.等人,Interconnected Hollow Carbon Nanospheres for Stable Lithium Metal Anodes. Nat. Nanotechnol. 2014, advance on (8), 618至623 (「Zheng 2014」)。
Zhou, W.等人,Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. J. Am. Chem. Soc. 2016, 138 (30), 9385至9388 (「Zhou 2016」)。
Zhu, Y.等人,A Seamless Three-Dimensional Carbon Nanotube Graphene Hybrid Material. Nat. Commun. 2012, 3, 1225 (「Zhu 2012」)。

Claims (25)

  1. 一種鋰金屬陽極,其包含藉由經鋰化之碳材料塗佈之鋰金屬。
  2. 一種陰極,其包含經硫化之碳陰極。
  3. 一種經GNR改質之隔板,其包含藉由GNRs層塗佈之聚合物材料,其中該經GNR改質之隔板可操作以用作電池中之隔板。
  4. 一種電池,其包含陽極、陰極及定位於該陽極與該陰極之間的隔板,其中該電池包含選自由以下各者組成之群的組件:(a)陽極,其包含如申請專利範圍第1項之鋰金屬陽極;(b)陰極,其包含如申請專利範圍第2項之經硫化之碳陰極;(c)隔板,其包含如申請專利範圍第3項之經GNR改質之隔板;及(d)其組合。
  5. 一種方法,其包含製造鋰金屬陽極,其中該方法包括以下步驟:(a)選擇具有表面之鋰金屬;(b)藉由碳材料及電解質塗佈該鋰金屬之該表面,(c)執行涉及該鋰金屬、該碳材料及該電解質之反應,以在該鋰金屬之該表面上形成鋰化層。
  6. 一種方法,其包含製造經硫化之碳陰極。
  7. 一種方法,其包含選擇可操作以用作電池中之隔板的聚合物材料,及藉由添加GNRs層而改質該聚合物材料,以形成經GNR改質之隔板。
  8. 一種形成電池之方法,其包含組合陽極、陰極及定位於該陽極與該陰極之間的隔板之步驟,其中該方法包含選自由以下各者組成之群的步驟: (a)製造如申請專利範圍第5項之鋰金屬陽極;(b)製造如申請專利範圍第6項之經硫化之碳陰極;(c)製造如申請專利範圍第7項之經GNR改質之隔板;及(d)其組合。
  9. 一種形成電池之方法,其包含組合陽極、陰極及定位於該陽極與該陰極之間的隔板之步驟,其中該電池包含選自由以下各者組成之群的組件:(a)陽極,其包含如申請專利範圍第1項之鋰金屬陽極;(b)陰極,其包含如申請專利範圍第2項之經硫化之碳陰極;(c)隔板,其包含如申請專利範圍第3項之經GNR改質之隔板;及(d)其組合。
  10. 如申請專利範圍第5項之方法,其中該碳材料包含多壁碳奈米管。
  11. 如申請專利範圍第5項之方法,其中該碳材料係選自由以下各者組成之群:多壁碳奈米管、單壁碳奈米管、少壁碳奈米管、石墨烯奈米帶、石墨烯氧化物、石墨烯氧化物奈米帶、天然石墨、石墨烯奈米片、石墨、活性碳、經熱處理之瀝青、非晶碳、碳黑及其混合物。
  12. 如申請專利範圍第11項之方法,其中該等碳材料藉由聚合物經進一步處理,以使該等碳材料更具可撓性而不開裂,其中該聚合物係選自由以下各者組成之群:聚二甲基矽氧烷、聚胺酯、熱塑性聚胺甲酸酯、聚丁二烯、聚(苯乙烯丁二烯)、聚(苯乙烯丁二烯苯乙烯)、聚丙烯腈、聚苯胺、聚氟化體系、聚(甲基丙烯酸甲酯)、聚(乙二醇)、聚(環氧乙烷)、聚丙烯酸酯、乙烯聚合物、鏈式生長聚合物、階段生長聚合物、縮合 聚合物及其混合物。
  13. 如申請專利範圍第5項之方法,其中該鋰金屬摻雜該碳材料。
  14. 如申請專利範圍第5項之方法,其中該碳材料變成紅色或銀色。
  15. 如申請專利範圍第5項之方法,其中該碳材料可操作以抑制該鋰金屬陽極之鋰枝晶形成。
  16. 如申請專利範圍第5項之方法,其中涉及該鋰金屬、該碳材料及該電解質,以在該鋰金屬之該表面上形成該鋰化層之反應包含固態反應。
  17. 如申請專利範圍第6項之方法,其中該經硫化之碳陰極包含硫、碳及經熱處理之聚丙烯腈。
  18. 如申請專利範圍第2項之陰極或如申請專利範圍第6項之方法,其中該經硫化之碳陰極包含在約47wt%與約60wt%之間的量之硫。
  19. 如申請專利範圍第2項之陰極或如申請專利範圍第6項之方法,其中該陰極包含為導電填充劑之碳添加劑。
  20. 如申請專利範圍第19項之陰極或如申請專利範圍第19項之方法,其中該碳添加劑係選自由以下各者組成之群:碳黑、石墨烯、碳奈米管、石墨烯奈米帶及其組合。
  21. 如申請專利範圍第6項之方法,其中該製造該經硫化之碳陰極之方法包含藉由碳源熱處理元素硫。
  22. 如申請專利範圍第21項之方法,其中該熱處理之步驟係在存在添加劑之情況下進行。
  23. 如申請專利範圍第6項之方法,其中該製造該經硫化之碳陰極之方法包含: (a)形成包含元素硫、碳源及添加劑之粉末;(b)在至少約450℃之溫度下熱處理該粉末至少三個小時。
  24. 如申請專利範圍第7項之方法,其中該等聚合物材料包含聚丙烯(PP)及聚乙烯(PE)中之至少一者。
  25. 一種用以形成陽極之方法,其包含:(a)選擇具有表面之鋰金屬;(b)藉由碳材料及電解質塗佈該鋰金屬之該表面;以及(c)藉由用來自該鋰金屬之鋰來鋰化該碳材料,以形成經鋰化之碳材料。
TW106129755A 2016-08-31 2017-08-31 用於電池之陽極、陰極及隔板,以及其製造和使用方法 TW201826592A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662381782P 2016-08-31 2016-08-31
US62/381,782 2016-08-31
US201762460985P 2017-02-20 2017-02-20
US62/460,985 2017-02-20

Publications (1)

Publication Number Publication Date
TW201826592A true TW201826592A (zh) 2018-07-16

Family

ID=59846726

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106129755A TW201826592A (zh) 2016-08-31 2017-08-31 用於電池之陽極、陰極及隔板,以及其製造和使用方法

Country Status (4)

Country Link
US (2) US12087933B2 (zh)
CN (1) CN109923693A (zh)
TW (1) TW201826592A (zh)
WO (1) WO2018045226A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108963325A (zh) * 2018-08-14 2018-12-07 桑德集团有限公司 软包锂离子电池及其制备方法与用电设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018045226A1 (en) 2016-08-31 2018-03-08 William Marsh Rice University Anodes, cathodes, and separators for batteries and methods to make and use same
WO2019241291A1 (en) * 2018-06-11 2019-12-19 William Marsh Rice University Systems and methods of detecting li dendrites
US11605817B2 (en) 2019-09-24 2023-03-14 William Marsh Rice University Sulfurized carbon cathodes
US11984576B1 (en) 2019-10-01 2024-05-14 William Marsh Rice University Alkali-metal anode with alloy coating applied by friction
KR20220156571A (ko) 2020-03-18 2022-11-25 피어시카 인크 고체 상태 리튬 이온 배터리를 위한 고에너지밀도 리튬 금속 기반 애노드
CN111900373B (zh) * 2020-08-04 2021-08-06 大连理工大学 一种防锂枝晶的锂金属电池负极侧隔层材料的制备方法
KR20220127448A (ko) * 2021-03-11 2022-09-20 현대자동차주식회사 리튬이온전지용 복합음극 제조방법
EP4060764A1 (en) 2021-03-18 2022-09-21 William Marsh Rice University Sulfurized carbon cathodes
EP4283694A1 (en) * 2022-05-24 2023-11-29 Universität Stuttgart Cathode materials for lithium-sulfur batteries
US12006387B1 (en) 2022-11-14 2024-06-11 Piersica, Inc. Polymer composition and methods for making same

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4416960A (en) 1980-01-28 1983-11-22 Exxon Research And Engineering Co. Li/TiS2 Current producing system
US5426006A (en) 1993-04-16 1995-06-20 Sandia Corporation Structural micro-porous carbon anode for rechargeable lithium-ion batteries
US6576370B1 (en) 1999-04-26 2003-06-10 Matsushita Electric Industrial Co., Ltd. Positive electrode and lithium battery using the same
US6326104B1 (en) * 1999-05-14 2001-12-04 Electrochemical Systems, Inc. Electrolytes for lithium rechargeable cells
JP4789330B2 (ja) 2001-02-22 2011-10-12 株式会社クレハ 非水溶媒二次電池用電極材料、電極および二次電池
KR100436712B1 (ko) 2001-12-19 2004-06-22 삼성에스디아이 주식회사 캐소드 전극, 그 제조방법 및 이를 채용한 리튬 전지
JP2005294028A (ja) 2004-03-31 2005-10-20 Mitsubishi Heavy Ind Ltd リチウム二次電池
US20090053594A1 (en) 2007-08-23 2009-02-26 Johnson Lonnie G Rechargeable air battery and manufacturing method
US20090148769A1 (en) * 2007-12-06 2009-06-11 Ener1, Inc. Dendrite-free lithium electrode and method of making the same
US8236446B2 (en) * 2008-03-26 2012-08-07 Ada Technologies, Inc. High performance batteries with carbon nanomaterials and ionic liquids
US9882241B2 (en) 2008-08-01 2018-01-30 Seeo, Inc. High capacity cathode
US8709373B2 (en) 2008-12-11 2014-04-29 William Marsh Rice University Strongly bound carbon nanotube arrays directly grown on substrates and methods for production thereof
JP5563091B2 (ja) 2009-10-30 2014-07-30 ウィリアム マーシュ ライス ユニバーシティ 構造化されたシリコン電池アノード
US20110183206A1 (en) 2009-12-02 2011-07-28 Brigham Young University Apparatus, system, and method for carbon nanotube templated battery electrodes
AU2011223738B2 (en) 2010-03-02 2015-01-22 Applied Nanostructured Solutions, Llc Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof
US9096437B2 (en) 2010-03-08 2015-08-04 William Marsh Rice University Growth of graphene films from non-gaseous carbon sources
US20110262807A1 (en) 2010-04-22 2011-10-27 Arthur Douglas Boren Carbon Nanotube Augmented Sulfur Cathode for an Elemental Sulfur Battery
CA2712051A1 (en) 2010-08-12 2012-02-12 The Governors Of The University Of Alberta Method of fabricating a carbon nanotube array
US9083045B2 (en) * 2010-05-28 2015-07-14 Basf Se Composite materials, production thereof and use thereof in electrical cells
JP2013533904A (ja) 2010-05-28 2013-08-29 ビーエーエスエフ ソシエタス・ヨーロピア 複合材料、これらの製造方法、及びこれらを電気セルに使用する方法
DE102010030887A1 (de) 2010-07-02 2012-01-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kathodeneinheit für Alkalimetall-Schwefel-Batterie
FR2965108B1 (fr) 2010-09-22 2020-02-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Collecteur de courant d'electrodes pour batteries lithium
US9431660B2 (en) 2010-09-23 2016-08-30 Robert Bosch Gmbh Lithium battery with charging redox couple
US8859143B2 (en) 2011-01-03 2014-10-14 Nanotek Instruments, Inc. Partially and fully surface-enabled metal ion-exchanging energy storage devices
EP2720303B1 (en) 2011-06-11 2017-05-31 Positec Power Tools (Suzhou) Co., Ltd Electrode composite material, method thereof, positive electrode and battery including the same
CN105789563A (zh) 2011-06-11 2016-07-20 苏州宝时得电动工具有限公司 电极复合材料及其制备方法、正极、具有该正极的电池
JPWO2013001693A1 (ja) * 2011-06-28 2015-02-23 株式会社豊田自動織機 硫黄系正極活物質とその製造方法及びリチウムイオン二次電池用正極
EP2740172B1 (en) 2011-08-02 2018-11-07 Prieto Battery, Inc. Lithium-ion battery having interpenetrating electrodes
CN103875097A (zh) 2011-09-12 2014-06-18 小利兰斯坦福大学理事会 可再充电锂电池的囊封硫阴极
CN102368561B (zh) * 2011-10-20 2013-10-16 中国科学院化学研究所 一种可充放电锂硫电池
KR102059700B1 (ko) * 2011-11-18 2019-12-26 윌리엄 마쉬 라이스 유니버시티 그래핀-탄소 나노튜브 하이브리드 물질 및 전극으로서의 용도
US8974960B2 (en) 2011-12-22 2015-03-10 Board Of Regents, The University Of Texas System Binder-free sulfur—carbon nanotube composite cathodes for rechargeable lithium—sulfur batteries and methods of making the same
US20130171502A1 (en) 2011-12-29 2013-07-04 Guorong Chen Hybrid electrode and surface-mediated cell-based super-hybrid energy storage device containing same
US20130183547A1 (en) 2012-01-18 2013-07-18 E I Du Pont De Nemours And Company Compositions, layerings, electrodes and methods for making
US9705124B2 (en) 2012-02-27 2017-07-11 The Johns Hopkins University High energy density Li-ion battery electrode materials and cells
US8932764B2 (en) 2012-02-28 2015-01-13 Sila Nanotechnologies, Inc. Core-shell composites for sulfur-based cathodes in metal-ion batteries
US20130244097A1 (en) * 2012-03-14 2013-09-19 Basf Se Composite materials, production thereof and use thereof in electrochemical cells
US8765303B2 (en) 2012-04-02 2014-07-01 Nanotek Instruments, Inc. Lithium-ion cell having a high energy density and high power density
US20140332731A1 (en) 2012-04-02 2014-11-13 CNano Technology Limited Electrode Composition for Battery
US9845551B2 (en) 2012-07-10 2017-12-19 William Marsh Rice University Methods for production of single-crystal graphenes
US10053366B2 (en) 2012-12-12 2018-08-21 William Marsh Rice Univerisity Methods of controllably forming bernal-stacked graphene layers
US20140212760A1 (en) * 2013-01-25 2014-07-31 Bluestone Global Tech Ltd. Multi-layer thin carbon films, electrodes incorporating the same, energy storage devices incorporating the same, and methods of making same
US9923234B2 (en) 2013-04-29 2018-03-20 Seeo, Inc. Long cycle life lithium sulfur electrochemical cells
EP3017494B1 (en) 2013-07-03 2019-01-09 California Institute of Technology Carbon nanotubes - graphene hybrid structures for separator free silicon - sulfur batteries
CN103515646A (zh) * 2013-09-09 2014-01-15 中南大学 一种具有导电吸附层的锂硫电池及导电聚合物薄膜的应用
US9680148B2 (en) 2013-10-18 2017-06-13 NOHMs Technologies, Inc. Functionalized carbons for lithium-sulfur batteries
WO2015084945A1 (en) * 2013-12-04 2015-06-11 Cornell University Electrospun composite nanofiber comprising graphene nanoribbon or graphene oxide nanoribbon, methods for producing same, and applications of same
US10147966B2 (en) * 2014-02-20 2018-12-04 Sila Nanotechnologies, Inc. Metal sulfide composite materials for batteries
US9774058B2 (en) 2014-04-18 2017-09-26 Seeo, Inc. Polymer composition with electrophilic groups for stabilization of lithium sulfur batteries
US10044064B2 (en) 2014-04-18 2018-08-07 Seeo, Inc. Long cycle-life lithium sulfur solid state electrochemical cell
CN104362394A (zh) 2014-10-23 2015-02-18 清华大学 一种锂硫二次电池
US10731041B2 (en) * 2014-11-19 2020-08-04 Heraeus Medical Components Llc Conductive polymer coatings for three dimensional substrates
GB2533672B (en) * 2014-12-22 2018-07-25 Oxis Energy Ltd A cathode for a Li/S battery
US10461321B2 (en) * 2015-02-18 2019-10-29 Nanotek Instruments, Inc. Alkali metal-sulfur secondary battery containing a pre-sulfurized cathode and production process
CN107743645B (zh) 2015-04-23 2020-10-20 威廉马歇莱思大学 作为电极的垂直对齐的碳纳米管阵列
US20180183041A1 (en) 2015-06-09 2018-06-28 William Marsh Rice University Sulfur-containing carbon nanotube arrays as electrodes
US20180175379A1 (en) 2015-06-10 2018-06-21 William Marsh Rice University Germanium-containing carbon nanotube arrays as electrodes
US11749831B2 (en) * 2015-09-02 2023-09-05 Sceye Sa Li—S battery with carbon coated separator
US20180287162A1 (en) 2015-10-08 2018-10-04 William Marsh Rice University High surface area porous carbon materials as electrodes
CN105350054B (zh) 2015-11-25 2017-12-08 哈尔滨工业大学 一种通过电泳沉积实现二次电池隔膜表面用纳米碳材料改性的方法
US10312500B2 (en) 2016-01-06 2019-06-04 Toyota Motor Engineering & Manufacturing North America, Inc. Formation of slurry for high loading sulfur cathodes
US20180297850A1 (en) 2016-01-07 2018-10-18 William Marsh Rice University Facile preparation of carbon nanotube hybrid materials by catalyst solutions
WO2017120391A1 (en) * 2016-01-08 2017-07-13 The Texas A&M University System Large energy density batteries and methods of manufacture
WO2018045226A1 (en) 2016-08-31 2018-03-08 William Marsh Rice University Anodes, cathodes, and separators for batteries and methods to make and use same
US10651464B2 (en) 2017-02-13 2020-05-12 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a nano sulfur-loaded cathode and manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108963325A (zh) * 2018-08-14 2018-12-07 桑德集团有限公司 软包锂离子电池及其制备方法与用电设备
CN108963325B (zh) * 2018-08-14 2020-09-08 桑德新能源技术开发有限公司 软包锂离子电池及其制备方法与用电设备

Also Published As

Publication number Publication date
US12087933B2 (en) 2024-09-10
WO2018045226A1 (en) 2018-03-08
US20230253545A1 (en) 2023-08-10
CN109923693A (zh) 2019-06-21
US20190181425A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
Wang et al. 2D amorphous V2O5/graphene heterostructures for high‐safety aqueous Zn‐ion batteries with unprecedented capacity and ultrahigh rate capability
Rana et al. Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading
US20230253545A1 (en) Anodes, cathodes, and separators for batteries and methods to make and use same
US10680287B2 (en) Hybrid solid state electrolyte for lithium sulfur secondary battery
Mishra et al. Electrode materials for lithium-ion batteries
US11374254B2 (en) Solid state electrolyte for lithium secondary battery
Zhang et al. A carbon-based 3D current collector with surface protection for Li metal anode
JP6340363B2 (ja) リチウム電池用負極
US9012087B2 (en) Device and electrode having nanoporous graphite with lithiated sulfur for advanced rechargeable batteries
US20180287162A1 (en) High surface area porous carbon materials as electrodes
US10608276B2 (en) Carbon material, anode material and spacer additive for lithium ion battery
Chen et al. Self-supporting lithiophilic N-doped carbon rod array for dendrite-free lithium metal anode
US11888149B2 (en) Solid state battery system usable at high temperatures and methods of use and manufacture thereof
Ren et al. Enhanced electrochemical performance by size-dependent SEI layer reactivation of NiCo2O4 anodes for lithium ion batteries
US10403885B2 (en) Active material for batteries
JP2022518395A (ja) プレリチウム化エネルギー貯蔵デバイスのための組成物及び方法
Pourali et al. Li2S/transition metal carbide composite as cathode material for high performance lithium-sulfur batteries
Sarmah et al. Recent advancement in rechargeable battery technologies
US20160149206A1 (en) Methods for forming electrode materials for lithium-based batteries
Zuo et al. Lithiophilic silver coating on lithium metal surface for inhibiting lithium dendrites
Shen et al. Li2O-reinforced solid electrolyte interphase on three-dimensional sponges for dendrite-free lithium deposition
Zhou et al. A 20° C operating high capacity solid-state Li-S battery with an engineered carbon support cathode structure
CN109417167A (zh) 用于锂离子电池的包覆钛酸锂
Long et al. Facile preparation and electrochemistry performance of quasi solid-state polymer lithium–sulfur battery with high-safety and weak shuttle effect
Park et al. Free-standing nitrogen-doped reduced graphene oxide anode for lithium-ion batteries