TW201824325A - 掃描離子佈植系統中的現場離子束電流監測和控制 - Google Patents

掃描離子佈植系統中的現場離子束電流監測和控制 Download PDF

Info

Publication number
TW201824325A
TW201824325A TW106130648A TW106130648A TW201824325A TW 201824325 A TW201824325 A TW 201824325A TW 106130648 A TW106130648 A TW 106130648A TW 106130648 A TW106130648 A TW 106130648A TW 201824325 A TW201824325 A TW 201824325A
Authority
TW
Taiwan
Prior art keywords
ion beam
ion
workpiece
beam current
scanning
Prior art date
Application number
TW106130648A
Other languages
English (en)
Other versions
TWI759329B (zh
Inventor
亞費德 麥克 哈林
Original Assignee
艾克塞利斯科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾克塞利斯科技公司 filed Critical 艾克塞利斯科技公司
Publication of TW201824325A publication Critical patent/TW201824325A/zh
Application granted granted Critical
Publication of TWI759329B publication Critical patent/TWI759329B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24514Beam diagnostics including control of the parameter or property diagnosed
    • H01J2237/24535Beam current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30455Correction during exposure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30472Controlling the beam
    • H01J2237/30477Beam diameter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31701Ion implantation
    • H01J2237/31703Dosimetry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本發明提供一種用於根據取樣離子束電流及其均一性控制一離子佈植系統之系統及方法。該離子佈植系統包括光學元件,其經組態以在輸送離子束時選擇性地轉向及/或塑形該離子束,其中該離子束係以一高頻率取樣以提供離子束電流樣本,隨後分析該等離子束電流樣本以偵測離子束電流樣本當中的波動、不均一性或未預測變化。將此等射束電流樣本與預定臨限值位準及/或經預測之不均一性位準相比較,以在複數個離子束電流密度樣本中之一經偵測不均一性超過一預定臨限值時產生一控制信號。一控制系統產生一控制信號,以用於連動該射束輸送或用於使至少一個射束光學元件的一輸入變化以控制射束電流之變化。

Description

掃描離子佈植系統中的現場離子束電流監測和控制
本發明大體上係關於離子佈植系統,且更具體言之,係關於用於即時現場離子束電流取樣及監測以提供對該離子佈植系統之控制的系統及方法。
相關申請案之交叉參考
本申請案主張於2016年9月7日申請之標題為「掃描離子佈植系統中的現場離子束電流監測和控制」之美國專利申請案第15/258,723號的權益,該申請案之內容以全文引用的方式併入本文中。
在半導體器件之製造中,使用離子佈植來摻雜典型地以諸如矽或砷化鎵晶圓之基板的形式提供之工件。使用雜質或摻雜劑轟擊晶圓以用於在晶圓之結晶結構內佈植此等摻雜劑,以修改電特性或以其他方式使基板變形。因此,離子佈植系統在半導體製造領域中熟知為資本設備,其用以藉由將離子自離子束佈植至工件中來用離子摻雜工件,或用以在積體電路製造期間形成鈍化層。當用於摻雜半導體晶圓時,離子佈植系統將所選離子物質注入至工件中以產生所要外質材料。
典型離子佈植系統包括用於自可離子化源材料產生帶電離 子之離子源。所產生之離子形成為射束且藉助於強電場加速,以便沿預定射束路徑引導至佈植終端台。舉例而言,佈植由源材料(諸如銻、砷或磷)產生的離子例如產生「n型」外質材料晶圓,而「p型」外質材料晶圓常常係因由用源材料(諸如硼、鎵或銦)產生的離子而產生的。
離子佈植系統可包括定位於離子源與終端台之間的射束形成、轉向、偏轉、塑形、濾波及充電子系統(例如射束光學元件或射束光學件)。射束光學元件操控且保持沿著離子束在途中所穿過到達定位工件之終端台的經延長之內部空腔或通道的離子束(例如射束線)。
在大部分離子佈植應用中,佈植製程之目標為在工件或晶圓的整個表面區域上均一地遞送精確受控量之摻雜劑。此製程之最被廣泛接受的方法係以所謂的連續佈植架構體現,其中將個別工件循序提供至終端台,用於藉由離子束進行佈植。為了利用大小小於工件面積之離子束來達成均一摻雜,使離子束及晶圓相對於彼此移動以便使得射束衝擊晶圓之整個表面區域。一個通常已知之用於實現此任務的系統架構被稱為「二維(2-D)機械掃描」,如(例如)美國專利第6,956,223號中所揭示,其中在相對於靜止「點」離子束的兩個實質上正交維度中掃描晶圓。使用2-D機械掃描,在所謂的「快速掃描」方向上快速掃描固定離子束前方的晶圓,而在正交「緩慢掃描」方向上同時緩慢掃描該晶圓,從而藉由在一般移動中的鋸齒形圖案中輸送離子束前方的晶圓來使用離子「塗刷」晶圓。替代地,用於離子佈植系統中之另一熟知連續系統架構為所謂的「混合型掃描系統」,其中離子束以光柵狀方式沿一個方向上之軸線來回掃掠或掃描,以形成帶形射束,且工件沿與所掃描離子束之軸線正交的方向機械移動。
半導體製造領域中之一種持續的趨勢涉及各種半導體工件大小(諸如300mm直徑的晶圓),外加更高的器件密度。更大工件大小增加個別工件之成本,且更高器件密度增加加工成本以及每一工件之關聯值。因此,在避免或減輕與報廢工件相關聯之成本方面,相對於離子束及其他參數,對佈植均一性之控制比以往更關鍵。
為了保持佈植製程之均一性,常常在佈植期間量測總離子束電流,其中沿離子束之路徑置放取樣杯(典型地為一或多個法拉第杯),典型地在晶圓前方、與晶圓相鄰或在晶圓後方。如在掃描射束架構之情況下,射束掃描寬度通常由法拉第杯之位置指定,以使得在與適於產生可靠射束電流量測之晶圓相鄰的所謂旁側杯上方完全或至少部分地掃描離子束。當工件並不存在或處於使得離子束之至少一部分不衝擊晶圓之位置時,一或多個調諧杯亦可定位於工件之典型位置的上游或下游以用於調諧離子束。另外,行進中的或所謂的「特徵化」法拉第杯可用於監測離子束,因為法拉第杯經設定為自掃描離子束之一端至另一端在工件位置前方運動。特徵化法拉第可以多杯結構或每杯單一多法拉第結構之形式提供。習知地,利用此類取樣杯中之所有(或一些)來監測進入終端台之離子束的總電流,以便調整佈植饋送速率及工件暴露至離子束之時間。舉例而言,在美國專利第4,922,106號中,緩慢平移法拉第偵測器以產生隨著法拉第偵測器之位置變化的經整合射束電流或劑量量測,從而提供表示離子束強度之信號。此信號可用於調整振盪掃描電壓以使得經整合射束強度係均一的。在彼專利中,所感測的射束電流之時間積分係用作回饋信號,其應用至劑量控制器以用於控制射束掃描元件之操作。
當前瞭解到的一個問題係,射束電流密度或角度常常在佈植週期期間,有時在單一離子束掃描遍次期間,以及有時多次在單一掃描遍次之過程期間不可預見地改變。此等改變可為射束線組件隨時間推移之長期磨損或電壓電源供應器在多個離子佈植週期之過程內或在單次離子佈植週期期間之漂移的表現。此等變化亦可為由射束形狀及/或角度中之差別、離子束內之射束分佈的移位、系統雜訊或離子束內之粒子污染以及其他因素導致的電流分佈中之短期波動或「尖峰」的表現。其他因素可包括射束線壓力之改變、自暴露於射束之元件的發射,以及在晶圓移動穿過射束時射束與晶圓之相互作用。雖然可預期且容忍射束電流中之一些變化作為離子束之所謂經預測不均一性(predicted nonuniformity;PNU),但射束電流中之許多類型之改變可顯著影響離子佈植均一性且無法容忍且係不可接受的。
本發明藉由經由高頻率取樣而監測離子束電流以在掃描離子束時產生表示即時現場射束電流之波形來解決此等問題。可即時儲存及/或顯示所產生之波形而以圖形形式提供射束均一性之離子束電流資訊之視覺表示。射束電流取樣亦可經分析並用於產生用於控制離子佈植系統之控制信號。在射束電流漂移、變化及/或波動相對於先前電流樣本超過預定臨限值位準之情況下或在射束電流降低至超出射束電流之經預測不均一性(PNU)的範圍時,一個例示性控制信號可中止給定佈植週期。另外,所收集之樣本資料可用於提供回饋信號以用於使上游射束光學元件或與其相關連的電源供應器中之至少一者變化,從而提供遞送至工件之更均一的射束電流密度。
本發明之具體實例包括用於監測及控制離子佈植系統中之離子束均一性的方法,該方法包含:產生離子束;朝向工件輸送離子束;沿掃描路徑掃描離子束以產生隨著具有時變電位之掃描波形變化的掃描點射束,其中時變電位之值對應於離子束在掃描路徑上之位置;提供至少一個射束光學元件,其經組態以在朝向工件輸送離子束時選擇性地轉向及/或塑形該離子束,其中該至少一個射束光學元件改變離子束之有效橫截面形狀;與掃描波形同步取樣離子束以提供隨著工件上之位置及掃描方向而變化的複數個離子束電流密度樣本;分析該複數個離子束電流密度樣本以偵測其不均一性;以及將該複數個離子束電流密度樣本中之任何經偵測的不均一性與預定臨限值不均一性相比較。在射束電流漂移、變化及/或波動相對於先前電流樣本超過預定臨限值位準之情況下或在射束電流降低至超出射束電流之所謂經預測不均一性(PNU)的範圍時,射束電流取樣亦可經分析並用於中止給定佈植週期。
在本發明之一個具體實例中,提供一種用於控制離子佈植系統中之離子束均一性的方法。該方法包括:產生離子束;朝向工件輸送離子束;沿第一軸掃描離子束以產生掃描離子束;以及提供至少一個射束光學元件,其經組態以在朝向工件輸送離子束時選擇性地轉向及/或塑形該離子束。該方法進一步包括取樣離子束以提供複數個離子束電流樣本,及使離子束電流樣本與掃描電流相關以提供對應於掃描離子束之位置及方向資訊。分析該複數個離子束電流樣本以偵測其中之不均一性,且產生控制信號。
在本發明之另一具體實例中,揭示一種離子佈植系統及對應控制系統,其中離子佈植系統包括:用於產生離子束之離子源;射束線,其經組態以沿射束路徑朝向經組態以固持工件之終端台輸送離子束;沿射束線定位之複數個射束光學元件,其經組態以在朝向工件輸送離子束時選擇性地轉向、偏轉及/或塑形該離子束;以及射束取樣系統,其經組態以對離子束取樣以提供複數個離子束電流樣本。控制系統包括控制器,其經組態以分析射束電流密度樣本以偵測其不均一性且回應於經偵測之不均一性而產生控制信號。
本發明之另一具體實例包括一種用於將離子均一地佈植至工件中的方法,該方法包含:產生離子束;沿射束路徑輸送離子束;提供至少一個射束光學元件或與其相關聯的電源供應器,其經組態以在沿射束路徑輸送離子束時作用於該離子束;掃描離子束以產生掃描離子束;對掃描離子束取樣以藉由在跨工件表面掃描離子束時獲得複數個不同離子束電流密度樣本來偵測射束電流密度中之波動;以及使該複數個不同離子束電流密度樣本與離子束相對於工件之位置相關。該方法進一步包括以下步驟:分析離子束電流密度樣本及離子束之相關位置以判定各別相關位置處之離子束電流密度及/或角度;將當前離子束電流密度樣本與先前離子束電流密度樣本相比較;以及回應於比較步驟而產生控制信號。
在本發明之又一具體實例中,揭示一種離子佈植系統,其中該離子佈植系統包含:射束線,其經組態以沿射束路徑向經組態以固持工件之終端台引導離子束;掃描系統,其經組態以跨工件表面在快速掃描方向上掃描離子束;以及至少一個射束光學元件,其經組態以在引導離子束 朝向終端台經掃描時彎曲、偏轉、聚焦或以其他方式修改離子束。該離子佈植系統進一步包括射束取樣系統,其經組態以在於快速掃描方向上掃描離子束時取樣該離子束之射束電流密度,其中該射束取樣系統包含圍繞工件之周邊定位的複數個旁側法拉第杯及沿射束路徑定位於工件下游的調諧法拉第杯,其中該射束取樣系統經組態以分析由該複數個旁側法拉第杯及/或調諧法拉第杯產生的輸出信號,同時使輸出信號與掃描系統相關以提供與離子束相對於工件之位置相應的射束電流密度值。控制器耦接至射束取樣系統,該控制器經組態以計算離子束之經預測劑量均一性及/或總劑量,其中該控制器進一步經組態以在經取樣離子束值與經預測劑量均一性不一致之情況下提供控制信號。
因此,本發明提供跨大量工件之離子佈植系統中之射束電流密度之連續即時的現場量測,以便提供用以識別離子束之特性中之改變的大量資料,且進一步提供對離子佈植系統之控制。因此,為實現前述及相關目的,本發明包含在下文中充分描述且在申請專利範圍中特別列舉之特徵。以下描述及隨附圖式詳細闡述本發明之某些說明性具體實例。然而,此等具體實例指示可採用本發明原理之各種方式中的僅僅一些。當結合圖式考慮時,本發明之其他目標、優點及新穎特徵將自本發明之以下詳細描述而變得顯而易見。
110‧‧‧離子佈植系統
112‧‧‧終端機
114‧‧‧射束線總成
116‧‧‧終端台
118‧‧‧弧形縫隙
120‧‧‧離子源
121‧‧‧產生室
122‧‧‧電源供應器
123‧‧‧離子提取總成
124‧‧‧離子束
124a‧‧‧掃描射束離散點
124c‧‧‧點
124d‧‧‧點
124e‧‧‧點
124g‧‧‧掃描射束離散點
125‧‧‧電極
125a‧‧‧提取及/或抑制電極
125b‧‧‧提取及/或抑制電極
126‧‧‧質量分析器單元
127‧‧‧側壁/質量分析器
130‧‧‧工件
132‧‧‧射束引導件
134‧‧‧解析孔口
135‧‧‧掃描系統
136‧‧‧靜電或磁性掃描元件/掃描儀
136a‧‧‧電極/掃描儀板/磁極
136b‧‧‧電極/掃描儀板/磁極
138‧‧‧聚焦及/或轉向組件
138a‧‧‧電極/板
138b‧‧‧電極/板
139‧‧‧平行器
139a‧‧‧偶極磁體
139b‧‧‧偶極磁體
144‧‧‧掃描離子束
149‧‧‧電源供應器/電流源
150‧‧‧電源供應器/掃描圖案
151‧‧‧掃描頂點/緩慢掃描軸
152‧‧‧掃描寬度
154‧‧‧控制系統/快速掃描軸
155‧‧‧射束取樣系統
155a‧‧‧顯示元件
156‧‧‧行進輪廓儀/圓周
157‧‧‧角能量濾波器/減速級
157a‧‧‧電極
157b‧‧‧電極
158A‧‧‧旁側法拉第杯
158B‧‧‧旁側法拉第杯
160‧‧‧電荷中和子系統
164‧‧‧信號
166‧‧‧軌跡
170‧‧‧調諧法拉第杯
202‧‧‧波形圖
204‧‧‧時變磁場
302‧‧‧離子束路徑
306‧‧‧位置
308‧‧‧位置
308a‧‧‧第一射束形狀
308b‧‧‧第二射束形狀
308c‧‧‧射束形狀
310‧‧‧位置
312‧‧‧緩慢掃描方向
316‧‧‧第一尺寸
318‧‧‧第二更大尺寸
408‧‧‧射束電流輪廓
410‧‧‧射束電流輪廓
802‧‧‧法拉第杯
804‧‧‧調諧杯
806‧‧‧法拉第杯
812‧‧‧法拉第杯
814‧‧‧調諧杯
816‧‧‧法拉第杯
820‧‧‧掃描電流波形
902‧‧‧波形
904‧‧‧波形
904a‧‧‧中間部分
904b‧‧‧波形區段
904c‧‧‧波形區段
906‧‧‧波形
1000‧‧‧第一例示性流程圖
1002‧‧‧區塊
1004‧‧‧區塊
1006‧‧‧區塊
1008‧‧‧步驟
1010‧‧‧區塊
1012‧‧‧步驟
1014‧‧‧區塊
1100‧‧‧替代例示性流程圖
1102‧‧‧區塊
1104‧‧‧區塊
1106‧‧‧區塊
1108‧‧‧區塊
1110‧‧‧區塊
1112‧‧‧步驟
1114‧‧‧區塊
A1‧‧‧振幅
A2‧‧‧振幅
P1‧‧‧位置
P2‧‧‧位置
圖1為根據本發明之各種態樣之例示性離子佈植系統之方塊圖;圖2A為可用於圖1之離子佈植系統中之類型之掃描儀的一個具體實 例;圖2B為用於輸入至圖2A之掃描儀線圈中之三角形掃描電流波形的一個具體實例;圖2C為如由圖2B之掃描電流波形產生之圖2A之掃描儀中的合成磁場波形的一個具體實例;圖2D為說明掃描離子束在若干離散時間點處衝擊圖2A之系統中之工件的透視圖;圖3為根據本發明之一個實例之離子束衝擊工件表面的平面視圖;圖4說明根據本發明之另一態樣之與旁側法拉第杯及調諧法拉第有關係的經量測之射束電流波形;圖5為說明具有可影響遞送至工件之射束電流均一性之變化的橫截面形狀之離子束的圖;圖6及圖7說明在離散時間段處的點射束之例示性單個樣本,其中該射束具有跨越其之非均一電流密度;圖6A及圖7A分別說明與圖6及圖7之橫截面離子束形狀相關聯之離子束輪廓;圖8為來自圖形使用者介面器件之例示性螢幕捕捉,其展示由左側及右側法拉第杯產生的波形,以及由調諧杯產生的波形,且進一步展示輸入至掃描儀之掃描電流波形;圖9為來自圖形使用者介面器件之例示性螢幕捕捉,其展示由左側及右側法拉第杯產生的波形,以及由調諧杯根據射束電流樣本在晶圓上之位置而產生的波形; 圖10說明根據本發明之一態樣之用於分析及監測射束電流樣本以用於控制離子佈植系統的方法;及圖11說明根據本發明之另一態樣之用於分析及監測射束電流樣本及用於將離子均一地佈植於掃描離子束佈植機中之另一方法。
本發明大體上係針對用於在離子佈植系統中將離子均一地佈植至工件中或基於對離子束之均一性的監測而提供對此類離子佈植系統之控制的系統、裝置及方法。因此,現將參考如隨附圖式中所描繪之例示性離子佈植系統來描述本發明,其中通篇相同元件符號可用於指代相同元件。應理解,此等態樣之描述僅為說明性的且其不應以限制意義來解釋。在以下描述中,出於解釋之目的,闡述眾多具體細節以便提供對本發明之透徹理解。然而,熟習此項技術者將顯而易知,本發明可在無此等具體細節中之一些之情況下實踐。
圖1說明其中可如本文中所描述來控制離子束及/或系統之例示性離子佈植系統110。出於說明性目的而呈現系統110,且應瞭解,本發明之態樣不限於所描述之離子佈植系統,且亦可採用其他適合之離子佈植系統。雖然圖1中所展示之例示性系統表示所謂的「混合型」或「掃描點射束」離子佈植系統架構,但將理解,本發明將同樣適用於如(例如)美國專利第7,701,230號中所揭示之熟知「二維機械掃描」離子佈植系統架構,該美國專利特此以引用之方式併入本文中。實際上,本發明可適合於單維度機械掃描以及帶狀射束系統。
作為一廣泛概述,系統110包含終端機112、射束線總成114 及終端台116。終端機112包括由產生離子束124並將其遞送至射束線總成114之高壓電源供應器122供電之離子源120。離子源120產生經提取並形成為離子束124之帶電離子,該離子束係沿射束線總成114中之射束路徑經導引至終端台116。終端機112有時可描述為包含一些射束線中,其中射束線之彼部分處於端電位。
為產生離子,在離子源120之產生腔室121內提供待離子化之摻雜材料(圖中未示)。摻雜氣體可例如自氣體源(圖中未示)饋送至腔室121中。除電源供應器122之外,還應瞭解,任何數目之合適機構(圖中未示其中任一者)可用於激發離子產生腔室121內之自由電子,諸如:RF或微波激發源;電子束注入源;電磁源;及/或例如在腔室內產生電弧放電之陰極。經激發之電子與摻雜氣體分子發生碰撞,且由此產生離子。大體而言,雖然產生正離子,但本文中之揭示內容同樣適用於其中亦產生負離子之系統。
腔室121中產生之離子係可控地藉助於離子提取總成123穿過孔口或所謂的「圓弧縫隙圓弧縫隙」118自該腔室提取。離子提取總成123通常包含複數個提取及/或抑制電極,其由位於圓弧縫隙118之相對側上之大體對稱電極對125a及125b組成,用於以密集的離子射線或離子束124之形式提取離子。提取總成123可包括(例如)單獨提取電源供應器(圖中未示),其用於偏壓提取及/或抑制電極125a及125b,以誘發以離子束124之形式自產生腔室121提取離子,且沿射束線總成114之方向在下游加速離子束124。
應瞭解,由於離子束124包含相同帶電粒子,因此當射束內 的相同帶電粒子往往會彼此排斥時,射束可具有徑向向外膨脹或「擴大」之傾向。亦應瞭解,束散在低能量大電流(高導流係數)束中可能被加劇,其中許多相同帶電粒子沿同一方向且相對緩慢地移動,以使得相同帶電粒子之間存在足夠的排斥力,但幾乎不存在保持粒子沿射束路徑方向移動之粒子動量。因此,提取總成123通常配置成使得以高能量提取射束,以使得射束不放大(亦即,使得粒子具有足夠動量來克服可導致束散之排斥力)。雖然低能量漂移應用為已知的知且可利用本發明,但通常有利的係,以相對高的能量在整個系統中輸送離子束124,其中離子束之能量在衝擊工件130之前立即減小,以便在射束輸送期間促進射束圍阻。亦可有利的係,產生且輸送可以相對高的能量輸送但以較低的等效能量佈植之分子或簇離子,此係由於分子或簇之能量係在分子之摻雜劑原子之中進行劃分。
在自終端機112向下游移動之情況下,射束線總成114通常包括質量分析器單元126及射束引導件132,其限定射束引導件132之出口處之分辨孔口134。射束線總成典型地進一步包括各種射束聚焦及/或轉向組件138、掃描系統135、平行器139及角能量濾波器157(各自為射束光學元件或統稱為射束光學件)。射束光學件亦可包括電荷中和子系統160,其用於藉由使離子束電流與等於工件之電子電流的電子電流相匹配來將諸如電子之電荷提供至待佈植之射束線及/或工件以抵消束散及其他充電問題,從而產生具有總電荷中性之離子束。總體而言,此等各種射束線組件在本文中被稱為射束光學件或射束光學元件。
在所說明之具體實例中,質量分析器126包含用以建立偶極磁場的一或多個磁體。當射束124進入質量分析器126時,其相應地由磁場 彎曲以使得自離子束排除具有不適當電荷質量比之離子。更特定而言,具有過大或過小電荷質量比之離子經偏轉至質量分析器126之側壁127中,同時允許射束124中具有所要電荷質量比的離子自其中穿過並經由分辨孔口134射出。
在所說明之實例中,掃描系統135可包括靜電或磁性掃描元件136及任選聚焦及/或轉向元件138。各別電源供應器149、150以操作方式耦接至掃描元件136以及聚焦及轉向元件138,且更特定而言耦接至定位於其中之各別電極136a、136b及138a、138b。聚焦及轉向元件138接收具有相對窄的輪廓之質量分析離子束124(例如,所謂的「點」或「筆狀」射束),且藉由電源供應器150施加至板138a及138b之電壓工作以將射束較佳地聚焦並轉向至諸如掃描元件136之掃描頂點151的所要掃描點。由電源供應器149提供至掃描儀板136a及136b之持續可變電流波形使得離子束124經來回偏轉並掃描,從而產生寬度較佳至少與由離子束佈植之工件130一樣寬或寬於該工件的經延長「帶形」離子束(例如,掃描點射束)。
應瞭解,聚焦及/或轉向元件138可由一個或複數個元件及/或子系統組成,且通常以常用於粒子離子聚焦之四極磁體之形式提供。可併入諸如單透鏡或其他單電位或多電位透鏡結構之各種替代元件,以提供用於聚焦或偏轉飛行中之離子的離子束光學件,其經由藉由使施加至各種射束光學元件之電極的電壓變化來操縱離子路徑中之電場或磁場而實現。
一旦射束穿過掃描系統136,則掃描射束124穿過在所說明之具體實例中包含兩個偶極磁體139a、139b之平行器139。在所說明之實例中,偶極具有相等角度及相反彎曲方向,以使得偶極實質上為梯形,且經 定向彼此反射以使得射束124沿實質上「s」形之路徑彎曲。偶極之主要目的係使得源自掃描儀136之發散細射束變為平行的,從而形成具有實質上平行的細射束之帶形射束。兩個對稱偶極之使用產生就細射束路徑長度而言跨越帶狀射束之對稱特性及一級及較高級聚焦特性。平行器139致使掃描射束124改變其路徑,以使得射束124無論掃描角度如何均平行於射束軸行進,特定細射束以該掃描角度射出掃描儀以使得細射束以其撞擊工件130之佈植角度跨越其表面係相對均一的。
在此實例中,雖然並不需要使射束減速,但一或多個減速級157定位於平行化組件139下游。如先前所提及,射束124通常以相對高之能量位準輸送至系統110中之此點,以用於減輕束散之傾向,其在例如射束密度諸如在分辨孔口134處較高時可能尤其高。減速級157包含可操作以使射束124減速的一或多個電極157a、157b。電極157典型地為射束經由其行進的孔口且可如圖1中之直線所繪製。應瞭解,雖然將一對電極展示且描述為構成減速級157之組件以及構成射束光學件的組件中之任一者,但系統110可包含經佈置及偏壓以使離子加速及/或減速以及聚焦、彎曲、偏轉、會聚、發散、掃描、平行化及/或去污離子束124之任何適合數目個電極。另外,構成射束光學件的組件中之任一者可包含靜電偏轉板(例如,其一或多對),以及單透鏡、四級透鏡及/或可操控或影響離子束之軌道的其他元件。
離子射束線亦可包括諸如電漿電子泛射器件160之電荷中和子系統,其在離子束穿過之區域中產生中和電子,以用於抵消在離子束內的電荷累積。因此,可藉由提供具有與待佈植之離子束及工件相反的極 性之電荷來補償離子束內之電荷。舉例而言,在帶正電之離子束之情況下,慣例係提供其量等於每一單位時間提供至工件之離子之量的電子,從而使離子束電流與工件處之等量電子電流匹配。此係典型地由經由電子產生製程產生電子之器件實現,該等電子產生製程諸如熱離子發射、二次發射、放電或RF場,其中將電子導向至離子束或直接導向至工件。此等器件典型地特指電子槍、二次電子泛射器、電漿電子泛射器等。此外,可將微波及RF放電(例如,RF電漿電子泛射器)按比例調整至較大體積,但嘗試維持係較複雜及昂貴的,需要匹配電路及昂貴的高頻發電。
在向下游進一步移動至終端台116之情況下,終端台提供用於接收離子束124以及引導射束朝向工件130的處理腔室。應瞭解,可在佈植機110中採用不同類型的終端台116。終端台116在所說明之實例中為「連續」類型終端台,其沿用於佈植之射束路徑支撐單一工件130。「連續」類型終端台沿用於佈植之射束路徑支撐單一工件130,其中多個工件130以連續方式一次佈植一個,其中每一工件130在下一工件130之佈植開始之前經完全佈植。在掃描射束連續類型系統之情況下,工件130在第一(Y或緩慢掃描)方向上機械平移,而射束在第二(X或快速掃描)方向上來回掃描以便在整個工件130上賦予射束124。
在工件130之離子佈植之前及期間,出於製程控制及其他原因,需要監測離子束以判定各種特性及其參數,包括射束電流、射束電流密度、射束電流分佈及預期佈植至工件中的離子之大體劑量。另外,可監測諸如射束角度及發散度以及大小(射束寬度及高度)之參數。因此,射束取樣系統155及其他相關硬體組件經整合至終端台116中,以用於以可近 似為250KHz之預定頻率監測並取樣離子束,從而提供複數個離散射束電流樣本量測以用於其分析。在例示性系統中,通常沿掃描離子束124之快速掃描軸提供與晶圓130相鄰的一或多個旁側法拉第杯158A、158B(亦稱作取樣杯),其中在離子束經掃描且越過該一或多個旁側法拉第杯時取樣並量測離子束之一或多個性質(例如,射束電流)。舉例而言,射束取樣系統155自該一或多個旁側法拉第杯158A、158B接收包含複數個循序射束樣本之信號164,且通常將離子束124之一或多個性質之經量測樣本輸出至控制系統154。此等樣本之收集與提供至掃描儀136以及提供至掃描工件130之位置的掃描電流波形同步,以將時間及位置依賴性射束電流資訊提供至控制系統。
在本發明實例中,當掃描離子束124係跨工件130經掃描且通常位於與工件130之平面相同的平面中時,通常與該工件相鄰且於其外側(例如,在工件之圓周外部)沿該掃描離子束之路徑定位一或多個旁側法拉第杯158A、158B。因此,掃描射束較佳地具有延伸超出工件之尺寸的寬度(掃描寬度),且經塑形以使整個掃描離子束124越過定位於工件之圓周外部的一或多個旁側法拉第杯158A、158B。
另外,調諧法拉第杯170提供在工件130下游及「後方」,其中射束取樣系統155進一步自調諧法拉第杯170接收高頻樣本,且通常將離子束124之一或多個性質的量測輸出至控制系統154。當工件130不存在(在離子佈植週期之前),完全超出掃描路徑的範圍(或在緩慢掃描順序之末端),或經定位以便諸如在將工件掃描至離子束或其部分可到達自工件130下游定位之調諧杯的位置時至少部分地超出掃描路徑的範圍時,習知地 利用調諧法拉第杯170。同樣,此經取樣射束量測通常與提供至掃描儀136以及提供至經掃描工件130之位置的掃描電流波形同步,以提供離子束之時間及位置依賴性射束電流輪廓。射束取樣系統155可包括用於向系統操作員顯示掃描離子束之時間及位置依賴性射束電流波形以及掃描電流波形及其他相關性資訊之演示螢幕或圖形使用者介面。
除了旁側法拉第杯158A、158B及調諧法拉第杯170之外,射束取樣系統可包括來自一或多個行進輪廓儀156之輸入。在此實例中,行進輪廓儀156可包含(例如)量測掃描射束之電流密度的電流密度感測器,諸如法拉第杯。行進輪廓儀156之電流密度感測器以相對於掃描射束大致正交的方式移動,且因此典型地橫跨帶形掃描離子束之寬度。此等輪廓儀信號典型地在佈植週期之前或之後產生,其中輪廓儀156在掃描離子束前方輸送,以在離子佈植週期期間及/或之後將資料及回饋提供至離子佈植系統。類似於旁側法拉第杯158A、158B及調諧法拉第杯170,由行進輪廓儀提供之經監測及取樣射束電流量測可通常與提供至掃描儀136以及行進輪廓儀之位置之掃描電流波形相關,以提供離子束之時間及位置依賴性射束電流特徵。
控制系統154經耦接至射束取樣系統155以用於提供離子佈植系統110之各個組件及子系統的通信、控制及/或調整,該離子佈植系統包括:離子源120及與其相關聯的電極125;質量分析器127;射束轉向及聚焦系統138;掃描元件136;平行器139;能量濾波器157;以及電荷中和器系統160(亦即,總體而言,射束光學元件中之任何一或多者)。控制系統154可包含電腦、微處理器等,且可經操作以存儲射束特性(例如,射 束電流或密度)之量測值且調整應用於射束光學元件中之任一者的參數(例如,偏壓電壓、氣體壓力)。因此,此等射束光學元件中之任一者可由控制系統154調整以促進所要離子束性質。舉例而言,在質量分析器126中所產生之強度及場可諸如藉由調整貫穿其中之場繞組的電流量來調整,以改變所要離子束之路徑的曲率。另外或替代地,可例如藉由調整施加至轉向元件138之電壓來進一步控制佈植角度,其中將理解,遞送至晶圓130之電流密度可為佈植角度(例如,射束與工件之機械表面之間的相對定向及/或射束與工件之晶格結構之間的相對定向)之函數。在又一替代方案中,施加至射束光學元件中之任一者的瞬時電壓可回應於由射束取樣系統155偵測到之射束電流波動而即時變化。因此,根據本發明,射束取樣系統155及控制系統154協作以提供藉其監測射束電流及/或射束電流密度之現場射束電流取樣,且進一步提對離子佈植系統之控制。在一個較佳具體實例中,射束取樣系統155及控制系統154可協作以產生用於連動之控制信號,從而在顯著射束電流非均一性事件出現之情況下中止或停止離子束輸送。在另一較佳具體實例中,射束取樣系統155及控制系統154可協作以產生控制信號,用於調整電源供應器輸出以選擇性地改變經由疊代或增量手段施加至離子佈植系統之各個射束線組件及射束光學元件的電壓及電流。
如先前所提及,佈植機110可採用不同類型之掃描系統。舉例而言,在本發明中可採用靜電掃描或磁性掃描系統。如圖2A中更詳細地說明,掃描儀接收具有相對窄的輪廓之質量分析離子束124(例如,所謂的「點」或「筆狀」射束)。圖2A中所展示之例示性掃描系統為磁性掃描系統,其包含具有位於射束124之任一橫向側面上之第一磁極136a及第二磁 極136b的掃描儀區域。該等極之間相隔由射束路徑124所穿過的一間隙,其包含真空。在一個具體實例中,磁極136a及136b可包含電磁線圈。電流波形運作以改變穿過線圈136a、136b之電流,導致射束124在X方向(掃描方向)上來回掃描,產生經延長「帶狀型」射束(例如,掃描點射束),具有較佳與正經佈植之工件至少一樣寬及典型地寬於該等工件之有效X方向寬度。應瞭解,掃描射束124經引導至終端台16,以使得射束124a撞擊晶圓以用於在其中佈植離子。掃描射束亦撞擊耦接至射束取樣系統155之量測感測器(法拉第杯)。出於本發明描述之目的,所有不同類型之掃描系統均等效,且圖2A之磁性掃描系統僅用於說明。實際上,本發明可適合於具有不同架構之離子佈植系統,包括熟知2D機械掃描點射束系統,以及1D機械掃描帶狀射束系統。
如將理解,磁極136a及136b經耦接至電流源149,其經組態以將交流電提供至磁極136a及136b,如圖2B中之波形圖202中所說明。磁極之間的時變電流形成時變磁場204,如圖2C中之波形圖中所說明,其自線圈跨射束路徑朝外延伸,射束124藉由該磁場沿掃描方向(例如,圖2A中之X方向)彎曲或偏轉(例如,掃描)。當掃描儀磁場在自極136a至極136b(例如,圖2C中之時間「g」至「e」)之方向上時,射束124之離子經受正X方向上之橫向力。當極136a及136b經受零電流時,掃描儀136中存在零磁場(例如,諸如在圖2C中之時間「d」處),且射束124穿過掃描儀136而未經修改。當場在自極136b至極136a(例如,圖2C中之時間「a」至「c」)之方向上時,射束124之離子經受負X方向上之橫向力。
圖2D說明在圖2B至圖2C中所指示之對應時間處衝擊工件 130的掃描及平行化射束124。當通過極之電流為最大及最小(例如,最大負值)時,對應磁場強度將為最大及最小(例如,最大負值),以使得可在射束路徑之極端處(例如在超出工件130之圓周的極右側及極左側邊緣處)發現射束。圖2D中說明在圖2B之對應時間「a」至「g」處的掃描電流之掃描射束離散點124a至124g,以用於跨工件130在X方向上的單次大致水平掃描。由此可見,當掃描儀磁場在自極136b至極136a之方向上時,射束124之離子經受負X方向上之橫向力,以使得掃描射束逆轉圖2D中所說明之掃描射束離散點124g至124a之方向,以在負X方向上跨工件130產生單次大致水平掃描。
為了獲得對本發明之更好理解,圖3及圖5說明射束電流密度之變化,其可在射束經掃描時發生,可(例如)由離子束之橫截面形狀的改變引起,當在工件之表面上掃描離子束時由通過線圈之變化的掃描電流誘發。應瞭解,離子束之橫截面形狀的改變僅為離子束之射束電流密度可變化的一種方式,但其並不欲為射束電流密度可如何變化之限制性實例。亦應瞭解,如本文中所提及,離子束之橫截面形狀的改變可包含離子束之橫截面形狀的任何改變。舉例而言,改變射束之橫截面形狀可包含同樣以對稱或非對稱方式使離子束更大、更小、更寬或更窄。
如圖3中所說明,在工件130上方掃描例示性離子束路徑302(如自離子束124之軌道查看),展示出離子束在沿路徑302之特定位置處之橫截面形狀的改變。特定而言,在三個不同例示性位置306、308、310處繪示離子束,其分別表示離子束相對於工件130在三個不同時間段的位置。當離子束橫截面形狀在掃描期間變化時,以虛線繪示三個例示性位置 中之每一者處的離子束,表示離子束之三個實例性橫截面形狀。如圖3中所展示,離子束之橫截面形狀的改變可在任何一或多個方向上發生。舉例而言,射束及其輪廓可在高度及/或寬度上變化。如上文所描述,離子束124之橫截面形狀的改變導致晶圓130上之射束電流密度的改變。
此外,當沿快速掃描軸314之快速掃描的掃描速度在一個具體實例中處於第一掃描頻率時,射束光學元件中之任一者可在實質性大於第一頻率之第二頻率下引起離子束之橫截面形狀的改變。在一個具體實例中,離子束之橫截面形狀可沿方向不同於快速掃描方向的軸變化,從而產生具有經修改之有效高度(例如,在實質上平行於緩慢掃描方向的方向上擴展離子束形狀之射束變化)的離子束。結合圖5最佳地理解此特徵,其中第一射束形狀308a具有第一尺寸316,而第二射束形狀308b具有第二較大尺寸318,其沿緩慢掃描方向312產生具有經擴大尺寸之射束。較大有效射束形狀在緩慢掃描方向312上。
在圖3中,繪示在工件130上方經掃描之離子束124之平面視圖。在此所說明之實例中,工件經組態以沿緩慢掃描軸151掃描以在沿快速掃描軸154掃描點離子束124時暴露於該點離子束。控制系統154經組態以控制工件130在其沿緩慢掃描軸151經掃描時之速度,掃描離子束在其沿快速掃描軸154經掃描時之速度,以及掃描離子束之掃描寬度,以使得工件130的整個表面將以預定方式(例如預定掃描圖案150)暴露於離子束。應注意,圖3中所說明之預定掃描圖案150為具有大致恆定的掃描寬度152之實例,且預期各種其他掃描圖案屬於本發明之範圍。舉例而言,掃描離子束124之掃描寬度152可隨工件130沿緩慢掃描軸151橫跨而變化,以使 得掃描離子束逆轉距工件之圓周156之預定距離的方向(例如,掃描離子束遵循工件之幾何結構)。此外,掃描離子束144之掃描寬度152可出於其他目的而變化,諸如為了經由旁側杯158A及158B獲得離子束之各種性質的量測,如本文中已論述。
圖3說明跨工件130之射束124的直接掃描,其中機械致動器(圖中未示)在由掃描儀36進行之X(快速掃描)方向掃描期間使工件130在Y(緩慢掃描)方向上平移,由此在工件30的整個暴露表面上賦予射束24。在進入掃描儀36之前,離子束124典型地分別具有非零X及Y維度之寬度及高度輪廓,其中射束之X及Y維度中之一或兩者歸因於空間電荷及其他效應在輸送期間典型地變化。舉例而言,當沿射束路徑朝向工件130輸送射束124,射束124遇到可改變射束寬度及/或高度或其比率之各種電場及/或磁場及器件。另外,包括帶正電射束離子之互斥的空間電荷效應往往會在缺乏防範措施之情況下發散射束(例如,X及Y維度增大)。
另外,掃描儀136之幾何結構及操作電壓提供關於實際上提供至工件130之射束124之某些聚焦性質。因此,即使假定完全對稱射束124進入掃描儀136,藉由掃描儀136彎曲射束124仍會改變射束聚焦,其中入射射束在X方向上之橫向邊緣(例如,圖2D中之124a及124g)處典型地更為聚焦,且將在X維度上對於橫向邊緣之間的點(例如,圖2D中之124c、124d及214e)較不聚焦(例如,較寬或較發散)。
為了獲得對本發明之更好理解,圖4說明在單一射束掃描路徑之過程中所量測之理想時間(或位置)依賴性射束電流波形。圖4描繪理想情景,其中可看出由軌跡166指示之射束電流在離子束橫跨工件130 時保持相對恆定及均一。在射束行進超出各別旁側法拉第杯158A、158B時,射束電流在每次掃描結束時向上或向下斜變。此射束電流波形可藉由將離子束暴露至旁側法拉第杯158A、158B以經預測射束電流波形之形式表示,以便提供對期望應在給定掃描路徑上跨越工件之射束電流的量測。替代地,射束電流波形可藉由將離子束暴露至行進輪廓儀156或圖1中所展示之旁側調諧法拉第杯170中之一者來提供。
本發明涵蓋:圖4中所說明之理想射束電流典型地並不表示在離子佈植系統之典型操作期間呈現給工件的實際射束電流。舉例而言,如先前所提及,當沿射束路徑朝向工件130輸送射束124時,射束124遇到可改變射束形狀或可以各種方式影響射束均一性的各種電場及/或磁場及器件。另外,包括帶正電射束離子之互斥的空間電荷效應往往會在缺乏防範措施之情況下發散射束。亦已發現,在終端台中之特定位置處存在或缺乏晶圓可產生離子束以及與其相關聯的電流密度之擾動。粒子污染亦可產生射束輪廓及/或射束電流之短期波動。因此,實際上,離子束電流、電流密度及/或電流分佈係非均一的,且可在整個給定掃描路徑或貫穿佈植週期之多個掃描路徑中以及跨越不同工件之不同離子佈植週期波動。與用於控制離子束之裝置及方法相關的本發明之具體實例涵蓋將射束取樣系統與控制系統整合,以基於對離子束之複數個射束電流量測的偵測及對該複數個樣本之分析來控制離子佈植機中之離子束,從而基於該複數個射束電流量測來識別離子束電流之變化或波動。超過比方說與先前射束電流量測相比係絕對或相對的某一臨限值之經識別變化可產生控制信號,其用於停止離子佈植系統或至少中止離子束之輸送。該系統亦可包括回應於射束電流中之 經識別變化來調整離子束以減少變化之調整組件,其致力於在離子佈植程序期間在現場減少低於臨限值位準之離子束變化。因此,控制系統154經組態以產生預定控制信號以用於在離子束變化高於臨限值時中止或執行對離子佈植機中之參數的調整。
另外,應瞭解,存在許多可影響目標表面上之離子束電流分佈的因素。舉例而言,具有習知設計之離子佈植機在低能量位準展現不良傳輸。此類不良傳輸可視摻雜劑而變化。此外,併入離子束光學件之不同原理可解決此低能量傳輸送問題,但可能又會產生與射束均一性相關之其他問題。在另一實施例中,如上文所描述將高能量輸送與後端減速相組合可使得離子束能夠以更高能量提取及輸送,以減輕空間電荷效應並實現更高射束電流位準,但可能產生與空間非均一性相關之其他問題,空間非均一性會使得離子以相對於晶圓表面之入射角度的廣泛分佈衝擊基板。在又一實施例中,使用分子離子作為正經佈植之物質進行離子佈植(對比單體離子)引入其自身唯一佈植非均一性集合。產生射束電流非均一性之其他實例尤其包括射束工作因數控制、電極電弧之淬滅、電源供應器調變。
電流非均一性在離子佈植系統中固有之事實產生射束電流之可預測的非均一性(PNU)規格或離子佈植規格。因此,一或多個PNU可經由實驗、經驗資料及且以其他方式作為某些離子佈植系統中之整體特性及在某些佈植狀態下判定。因此,可存在一些與可在某些離子佈植系統中及在某些佈植狀態下經識別為可接受之射束電流相關的可預測非均一性(PNU)特性。
本發明可操作以根據此等PNU約束及在該等約束內及/或在 射束電流變化或波動經識別為超出預定臨限值位準之範圍時提供對離子佈植系統之控制。圖5提供對射束電流或密度可歸因於射束電流之例示性改變而可能發生的改變及波動(如可由離子束之橫截面形狀的改變以及其他變數引起)之極簡說明,此係由於離子束經輸送穿過射束線,穿過如本文中所描述之射束線之多個光學元件,並佈植至工件表面中。如圖5中所展示,離子束之橫截面形狀的改變可在任何一或多個方向上發生。如上文所描述,離子束121之橫截面形狀的改變(例如,經由聚焦變化)引起射束電流、電流密度及/或電流分佈之波動。此等波動將被視為不一致性、不均一性或射束電流之尖峰,以使得關於圖4中所說明之時間或位置的理想射束電流波形將包括不均一性,該等不均一性可包括向上或向下趨向斜率,其指示射束電流之逐漸不均一性,或尖銳的向上或向下尖峰,其指示影響射束電流快速脈衝事件,其中可看出至少部分地歸因於總射束電流I之波動而調變輪廓化之射束電流。可將自身顯現為射束電流之不均一性或波動的此等改變可由可在離子束輸送期間發生之各種不一致性、變化或不規律性引起,在佈植週期期間,該等改變在如可由溫度、真空度、粒子偏移、未預期電源供應器輸出、影響沿射束線定位之一個或複數個光學元件的硬體中斷或故障之變化導致的處理環境中之不可控變化的範圍內,以上任何及所有者可影響給定時間處之射束電流。射束電流之此類變化可受離子束之各種特性影響,該等特性包括但不限於:射束角度;射束形狀;射束發散度;以及射束平行度,其全部均可導致晶圓處之不一致及非均一射束電流密度。
出於論述及說明之目的,在射束形狀改變之情形下已呈現且 將論述射束電流波動及或不均一性。然而,應瞭解,離子束之橫截面形狀的改變僅為其中離子束之電流、電流密度及/或分佈可變化的一種方式,以使得射束形狀並不欲為射束電流或射束電流密度或分佈可如何變化或波動之限制性實例。亦應瞭解,如本文中所提及,離子束之橫截面形狀的改變可包含離子束之橫截面形狀的任何改變。舉例而言,改變射束之橫截面形狀可包含以對稱方式或非對稱方式及以系統或非系統方式使離子束更大、更小、更寬或更窄之改變。
在一個實例中,離子束之橫截面形狀可沿具有實質上橫向於離子束之快速掃描方向之方向的軸對稱地變化,從而產生具有經修改之有效高度的時間平均離子束。舉例而言,在射束聚焦元件無意中在實質上平行於緩慢掃描方向之方向上擴展離子束之形狀的情況下,將產生具有更大高度的時間平均離子束。結合圖5最佳地理解此實例,其中第一射束形狀308a具有第一尺寸316,而第二射束形狀308b具有第二更大尺寸318,其沿緩慢掃描方向312產生具有經擴大尺寸之時間平均射束。相反,在無意中在實質上平行於緩慢掃描方向之方向上截短離子束之形狀的情況下,將產生具有更小高度的時間平均離子束(如由射束形狀308c所說明),從而沿緩慢掃描方向312產生具有較小尺寸之時間平均射束。轉回至在如圖3中所說明之工件130上經掃描之例示性離子束路徑302(如自離子束121所查看),此等可變射束形狀可導致在沿路徑302之特定位置處之離子束橫截面形狀的變化。特定而言,在三個不同例示性位置306、308、310處繪示離子束,其分別表示離子束相對於工件130在三個不同時間段的位置。當一或多個射束聚焦/塑形元件在掃描期間使離子束橫截面形狀變化時,以虛線繪示三 個例示性位置中之每一者處的離子束,其表示離子束之三個實例性橫截面形狀。
繼續參考圖6至圖7,說明射束形狀及射束電流密度分佈之較真實的非對稱、非系統波動。如上文陳述,離子束之橫截面形狀的變化將提供隨時間推移而具有離子束之不同射束輪廓之複數個不同的瞬時射束電流密度。舉例而言,第一橫截面射束形狀可具有第一射束輪廓,其沿射束輪廓在第一位置處具有電流「尖峰」;而第二橫截面射束形狀可具有第二射束輪廓,其沿射束輪廓在不同於第一位置之第二位置處具有電流尖峰。此外,第三橫截面射束形狀可具有第三射束輪廓,其沿射束輪廓在多個位置處具有多個尖峰。舉例而言,圖6及圖6A說明與第一離子束形狀相關聯之射束電流輪廓408,其包含在位置P1處具有振幅A1的電流峰值/尖峰。圖7及圖7A說明入射於工件上之第二離子束形狀,其中與第二離子束形狀相關聯之射束電流輪廓410包含在位置P2處具有振幅A2的電流峰值/尖峰。可由與離子佈植系統相關聯之各種因素造成的離子束之橫截面形狀的快速改變可導致射束電流密度在跨晶圓之快速掃描過程中在不同射束輪廓之間改變。因此,快速改變離子束之橫截面形狀可將工件暴露至具有不同及變化的射束電流輪廓之多個不同及變化的射束電流密度。
如先前所提及,在離子佈植之前及期間,出於製程控制及其他原因,需要監測離子束以判定離子束之各種特性及參數,包括射束電流、射束電流密度、射束電流分佈及預期佈植至工件中的離子之大體劑量。因此,本發明包括硬體及相關聯之電子器件及控制系統,其用於以近似250KHz之預定頻率取樣離子束,以在跨工件掃描射束時提供複數個離散射束電流 樣本量測。將注意,並不需要此相對高頻取樣速率,且低至5Khz或甚至500hz之取樣速率可能適用於一些應用,只要與在佈植期間掃描射束相比可量測許多樣本即可。在本文中所揭示之例示性系統中,提供旁側取樣杯及調諧杯,其中射束電流在點離子束在其上穿過時經取樣及量測。將來自此等杯之輸出量測遞送至射束取樣系統,該射束取樣系統通常包括用於即時提供射束電流波形之圖形表示的顯示元件155a。經監測樣本與輸入至掃描儀(以及輸入至掃描工件之位置)的掃描電流波形同步,以提供可即時查看之離子束之時間及位置依賴性射束電流輪廓。使經監測取樣與掃描電流波形同步亦提供關於掃描方向之資訊,其可用於判定規定的控制輸出。
在圖8中提供來自顯示元件155a之例示性螢幕捕捉,其展示由左側及右側法拉第杯(晶圓之左側至右側掃描中之802、806,及晶圓之右側至左側掃描中之816、812)產生的波形,以及由調諧杯804、814產生的波形。圖8亦展示輸入至掃描儀之掃描電流波形820。當在第一方向上自時間0至12500uSec掃描射束時(當掃描波形具有正斜率時),且當在與第一方向相反的第二方向上自時間12500uSec至25000uSec掃描射束時(當掃描波形具有負斜率時),此等波形展示呈波形形式之射束電流樣本。將理解,本發明同樣適用於所有範圍內的掃描時間及頻率。藉由使經監測射束樣本與掃描電流波形同步,可顯示離子束之時間及位置依賴性射束電流波形。使經監測取樣與掃描電流波形同步亦提供關於掃描方向之資訊,其可用於判定根據本發明之規定的控制輸出。
如圖8中所說明之離子束之射束電流波形展現由調諧杯804、814捕捉之相對穩定均一的射束電流波形,其包夾於由左側杯802、812 捕捉及由左側杯806、816捕捉之相對非均一的射束電流波形之間。將可見,如圖8中所說明之離子束之射束電流波形展現在沿第一方向且隨後在第二反向方向上掃描射束時捕捉到的相對對稱的射束電流波形。舉例而言,由右側杯捕捉之波形806、816在射束自旁側杯之左側邊緣行進至右側邊緣時展現射束電流之略微增加,且隨後當射束使其行進方向自旁側杯之右側邊緣逆轉至左側邊緣時展現射束電流之實質上當量的略微降低。在此情況下,亦即在波形806、816由右側杯捕捉之情況下,可分析射束電流之變化且可判定在如上文所描述之經預測均一性量測或PNU內變化,以使得將不需要經由控制系統之校正動作。然而,鑒於電流變化之對稱特性,其展示旁側杯之極右側處的加強電流密度量測,控制系統可識別與在所限定之掃描電流範圍(與將離子束掃描至掃描範圍的極右側相關聯之電流範圍)內操作之掃描儀相關之系統問題。在此情況下,控制系統可經組態以對射束光學元件中之一或多者產生校正信號。替代地,控制系統可產生閉鎖信號以防止對晶圓的進一步佈植。
在另一實例中,波形802、812表示由左側杯捕捉之電流信號。此等波形區段在射束自左側杯之左側邊緣行進至右側邊緣時展現射束電流之顯著尖峰(波形802),且隨後在射束已將其行進方向自從左至右逆轉至從右至左之後展現射束電流之實質上當量的尖峰(波形812)。在此情況下,亦即在波形802、812由左側杯捕捉之情況下,可分析射束電流之變化且可判定電流尖峰超出臨限射束均一性量測的範圍,以使得將需要經控制系統之校正動作。亦可分析射束電流取樣且將其用於在射束電流漂移、變化、及/或波動超出作為射束電流之絕對值或作為相比於一或多個先前電 流樣本之相對值之預定臨限值位準的情況下中止給定佈植週期。作為一說明性實例,控制系統可經組態以產生閉鎖信號以防止對晶圓的進一步佈植,或將動態回饋信號提供至一或多個光學元件以用於將射束電流波動減小至可接受範圍內。
在圖9中提供來自顯示元件之另一例示性螢幕捕捉,其展示由左側及右側法拉第杯產生的多個波形902、906,以及當在第一方向上及在第二方向上多次掃描射束時由調諧杯產生的多個波形904。就圖9而言,與如圖8中所說明之波形之連續佈局相反,將所捕捉之波形展示為當射束在第一方向上及在相反的第二方向上行進時彼此覆蓋及交疊。複數個射束電流量測與掃描電流波形同步,從而顯示離子束電流之時間及位置依賴性射束電流波形。另外,藉由使此等波形彼此覆蓋同時使經監測射束樣本與掃描電流波形同步,可產生掃描方向依賴性射束電流波形。因此,在一例示性具體實例中,顯示元件155a較佳以色彩顯示螢幕形式提供,其中可以第一色彩顯示與射束之右側至左側掃描運動相關聯之波形,且可以第二色彩顯示與射束之左側至右側掃描運動相關聯之波形。
在圖9之代表性螢幕捕捉中,可看出,例如靠近由調諧杯捕捉之波形904的中間部分904a發生顯著射束電流波動。此在已經記載且成為與磁性掃描儀系統相關聯之熟知問題時可與所謂零場異常相關聯。替代地,在部分904a中表示之波動可與同射束線中之各個射束光學組件中之任一者相關聯之其他因素相關聯。另外,圖9之代表性螢幕捕捉展現(例如)在射束橫跨調諧杯之右側時與射束電流相關聯之波形區段904c相較於波形區段904b有顯著改變,該等波形區段904b在射束橫跨調諧杯之右側時亦與 射束電流相關聯。此等不同波形部分可表示射束在第二方向上行進相比於射束在第一方向上行進的時間段之對比。波形區段904b與波形區段904c之間的變化可指示一問題,例如,其中掃描射束撞擊在造成除氣的終端台之右側處之區域(亦即,射束撞擊存在於終端台之右側上的光阻摻雜劑)。因此,可在延續一段時間的簡單除氣偏移期間負面衝擊射束電流,此係由於射束逆轉方向,而非只要延伸至後續射束掃描即可。此等除氣偏移可造成終端台內之壓力驟升或下降,其可在自一個掃描遍次至下一掃描遍次的相對固定時間段期間將自身顯現為射束均一性之不一致。將理解,射束電流之此類非均一性及/或波動可與其他因素相關聯,該等因素與射束線中之各個射束光學組件,尤其係與射束在第二方向上之運動相關聯之掃描儀各部分下游之射束光學組件相關聯。本發明使得對射束電流之取樣及高位準分析結合對離子佈植系統之控制能夠包括產生校正回饋信號作為至射束光學元件中之一或多者之輸入。替代地,控制系統可產生閉鎖信號以防止對晶圓的進一步佈植,以使得可進行補充校正動作。
應瞭解,由本發明之監測及取樣系統捕捉之射束電流波動及/或射束電流變化可用作至經組態以操作離子佈植系統的控制系統之輸入。在不存在控制系統之情況下,離子束可經歷由高或低射束電流組成的射束電流之週期性變化或離子劑量尖峰。此等尖峰可為偶發性的且可包含可由離子佈植機內之不同來源產生的射束電流之週期性變化。舉例而言,射束形狀中之粒子污染物或波動可誘發射束電流之未預期的快速及急劇波動(調變)。替代地,諸如射束處理組件(諸如透鏡)內之振動的機械源可誘發射束電流之系統及可重複波動(調變)。值得注意的係,諸如靜電組件、 磁性組件或機械組件之射束線組件內的波動可造成基板處之離子束強度的改變。在一些情況下,射束位置、射束大小及/或射束發散度及方向可在離子束經由射束線傳播時波動,從而導致射束電流之波動(調變)。
控制系統可藉由偵測射束變化及觸發引起離子佈植系統連動且/或停機以停止基板處理之控制信號來解決此等波動。替代地,控制系統可藉由偵測射束變化及觸發控制信號來解決此等波動,該控制信號使得誘發對與一或多個射束光學組件相關聯之一或多個電源供應器的調整之診斷性佈線能夠避免將非均一離子劑量遞送至基板。特定而言,在各種具體實例中,系統經組態以動態地調整離子佈植機之參數以減少或消除射束電流調變,從而使得將較均一之離子劑量輸送至基板。因此,可將經動態調整之離子束輸送至基板,較佳地產生每一單位面積之離子劑量跨基板均一之均一離子劑量。
如將理解,圖1之控制系統154(例如)經組態以分析射束電流密度輪廓及離子束之相關位置,以判定在各別相關位置處遞送至基板之離子束電流密度,且進一步計算經預測劑量均一性,其中該控制器進一步經組態以在經預測劑量均一性與佈植均一性準則不一致之情況下執行校正動作。在一個例示性具體實例中,控制器154可經組態以調整射束光學元件中之任一者,從而動態地在離子佈植週期之過程期間即時或現場修改離子束電流或電流密度。同樣,控制器可進一步經組態以在不能調整射束光學件之情況下停止佈植,以在佈植均一性準則下校正經識別之不一致性或不均一性。
因此,如圖10中所說明,本發明進一步提供一種用於將離 子均一地佈植至工件中的方法。應注意,雖然在本文中將例示性方法說明並描述為一系列動作或事件,但本發明不受此類動作或事件所說明之次序所限制,此係因為根據本發明之一些步驟可以不同次序及/或與除本文中所展示及描述之步驟之外的其他步驟同時發生。另外,可能並不需要所有所說明步驟來實施根據本發明之方法。另外應瞭解,該等方法可如同與未說明之其他系統聯合一樣與本文中所說明且描述之系統聯合實施。熟習此項技術者將理解並瞭解,一方法可替代地表示為一系列相關狀態或事件,諸如以狀態圖表示。
圖10描繪根據本發明之用於離子佈植系統控制及對射束電流均一性之控制的第一例示性流程圖1000。流程開始於產生離子束之區塊1002。在區塊1004處,經由包括掃描儀(靜電或磁性)之複數個射束光學元件輸送離子束,且該離子束可進一步包括離子源提取及抑制電極、質量分析器、分辨孔口、射束聚焦元件、掃描儀電極或其他偏轉系統、平行化系統、角能量濾波器及/或電荷中和系統。在區塊1006處,對複數個射束電流量測取樣以提供複數個離散射束電流量測。在一個例示性具體實例中,可以約250KHz或更大之速率執行射束電流量測。此等複數個離散射束電流量測與步驟1008處之掃描電流有關,以提供每一離散射束電流量測之位置資訊。收集此射束電流樣本作為掃描電流之函數以提供射束電流及位置。動作1006例如與離子束之掃描同時出現,以使得旁側法拉第杯及調諧法拉第杯基於離子束之位置及工件之實體尺寸而暴露於離子束。因此,射束電流密度輪廓與離子束相對於動作1008中之工件、複數個旁側法拉第杯及調諧法拉第杯之位置有關。
流程接著繼續進行至區塊1010,其中執行對離子束樣本量測之分析。在步驟1012處,作出關於當前電流樣本相對於先前電流樣本是否超出臨限值的決議。若該判定為否,且尚未超出彼臨限值,則流程繼續進行,且對後續射束電流量測進行取樣及分析。若該判定為是,且已超出彼臨限值,則流程繼續進行至區塊1014,其中連動或停止離子佈植製程。
圖11描繪根據本發明之用於離子佈植系統控制及對射束電流均一性之控制的替代例示性流程圖1100。類似於圖10中所描繪之流程圖,流程開始於產生離子束之區塊1102。在區塊1104處,以與關於圖10所描述之相同方式經由複數個射束光學元件輸送離子束。在區塊1106處,與掃描系統之掃描電流同步取樣複數個射束電流量測(區塊1108),以使得可判定射束電流樣本之位置。流程接著繼續進行至區塊1110,其中可執行對離子束樣本量測之分析。在步驟1112處,基於在區塊1110處所執行之分析,作出關於當前電流樣本相對於先前電流樣本是否超出臨限值的決議。若該判定為是,且已超出彼臨限值,則流程繼續進行至區塊1114,其中產生控制信號以使施加至射束線上之光學元件中之至少一者的偏壓電壓變化。因此,根據此製程流程,若劑量均一性與預定佈植均一性準則不一致,則可動態地修改離子束。如圖11中所描繪,將理解,離子非均一性臨限值決議藉由循環回到步驟1112及在一些情況下回到步驟1106來繼續重新量測,且隨後在產生控制信號之後重新分析信號,以使得若不能調整射束光學件以校正對佈植均一性準則之違反,則以如關於圖10所闡述之方式停止佈植。因此,可進行產生適當控制信號以恰當地調整離子佈植機之參數的多次嘗試,其中若嘗試之數目超出預定數目,則流程可繼續進行至連動或 停止離子佈植製程之步驟。
如將理解,可利用本發明來分析複數個工件上方之射束電流密度輪廓及離子束之相關位置,以判定各別相關位置處之離子束的射束電流均一性,其中控制器進一步經組態以在劑量均一性違反佈植均一性準則之情況下執行校正動作。可進一步利用本發明來調整各個射束光學元件,從而在劑量均一性違反佈植均一性準則之情況下動態地修改離子束。同樣,可進一步利用本發明以在不能調整光學元件以校正佈植均一性準則之情況下停止佈植製程。
雖然已關於某一或某些較佳具體實例展示且描述本發明,但顯而易見,在閱讀並理解本說明書及隨附圖式之後,熟習此項技術者將想到等效更改及修改。特別就藉由上文所描述之組件(總成、器件、電路等)執行之各種功能而言,除非另有指示,否則用於描述此類組件之術語(包括對「構件」之引用)意欲對應於執行所描述組件之指定功能(亦即,功能上等效)的任何組件,即使在結構上不等效於執行本文中本發明所說明之例示性具體實例中之功能的所揭示之結構。另外,雖然本發明之特定特徵可能已關於若干具體實例中之僅一者揭示,但若需要且對任何給定或特定應用有利,則該特徵可與其他具體實例之一或多種其他特徵組合。

Claims (23)

  1. 一種用於控制一離子佈植系統中之離子束均一性的方法,該方法包含:產生一離子束;朝向一工件輸送該離子束;沿一第一軸掃描該離子束以產生一掃描離子束;提供至少一個射束光學元件,其經組態以在朝向該工件輸送離子束時選擇性地轉向及/或塑形該離子束,對該離子束取樣以提供複數個離子束電流樣本;使該等離子束電流樣本與一掃描電流相關,以提供對應於該掃描離子束之位置及方向資訊;及分析該複數個離子束電流樣本以偵測其中之不均一性;以及回應於該分析步驟產生一控制信號。
  2. 如申請專利範圍第1項之方法,其中該控制信號包括用於連動該離子佈植系統中之離子束輸送的一信號。
  3. 如申請專利範圍第1項之方法,其中該控制信號包括用於使至該至少一個射束光學元件的一輸入變化以控制該離子束之有效橫截面形狀中之變化的一信號。
  4. 如申請專利範圍第1項之方法,其中:該分析步驟包括將該複數個離子束電流樣本中之至少一者與先前離子束電流樣本進行比較;及該產生步驟在該複數個離子束電流樣本中的一經偵測之不均一性超出一預定臨限值時開始。
  5. 如申請專利範圍第1項之方法,其中:該分析步驟包括將該複數個離子束電流樣本中之至少一者與一經預測之不均一性規格進行比較;及該產生步驟在該複數個離子束電流樣本中的一經偵測之不均一性超出該經預測之不均一性規格時開始。
  6. 如申請專利範圍第1項之方法,其進一步包含以下步驟:儲存該複數個射束電流密度樣本及該離子束之該相關位置,以用於跨複數個工件進行複數次掃描。
  7. 如申請專利範圍第1項之方法,其中該至少一個射束光學元件改變該離子束之一有效橫截面形狀。
  8. 一種離子佈植系統,其包含:一離子源,其用於產生一離子束;一射束線,其經組態以沿一射束路徑朝向經組態以固持一工件的一終端台輸送該離子束;沿該射束線定位之複數個射束光學元件,其經組態以在朝向該工件輸送離子束時選擇性地轉向、偏轉及/或塑形該離子束;一射束取樣系統,其經組態以對該離子束取樣以提供複數個離子束電流樣本;一控制器,其經組態以分析該等射束電流密度樣本以偵測其不均一性且回應於一經偵測之不均一性而產生一控制信號。
  9. 如申請專利範圍第8項之離子佈植系統,其中該射束取樣系統進一步包含經組態以與該離子束相交之複數個法拉第杯。
  10. 如申請專利範圍第9項之離子佈植系統,其中該複數個法拉第杯包括與該工件之一周邊相鄰定位之至少一個旁側法拉第杯。
  11. 如申請專利範圍第9項之離子佈植系統,其中該複數個法拉第杯包括沿該射束路徑定位於該工件下游之至少一個調諧法拉第杯。
  12. 如申請專利範圍第8項之離子佈植系統,其中該控制器進一步經組態以使該離子束之一位置相對於該工件相關。
  13. 如申請專利範圍第12項之離子佈植系統,其進一步包含一儲存器件,該儲存器件經組態以儲存與該離子束相對於該工件之該位置相關的射束電流密度輪廓。
  14. 如申請專利範圍第8項之離子佈植系統,其中該控制器進一步經組態以回應於該複數個離子束電流密度樣本中之一經偵測之不均一性超出一預定臨限值而產生一控制信號。
  15. 如申請專利範圍第14項之離子佈植系統,其中該控制信號包括用於中斷該離子佈植系統中之離子束輸送的一連動信號。
  16. 如申請專利範圍第14項之離子佈植系統,其中該控制信號包括用於使至該複數個射束光學元件中之至少一者的一輸入變化以控制該離子束之有效橫截面形狀中之變化的一信號。
  17. 如申請專利範圍第8項之離子佈植系統,其中該複數個射束光學元件改變該離子束的一有效橫截面形狀。
  18. 一種用於將離子均一地佈植至一工件的方法,該方法包含:產生一離子束;沿一射束路徑輸送該離子束; 提供至少一個射束光學元件,其經組態以在沿該射束路徑輸送離子束時作用於該離子束;掃描該離子束以產生一掃描離子束;藉由在跨該工件之表面掃描該離子束時獲得複數個不同的離子束電流密度樣本來取樣該掃描離子束以偵測射束電流密度中之波動;使該複數個不同的離子束電流密度樣本與該離子束相對於該工件之一位置相關;分析該等離子束電流密度樣本及該離子束之相關位置,以判定一各別相關位置處之該離子束電流密度;將一當前離子束電流密度樣本與一先前離子束電流密度樣本進行比較;回應於該比較步驟產生一控制信號。
  19. 如申請專利範圍第18項之方法,其中該控制信號包括一信號,其用於在該比較步驟相對於該先前離子束電流密度樣本產生超出一臨限值的一當前離子束電流密度樣本值之情況下停止該佈植。
  20. 如申請專利範圍第18項之方法,其中該控制信號包括一信號,其用於調整施加至經組態以在沿該射束路徑輸送離子束時作用於該離子束之至少一個射束光學元件的一偏壓電壓。
  21. 如申請專利範圍第18項之方法,其中該控制信號包括一信號,其用於在該比較步驟產生與一經預測之離子束電流密度波形不一致的一離子束電流密度樣本值之情況下停止該佈植。
  22. 如申請專利範圍第18項之方法,其中該控制信號包括一信號,其用於在該比較步驟產生與一經預測之離子束電流密度波形不一致的一離子 束電流密度樣本值之情況下調整施加至經組態以在沿該射束路徑輸送離子束時作用於該離子束之至少一個射束光學元件的一偏壓電壓。
  23. 一種離子佈植系統,其包含:一射束線,其經組態以沿一射束路徑朝向經組態以固持一工件的一終端台引導一離子束;一掃描系統,其經組態以在一快速掃描方向上跨該工件之一表面掃描該離子束;及至少一個射束光學元件,其經組態以在引導該離子束朝向該終端台經掃描時彎曲、偏轉、聚焦或以其他方式修改該離子束;一射束取樣系統,其經組態以當在該快速掃描方向上掃描該離子束時取樣該離子束之一射束電流密度,該射束取樣系統包含:複數個旁側法拉第杯,其定位於該工件之一周邊周圍;及一調諧法拉第杯,其沿該射束路徑定位於該工件下游;以及一控制器,其經組態以:分析該射束取樣系統之一輸出,且使該輸出與該掃描系統相關,以提供關於該離子束相對於該工件之一位置的一射束電流密度值;及計算該離子束的一經預測之劑量均一性;其中該控制器進一步經組態成:假如一取樣離子束值與該經預測之劑量均一性不一致,提供一控制信號。
TW106130648A 2016-09-07 2017-09-07 用於控制離子束均一性的離子佈植系統及方法 TWI759329B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/258,723 US10395889B2 (en) 2016-09-07 2016-09-07 In situ beam current monitoring and control in scanned ion implantation systems
US15/258,723 2016-09-07

Publications (2)

Publication Number Publication Date
TW201824325A true TW201824325A (zh) 2018-07-01
TWI759329B TWI759329B (zh) 2022-04-01

Family

ID=59895408

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106130648A TWI759329B (zh) 2016-09-07 2017-09-07 用於控制離子束均一性的離子佈植系統及方法

Country Status (6)

Country Link
US (1) US10395889B2 (zh)
JP (1) JP7050053B2 (zh)
KR (1) KR102531092B1 (zh)
CN (1) CN109643628B (zh)
TW (1) TWI759329B (zh)
WO (1) WO2018048889A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI728501B (zh) * 2018-10-10 2021-05-21 美商應用材料股份有限公司 工件處理系統及確定離子束的參數的方法
TWI771769B (zh) * 2019-10-25 2022-07-21 美商應用材料股份有限公司 離子植入系統以及與其一起使用的監測電路
TWI790624B (zh) * 2020-07-20 2023-01-21 日商日立全球先端科技股份有限公司 能量濾波器,及具備其之能量分析器及帶電粒子束裝置
TWI808524B (zh) * 2020-11-19 2023-07-11 日商紐富來科技股份有限公司 電子發射源的動作控制方法、電子束描繪方法以及電子束描繪裝置
TWI835183B (zh) * 2021-07-09 2024-03-11 美商應用材料股份有限公司 操作束線離子植入機的方法、非暫時性計算機可讀儲存媒體以及離子植入機

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170005013A1 (en) 2015-06-30 2017-01-05 Varian Semiconductor Equipment Associates, Inc. Workpiece Processing Technique
US10431421B2 (en) * 2017-11-03 2019-10-01 Varian Semiconductor Equipment Associates, Inc Apparatus and techniques for beam mapping in ion beam system
US11227741B2 (en) * 2018-05-03 2022-01-18 Plasma-Therm Nes Llc Scanning ion beam etch
CN112585714A (zh) * 2018-08-31 2021-03-30 株式会社日立高新技术 离子研磨装置
US10699871B2 (en) 2018-11-09 2020-06-30 Applied Materials, Inc. System and method for spatially resolved optical metrology of an ion beam
CN111830553B (zh) * 2019-04-16 2022-10-25 中芯国际集成电路制造(上海)有限公司 离子束均匀度检测装置及检测方法
US11264205B2 (en) * 2019-12-06 2022-03-01 Applied Materials, Inc. Techniques for determining and correcting for expected dose variation during implantation of photoresist-coated substrates
CN111312572B (zh) * 2020-02-25 2023-03-31 上海华虹宏力半导体制造有限公司 离子注入机台的监控方法
TWI805180B (zh) * 2021-01-21 2023-06-11 日商紐富來科技股份有限公司 電子線描繪裝置及陰極壽命預測方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62295347A (ja) 1986-04-09 1987-12-22 イクリプス・イオン・テクノロジ−・インコ−ポレイテツド イオンビ−ム高速平行走査装置
US4816693A (en) * 1987-08-21 1989-03-28 National Electrostatics Corp. Apparatus and method for uniform ion dose control
JP2762845B2 (ja) * 1992-06-25 1998-06-04 日新電機株式会社 イオン注入装置
GB2382716B (en) * 1998-07-21 2003-09-03 Applied Materials Inc Ion Implantation Beam Monitor
JP3567749B2 (ja) 1998-07-22 2004-09-22 日新電機株式会社 荷電粒子ビームの分布測定方法およびそれに関連する方法
US6710359B2 (en) * 2001-03-23 2004-03-23 Varian Semiconductor Equipment Associates, Inc. Methods and apparatus for scanned beam uniformity adjustment in ion implanters
US6956223B2 (en) 2002-04-10 2005-10-18 Applied Materials, Inc. Multi-directional scanning of movable member and ion beam monitoring arrangement therefor
WO2005084077A1 (ja) 2004-02-26 2005-09-09 Matsushita Electric Industrial Co., Ltd. 音響処理装置
US7078712B2 (en) * 2004-03-18 2006-07-18 Axcelis Technologies, Inc. In-situ monitoring on an ion implanter
US7550751B2 (en) 2006-04-10 2009-06-23 Axcelis Technologies, Inc. Ion beam scanning control methods and systems for ion implantation uniformity
US7473909B2 (en) * 2006-12-04 2009-01-06 Axcelis Technologies, Inc. Use of ion induced luminescence (IIL) as feedback control for ion implantation
WO2008115339A1 (en) 2007-03-15 2008-09-25 White Nicholas R Open-ended electromagnetic corrector assembly and method for deflecting, focusing, and controlling the uniformity of a traveling ion beam
US7701230B2 (en) 2007-04-30 2010-04-20 Axcelis Technologies, Inc. Method and system for ion beam profiling
US7755066B2 (en) 2008-03-28 2010-07-13 Varian Semiconductor Equipment Associates, Inc. Techniques for improved uniformity tuning in an ion implanter system
ES2525045T3 (es) * 2008-04-24 2014-12-16 Newsouth Innovations Pty Limited Agrupación de genes de saxitoxina de cianobacterias y detección de organismos cianotóxicos
US8008636B2 (en) * 2008-12-18 2011-08-30 Axcelis Technologies, Inc. Ion implantation with diminished scanning field effects
US8278634B2 (en) * 2009-06-08 2012-10-02 Axcelis Technologies, Inc. System and method for ion implantation with improved productivity and uniformity
US8669539B2 (en) * 2010-03-29 2014-03-11 Advanced Ion Beam Technology, Inc. Implant method and implanter by using a variable aperture
JP5373702B2 (ja) * 2010-06-07 2013-12-18 株式会社Sen イオンビームスキャン処理装置及びイオンビームスキャン処理方法
US20120196047A1 (en) * 2011-01-28 2012-08-02 Advanced Ion Beam Technology, Inc. Determining relative scan velocity to control ion implantation of work piece
US8421039B2 (en) * 2011-03-31 2013-04-16 Axcelis Technologies, Inc. Method and apparatus for improved uniformity control with dynamic beam shaping
US8637838B2 (en) * 2011-12-13 2014-01-28 Axcelis Technologies, Inc. System and method for ion implantation with improved productivity and uniformity
JP5808706B2 (ja) * 2012-03-29 2015-11-10 住友重機械イオンテクノロジー株式会社 イオン注入装置及びその制御方法
US9340870B2 (en) 2013-01-25 2016-05-17 Advanced Ion Beam Technology, Inc. Magnetic field fluctuation for beam smoothing
US9006692B2 (en) * 2013-05-03 2015-04-14 Varian Semiconductor Equipment Associates, Inc. Apparatus and techniques for controlling ion implantation uniformity
CZ304824B6 (cs) * 2013-07-11 2014-11-19 Tescan Orsay Holding, A.S. Způsob opracovávání vzorku v zařízení se dvěma nebo více částicovými svazky a zařízení k jeho provádění
US8933424B1 (en) 2013-11-21 2015-01-13 Axcelis Technologies, Inc. Method for measuring transverse beam intensity distribution
TWI686838B (zh) * 2014-12-26 2020-03-01 美商艾克塞利斯科技公司 改善混合式掃描離子束植入機之生產力的系統及方法
JP6517163B2 (ja) * 2016-03-18 2019-05-22 住友重機械イオンテクノロジー株式会社 イオン注入装置及びスキャン波形作成方法
JP6689544B2 (ja) * 2016-09-06 2020-04-28 住友重機械イオンテクノロジー株式会社 イオン注入装置及びイオン注入方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI728501B (zh) * 2018-10-10 2021-05-21 美商應用材料股份有限公司 工件處理系統及確定離子束的參數的方法
TWI771769B (zh) * 2019-10-25 2022-07-21 美商應用材料股份有限公司 離子植入系統以及與其一起使用的監測電路
TWI790624B (zh) * 2020-07-20 2023-01-21 日商日立全球先端科技股份有限公司 能量濾波器,及具備其之能量分析器及帶電粒子束裝置
TWI808524B (zh) * 2020-11-19 2023-07-11 日商紐富來科技股份有限公司 電子發射源的動作控制方法、電子束描繪方法以及電子束描繪裝置
TWI835183B (zh) * 2021-07-09 2024-03-11 美商應用材料股份有限公司 操作束線離子植入機的方法、非暫時性計算機可讀儲存媒體以及離子植入機

Also Published As

Publication number Publication date
US20180068828A1 (en) 2018-03-08
KR102531092B1 (ko) 2023-05-09
KR20190044620A (ko) 2019-04-30
WO2018048889A1 (en) 2018-03-15
JP7050053B2 (ja) 2022-04-07
CN109643628B (zh) 2021-12-31
JP2019532461A (ja) 2019-11-07
CN109643628A (zh) 2019-04-16
US10395889B2 (en) 2019-08-27
TWI759329B (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
TWI759329B (zh) 用於控制離子束均一性的離子佈植系統及方法
US8637838B2 (en) System and method for ion implantation with improved productivity and uniformity
US8278634B2 (en) System and method for ion implantation with improved productivity and uniformity
US7589333B2 (en) Methods for rapidly switching off an ion beam
TWI442441B (zh) 離子植入系統以及在離子植入系統中將離子植入至工作件之中的方法
JP5652583B2 (ja) ハイブリッド結合及び二重機械式走査構造を有するイオン注入システム及び方法
JP5739333B2 (ja) イオン注入に用いる調整可能な偏向光学
CN108091534B (zh) 离子注入方法及离子注入装置
KR20160134649A (ko) 가변 에너지 제어를 갖는 이온 주입 시스템 및 방법
WO2005086204A2 (en) Modulating ion beam current
US8803110B2 (en) Methods for beam current modulation by ion source parameter modulation
KR20170101191A (ko) 빔 감속을 가지는 이온 주입기의 빔 각도 조정을 위한 시스템 및 방법
US7423277B2 (en) Ion beam monitoring in an ion implanter using an imaging device
KR20040014474A (ko) 이온 주입기에서의 주사 빔 균일성 조절을 위한 방법 및장치