TW201824461A - 導電性糊料與電子基板及其製造方法 - Google Patents

導電性糊料與電子基板及其製造方法 Download PDF

Info

Publication number
TW201824461A
TW201824461A TW105143425A TW105143425A TW201824461A TW 201824461 A TW201824461 A TW 201824461A TW 105143425 A TW105143425 A TW 105143425A TW 105143425 A TW105143425 A TW 105143425A TW 201824461 A TW201824461 A TW 201824461A
Authority
TW
Taiwan
Prior art keywords
metal particles
substrate
particles
melting point
conductive paste
Prior art date
Application number
TW105143425A
Other languages
English (en)
Other versions
TWI642148B (zh
Inventor
小林広治
林耀広
Original Assignee
三星皮帶股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星皮帶股份有限公司 filed Critical 三星皮帶股份有限公司
Priority to TW105143425A priority Critical patent/TWI642148B/zh
Publication of TW201824461A publication Critical patent/TW201824461A/zh
Application granted granted Critical
Publication of TWI642148B publication Critical patent/TWI642148B/zh

Links

Landscapes

  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

本發明係關於一種導電性糊料,其包括:高熔點金屬粒子,其具有超過煅燒溫度之熔點;熔融金屬粒子,其包含於煅燒溫度下會熔融且熔點為700℃以下之金屬或合金;活性金屬粒子,其包含包含活性金屬;及有機媒劑。

Description

導電性糊料與電子基板及其製造方法
本發明係關於一種用以於陶瓷基板形成電極或電路等導電部而製造表面金屬化基板或孔填充基板、通孔壁面金屬化基板等電子基板之導電性糊料與使用該糊料所獲得之電子基板(帶導電部之陶瓷基板)及其製造方法。
先前,作為於陶瓷基板之表面形成電極或電路之糊料材料,通常已知有將Ag或Cu、Ni、W等金屬粒子與低軟化點之玻璃粒子(粉末)混合於有機媒劑中而成之導電性糊料。此種導電性糊料係於藉由網版印刷等將特定之圖案印刷至基板表面後,於煅燒步驟中,以玻璃成分之軟化點以上且金屬之熔點以下之溫度進行加熱而使用。即,於該糊料中,由於加熱而熔融軟化之玻璃成分潤濕陶瓷基板,糊料與基板接合,並且藉由金屬粉末彼此燒結而形成導電部。包含此種玻璃粒子之導電性糊料因其處理之容易性,為製造電子零件或電路基板而開始廣泛用於電子設備產業之領域。然而,不可否認的是與其他接合方法相比,利用玻璃成分所進行之接合於接合強度之方面較為遜色。尤其是,對於多用於高輸出半導體之散熱目的之氮化鋁基板或氮化矽基板等陶瓷基板,玻璃成分難以潤濕,難以獲得充分之接合強度。因此,於要求高度之可靠性之用途中,多採取利用濺鍍實施之薄膜法、或使用活性金屬釺料將金屬箔或金屬板貼附於基板之方法等。然而,該等金屬化方法成本較高,於要求低成本之糊料印刷法中,改善接合強度之需求依然很強。 於專利文獻1中揭示有一種金屬化方法,該金屬化方法係藉由將作為活性金屬種之Ti之化合物(氫化鈦)添加至以Ag-Cu合金作為主成分之導電性糊料中而將氮化鋁基板與金屬化層牢固地接合。於該文獻中,記載有為防止Ag-Cu合金及氫化鈦之分解及氧化,煅燒係於非氧化性環境中、惰性環境中或真空環境中進行加熱,於實施例中,係於真空環境中進行煅燒。 於該方法中,由於單獨之活性金屬難以與基板表面反應,故活性金屬或其化合物之粒子係與適當之熔融成分(多為Ag-Cu合金)一併使用。因此,於煅燒中容易流動,電極或配線等之圖案形成困難,多用於金屬板之貼合等用途。進而,若於真空中進行煅燒,則有基板與金屬化層牢固地接合,亦容易保持圖案形狀之傾向,但即便如此,亦存在煅燒中熔融之Ag-Cu合金收縮而端部上捲,於基板上變小變圓,或圖案崩塌之傾向。該傾向尤其是於氮氣環境(非氧化性環境)下之煅燒中變得顯著,於氮氣環境下之煅燒中,會成為如下狀態:圖案完全上捲,或變形為球狀,僅接觸之部分勉強與基板接合。可推斷:於該文獻之實施例中,於真空中進行煅燒係由於此種情況。因此,該文獻之糊料存在於真空煅燒中可將電極或電路等精細之圖案形狀牢固地接合於基板之可能性,但由於真空煅燒為批次式,且升溫或降溫非常耗時,故生產性低。若為提高生產性而進行輸送機輸送式之氮氣煅燒,則由於金屬化層收縮,而難以保持電極或電路等精細之圖案形狀。 又,於專利文獻2中揭示有一種釺料糊料,該釺料糊料含有Ag-Cu合金粒子、及表面以銅被覆之鈦粒子作為金屬成分。於該文獻中記載有:先前之氫化鈦於約400~500℃下分解為氫與鈦,反應性較高之鈦與糊料中所包含之有機物之分解氣體之氧氣或碳發生反應,而妨礙與陶瓷構件之接合。 相對於此,於專利文獻1中記載有氫化鈦於700℃之前較為穩定,但無論如何煅燒溫度為850℃左右之高溫,故若於煅燒時暴露於氧氣或碳、氮氣等氣體中,則無法充分地發揮功能,通常於沒有上述氣體之真空中進行煅燒。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開平5-226515號公報 [專利文獻2]日本專利特開2000-246482號公報
[發明所欲解決之問題] 因此,本發明之目的在於提供一種可將導電部牢固地接合於陶瓷基板之導電性糊料與使用該糊料而得之電子基板及其製造方法。 本發明之其他目的在於提供一種即便於氮氣環境中進行煅燒,亦可將精細之圖案牢固地接合於陶瓷基板之導電性糊料與使用該糊料而得之電子基板及其製造方法。 [解決問題之技術手段] 本發明者為達成上述問題而銳意研究,結果發現:若將具有超過煅燒溫度之熔點之高熔點金屬粒子、包含於煅燒溫度以下之溫度下熔融之金屬或合金之熔融金屬粒子、包含活性金屬之活性金屬粒子、及有機媒劑組合而成之導電性糊料塗佈或填充於陶瓷基板並進行煅燒,則可將導電部牢固地接合於陶瓷基板,從而完成本發明。 即,本發明之導電性糊料包括:具有超過煅燒溫度之熔點之高熔點金屬粒子、包含於煅燒溫度以下之溫度下會熔融且熔點為700℃以下之金屬或合金之熔融金屬粒子、包含活性金屬之活性金屬粒子、及有機媒劑。上述熔融金屬粒子亦可為選自由In、Sn、Bi、Pb、Zn、Al、Sb、Mg所組成之群中之至少1種金屬粒子、或包含至少1種該等金屬種之合金粒子。上述熔融金屬粒子亦可包含選自由Sn-Ag-Cu合金粒子、Sn-Bi合金粒子及Au-Sn合金粒子所組成之群中之至少1種。於上述活性金屬粒子中,活性金屬亦可為Ti及/或Zr。上述活性金屬粒子亦可為選自由氫化鈦粒子、硼化鈦粒子及氫化鋯粒子所組成之群中之至少1種。上述高熔點金屬粒子亦可由選自由Cu、Ag及Ni所組成之群中之至少1種金屬或包含該金屬之合金形成。上述高熔點金屬粒子與上述熔融金屬粒子之質量比率亦可為高熔點金屬粒子/熔融金屬粒子=90/10~40/60左右。上述活性金屬粒子之比率亦可為相對於高熔點金屬粒子及熔融金屬粒子之合計100質量份為0.5~30質量份左右。上述熔融金屬粒子之中心粒徑亦可為0.01~30 μm。上述活性金屬粒子之中心粒徑亦可為0.1~15 μm左右。上述高熔點金屬粒子之中心粒徑亦可為0.01~15 μm左右。 本發明亦包括電子基板之製造方法,該製造方法包括:使上述導電性糊料附著於陶瓷基板之附著步驟、及對附著於上述陶瓷基板之上述導電性糊料進行煅燒而形成導電部之煅燒步驟。於上述煅燒步驟中,可於非氧化性環境中或惰性環境中對導電性糊料進行煅燒,例如可於氮氣環境中對導電性糊料進行煅燒。於上述煅燒步驟中,煅燒溫度亦可為800~950℃左右。 本發明包括具備陶瓷基板及導電部之電子基板,該導電部包括:具有煅燒溫度以上之熔點之高熔點金屬、包含具有700℃以下之熔點之金屬或合金之熔融金屬、及活性金屬。上述陶瓷基板亦可為氧化鋁基板、氧化鋁-氧化鋯基板、氮化鋁基板、氮化矽基板或碳化矽基板。本發明之電子基板亦可為表面金屬化基板、孔填充基板或通孔壁面金屬化基板。 [發明之效果] 於本發明中,由於將具有煅燒溫度以上之熔點之高熔點金屬粒子、包含於煅燒溫度以下之溫度下會熔融且熔點為700℃以下之金屬或合金之熔融金屬粒子、包含活性金屬之活性金屬粒子、及有機媒劑進行組合,故而可將導電部牢固地接合於陶瓷基板,尤其,即便於氮氣環境中煅燒,亦能夠不破壞精細之圖案形狀而牢固地接合於陶瓷基板。
[導電性糊料] 本發明之導電性糊料包括:具有煅燒溫度以上之熔點之高熔點金屬粒子、包含於煅燒溫度以下之溫度下會熔融且熔點為700℃以下之金屬或合金之熔融金屬粒子、包含活性金屬之活性金屬粒子、及有機媒劑。若使用本發明之導電性糊料,則導電部可牢固地接合於陶瓷基板之原因可推斷如下。即,可推斷:包含於糊料中之熔融金屬粒子於低溫下熔融而覆蓋活性金屬粒子之表面,藉此,即便於高溫下亦防止活性金屬或其化合物與存在於周邊之氣體(煅燒環境氣體之氮氣或有機媒劑分解而產生之碳等)進行反應。可推斷:由於此種作用,活性金屬即便於氮氣環境中,直至高溫時亦可保持其活性,熔融金屬成分中含有保持活性之活性金屬,藉此,熔融金屬於陶瓷基板潤濕,能夠於活性金屬與陶瓷基板之間進行反應,金屬化膜之上捲或收縮亦得到抑制。再者,可推斷:由於熔融金屬如其字面所示液化流動而導致之圖案之上捲或收縮變圓之現象,或相反,於基板過度潤濕而導致圖案擴散之現象等並非完全僅由此種作用控制。此處,本發明係藉由與熔融金屬或活性金屬化合物分開地加入高熔點金屬粒子而抑制如上述之收縮或擴散現象。即,可推斷:熔融金屬成分亦於高熔點金屬粒子之表面潤濕,藉此防止過度之流動。根據熔融金屬及高熔點金屬之種類,於煅燒中,於熔融金屬與高熔點金屬之間推進合金化而熔融金屬之熔點提高,利用該點亦能抑制流動化。 (高熔點金屬粒子) 形成高熔點金屬粒子之金屬若具有超過煅燒溫度之熔點(例如超過950℃且為2500℃以下)則並未特別限定。具體而言,作為上述金屬,例如可列舉Cu、Ag、Ni、W、Mo、Au、Pt、Pd等。該等金屬可單獨使用或組合兩種以上使用。金屬粒子可為異種之金屬粒子之組合,若熔點為煅燒溫度以上,亦可為由組合兩種以上而成之合金而形成。該等金屬中,較佳為選自由Cu、Ag及Ni所組成之群中之至少1種金屬或包含該金屬之合金。 該等金屬粒子中,就導電性優異、且熔點較低、於800~950℃之煅燒溫度下粒子彼此容易互相燒結之觀點而言,較佳為Cu粒子(熔點1083℃)、Ag粒子(熔點960℃),就經濟性之觀點而言,尤其較佳為Cu粒子。 作為高熔點金屬粒子之形狀,例如可列舉球狀(正球狀或近似球狀)、橢圓體(橢圓球)狀、多角體狀(多角錘狀、正方體狀或長方體狀等多角方形狀等)、板狀(扁平狀、鱗片狀、薄片狀等)、桿狀或棒狀、纖維狀、樹針狀、不規則形狀等。高熔點金屬粒子之形狀通常為球狀、橢圓體狀、多角體狀、不規則形狀等。 就可兼顧圖案形狀之保持性及對陶瓷基板之密接性之觀點而言,高熔點金屬粒子之中心粒徑或平均粒徑(D50)例如為0.01~15 μm(例如0.01~10 μm),較佳為0.05~10 μm(例如0.1~7 μm),進而較佳為0.3~1 μm(尤其是0.4~0.8 μm)左右。又,於圖案形狀之保持性較重要之用途中,高熔點金屬粒子之中心粒徑例如可為0.01~2 μm(尤其是0.05~1 μm)左右,於對陶瓷基板之密接性較重要之用途中,例如亦可為0.2~10 μm(尤其是0.3~8 μm)左右。若粒徑過小,則有經濟性降低,且糊料中之分散性亦降低之虞;若過大,則有糊料之印刷性及分散之均一性降低之虞。 再者,於本說明書及申請專利範圍中,中心粒徑係指用雷射繞射散射式粒度分佈測定裝置測定之平均粒徑。 高熔點金屬粒子之熔點為煅燒溫度以上之熔點即可,例如可為超過950℃且為2500℃以下,較佳為955~2000℃,進而較佳為960~1500℃(尤其是980~1200℃)左右。若熔點過低,則有形成精細之形狀之圖案變得困難之虞。 高熔點金屬粒子可藉由慣用之方法製造,例如可利用濕式還原法、電解法、霧化法、水霧化法等各種製法而製造。 (熔融金屬粒子) 熔融金屬粒子包括於煅燒溫度以下之溫度下會熔融且熔點為700℃以下之金屬或合金,於糊料之煅燒溫度以下煅燒時熔融而發生流動化,藉此可提高導電部與陶瓷基板之接合性。可為具有煅燒溫度以下且為700℃以下之熔點之金屬或合金,熔點例如為60~700℃,較佳為80~600℃(例如100~500℃),進而較佳為120~400℃左右。 熔融金屬粒子包括具有700℃以下之熔點之金屬或合金即可,但就流動性之觀點而言,較佳為僅由具有700℃以下之熔點之金屬或合金而形成。 作為金屬粒子之熔融金屬粒子,例如可列舉In、Sn、Bi、Pb、Zn、Al、Sb、Mg等。作為合金粒子之熔融金屬粒子,可列舉包含上述金屬種之合金,例如可列舉Sn-Bi合金粒子、Sn-Pb合金粒子、Sn-Zn-Bi合金粒子、Au-Sn合金粒子、Sn-Ag-Cu合金粒子、Sn-Cu合金粒子、Sn-Sb合金粒子、Au-Sn合金粒子、Au-Ge合金粒子、Zn-Al-Ge合金粒子、Bi-Sn-In合金粒子、In-Sn合金粒子、Al-Si-Fe-Cu合金粒子、Ag-Cu-Zn-Sn合金粒子等包含In、Sn、Bi、Pb、Zn、Al、Sb、Mg之合金粒子等。此種合金粒子亦可為用於焊錫糊料等之焊錫粉末,例如亦可為Sn-58Bi(熔點約140℃)、Sn-37Pb(熔點183℃)、Sn-8Zn-3Bi(熔點約190℃)、Au-90Sn(熔點約220℃)、Sn-3Ag-0.5Cu(熔點約220℃)、Sn-0.7Cu(熔點約230℃)、Sn-5Sb(熔點約235℃)、Au-20Sn(熔點約280℃)、Au-12Ge(熔點356℃)、Zn-5Al-0.1Ge(熔點382℃)、32.5Bi-16.5Sn-51In(熔點62℃)、52In-48Sn(117℃)、Al-12Si-0.8Fe-0.3Cu(熔點580℃)、58Ag-22Cu-17Zn- 5Sn(熔點650℃)等。該等熔融金屬粒子可單獨使用或組合兩種以上使用。 該等合金粒子中,就流動性等觀點而言,較佳為含有In、Sn、Bi之合金粒子。進而,就不包含有害之鉛、且容易得到小粒徑之粒子之觀點而言,較佳為Sn-58Bi等Sn-Bi合金粒子、Sn-3Ag-0.5Cu等Sn-Ag-Cu合金粒子、Au-20Sn等Au-Sn合金粒子;就流動性優異、且可大幅度地提高導電部與陶瓷基板之接合性之觀點而言,較佳為熔點較低之Sn-Bi合金粒子或Sn-Ag-Cu合金粒子。進而,就可提高與高熔點金屬粒子之潤濕性(親和性)、且調整流動性而容易保持圖案形狀之觀點而言,尤其較佳為包含形成高熔點金屬粒子之金屬(Cu、Ag等)之合金、例如Sn-Ag-Cu合金粒子。 於不損害本發明之效果之範圍內,熔融金屬粒子除包括具有700℃以下之熔點之合金之熔融金屬粒子(第1熔融金屬粒子)以外,亦可進而包括含有合金之熔融金屬粒子(第2熔融金屬粒子),該熔融金屬粒子具有超過700℃且為煅燒溫度以下之熔點。藉由與第2熔融金屬粒子進行組合,可調整第1熔融金屬粒子之流動性,且可兼顧基板與導電部之接合性及精細之圖案形狀。 第2熔融金屬粒子之熔點例如為超過700℃且為880℃以下,較佳為730~850℃,進而較佳為750~800℃左右。 作為第2熔融金屬粒子,若具有此種熔點則並未特別限定,可為Ba(熔點717℃)或Ce(熔點785℃)等金屬粒子,又,亦可為合金粒子,但為可提高與第1熔融金屬粒子之親和性,較佳為含有包含於第1熔融金屬粒子中之金屬之合金粒子,就可提高與高熔點金屬粒子之潤濕性之觀點而言,包含形成高熔點金屬粒子之金屬(Cu、Ag等)之合金粒子亦較佳。其中,尤其較佳為由包含形成第1及第2熔融金屬粒子並形成高熔點金屬粒子之金屬(Cu、Ag等)之合金而形成。作為較佳之第2熔融金屬粒子,可列舉包含Cu及/或Ag之合金(例如Ag-Cu合金等),例如作為釺料糊料而通用之銀釺料72Ag-28Cu(熔點約780℃)等。 第1熔融金屬粒子與第2熔融金屬粒子之質量比率可自前者/後者=100/0~10/90左右之範圍選擇,於將兩種粒子進行組合之情形時,例如為90/10~20/80,較佳為70/30~30/70,進而較佳為60/40~40/60左右。若第2熔融金屬粒子之比率過多,則有基板與導電部之接合力降低之虞。 熔融金屬粒子可藉由對處於熔融狀態之合金吹送氣體或空氣、水等,瞬時進行粉碎及冷卻凝固使其粉末化之所謂霧化法等而製作。該等方法中,就可製作接近正球狀之微米級之合金粒子之觀點而言,亦可為利用吹送水之水霧化法而製作之粒子。 作為熔融金屬粒子之形狀,例如可列舉球狀(正球狀或近似球狀)、橢圓體(橢圓球)狀、多角體形狀(多角錘狀、正方體狀或長方體狀等多角方形狀等)、板狀(扁平、鱗片或薄片狀等)、桿狀或棒狀、纖維狀、不規則形狀等。熔融金屬粒子之形狀通常為球狀、橢圓體狀、多角體狀、不規則形狀等。 熔融金屬粒子之中心粒徑(D50)例如為0.01~30 μm,較佳為0.1~25 μm,進而較佳為0.5~20 μm(尤其是1~10 μm)左右。若粒徑過小,則有粒子製作時之產率顯著降低且成本大幅度上升之虞。相反,若粒徑過大,則有微細圖案形成時之1粒子尺寸之比率變高、圖案內之均一性降低、發生圖案缺損或空隙、與基板之接合不均一等缺陷之虞。又,於利用網篩印刷之情形時,亦有引起網眼堵塞之虞。 高熔點金屬粒子與熔融金屬粒子之質量比率例如為高熔點金屬粒子/熔融金屬粒子=90/10~40/60,較佳為85/15~45/55,進而較佳為80/20~50/50(尤其是75/25~60/40)左右。若熔融金屬粒子之比率過多,則不能充分抑制熔融金屬之流動性,容易引起由於煅燒收縮而導致之圖案邊緣之上捲或向圖案外之滲出。相反,於熔融金屬粒子之比率過少之情形時,有由於成為陶瓷基板與活性金屬成分之反應場之固液接觸界面變少而無法獲得良好之接合之虞。 (活性金屬粒子) 作為包含於活性金屬粒子中之活性金屬,例如可列舉週期表第4A族金屬、即Ti、Zr、Hf。該等活性金屬可單獨使用或組合兩種以上使用。該等活性金屬中,就於煅燒步驟中之活性優異、且可提高陶瓷基板與導電部之接合力之觀點而言,較佳為Ti及/或Zr,尤其較佳為Ti。 活性金屬粒子包含活性金屬即可,亦可由上述活性金屬單獨形成,但就於煅燒步驟中之活性優異之觀點而言,較佳為由包含活性金屬之化合物而形成。 作為包含活性金屬之化合物,無特別限定,例如可列舉鈦化合物[例如硼化鈦(TiB2 )、氫化鈦(TiH2 )、硫化鈦(TiS2 )、四氯化鈦(TiCl4 )等]、鋯化合物[例如硼化鋯(ZrB2 )、氫化鋯(ZrH2 )、硫化鋯(ZrS2 )、四氯化鋯(ZrCl4 )、氫氧化鋯(Zr(OH)4 )等]、鉿化合物[例如硼化鉿(HfB2 )、氫化鉿(HfH2 )、硫化鉿(HfS2 )、四氯化鉿(HfCl4 )等]等。該等之中,就於煅燒步驟中之活性優異之觀點而言,較佳為氫化鈦(TiH2 )、硼化鈦(TiB2 )、氫化鋯(ZrH2 )。 包含該等活性金屬之活性金屬粒子可單獨使用或組合兩種以上使用,較佳為選自由氫化鈦粒子、硼化鈦粒子及氫化鋯粒子所組成之群中之至少1種。 作為活性金屬粒子之形狀,例如可列舉球狀(正球狀或近似球狀)、橢圓體(橢圓球)狀、多角體形狀(多角錘狀、正方體狀或長方體狀等多角方形狀等)、板狀(扁平、鱗片或薄片狀等)、桿狀或棒狀、纖維狀、不規則形狀等。活性金屬粒子之形狀通常為球狀、橢圓體狀、多角體狀、不規則形狀等。 活性金屬粒子之中心粒徑(D50)例如為0.1~15 μm(例如1~15 μm),較佳為0.5~10 μm,進而較佳為1~7 μm(尤其是3~6 μm)左右。粒徑較小者於糊料之均一性之方面較佳,但若過小,則有粒子製作時之產率顯著降低、經濟性降低之虞。相反,若粒徑過大,則由於微細圖案形成時之1粒子尺寸之比率變高、圖案內之均一性降低而容易發生圖案缺損或空隙、與基板接合之不均一等缺陷。又,若利用網篩印刷,則有引起網眼堵塞之虞。 活性金屬粒子之比率相對於高熔點金屬粒子及熔融金屬粒子之合計100質量份為0.5~30質量份,較佳為1~20質量份,進而較佳為2~10質量份(尤其是2.5~5質量份)左右。若活性金屬粒子之比率過少,則有與陶瓷基板之接合性降低之虞。相反,若過多,則有金屬化膜或填充孔本身變脆之虞。 (有機媒劑) 有機媒劑亦可為作為包含金屬粒子之導電性糊料之有機媒劑而利用之慣用之有機媒劑,例如有機黏合劑及/或有機溶劑。有機媒劑可為有機黏合劑及有機溶劑之任一者,但通常為有機黏合劑與有機溶劑之組合(利用有機黏合劑之有機溶劑而得之溶解物)。 作為有機黏合劑,並未特別限定,例如可列舉:熱塑性樹脂(烯烴系樹脂、乙烯系樹脂、丙烯酸系樹脂、苯乙烯系樹脂、聚醚系樹脂、聚酯系樹脂、聚醯胺系樹脂、纖維素衍生物等)、熱固性樹脂(熱固性丙烯酸系樹脂、環氧樹脂、酚樹脂、不飽和聚酯系樹脂、聚胺酯系樹脂等)等。該等有機黏合劑可單獨使用或組合兩種以上使用。該等有機黏合劑中,通用於煅燒過程中容易地燒毀、且灰分較少之樹脂,例如:丙烯酸系樹脂(聚甲基丙烯酸甲酯、聚甲基丙烯酸丁酯等)、纖維素衍生物(硝化纖維素、乙基纖維素、丁基纖維素、乙酸纖維素等)、聚醚類(聚甲醛等)、橡膠類(聚丁二烯、聚異戊二烯等)等,就熱分解性等觀點而言,較佳為聚(甲基)丙烯酸甲酯或聚(甲基)丙烯酸丁酯等聚(甲基)丙烯酸C1-10 烷基酯。 作為有機溶劑,並未特別限定,為賦予糊料適度之黏性、且於將糊料塗佈在基板之後可藉由乾燥處理而容易地揮發之有機化合物即可,亦可為高沸點之有機溶劑。作為此種有機溶劑,例如可列舉:芳香族烴(對二甲苯等)、酯類(乳酸乙酯等)、酮類(異佛酮等)、醯胺類(二甲基甲醯胺等)、脂肪族醇(辛醇、癸醇、二丙酮醇等)、溶纖劑類(甲基溶纖劑、乙基溶纖劑等)、溶纖劑乙酸酯類(乙基溶纖劑乙酸酯、丁基溶纖劑乙酸酯等)、卡必醇類(卡必醇、甲基卡必醇、乙基卡必醇等)、卡必醇乙酸酯類(乙基卡必醇乙酸酯、丁基卡必醇乙酸酯)、脂肪族多元醇類(乙二醇、二乙二醇、二丙二醇、丁二醇、三乙二醇、甘油等)、脂環族醇類[例如環己醇等環烷醇類;松脂醇、二氫松脂醇等萜醇類(單萜醇等)等]、芳香族醇類(間甲酚等)、芳香族羧酸酯類(鄰苯二甲酸二丁酯、鄰苯二甲酸二辛酯等)、含氮雜環化合物(二甲基咪唑、二甲基咪唑啶酮等)等。該等有機溶劑可單獨使用或組合兩種以上使用。該等有機溶劑中,就糊料之流動等觀點而言,較佳為松脂醇等脂環族醇、丁基卡必醇乙酸酯等C1-4 烷基溶纖劑乙酸酯類。 於組合有機黏合劑及有機溶劑之情形時,有機黏合劑之比率相對於有機溶劑100質量份,例如為1~200質量份,較佳為10~100質量份,進而較佳為30~80質量份左右,相對於有機媒劑整體為5~80質量%,較佳為10~50質量%,進而較佳為15~40質量%左右。 有機媒劑之體積比率相對於導電性糊料之體積整體,例如為10~80質量%,較佳為20~75質量%,進而較佳為30~70質量%左右。有機媒劑之質量比率相對於導電成分(高熔點金屬粒子、熔融合金粒子及活性金屬粒子之總量)100質量份,例如為1~200質量份,較佳為5~150質量份,進而較佳為10~100質量份左右。 (其他成分) 於不損害本發明之效果之範圍內,導電性糊料亦可進而含有慣用之添加劑。作為慣用之添加劑,例如可列舉:無機黏合劑(玻璃料等)、硬化劑(丙烯酸系樹脂之硬化劑等)、著色劑(染料顏料等)、色相改良劑、染料定著劑、光澤賦予劑、金屬防腐劑、穩定劑(抗氧化劑、紫外線吸收劑等)、界面活性劑或分散劑(陰離子性界面活性劑、陽離子性界面活性劑、非離子性界面活性劑、兩性界面活性劑等)、分散穩定劑、黏度調整劑或流變調整劑、保濕劑、搖變性賦予劑、調平劑、消泡劑、殺菌劑、填充劑等。該等其他成分可單獨使用或組合兩種以上使用。其他成分之比率可根據成分之種類而選擇,通常相對於導電性糊料整體為10質量%以下(例如0.01~10質量%)左右。進而,本發明之導電性糊料亦可不含有玻璃料等無機黏合劑。 [電子基板之製造方法] 本發明之電子基板(帶導電部之陶瓷基板)係經過使上述導電性糊料附著於陶瓷基板之附著步驟、及對附著於上述陶瓷基板之上述導電性糊料進行煅燒而形成導電部之煅燒步驟而獲得。 於附著步驟中,導電性糊料之附著方法可根據電子基板之種類而選擇,於表面金屬化基板或通孔壁面金屬化基板中,可將導電性糊料塗佈於基板之表面或貫通孔(通孔)之內壁,於孔填充基板中,亦可對表裏貫通孔填充導電性糊料(孔填充)。由於本發明之導電性糊料於煅燒時不收縮,故無論何種電子基板,煅燒後均可保持形狀。 作為導電性糊料之塗佈或填充方法,例如可列舉:網版印刷法、噴墨印刷法、凹版印刷法(例如照相凹版印刷法等)、平版印刷法、膠版印刷法、軟版印刷法等印刷法、或將該等印刷法進行組合之印刷法、旋轉塗佈法、浸漬法、輥壓入法、刮刀壓入法、加壓壓入法等直接壓入法等。該等方法中,較佳為網版印刷法等。 附著於基板之糊料可於煅燒處理前自然乾燥,但亦可將其加熱使其乾燥。加熱溫度可根據有機溶劑之種類而選擇,例如為50~200℃,較佳為80~180℃,進而較佳為100~150℃左右。加熱時間例如為1分鐘~3小時,較佳為5分鐘~2小時,進而較佳為10分鐘~1小時左右。 於煅燒步驟中,煅燒溫度為導電性糊料中之高熔點金屬粒子之燒結溫度以上即可。煅燒溫度(最高極限溫度)可為500℃以上,例如為750~1000℃(例如780~980℃),較佳為800~950℃,進而較佳為850~930℃(尤其是880~920℃)左右。煅燒時間(最高極限溫度下之煅燒時間)例如為1分鐘~3小時,較佳為3分鐘~1小時,進而較佳為5~30分鐘左右。若煅燒溫度過低,則有反應未充分進行,與基板之接合力變弱之虞。相反,若煅燒溫度過高,則有熔融成分之流動性變高,發生上捲或收縮、滲出等,圖案性降低之虞。 再者,煅燒之環境可根據金屬粒子之種類而選擇,並未特別限定,可為空氣中、非氧化性氣體(例如氮氣等)環境中、惰性氣體(例如氬氣、氦氣等)環境中、真空環境中之任一者,但就能夠以高生產性製造電子基板之觀點而言,較佳為非氧化性氣體環境或惰性氣體環境中。尤其,於本發明中,即便於氮氣環境中,亦可將圖案牢固地接合於基板,故尤其較佳為氮氣環境中。 煅燒(尤其是於氮氣環境中之煅燒)亦可使用批次式爐或傳送帶輸送式之隧道爐而進行。 亦可對煅燒所獲得之導電部(金屬化膜或孔填充部)之表面進行物理性地或化學性地研磨。作為物理性研磨方法,例如可列舉擦光(buffing)研磨、精研研磨、拋光(polishing)研磨等。作為化學性研磨方法(表面處理方法),例如可列舉利用過硫酸鈉水溶液等對最表面進行軟蝕刻之方法等。 亦可於進行物理性地或化學性地研磨之後,對金屬化膜或孔填充部表面進行鍍覆。作為鍍覆方法,可不論電解、無電解而利用各種鍍覆方法。進而,亦可廣泛地選擇鍍覆層之金屬種。例如,為提高焊錫接合性或打線接合性、凸塊接合性等,可為鍍鎳金、鍍鎳鈀金、鍍錫、鍍焊錫,為增加膜而降低電阻值,可為鍍銅,為提高反射率,亦可為鍍銀。 進而,亦可於上述金屬化膜或孔填充部上重疊銅糊料或銀糊料等通用之導電糊料而增加膜。 進而,於電子基板為孔填充基板或通孔壁面金屬化基板之情形時,孔填充部或壁面金屬化膜係出於基板表裏導通或導熱性提高之目的而設置,但形成於基板表面之電極、配線圖案可為本發明之導電性糊料,亦可為通用之導電性糊料。例如,於孔填充基板中,僅孔填充部係由本發明之導電性糊料形成,表面電極或配線亦可利用濺鍍或鍍覆法而形成。 [電子基板] 本發明之電子基板係利用上述製造方法而獲得,具備陶瓷基板及導電部,該導電部包含:具有煅燒溫度以上之熔點之高熔點金屬、包含具有700℃以下之熔點之金屬或合金之熔融金屬、及活性金屬。 陶瓷基板之材質為活性金屬可發生反應之陶瓷即可,例如可列舉:金屬氧化物(石英、氧化鋁(alumina)或氧化鋁、氧化鋯、藍寶石、鐵氧體、氧化鋅、氧化鈮、莫來石、氧化鈹等)、氧化矽(二氧化矽等)、金屬氮化物(氮化鋁、氮化鈦等)、氮化矽、氮化硼、氮化碳、金屬碳化物(碳化鈦、碳化鎢等)、碳化矽、碳化硼、金屬複合氧化物[鈦酸金屬鹽(鈦酸鋇、鈦酸鍶、鈦酸鉛、鈦酸鈮、鈦酸鈣、鈦酸鎂等)、鋯酸金屬鹽(鋯酸鋇、鋯酸鈣、鋯酸鉛等)等]等。該等陶瓷可單獨使用或組合兩種以上使用。 該等陶瓷基板中,就於電子領域中可靠性較高之觀點而言,較佳為氧化鋁、氧化鋁-氧化鋯基板、氮化鋁基板、氮化矽基板、碳化矽基板,進而,就耐熱性較高,且與Cu粒子或Ag粒子等高熔點金屬之接合力之提高效果較大之觀點而言,尤其較佳為氧化鋁基板、氮化鋁基板、氮化矽基板。 陶瓷基板之厚度根據用途而適當選擇即可,例如為0.001~10 mm,較佳為0.01~5 mm,進而較佳為0.05~3 mm(尤其是0.1~1 mm)左右。 [實施例] 以下,根據實施例更詳細地說明本發明,但本發明並不限於該等實施例。於以下之例中,將於實施例中所使用之材料及評價用基板之圖案、所獲得之電子基板之評價方法示於以下。 [所使用之材料] (高熔點金屬粒子) Cu粒子A:中心粒徑0.1 μm之銅粒子、熔點1085℃ Cu粒子B:中心粒徑0.5 μm之銅粒子、熔點1085℃ Cu粒子C:中心粒徑3 μm之銅粒子、熔點1085℃ Cu粒子D:中心粒徑7 μm之銅粒子、熔點1085℃ Cu粒子E:中心粒徑15 μm之銅粒子、熔點1085℃ Ag粒子:中心粒徑0.5 μm之銀粒子、熔點962℃ Ni粒子:中心粒徑0.7 μm之鎳粒子、熔點1455℃。 (熔融金屬粒子) Sn粒子:中心粒徑8 μm之錫粒子、熔點232℃ Bi粒子:中心粒徑16 μm之鉍粒子、熔點271℃ In粒子:中心粒徑25 μm之銦粒子、熔點156℃ SnAgCu粒子:中心粒徑5 μm之Sn-Ag-Cu合金粒子、熔點220℃ SnBi粒子:中心粒徑5 μm之Sn-Bi合金粒子、熔點140℃ AuSn粒子:中心粒徑5 μm之Au-Sn合金粒子、熔點280℃ Zn粒子:中心粒徑7 μm之鋅粒子、熔點419℃ Al粒子:中心粒徑7 μm之鋁粒子、熔點660℃ AgCuZnSn粒子:中心粒徑5 μm之58Ag-22Cu-17Zn-5Sn合金粒子、熔點650℃ AgCu粒子:中心粒徑5 μm之Ag-Cu合金粒子、熔點780℃。 (活性金屬粒子) 氫化鈦(TiH2 )粒子:中心粒徑6 μm之氫化鈦粒子 硼化鈦(TiB2 )粒子:中心粒徑3 μm之硼化鈦粒子 氫化鋯(ZrH2 )粒子:中心粒徑5 μm之氫化鋯粒子。 (有機媒劑) 有機黏合劑:聚甲基丙烯酸丁酯 有機溶劑:松脂醇。 [評價用基板之圖案] 將於50.8 mm×50.8 mm之陶瓷基板之表面上縱橫排列配置有2 mm×2 mm尺寸之正方形圖案之試樣作為評價基板。圖案間利用細線連結以便能進行電鍍。 [電子基板之評價] (圖案形狀) 藉由目視及放大鏡(15倍)觀察煅燒後之電子基板之外觀(2 mm×2 mm尺寸之正方形圖案),對於形狀得以未變形地保持之圖案,進一步進行圖像測定,並藉由以下之基準進行評價。 B(邊緣捲縮):圖案之邊緣部分上捲 B(收縮):圖案之邊緣部分未上捲,但正方形被破壞,邊緣部變圓,尺寸減小 A(良好):2 mm×2 mm圖案之形狀得以未變形地保持,但若進而進行圖像測定,不在1.97 mm×1.97 mm~2.03 mm×2.03 mm之範圍內 S(尤其良好):2 mm×2 mm圖案之形狀得以未變形地保持,進而於圖像測定中,2 mm×2 mm圖案之尺寸幾乎未改變,在1.97 mm×1.97 mm~2.03 mm×2.03 mm之範圍內。 (剝離強度試驗及破壞狀態) 對圖案形狀良好之電子基板進行剝離強度試驗。使鍍錫銅線(剝離線)沿著2 mm×2 mm之正方形圖案之上表面(通過正方形之中心部,使之平行地沿著邊)進行焊接後,於2 mm圖案之外側將剝離線90度彎折,相對於基板面,向垂直上方拉伸,將膜剝下,測定剝離強度。破壞時之最高強度紀錄為剝離強度。又,觀察試驗後之破壞位置,藉由以下之基準對破壞狀態進行評價。 S(基板破壞):基板如被挖去一般被破壞,且剝離強度為4 kg以上 A(基板破壞):基板如被挖去一般被破壞,且剝離強度為2 kg以上且未達4 kg A(界面破壞):於基板與金屬化膜之界面處被破壞,且剝離強度為2 kg以上 B(界面破壞):於基板與金屬化膜之界面處被破壞,且剝離強度為未達2 kg B(膜內破壞):金屬化膜於膜之內部處乾巴巴地被破壞,且剝離強度為未達2 kg。 (綜合判定) 對於圖案形狀之評價結果及剝離強度試驗之評價結果,藉由以下之基準進行綜合評價。 S:圖案形狀與剝離強度之判定均為[S] A:圖案形狀與剝離強度之判定均為[A],或一個為[S],另一個為[A] B:圖案形狀與剝離強度之判定之任一個為[B]。 實施例1 藉由網版印刷將以如表1所示之組成製備之糊料1印刷至上述評價圖案上之後,藉由氮氣置換之隧道爐進行煅燒。作為陶瓷基板,使用氮化鋁基板。煅燒於最高溫度900℃下進行,保持該溫度10分鐘,包含升溫降溫之自向爐內投料開始至回收為止之時間設為約60分鐘。觀察出爐後之煅燒後之基板之金屬化膜,為良好之形狀。對煅燒後之金屬化膜之表面進行擦光(buffing)研磨後,於表面實施電鍍鎳金。供所獲得之電子基板之剝離強度試驗用,破壞模式變為基板破壞,基板與金屬化膜以高於基板強度以上之強度而接合,顯示出充分之接合性。 實施例2~9 使用如表1所示之糊料2~9代替糊料1,除改變糊料中之熔融金屬粒子以外,與實施例1同樣地進行,獲得電子基板。所獲得之電子基板之圖案形狀、剝離試驗均為良好之結果。然而,於與實施例1相對之評價中,實施例4係與實施例1相同之結果,但實施例2及6之圖案形狀稍微降低,實施例3、5、7~9之剝離強度稍微降低。 實施例10~11 使用如表1所示之糊料10及11代替糊料1,除改變糊料中之活性金屬粒子之比率以外,與實施例1同樣地進行,獲得電子基板。所獲得之電子基板之圖案形狀、剝離試驗均為良好之結果。然而,於與實施例1相對之評價中,實施例10之圖案形狀及剝離強度均稍微降低,實施例11之剝離強度稍微降低。 實施例12~14 使用如表1所示之糊料12~14代替糊料1,除將糊料中之熔融金屬粒子替換為如表1所示之2種類之熔融金屬粒子以外,與實施例1同樣地進行,獲得電子基板。所獲得之電子基板之圖案形狀、剝離試驗均為良好之結果。詳細而言,於實施例12中,圖案形狀、剝離試驗均為與實施例1相同之結果。又,於實施例13中,藉由將相對於具有400℃以下之熔點之熔融金屬粒子為超過700℃之熔點之熔融金屬粒子進行組合,流動性得以調整至適當之範圍,故與實施例2相比,圖案形狀提高。進而,於實施例14中,圖案形狀、剝離試驗均為與實施例3相同之結果。 實施例15~18 使用如表1所示之糊料15~18代替糊料1,除改變糊料中之高熔點金屬粒子之粒徑以外,與實施例1同樣地進行,獲得電子基板。所獲得之電子基板之圖案形狀、剝離試驗均為良好之結果。然而,於與實施例1相對之評價中,實施例15之剝離強度稍微降低,實施例16~17之圖案形狀稍微降低,實施例18之圖案形狀及剝離強度均稍微降低。 實施例19~20 使用如表2所示之糊料19及20代替糊料1,除改變糊料中之高熔點金屬粒子以外,與實施例1同樣地進行,獲得電子基板。所獲得之電子基板之圖案形狀、剝離試驗均為與實施例1相同之良好之結果。 實施例21~22 使用如表2所示之糊料21及22代替糊料1,除改變糊料中之高熔點金屬粒子與熔融合金粒子之比率以外,與實施例1同樣地進行,獲得電子基板。所獲得之電子基板之圖案形狀、剝離試驗均為良好之結果。然而,於與實施例1相對之評價中,實施例21之剝離強度稍微降低,實施例22之圖案形狀稍微降低。 實施例23~24 使用如表2所示之糊料23及24代替糊料1,除改變糊料中之活性金屬粒子以外,與實施例1同樣地進行,獲得電子基板。所獲得之電子基板之圖案形狀、剝離試驗均為良好之結果。然而,於與實施例1相對之評價中,剝離強度均稍微降低。 實施例25~26 使用如表2所示之糊料25及26代替糊料4,除改變糊料中之高熔點金屬粒子以外,與實施例4同樣地進行,獲得電子基板。所獲得之電子基板之圖案形狀、剝離試驗均為與實施例1及4相同之良好之結果。 實施例27 使用如表2所示之糊料27代替糊料4,除改變糊料中之活性金屬粒子以外,與實施例4同樣地進行,獲得電子基板。所獲得之電子基板之圖案形狀、剝離試驗均為良好之結果。然而,於與實施例1及4相對之評價中,剝離強度稍微降低。 實施例28~29 不改變糊料,除將陶瓷基板之種類改變為氧化鋁或氮化矽以外,與實施例1同樣地進行,獲得電子基板。所獲得之電子基板之圖案形狀、剝離試驗均為與實施例1相同之良好之結果。 實施例30~32 不改變糊料,除改變煅燒溫度以外,與實施例1同樣地進行,獲得電子基板。所獲得之電子基板之圖案形狀、剝離試驗均為良好之結果。所獲得之電子基板於煅燒溫度為850℃之實施例31中,圖案形狀、剝離試驗均為與實施例1相同之結果,但於煅燒溫度為800℃之實施例30中,剝離強度較實施例1稍微降低,於煅燒溫度為950℃之實施例32中,圖案形狀較實施例1稍微降低。 實施例33~34 不改變糊料,除將陶瓷基板之種類改變為氧化鋁或氮化矽以外,與實施例4同樣地進行,獲得電子基板。所獲得之電子基板之圖案形狀、剝離試驗均為良好之結果。於將氮化矽用於陶瓷基板之實施例34中,圖案形狀、剝離試驗均為與實施例4相同之結果,但將氧化鋁用於陶瓷基板之實施例33之剝離強度稍微降低。 比較例1~3 使用如表2所示之糊料28~30代替糊料1,作為熔融金屬粒子,不使用熔點700℃以下之合金而僅使用熔點780℃之Ag-Cu合金粒子進行改變,除此以外,與實施例1同樣地進行,獲得電子基板。於比較例1中,圖案形狀為良好,但剝離強度低,無法獲得充分之接合。隨著增加Ag-Cu合金粒子之比率,圖案形狀降低,發生邊緣捲縮或收縮。自該等結果而言,僅熔點較高之熔融成分無法獲得圖案形狀亦良好、與基板之接合性亦優異之電子基板。 實施例及比較例中所獲得之電子基板之評價結果示於表3。 [表1] [表2] [表3] 詳細且參照特定之實施態樣對本發明進行了說明,但本領域技術人員應明瞭:於不脫離本發明之精神與範圍之情況下,可施加各種各樣之修正及改變。 本案係基於2015年9月29日申請之日本專利申請2015-191402、2016年9月14日申請之日本專利申請2016-179636、及2016年12月22日申請之日本專利申請2016-249642者,其等之內容作為參考而引入本文。 [產業上之可利用性] 本發明之導電性糊料可利用於電路基板、電子零件、半導體組件之基板等,尤其可作為用於形成電子基板之導電部之糊料而有效地利用。

Claims (18)

  1. 一種導電性糊料,其包括:高熔點金屬粒子,其具有超過煅燒溫度之熔點;熔融金屬粒子,其包含於煅燒溫度以下之溫度下會熔融且熔點為700℃以下之金屬或合金;活性金屬粒子,其包含活性金屬;及有機媒劑。
  2. 如請求項1之導電性糊料,其中熔融金屬粒子係選自由In、Sn、Bi、Pb、Zn、Al、Sb、Mg所組成之群中之至少1種金屬粒子、或包含至少1種該等金屬種之合金粒子。
  3. 如請求項2之導電性糊料,其中熔融金屬粒子包含選自由Sn-Ag-Cu合金粒子、Sn-Bi合金粒子及Au-Sn合金粒子所組成之群中之至少1種。
  4. 如請求項1之導電性糊料,其中活性金屬為Ti及/或Zr。
  5. 如請求項4之導電性糊料,其中活性金屬粒子係選自由氫化鈦粒子、硼化鈦粒子及氫化鋯粒子所組成之群中之至少1種。
  6. 如請求項1之導電性糊料,其中高熔點金屬粒子係由選自由Cu、Ag及Ni所組成之群中之至少1種之金屬或包含該金屬之合金形成。
  7. 如請求項1之導電性糊料,其中高熔點金屬粒子與熔融金屬粒子之質量比率為高熔點金屬粒子/熔融金屬粒子=90/10~40/60。
  8. 如請求項1之導電性糊料,其中活性金屬粒子之比率相對於高熔點金屬粒子及熔融金屬粒子之合計100質量份為0.5~30質量份。
  9. 如請求項1至8中任一項之導電性糊料,其中熔融金屬粒子之中心粒徑為0.01~30 μm。
  10. 如請求項1至8中任一項之導電性糊料,其中活性金屬粒子之中心粒徑為0.1~15 μm。
  11. 如請求項1至8中任一項之導電性糊料,其中高熔點金屬粒子之中心粒徑為0.01~15 μm。
  12. 一種電子基板之製造方法,其包括:附著步驟,其係使如請求項1至11中任一項之導電性糊料附著於陶瓷基板;及煅燒步驟,其係對附著於上述陶瓷基板之上述導電性糊料進行煅燒而形成導電部。
  13. 如請求項12之製造方法,其中於煅燒步驟中,係於非氧化性環境中或惰性環境中對導電性糊料進行煅燒。
  14. 如請求項13之製造方法,其中於煅燒步驟中,係於氮氣環境中對導電性糊料進行煅燒。
  15. 如請求項12至14中任一項之製造方法,其中於煅燒步驟中,煅燒溫度為800~950℃。
  16. 一種電子基板,其具備陶瓷基板及導電部,該導電部包括具有煅燒溫度以上之熔點之高熔點金屬、包含具有700℃以下之熔點之金屬或合金之熔融金屬、及活性金屬。
  17. 如請求項16之電子基板,其中陶瓷基板為氧化鋁基板、氧化鋁-氧化鋯基板、氮化鋁基板、氮化矽基板或碳化矽基板。
  18. 如請求項16或17之電子基板,其係表面金屬化基板、孔填充基板或通孔壁面金屬化基板。
TW105143425A 2016-12-27 2016-12-27 Conductive paste and electronic substrate and method of manufacturing same TWI642148B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105143425A TWI642148B (zh) 2016-12-27 2016-12-27 Conductive paste and electronic substrate and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105143425A TWI642148B (zh) 2016-12-27 2016-12-27 Conductive paste and electronic substrate and method of manufacturing same

Publications (2)

Publication Number Publication Date
TW201824461A true TW201824461A (zh) 2018-07-01
TWI642148B TWI642148B (zh) 2018-11-21

Family

ID=63639757

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105143425A TWI642148B (zh) 2016-12-27 2016-12-27 Conductive paste and electronic substrate and method of manufacturing same

Country Status (1)

Country Link
TW (1) TWI642148B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793276A (en) * 1995-07-25 1998-08-11 Tdk Corporation Organic PTC thermistor
CN103857643B (zh) * 2011-10-11 2015-09-09 日本碍子株式会社 陶瓷构件、半导体制造装置用构件及陶瓷构件的制造方法
JP6001231B1 (ja) * 2015-02-27 2016-10-05 タツタ電線株式会社 導電性ペースト及びこれを用いた多層基板

Also Published As

Publication number Publication date
TWI642148B (zh) 2018-11-21

Similar Documents

Publication Publication Date Title
CN108885918B (zh) 导电性糊以及电子基板及其制造方法
JP6654613B2 (ja) 導電性ペースト並びに電子基板及びその製造方法
JP6244405B2 (ja) 配線パターンを形成するための組成物
TWI716639B (zh) 接合材料及使用其之接合方法
JP5707886B2 (ja) パワーモジュール用基板、冷却器付パワーモジュール用基板、パワーモジュールおよびパワーモジュール用基板の製造方法
TW201511036A (zh) 用於氮化鋁基板的厚膜印刷銅糊漿
CN110945974A (zh) 陶瓷电路基板及其制造方法
JP6396964B2 (ja) 導電性ペースト並びに電子基板及びその製造方法
JP2006196421A (ja) 被覆導体粉末および導体ペースト
JP2006049595A (ja) 銀ろうクラッド材並びにパッケージ封止用の蓋体及びリング体
JP2017183715A (ja) 貫通電極を有する両面配線基板及びその製造方法
TW200949861A (en) Conductive paste composition
TWI642148B (zh) Conductive paste and electronic substrate and method of manufacturing same
WO2019005452A1 (en) THICK PRINTING ELECTROCONDUCTIVE PASTES CONTAINING COPPER
JP2006302525A (ja) 導電性ペースト組成物
CN114080868A (zh) 通孔填充基板的制造方法以及导电糊的套装
JP2017201686A (ja) メタライズ基板及びその製造方法
JP6677231B2 (ja) 電子部品の接合方法および接合体の製造方法
JP5741806B2 (ja) はんだ下地層形成用ペースト
JP6355949B2 (ja) 金属接合材料
JP2016087606A (ja) Au−Sn合金はんだペースト、Au−Sn合金はんだペーストの製造方法、Au−Sn合金はんだ層の製造方法、及びAu−Sn合金はんだ層
JP2000011759A (ja) 導体組成物
JP2019165155A (ja) 窒化アルミニウム回路基板及びその製造方法
JPH07303981A (ja) はんだ組成物