TW201810641A - Low reflection metal structure, display panel and manufacturing method thereof - Google Patents

Low reflection metal structure, display panel and manufacturing method thereof Download PDF

Info

Publication number
TW201810641A
TW201810641A TW105110002A TW105110002A TW201810641A TW 201810641 A TW201810641 A TW 201810641A TW 105110002 A TW105110002 A TW 105110002A TW 105110002 A TW105110002 A TW 105110002A TW 201810641 A TW201810641 A TW 201810641A
Authority
TW
Taiwan
Prior art keywords
layer
metal
low
reflection
patterned
Prior art date
Application number
TW105110002A
Other languages
Chinese (zh)
Other versions
TWI591820B (en
Inventor
王碩宏
林巧雯
張家銘
林俊男
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW105110002A priority Critical patent/TWI591820B/en
Priority to CN201610331716.9A priority patent/CN105785639A/en
Application granted granted Critical
Publication of TWI591820B publication Critical patent/TWI591820B/en
Publication of TW201810641A publication Critical patent/TW201810641A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)

Abstract

A method for manufacturing a low reflection metal structure includes the following steps. A low reflection layer may be formed on the top and/or the bottom surface(s) of a metal layer, wherein the low reflection layer includes a metal oxide layer or a metal oxynitride layer. The low reflection layer and the metal layer are patterned simultaneously to form a patterned low reflection layer and a patterned metal layer.

Description

低反射金屬結構、顯示面板及其製作方法Low reflection metal structure, display panel and manufacturing method thereof

本發明係關於一種低反射金屬結構及其製作方法,尤指一種具有低反射金屬結構的顯示面板及其製作方法。The invention relates to a low-reflection metal structure and a manufacturing method thereof, in particular to a display panel having a low-reflection metal structure and a manufacturing method thereof.

液晶顯示面板由於具有外型輕薄、耗電量少以及應用範圍廣等特性,故已成為目前顯示器的主流商品。由於液晶顯示面板內的金屬結構例如導線會反射外界的光線,造成使用者在使用液晶顯示面板時會看到液晶顯示面板的內部導線,因此目前常見的作法是在液晶顯示面板內設置黑色矩陣層,以防止導線反射外界光線的情形發生。然而,黑色矩陣層的設置會造成液晶顯示面板的開口率下降,使得顯示亮度降低。The liquid crystal display panel has become a mainstream commodity of current displays due to its characteristics of light and thin appearance, low power consumption, and wide application range. Because the metal structure in the liquid crystal display panel, such as a wire, reflects external light, causing the user to see the internal wires of the liquid crystal display panel when using the liquid crystal display panel, a common practice is to set a black matrix layer in the liquid crystal display panel. To prevent the situation where the wire reflects external light. However, the arrangement of the black matrix layer will cause the aperture ratio of the liquid crystal display panel to decrease, resulting in a decrease in display brightness.

本發明之目的之一在於提供一種低反射金屬結構、顯示面板及其製作方法,以減少金屬結構的可視性並提升顯示面板的開口率。An object of the present invention is to provide a low-reflection metal structure, a display panel, and a manufacturing method thereof, so as to reduce the visibility of the metal structure and improve the aperture ratio of the display panel.

為達上述之目的,本發明提供一種製作低反射金屬結構的方法。首先,提供第一基板。然後,於第一基板上形成金屬層。接著,於金屬層上及/或下形成低反射層,其中低反射層包括金屬氧化物層或金屬氮氧化物層。隨後,對低反射層與金屬層進行圖案化製程,以形成圖案化低反射層以及圖案化金屬層。To achieve the above object, the present invention provides a method for manufacturing a low reflection metal structure. First, a first substrate is provided. Then, a metal layer is formed on the first substrate. Then, a low reflection layer is formed on and / or under the metal layer, wherein the low reflection layer includes a metal oxide layer or a metal oxynitride layer. Subsequently, a patterning process is performed on the low reflection layer and the metal layer to form a patterned low reflection layer and a patterned metal layer.

為達上述之目的,本發明又提供一種製作顯示面板的方法。首先,進行上述之製作低反射金屬結構的方法。然後,於第一基板上形成複數個畫素結構。接著,於第一基板上形成第二基板。隨後,於第一基板與第二基板之間形成顯示介質層。To achieve the above object, the present invention further provides a method for manufacturing a display panel. First, the above-mentioned method for manufacturing a low reflection metal structure is performed. Then, a plurality of pixel structures are formed on the first substrate. Next, a second substrate is formed on the first substrate. Subsequently, a display medium layer is formed between the first substrate and the second substrate.

為達上述之目的,本發明另提供一種低反射金屬結構,包括第一基板、圖案化金屬層以及圖案化低反射層。圖案化金屬層設置於第一基板上。圖案化低反射層設置於圖案化金屬層上及/或下。To achieve the above object, the present invention further provides a low-reflection metal structure, which includes a first substrate, a patterned metal layer, and a patterned low-reflection layer. The patterned metal layer is disposed on the first substrate. The patterned low reflection layer is disposed on and / or under the patterned metal layer.

為達上述之目的,本發明更提供一種顯示面板,包括上述之低反射金屬結構、複數個畫素結構、第二基板以及顯示介質層。複數個畫素結構設置於第一基板上。第二基板設置於第一基板上。顯示介質層設置於第一基板與第二基板之間。To achieve the above object, the present invention further provides a display panel including the above-mentioned low reflection metal structure, a plurality of pixel structures, a second substrate, and a display medium layer. A plurality of pixel structures are disposed on the first substrate. The second substrate is disposed on the first substrate. The display medium layer is disposed between the first substrate and the second substrate.

本發明之低反射金屬結構、顯示面板及其製作方法於圖案化金屬層上及/或下設置圖案化低反射層,使得圖案化金屬層受到遮蔽而降低反射外界光線,藉此取代習知之黑色矩陣層。由於本發明之顯示面板及其製作方法不需要設置黑色矩陣層,因此相較於習知的顯示面板而言可有效提升顯示面板的開口率並同時減少一道光罩製程,進而降低製程複雜度以及製程成本。The low-reflection metal structure, display panel and manufacturing method of the present invention provide a patterned low-reflection layer on and / or under the patterned metal layer, so that the patterned metal layer is shielded to reduce reflection of external light, thereby replacing the conventional black Matrix layer. Because the display panel and the manufacturing method of the present invention do not need to provide a black matrix layer, compared with the conventional display panel, the aperture ratio of the display panel can be effectively improved and a mask process can be reduced at the same time, thereby reducing the complexity of the process and Process costs.

為使熟習本發明所屬技術領域具通常知識者能更進一步了解本發明,下文特舉本發明之較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。In order to make those who have ordinary knowledge in the technical field to which the present invention pertains to further understand the present invention, the preferred embodiments of the present invention will be given in the following, and in conjunction with the accompanying drawings, the constitutional content of the present invention and the desired effects will be described in detail. .

請參考第1圖至第4圖,第1圖至第4圖為本發明之第一實施例之製作低反射金屬結構的方法之示意圖。如第1圖所示,首先,提供一第一基板S1,第一基板S1的材質可為塑膠、玻璃、或其他適合材料。接著,如第2圖所示,於第一基板S1上形成一金屬層10,金屬層10較佳係由導電性較佳之材料例如金屬材料所形成,舉例而言,金屬材料可包括鋁、銅、銀、鈦、鉬、鉭、鈮或釹之其中至少一者、上述材料之金屬複合層、上述材料之合金或其他適合之金屬導電材料。於本實施例中,金屬層10係為單層金屬層,但本發明不以此為限,金屬層10亦可為金屬材料的疊合結構,或其它材料與金屬材料的疊合結構。然後,如第3圖所示,於金屬層10上形成一低反射層20,其中低反射層20包括一金屬氧化物層或一金屬氮氧化物層。隨後,如第4圖所示,對低反射層20與金屬層10進行一圖案化製程,以形成一圖案化低反射層22以及一圖案化金屬層12。精確而言,圖案化低反射層22可選擇性形成並覆蓋圖案化金屬層12之頂表面12U,而未覆蓋圖案化金屬層12之側表面,但本發明不以此為限,在變化實施例中,圖案化低反射層22亦可形成於圖案化金屬層12之底表面12L(第4圖未繪示出設置於圖案化金屬層12之底表面12L下的圖案化低反射層22),或是圖案化金屬層12之頂表面12U及底表面12L皆有覆蓋圖案化低反射層22。Please refer to FIGS. 1 to 4, which are schematic diagrams of a method for manufacturing a low reflection metal structure according to a first embodiment of the present invention. As shown in FIG. 1, first, a first substrate S1 is provided. The material of the first substrate S1 may be plastic, glass, or other suitable materials. Next, as shown in FIG. 2, a metal layer 10 is formed on the first substrate S1. The metal layer 10 is preferably formed of a material with better conductivity, such as a metal material. For example, the metal material may include aluminum and copper , At least one of silver, titanium, molybdenum, tantalum, niobium, or neodymium, a metal composite layer of the above materials, an alloy of the above materials, or other suitable metal conductive materials. In this embodiment, the metal layer 10 is a single-layer metal layer, but the invention is not limited thereto. The metal layer 10 may also be a stacked structure of a metal material, or a stacked structure of other materials and a metal material. Then, as shown in FIG. 3, a low reflection layer 20 is formed on the metal layer 10, wherein the low reflection layer 20 includes a metal oxide layer or a metal oxynitride layer. Subsequently, as shown in FIG. 4, a patterning process is performed on the low reflection layer 20 and the metal layer 10 to form a patterned low reflection layer 22 and a patterned metal layer 12. Precisely, the patterned low-reflection layer 22 can selectively form and cover the top surface 12U of the patterned metal layer 12, but does not cover the side surface of the patterned metal layer 12, but the present invention is not limited to this, and is implemented in variations. In the example, the patterned low-reflection layer 22 can also be formed on the bottom surface 12L of the patterned metal layer 12 (the patterned low-reflection layer 22 disposed under the bottom surface 12L of the patterned metal layer 12 is not shown in FIG. 4). Or, the top surface 12U and the bottom surface 12L of the patterned metal layer 12 are covered with the patterned low reflection layer 22.

具體來說,於金屬層10上形成低反射層20之步驟包括進行物理氣相沉積(Physical Vapor Deposition, PVD)製程,包括反應性濺鍍(reactive sputtering)及非反應性濺鍍(non-reactive sputtering)。當電漿轟擊靶材時,於反應室中通入特定反應氣體,使得反應氣體與靶材進行化學反應,以形成覆蓋金屬層10的低反射層20。當通入的反應氣體為氧氣時,則會形成金屬氧化物層的低反射層20,當通入的反應氣體為氮氣與氧氣的混合氣體時,則會形成金屬氮氧化物層的低反射層20。金屬氧化物層或金屬氮氧化物層中的金屬材料可包括鉭、銀、鈦、鉬、鋅或鈮之其中至少一者、上述材料之合金或其他適合之金屬材料。舉例而言,金屬氧化物層可包括鉬氧化物層或鉬鉭氧化物層,且金屬氧化物層中氧的含量係介於5%至50%之間,但本發明不以此為限。金屬氮氧化物層可包括鉬氮氧化物層或鉬鉭氮氧化物層,且金屬氮氧化物層中氧的原子百分比 (atomic percent)含量係介於5%至50%之間,且金屬氮氧化物層中氮的含量係介於1%至10%之間,但本發明不以此為限。此外,由於低反射層20可利用物理氣相沉積製程所形成,因此低反射層20的結構除了結晶相(crystalline phase)外,也可能為非晶相(amorphous phase)結構。相較於結晶相而言,非晶相的低反射層20具有一均質結構(homogeneous structure),以及更佳的耐久性(durablity),可避免位於其下方的金屬層10氧化,並使得金屬層10與低反射層20不易在後續製程中受到損傷而造成其性質改變。Specifically, the step of forming the low reflection layer 20 on the metal layer 10 includes performing a physical vapor deposition (Physical Vapor Deposition (PVD)) process, including reactive sputtering and non-reactive sputtering. sputtering). When the plasma bombards the target, a specific reaction gas is passed into the reaction chamber, so that the reaction gas and the target chemically react to form a low-reflection layer 20 covering the metal layer 10. When the reaction gas is oxygen, the low-reflection layer 20 of the metal oxide layer is formed. When the reaction gas is a mixed gas of nitrogen and oxygen, the low-reflection layer of the metal oxynitride layer is formed. 20. The metal material in the metal oxide layer or the metal oxynitride layer may include at least one of tantalum, silver, titanium, molybdenum, zinc, or niobium, an alloy of the foregoing materials, or other suitable metal materials. For example, the metal oxide layer may include a molybdenum oxide layer or a molybdenum tantalum oxide layer, and the content of oxygen in the metal oxide layer is between 5% and 50%, but the invention is not limited thereto. The metal oxynitride layer may include a molybdenum oxynitride layer or a molybdenum tantalum oxynitride layer. The atomic percent content of oxygen in the metal oxynitride layer is between 5% and 50%. The nitrogen content in the oxide layer is between 1% and 10%, but the invention is not limited thereto. In addition, since the low reflection layer 20 can be formed by a physical vapor deposition process, the structure of the low reflection layer 20 may be an amorphous phase structure in addition to a crystalline phase. Compared with the crystalline phase, the low-reflection layer 20 of the amorphous phase has a homogeneous structure and a better durability, which can prevent the metal layer 10 below it from oxidizing and make the metal layer 10 and the low-reflection layer 20 are not easy to be damaged in subsequent processes and cause their properties to change.

請繼續參考第4圖,圖案化金屬層12之側表面12S與底表面12L之間具有一夾角θ,且夾角θ介於10度至80度之間。當夾角θ越大時,圖案化金屬層12之側表面12S越陡,因此在垂直投影的觀察方向上,較不容易觀察到圖案化金屬層12及側表面12S所反射的光線,使得使用者無法察覺顯示面板內部的圖案化金屬層12,達到良好的遮光效果。進一步而言,因圖案化低反射層22係於低反射層20以及金屬層10同時進行圖案化製程後而產生,因此可藉由圖案化製程來調整夾角θ的大小,舉例來說,夾角θ可因圖案化金屬層12厚度的不同而改變。相較於利用加熱製程而產生的圖案化低反射層而言,其圖案化低反射層係於金屬層經圖案化製程後才形成,因此圖案化低反射層無法在其形成的過程中調整圖案化金屬層之夾角的角度,而本發明之低反射層20以及金屬層10係同時進行圖案化製程,因此可藉由改變低反射層20以及金屬層10的厚度而調整夾角θ的大小,進而使低反射金屬結構符合後續製程所需之規格。另外,相較於習知技術,本發明之低反射金屬結構可於單一圖案化製程中形成,故本發明之製作低反射金屬結構的方法具有降低製程複雜度以及製程成本的效果。Please continue to refer to FIG. 4, an angle θ is formed between the side surface 12S and the bottom surface 12L of the patterned metal layer 12, and the included angle θ is between 10 degrees and 80 degrees. When the included angle θ is larger, the side surface 12S of the patterned metal layer 12 is steeper. Therefore, in the observation direction of the vertical projection, it is easier to observe the light reflected by the patterned metal layer 12 and the side surface 12S, which makes the user The patterned metal layer 12 inside the display panel cannot be detected, and a good light shielding effect is achieved. Further, since the patterned low-reflection layer 22 is generated after the low-reflection layer 20 and the metal layer 10 are simultaneously subjected to a patterning process, the size of the included angle θ can be adjusted by the patterned process. For example, the included angle θ The thickness of the patterned metal layer 12 can be changed. Compared with the patterned low-reflection layer produced by the heating process, the patterned low-reflection layer is formed after the metal layer is subjected to the patterning process, so the patterned low-reflection layer cannot adjust the pattern during the formation thereof. The angle of the included angle of the metal layer is changed, and the low-reflection layer 20 and the metal layer 10 of the present invention are subjected to a patterning process at the same time. Therefore, the size of the included angle θ can be adjusted by changing the thickness of the low-reflection layer 20 and the metal layer 10. Make the low-reflection metal structure meet the specifications required for subsequent processes. In addition, compared with the conventional technology, the low-reflection metal structure of the present invention can be formed in a single patterning process. Therefore, the method of manufacturing the low-reflection metal structure of the present invention has the effect of reducing process complexity and process cost.

此外,圖案化低反射層22係由低反射層20經圖案化製程後所得,因此圖案化低反射層22包括金屬氧化物層或金屬氮氧化物層,其中金屬氧化物層與金屬氮氧化物層均具有良好的低反射效果。舉例而言,金屬氧化物層中氧的含量,其原子百分比 (atomic percent)係介於5%至50%之間,但本發明不以此為限。金屬氮氧化物層中氧的含量係介於5%至50%之間,且金屬氮氧化物層中氮的含量係介於1%至10%之間,但本發明不以此為限。進一步而言,適當控制金屬氧化物層或金屬氮氧化物層中氧的含量以及調整夾角θ的大小,可使得圖案化低反射層22具有較佳的低反射效果,因此圖案化金屬層12會遮蔽並降低反射外界光線,故可取代習知設置黑色矩陣層的作法。In addition, the patterned low reflection layer 22 is obtained after the low reflection layer 20 is subjected to a patterning process. Therefore, the patterned low reflection layer 22 includes a metal oxide layer or a metal oxynitride layer, wherein the metal oxide layer and the metal oxynitride layer Each layer has a good low reflection effect. For example, the atomic percent of the oxygen content in the metal oxide layer is between 5% and 50%, but the invention is not limited thereto. The content of oxygen in the metal oxynitride layer is between 5% and 50%, and the content of nitrogen in the metal oxynitride layer is between 1% and 10%, but the invention is not limited thereto. Further, appropriately controlling the oxygen content in the metal oxide layer or the metal oxynitride layer and adjusting the angle θ can make the patterned low-reflection layer 22 have a better low reflection effect, so the patterned metal layer 12 will It can shield and reduce the reflection of external light, so it can replace the conventional method of setting a black matrix layer.

下文將依序介紹本發明之其它實施例之顯示面板及其製作方法,且為了便於比較各實施例之相異處並簡化說明,在下文之各實施例中使用相同的符號標注相同的元件,且主要針對各實施例之相異處進行說明,而不再對重覆部分進行贅述。In the following, the display panels and manufacturing methods of other embodiments of the present invention will be introduced in order. In order to facilitate the comparison of the differences between the embodiments and simplify the description, the same components are labeled with the same symbols in the following embodiments. The differences between the embodiments are mainly described, and the repeated parts are not described again.

請參考第5圖。第5圖為本發明之第二實施例之低反射金屬結構的剖面示意圖。如第5圖所示,本實施例與第一實施例的不同之處在於,於本實施例中,圖案化金屬層12具有疊合結構,包括底金屬層12B以及頂金屬層12T位於底金屬層12B上,其中頂金屬層12T較佳係由導電性較佳之材料例如金屬材料所形成,金屬材料可包括鋁、銅、銀、鈦、鉬、鉭、鈮或釹之其中至少一者、上述材料之合金或其他適合之金屬導電材料。底金屬層12B較佳為有助於將頂金屬層12T附著於第一基板S1之金屬材料,上述之金屬材料可包括鋁、銀、鈦、鉬、鉭、鈮或釹之其中至少一者、上述材料之合金或其他適合之金屬材料。舉例而言,頂金屬層12T可為銅(Cu)、鋁(Al)或鋁釹合金(AlNd),而底金屬層12B可為鉬(Mo)以增加頂金屬層12T的附著力,但本發明不以此為限。此外,底金屬層12B的厚度D1係介於50埃(Å)~500埃(Å)之間,且頂金屬層12T的厚度D2係介於1000埃(Å)~9000埃(Å)之間,但本發明不以此為限,而圖案化低反射層22的厚度D3係介於50埃(Å)~500埃(Å)之間,但本發明不以此為限,而可視設計需求更改其厚度。此外,圖案化低反射層22的反射率隨其厚度而變化,當圖案化低反射層22的厚度D3介於50埃(Å)~500埃(Å)之間時,圖案化低反射層22的反射率(於可見光下)可介於2%至20%之間,因此圖案化低反射層22可以有效地吸收光線並降低圖案化金屬層12的反射效果,所以圖案化低反射層22可作為遮光圖案層並進一步取代黑色矩陣層。Please refer to Figure 5. FIG. 5 is a schematic cross-sectional view of a low reflection metal structure according to a second embodiment of the present invention. As shown in FIG. 5, this embodiment is different from the first embodiment in that in this embodiment, the patterned metal layer 12 has a stacked structure, including a bottom metal layer 12B and a top metal layer 12T on the bottom metal. On the layer 12B, the top metal layer 12T is preferably formed of a material with better conductivity, such as a metal material. The metal material may include at least one of aluminum, copper, silver, titanium, molybdenum, tantalum, niobium, or neodymium. Alloys of materials or other suitable metallic conductive materials. The bottom metal layer 12B is preferably a metal material that helps to attach the top metal layer 12T to the first substrate S1. The above metal material may include at least one of aluminum, silver, titanium, molybdenum, tantalum, niobium, or neodymium, Alloys of the above materials or other suitable metallic materials. For example, the top metal layer 12T may be copper (Cu), aluminum (Al), or aluminum neodymium alloy (AlNd), and the bottom metal layer 12B may be molybdenum (Mo) to increase the adhesion of the top metal layer 12T. The invention is not limited to this. In addition, the thickness D1 of the bottom metal layer 12B is between 50 Angstroms (Å) to 500 Angstroms (Å), and the thickness D2 of the top metal layer 12T is between 1000 Angstroms (Å) to 9000 Angstroms (Å). However, the present invention is not limited to this. The thickness D3 of the patterned low-reflection layer 22 is between 50 Angstroms (Å) to 500 Angstroms (Å). However, the present invention is not limited to this, and may be based on design requirements. Change its thickness. In addition, the reflectance of the patterned low-reflection layer 22 varies with its thickness. When the thickness D3 of the patterned low-reflection layer 22 is between 50 Angstroms (Å) to 500 Angstroms (Å), the patterned low-reflection layer 22 is patterned. The reflectivity (under visible light) can be between 2% and 20%, so the patterned low reflection layer 22 can effectively absorb light and reduce the reflection effect of the patterned metal layer 12, so the patterned low reflection layer 22 can As a light-shielding pattern layer, the black matrix layer is further replaced.

請參考第6圖,第6圖為本發明之第三實施例之低反射金屬結構的剖面示意圖。如第6圖所示,本實施例與第二實施例的不同之處在於,於金屬層10上形成低反射層20時,可藉由同步調控氧氣的流量,而同時於金屬層10與低反射層20之間自行反應生成一層極薄的介面層(interlayer)14,然後,再利用圖案化製程一併對金屬層10、低反射層20以及介面層14進行圖案化,以形成圖案化金屬層12、圖案化低反射層22以及圖案化的介面層14。介面層14之材料可包括金屬氧化物或金屬氮氧化物,且金屬氧化物層或金屬氮氧化物層中的金屬材料可包括鉭、鉬、鈮、銦、錫、鋅或鎵之其中至少一者或其合金,或為其他適合之金屬材料,但本發明不以此為限。舉例而言,金屬氧化物層可包括銦錫氧化物層(ITO)或銦鎵鋅氧化物層(IGZO)。其中,介面層14的存在有助於吸收光線,因此可進一步降低圖案化金屬層12的反射效果,故可使圖案化低反射層22發揮較佳地遮光效果並進一步取代黑色矩陣層。Please refer to FIG. 6, which is a schematic cross-sectional view of a low reflection metal structure according to a third embodiment of the present invention. As shown in FIG. 6, the difference between this embodiment and the second embodiment is that when the low-reflection layer 20 is formed on the metal layer 10, the oxygen flow rate can be adjusted simultaneously while the metal layer 10 and the low-reflection layer are simultaneously adjusted. The reflective layers 20 react to generate a very thin interlayer 14 by themselves. Then, the patterning process is used to pattern the metal layer 10, the low-reflection layer 20, and the interface layer 14 to form a patterned metal. Layer 12, a patterned low reflection layer 22, and a patterned interface layer 14. The material of the interface layer 14 may include a metal oxide or a metal oxynitride, and the metal material in the metal oxide layer or the metal oxynitride layer may include at least one of tantalum, molybdenum, niobium, indium, tin, zinc, or gallium. Or its alloy, or other suitable metal materials, but the invention is not limited thereto. For example, the metal oxide layer may include an indium tin oxide layer (ITO) or an indium gallium zinc oxide layer (IGZO). The presence of the interface layer 14 helps to absorb light, so the reflection effect of the patterned metal layer 12 can be further reduced. Therefore, the patterned low reflection layer 22 can exert a better light shielding effect and further replace the black matrix layer.

另外,於低反射層20與金屬層10之間,更可以形成由金屬氧化物或金屬氮氧化物的所堆疊而成的多層結構(圖未示),以達到進一步降低圖案化金屬層12反射率之效果。舉例來說,於金屬層10形成之後,可另沉積一層金屬氧化物層或金屬氮氧化物層或由金屬氧化物或金屬氮氧化物的所堆疊而成的多層結構(圖未示)於金屬層10上,接著再繼續形成低反射層20於金屬氧化物層或金屬氮氧化物層上,然後再利用圖案化製程一併對金屬層10、低反射層20、金屬氧化物層或金屬氮氧化物層以及介面層14進行圖案化。因由金屬氧化物或金屬氮氧化物的所堆疊而成的多層結構與介面層14同樣具有降低圖案化金屬層12的反射效果,因此可進一步降低圖案化金屬層12的反射,故可使圖案化低反射層22發揮較佳地遮光效果並進一步取代黑色矩陣層。In addition, between the low-reflection layer 20 and the metal layer 10, a multilayer structure (not shown) formed by stacking a metal oxide or a metal oxynitride can be formed to further reduce the reflection of the patterned metal layer 12. The effect of the rate. For example, after the metal layer 10 is formed, another metal oxide layer or metal oxynitride layer or a multilayer structure (not shown) formed by stacking the metal oxide or metal oxynitride on the metal may be deposited on the metal. Layer 10, and then continue to form a low reflection layer 20 on the metal oxide layer or metal oxynitride layer, and then use the patterning process to combine the metal layer 10, low reflection layer 20, metal oxide layer, or metal nitrogen The oxide layer and the interface layer 14 are patterned. Since the multilayer structure formed by stacking metal oxides or metal oxynitrides has the same effect of reducing the reflection of the patterned metal layer 12 as the interface layer 14, the reflection of the patterned metal layer 12 can be further reduced, so that the patterning can be performed. The low-reflection layer 22 exerts a better light shielding effect and further replaces the black matrix layer.

請參考第7A圖,第7A圖為本發明之第四實施例之低反射金屬結構的剖面示意圖。本實施例與第三實施例的不同之處在於,本實施例係於金屬層10下形成低反射層20’,亦即在形成金屬層10之前先形成低反射層20’,並且在形成低反射層20’時,可選擇性地藉由調控氧氣的流量,使得低反射層20’與第一基板S1之間自行反應生成一層極薄的介面層14’,然後,再利用圖案化製程一併對金屬層10、低反射層20’以及介面層14’進行圖案化,以形成圖案化金屬層12、圖案化低反射層22’以及圖案化的介面層14’,如第7A圖所示。圖案化低反射層22’之材料較佳可與圖案化低反射層22之材料相同,且介面層14’之材料較佳可與介面層14之材料相同,但本發明不以此為限。在一變化實施例中,於金屬層10下形成低反射層20’時,可選擇性地不於金屬層10與低反射層20’之間形成介面層。在另一變化實施例中,本發明可在形成金屬層10之前先形成低反射層20’,並且在形成低反射層20’時,可選擇性地藉由調控氧氣的流量,使得低反射層20’與第一基板S1之間自行反應生成一層極薄的介面層14,如第7C圖所示。Please refer to FIG. 7A, which is a schematic cross-sectional view of a low reflection metal structure according to a fourth embodiment of the present invention. The difference between this embodiment and the third embodiment is that, in this embodiment, a low-reflection layer 20 ′ is formed under the metal layer 10, that is, a low-reflection layer 20 ′ is formed before the metal layer 10 is formed. When the reflective layer 20 'is used, the low-reflective layer 20' and the first substrate S1 can react to generate a very thin interface layer 14 'by selectively controlling the flow of oxygen. Then, a patterning process is used. The metal layer 10, the low reflection layer 20 ', and the interface layer 14' are patterned to form a patterned metal layer 12, a patterned low reflection layer 22 ', and a patterned interface layer 14', as shown in FIG. 7A. . The material of the patterned low-reflection layer 22 'is preferably the same as the material of the patterned low-reflection layer 22, and the material of the interface layer 14' is preferably the same as the material of the interface layer 14, but the invention is not limited thereto. In a modified embodiment, when the low-reflection layer 20 'is formed under the metal layer 10, an interface layer may not be selectively formed between the metal layer 10 and the low-reflection layer 20'. In another modified embodiment, the present invention can form the low-reflection layer 20 'before forming the metal layer 10, and when forming the low-reflection layer 20', the low-reflection layer can be selectively adjusted by adjusting the flow rate of oxygen. 20 'and the first substrate S1 react with each other to form a very thin interface layer 14, as shown in FIG. 7C.

請參考第7B圖至第7G圖,第7B圖為金屬層10和第一基板S1之間無介面層14的穿透式電子顯微鏡(Transmission Electron Microscopy;TEM )圖,而第7C圖為金屬層10和第一基板S1之間具有介面層14的穿透式電子顯微鏡圖,第7D圖及第7E圖為分別拍攝第7B圖所示結構以及第7C圖所示結構之顯示器所顯示的黑畫面顏色,第7F圖則為第7B圖所示結構於不同波長(可見光波段)下與反射率的關係圖,而第7G圖為第7C圖所示結構於不同波長(可見光段)下與反射率的關係圖。比較第7D圖和第7E圖可以發現若結構中無介面層14(如第7B圖所示結構),則無法達到良好的遮光效果,因此在黑畫面時所顯示的影像將會偏紅色(如第7D圖),而無法呈現如第7E圖所顯現的黑色。另外,由第7F圖及第7G圖的結果可知,若有介面層14時 (如第7C圖所示結構),在長波長的範圍(例如約600nm以上)時,其反射率會較無介面層14(如第7B圖所示結構)時低,因此具有較佳的遮光效果。Please refer to FIGS. 7B to 7G. FIG. 7B is a transmission electron microscopy (TEM) image without the interface layer 14 between the metal layer 10 and the first substrate S1, and FIG. 7C is a metal layer A transmission electron microscope image of the interface layer 14 with the interface layer 14 between 10 and the first substrate S1. Figures 7D and 7E are black images displayed on the display of the structure shown in Figure 7B and Figure 7C, respectively. Color, Figure 7F is the relationship between the structure shown in Figure 7B and the reflectance at different wavelengths (visible light band), and Figure 7G is the structure shown in Figure 7C at different wavelengths (visible light band) and reflectance Diagram. Comparing Figure 7D and Figure 7E, it can be found that if there is no interface layer 14 in the structure (such as the structure shown in Figure 7B), a good light shielding effect cannot be achieved, so the image displayed when the screen is black will be reddish (such as (Figure 7D), and the black color shown in Figure 7E cannot be displayed. In addition, from the results of Figures 7F and 7G, it can be seen that if there is an interface layer 14 (such as the structure shown in Figure 7C), the reflectance in the long-wavelength range (for example, about 600 nm or more) will be less than the interface. The layer 14 (structure shown in FIG. 7B) is low, so it has a better light shielding effect.

請參考第7H圖,第7H圖為本發明第四實施例之低反射金屬結構的變化實施例之剖面示意圖。在本發明之第四實施例之低反射金屬結構的架構下,甚至可以利用化學氣相沉積(Chemical Vapor Deposition, CVD)製程,先於第一基板S1上形成薄膜層24,之後再形成低反射層20’與金屬層10,其中薄膜層24可以為矽薄膜、矽氧化合物薄膜或矽氮化合物薄膜的單層或多層結構,例如:矽(Si)、氧化矽(SiOx)或氮化矽(SiNx),例如第7H圖所示之薄膜層24,但本發明不以此為限,之後再形成低反射層20’或金屬層10,此作法可以進一步降低圖案化低反射層22’或圖案化金屬層12的反射,並增進整體低反射金屬結構的一致性(Uniformity),故可發揮更佳的遮光效果。需注意的是,因薄膜層24不需要圖案化,因此薄膜層24的形成不會造成製程複雜度。Please refer to FIG. 7H, which is a schematic cross-sectional view of a modified embodiment of the low reflection metal structure according to the fourth embodiment of the present invention. Under the framework of the low-reflection metal structure of the fourth embodiment of the present invention, a chemical vapor deposition (CVD) process can even be used to form a thin film layer 24 on the first substrate S1, and then form a low-reflection layer. The layer 20 'and the metal layer 10, wherein the thin film layer 24 may be a single-layer or multi-layer structure of a silicon film, a silicon oxide film, or a silicon nitride film, such as: silicon (Si), silicon oxide (SiOx), or silicon nitride ( SiNx), such as the thin film layer 24 shown in FIG. 7H, but the present invention is not limited thereto, and then the low-reflection layer 20 'or the metal layer 10 is formed. This method can further reduce the patterned low-reflection layer 22' or the pattern. By reflecting the reflection of the metal layer 12 and improving the uniformity of the overall low reflection metal structure, a better light shielding effect can be exerted. It should be noted that, since the thin film layer 24 does not need to be patterned, the formation of the thin film layer 24 does not cause process complexity.

請參考第8圖,第8圖為本發明之第五實施例之低反射金屬結構的剖面示意圖。如第8圖所示,本實施例與第三實施例的不同之處在於,於金屬層10上形成低反射層20時,同時於金屬層10下形成低反射層20’,並藉由調控氧氣的流量,同時於金屬層10與低反射層20之間以及金屬層10與低反射層20’之間自行反應生成極薄的介面層14、14’,然後,再利用圖案化製程一併對金屬層10、低反射層20、20’以及介面層14、14’進行圖案化,以形成圖案化金屬層12、圖案化低反射層22、22’以及圖案化的介面層14、14’。低反射層20’之材料較佳可與低反射層20之材料相同,且介面層14’之材料較佳可與介面層14之材料相同,但本發明不以此為限。因介面層14’與介面層14同樣具有降低圖案化金屬層12的反射效果,因此可進一步降低圖案化金屬層12的反射,故可使圖案化低反射層22發揮較佳地遮光效果並進一步取代黑色矩陣層。Please refer to FIG. 8, which is a schematic cross-sectional view of a low reflection metal structure according to a fifth embodiment of the present invention. As shown in FIG. 8, this embodiment is different from the third embodiment in that, when the low-reflection layer 20 is formed on the metal layer 10, the low-reflection layer 20 ′ is formed under the metal layer 10 at the same time, and the The flow of oxygen reacts at the same time between the metal layer 10 and the low-reflection layer 20 and between the metal layer 10 and the low-reflection layer 20 'to generate extremely thin interface layers 14, 14', and then uses the patterning process together Patterning the metal layer 10, the low reflection layers 20, 20 ', and the interface layers 14, 14' to form a patterned metal layer 12, the patterned low reflection layers 22, 22 ', and the patterned interface layers 14, 14' . The material of the low reflection layer 20 'is preferably the same as the material of the low reflection layer 20, and the material of the interface layer 14' is preferably the same as the material of the interface layer 14, but the invention is not limited thereto. Since the interface layer 14 ′ and the interface layer 14 have the same effect of reducing the reflection of the patterned metal layer 12, the reflection of the patterned metal layer 12 can be further reduced, so that the patterned low reflection layer 22 can exert a better light shielding effect and further Replaces the black matrix layer.

請參考第9圖至第11圖並同時參考第2圖至第6圖。第9圖為本發明之一實施例之顯示面板的上視圖。第10圖為沿第9圖中A-A’剖線所繪示之剖面示意圖。第11圖為沿第9圖中B-B’剖線所繪示之剖面示意圖。如第9圖至第11圖所示,本實施例係揭示一種製作顯示面板的方法,包括進行前述之製作低反射金屬結構的步驟,以形成圖案化金屬層12以及其上及/或下之圖案化低反射層22,並於第一基板S1上形成複數個畫素結構P。第10圖及第11圖之圖案化低反射層22設置在圖案化金屬層12之上方,係為本發明之示範實施例,本發明不以此為限,圖案化低反射層22設置於圖案化金屬層12之上及/或下,皆屬於本發明之範圍。具體來說,圖案化金屬層12可包括閘極線GL、閘極G、共通線CL、資料線DL、源極S、汲極D或任何線路之其中至少一者。舉例而言,當圖案化金屬層12為閘極線GL、閘極G與共通線CL,則其上會形成有圖案化低反射層22;當圖案化金屬層12為資料線DL、源極S、汲極D或任何線路,則其上會形成有圖案化低反射層22。本發明之圖案化金屬層12不以上述元件為限而可為第一基板S1上的任何金屬結構。在本實施例中,閘極線GL、閘極G、共通線CL、資料線DL、源極S、汲極D或任何線路上皆具有圖案化低反射層22,因此閘極線GL、閘極G、共通線CL、資料線DL、源極S、汲極D或任何線路會受到遮蔽而不會反射外界光線。Please refer to Figures 9 to 11 as well as Figures 2 to 6. FIG. 9 is a top view of a display panel according to an embodiment of the present invention. Fig. 10 is a schematic cross-sectional view taken along the line A-A 'in Fig. 9. Fig. 11 is a schematic cross-sectional view taken along the line B-B 'in Fig. 9. As shown in FIG. 9 to FIG. 11, this embodiment discloses a method for fabricating a display panel, which includes performing the foregoing steps of fabricating a low-reflection metal structure to form a patterned metal layer 12 and an upper and / or lower layer thereof. The low-reflection layer 22 is patterned, and a plurality of pixel structures P are formed on the first substrate S1. The patterned low reflection layer 22 of FIGS. 10 and 11 is disposed above the patterned metal layer 12 and is an exemplary embodiment of the present invention. The present invention is not limited thereto. The patterned low reflection layer 22 is disposed on the pattern. Above and / or below the metallized metal layer 12 are within the scope of the present invention. Specifically, the patterned metal layer 12 may include at least one of a gate line GL, a gate G, a common line CL, a data line DL, a source S, a drain D, or any line. For example, when the patterned metal layer 12 is the gate line GL, the gate G, and the common line CL, a patterned low reflection layer 22 is formed thereon; when the patterned metal layer 12 is the data line DL, the source S, drain D, or any circuit, a patterned low reflection layer 22 is formed thereon. The patterned metal layer 12 of the present invention is not limited to the above elements and may be any metal structure on the first substrate S1. In this embodiment, the gate line GL, the gate G, the common line CL, the data line DL, the source S, the drain D, or any line has a patterned low reflection layer 22, so the gate line GL, the gate The electrode G, the common line CL, the data line DL, the source S, the drain D, or any line will be shielded without reflecting external light.

在本實施例中,畫素結構P可包括薄膜電晶體TFT、共通電極CE以及畫素電極PE,其中薄膜電晶體TFT包括閘極G、源極S、汲極D、閘極絕緣層GI以及通道層CH。在本實施例中,薄膜電晶體TFT係為底閘極型薄膜電晶體,但本發明不以此為限,薄膜電晶體TFT也可以是頂閘極型薄膜電晶體或其他類型之薄膜電晶體。具體來說,薄膜電晶體TFT的閘極G係與閘極線GL電性連接,薄膜電晶體TFT的源極S係與資料線DL電性連接。此外,畫素電極PE藉由接觸窗C與薄膜電晶體TFT的汲極D電性連接。在本實施例中,閘極線GL與資料線DL之間以及共通線CL與資料線DL之間設置有閘極絕緣層GI,以電性絕緣閘極線GL與資料線DL以及共通線CL與資料線DL。此外,畫素電極PE和共通電極CE之間亦設有保護層30。另外,本發明提供顯示面板的光源時,其光線經過顯示面板的順序可以是:先經過具有薄膜電晶體TFT的第一基板S1再經過第二基板S2;或是先經過第二基板S2再經過具有薄膜電晶體TFT的第一基板S1。詳細來說,於本實施例中,薄膜電晶體TFT係製作於光先通過的基板,但本發明不以此為限。於本發明另一實施例中,光可先經過第二基板S2,再經過具薄膜電晶體TFT的第一基板S1,其中第一基板S1上的線路具有圖案化低反射層22的結構,因此可以改善顯示面板的光學特性,並能達到全平面顯示面板的目標,亦即本發明之顯示面板可為無邊框的顯示面板。In this embodiment, the pixel structure P may include a thin film transistor TFT, a common electrode CE, and a pixel electrode PE. The thin film transistor TFT includes a gate G, a source S, a drain D, a gate insulating layer GI, and Channel layer CH. In this embodiment, the thin-film transistor TFT is a bottom-gate thin-film transistor, but the present invention is not limited thereto. The thin-film transistor TFT may also be a top-gate thin-film transistor or other types of thin-film transistors. . Specifically, the gate G of the thin film transistor TFT is electrically connected to the gate line GL, and the source S of the thin film transistor TFT is electrically connected to the data line DL. In addition, the pixel electrode PE is electrically connected to the drain electrode D of the thin film transistor TFT through a contact window C. In this embodiment, a gate insulating layer GI is provided between the gate line GL and the data line DL and between the common line CL and the data line DL, and the gate line GL and the data line DL and the common line CL are electrically insulated. With data line DL. In addition, a protective layer 30 is also provided between the pixel electrode PE and the common electrode CE. In addition, when the light source of the display panel is provided by the present invention, the order of light passing through the display panel may be: first through the first substrate S1 with the thin film transistor TFT and then through the second substrate S2; A first substrate S1 having a thin film transistor TFT. In detail, in this embodiment, the thin film transistor TFT is fabricated on a substrate through which light first passes, but the invention is not limited thereto. In another embodiment of the present invention, the light can pass through the second substrate S2 and then the first substrate S1 with the thin film transistor TFT. The lines on the first substrate S1 have the structure of the patterned low reflection layer 22, so The optical characteristics of the display panel can be improved, and the goal of a full-plane display panel can be achieved, that is, the display panel of the present invention can be a frameless display panel.

隨後,於第一基板S1上形成第二基板S2。然後,於第一基板S1與第二基板S2之間形成顯示介質層M。第二基板S2的材質可為塑膠、玻璃、或其他適合材料。第一基板S1或第二基板S2上可設置彩色濾光層(圖未示),例如COA(color filter on array)結構,且彩色濾光層可包括多個彩色濾光圖案(圖未示),例如:紅色、綠色以及藍色彩色濾光圖案,但本發明不以此為限。顯示介質層M係密封於第一基板S1與第二基板S2之間,且顯示介質層M可包括液晶層、有機發光二極體(OLED)元件或電泳層(electrophoresis),且應用範圍也可涵蓋觸控式顯示器或3D立體顯示器等,但本發明不以此為限。於本實施例中,共通電極CE係設置於第二基板S2上,但本發明不以此為限,共通電極CE可選擇設置於第二基板S2或第一基板S1之其中一者上。Subsequently, a second substrate S2 is formed on the first substrate S1. Then, a display medium layer M is formed between the first substrate S1 and the second substrate S2. The material of the second substrate S2 may be plastic, glass, or other suitable materials. A color filter layer (not shown), such as a COA (color filter on array) structure, may be disposed on the first substrate S1 or the second substrate S2, and the color filter layer may include a plurality of color filter patterns (not shown). For example: red, green and blue color filter patterns, but the invention is not limited to this. The display medium layer M is sealed between the first substrate S1 and the second substrate S2, and the display medium layer M may include a liquid crystal layer, an organic light emitting diode (OLED) element, or an electrophoresis layer, and the application range may also be The touch-sensitive display or the 3D stereo display is covered, but the present invention is not limited thereto. In this embodiment, the common electrode CE is disposed on the second substrate S2, but the present invention is not limited thereto. The common electrode CE may be disposed on one of the second substrate S2 or the first substrate S1.

藉由在圖案化金屬層12上方形成圖案化低反射層22,可以使得圖案化低反射層22取代原本遮蔽閘極線GL、閘極G、共通線CL、資料線DL、源極S或汲極D之黑色矩陣層,因此使用者無法觀察到顯示面板內部的金屬走線。故相較於習知的顯示面板,本實施例的顯示面板的開口率可以有效地提高,且本實施例所提供的製作顯示面板的方法可以省去製造黑色矩陣層之步驟,進而達到降低製程成本的效果。By forming the patterned low-reflection layer 22 over the patterned metal layer 12, the patterned low-reflection layer 22 can be used to replace the gate line GL, gate G, common line CL, data line DL, source S, or drain that originally shielded The black matrix layer of the pole D, so the user cannot observe the metal traces inside the display panel. Therefore, compared with the conventional display panel, the aperture ratio of the display panel in this embodiment can be effectively improved, and the method for manufacturing a display panel provided in this embodiment can omit the step of manufacturing a black matrix layer, thereby reducing the manufacturing process. Cost effect.

綜上所述,在本發明之低反射金屬結構、顯示面板及其製作方法中,圖案化金屬層上係設置圖案化低反射層,使得圖案化金屬層受到遮蔽而不會反射外界光線,藉此減少金屬結構的可視性並取代習知之黑色矩陣層。由於本發明之顯示面板及其製作方法不需要設置黑色矩陣層,因此相較於習知的顯示面板而言可有效提升顯示面板的開口率並同時減少一道光罩製程,進而降低製程複雜度以及製程成本。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。In summary, in the low-reflection metal structure, display panel and manufacturing method of the present invention, a patterned low-reflection layer is provided on the patterned metal layer, so that the patterned metal layer is shielded from reflecting external light. This reduces the visibility of the metal structure and replaces the conventional black matrix layer. Because the display panel and the manufacturing method of the present invention do not need to provide a black matrix layer, compared with the conventional display panel, the aperture ratio of the display panel can be effectively improved and a mask process can be reduced at the same time, thereby reducing the complexity of the process and Process costs. The above description is only a preferred embodiment of the present invention, and all equivalent changes and modifications made in accordance with the scope of patent application of the present invention shall fall within the scope of the present invention.

C‧‧‧接觸窗
CE‧‧‧共通電極
CH‧‧‧通道層
CL‧‧‧共通線
D‧‧‧汲極
D1、D2、D3‧‧‧厚度
DL‧‧‧資料線
G‧‧‧閘極
GI‧‧‧閘極絕緣層
GL‧‧‧閘極線
M‧‧‧顯示介質層
P‧‧‧畫素結構
PE‧‧‧畫素電極
R‧‧‧反應性濺鍍製程
S‧‧‧源極
S1‧‧‧第一基板
S2‧‧‧第二基板
TFT‧‧‧薄膜電晶體
θ‧‧‧夾角
10‧‧‧金屬層
12‧‧‧圖案化金屬層
12B‧‧‧底金屬層
12L‧‧‧底表面
12S‧‧‧側表面
12T‧‧‧頂金屬層
12U‧‧‧頂表面
14,14’‧‧‧介面層
20,20’‧‧‧低反射層
22,22’‧‧‧圖案化低反射層
30‧‧‧保護層
24‧‧‧薄膜層
C‧‧‧Contact window
CE‧‧‧Common electrode
CH‧‧‧ Channel layer
CL‧‧‧ Common Line
D‧‧‧ Drain
D1, D2, D3‧‧‧‧thickness
DL‧‧‧Data Line
G‧‧‧Gate
GI‧‧‧Gate insulation
GL‧‧‧Gate line
M‧‧‧Display media layer
P‧‧‧ pixel structure
PE‧‧‧Pixel electrode
R‧‧‧ reactive sputtering process
S‧‧‧Source
S1‧‧‧First substrate
S2‧‧‧Second substrate
TFT‧‧‧thin-film transistor θ‧‧‧angle
10‧‧‧ metal layer
12‧‧‧ patterned metal layer
12B‧‧‧ bottom metal layer
12L‧‧‧ bottom surface
12S‧‧‧Side surface
12T‧‧‧Top metal layer
12U‧‧‧Top surface
14,14'‧‧‧Interface layer
20,20'‧‧‧Low reflection layer
22,22'‧‧‧patterned low reflection layer
30‧‧‧ protective layer
24‧‧‧ film layer

第1圖至第4圖為本發明之第一實施例之製作低反射金屬結構的方法之示意圖。 第5圖為本發明之第二實施例之低反射金屬結構的剖面示意圖。 第6圖為本發明之第三實施例之低反射金屬結構的剖面示意圖。 第7A圖為本發明之第四實施例之低反射金屬結構的剖面示意圖。 第7B圖為金屬層和第一基板之間無介面層的穿透式電子顯微鏡圖。 第7C圖為金屬層和第一基板之間有介面層的穿透式電子顯微鏡圖。 第7D圖為拍攝第7B圖所示結構之顯示器所顯示的黑畫面顏色。 第7E圖為拍攝第7C圖所示結構之顯示器所顯示的黑畫面顏色。 第7F圖為第7B圖所示結構於不同波長下與反射率的關係圖。 第7G圖為第7C圖所示結構於不同波長下與反射率的關係圖。 第7H圖為本發明之第四實施例之低反射金屬結構的變化實施例之剖面示意圖。 第8圖為本發明之第五實施例之低反射金屬結構的剖面示意圖。 第9圖為本發明之一實施例之顯示面板的上視圖。 第10圖為沿第9圖中A-A’剖線所繪示之剖面示意圖。 第11圖為沿第9圖中B-B’剖線所繪示之剖面示意圖。FIG. 1 to FIG. 4 are schematic diagrams of a method for manufacturing a low reflection metal structure according to the first embodiment of the present invention. FIG. 5 is a schematic cross-sectional view of a low reflection metal structure according to a second embodiment of the present invention. FIG. 6 is a schematic cross-sectional view of a low reflection metal structure according to a third embodiment of the present invention. FIG. 7A is a schematic cross-sectional view of a low reflection metal structure according to a fourth embodiment of the present invention. FIG. 7B is a transmission electron microscope image without an interface layer between the metal layer and the first substrate. FIG. 7C is a transmission electron microscope image with an interface layer between the metal layer and the first substrate. Fig. 7D shows the color of the black screen displayed on the display of the structure shown in Fig. 7B. Fig. 7E shows the color of the black screen displayed on the display of the structure shown in Fig. 7C. FIG. 7F is a graph showing the relationship between the structure shown in FIG. 7B and the reflectance at different wavelengths. Fig. 7G is a graph showing the relationship between the structure shown in Fig. 7C and the reflectance at different wavelengths. FIG. 7H is a schematic cross-sectional view of a modified embodiment of a low reflection metal structure according to a fourth embodiment of the present invention. FIG. 8 is a schematic cross-sectional view of a low reflection metal structure according to a fifth embodiment of the present invention. FIG. 9 is a top view of a display panel according to an embodiment of the present invention. Fig. 10 is a schematic cross-sectional view taken along the line A-A 'in Fig. 9. Fig. 11 is a schematic cross-sectional view taken along the line B-B 'in Fig. 9.

S1‧‧‧第一基板 S1‧‧‧First substrate

θ‧‧‧夾角 θ‧‧‧ angle

12‧‧‧圖案化金屬層 12‧‧‧ patterned metal layer

12L‧‧‧底表面 12L‧‧‧ bottom surface

12S‧‧‧側表面 12S‧‧‧Side surface

12U‧‧‧頂表面 12U‧‧‧Top surface

22‧‧‧圖案化低反射層 22‧‧‧ patterned low reflection layer

Claims (36)

一種製作低反射金屬結構的方法,包括: 提供一第一基板; 於該第一基板上形成一金屬層; 於該金屬層上及/或下形成一低反射層,其中該低反射層包括一金屬氧化物層或一金屬氮氧化物層;以及 對該低反射層與該金屬層進行一圖案化製程,以形成一圖案化低反射層以及一圖案化金屬層。A method for manufacturing a low-reflection metal structure includes: providing a first substrate; forming a metal layer on the first substrate; forming a low-reflection layer on and / or below the metal layer, wherein the low-reflection layer includes a A metal oxide layer or a metal oxynitride layer; and performing a patterning process on the low reflection layer and the metal layer to form a patterned low reflection layer and a patterned metal layer. 如請求項1所述之製作低反射金屬結構的方法,其中於該金屬層上及/或下形成該低反射層之步驟包括進行一反應性濺鍍(reactive sputtering)製程。The method for fabricating a low-reflection metal structure according to claim 1, wherein the step of forming the low-reflection layer on and / or under the metal layer includes performing a reactive sputtering process. 如請求項2所述之製作低反射金屬結構的方法,另包括: 於該金屬層上及/或下形成該低反射層時,同時於該第一基板與該圖案化低反射層之間,或該金屬層與該低反射層之間形成一介面層;以及 利用該圖案化製程一併對該介面層進行圖案化。The method for manufacturing a low-reflection metal structure according to claim 2, further comprising: when forming the low-reflection layer on and / or under the metal layer, between the first substrate and the patterned low-reflection layer, Or, an interface layer is formed between the metal layer and the low reflection layer; and the interface layer is patterned together by using the patterning process. 如請求項3所述之製作低反射金屬結構的方法,其中該介面層之材料包括金屬氧化物或金屬氮氧化物。The method for manufacturing a low-reflection metal structure according to claim 3, wherein a material of the interface layer includes a metal oxide or a metal oxynitride. 如請求項1所述之製作低反射金屬結構的方法,其中於該金屬層上形成該低反射層時,該圖案化低反射層僅覆蓋該圖案化金屬層之頂表面而未覆蓋該圖案化金屬層之側表面。The method for manufacturing a low-reflection metal structure according to claim 1, wherein when the low-reflection layer is formed on the metal layer, the patterned low-reflection layer only covers the top surface of the patterned metal layer and does not cover the patterning. The side surface of the metal layer. 如請求項1所述之製作低反射金屬結構的方法,其中該圖案化低反射層的厚度係介於50埃(Å)~500埃(Å)之間。The method for manufacturing a low-reflection metal structure as described in claim 1, wherein the thickness of the patterned low-reflection layer is between 50 Angstroms (Å) to 500 Angstroms (Å). 如請求項1所述之製作低反射金屬結構的方法,其中該圖案化金屬層具有一疊合結構,其包括一底金屬層以及一頂金屬層位於該底金屬層上。The method for manufacturing a low-reflection metal structure according to claim 1, wherein the patterned metal layer has a stacked structure, which includes a bottom metal layer and a top metal layer on the bottom metal layer. 如請求項7所述之製作低反射金屬結構的方法,其中該底金屬層的厚度係介於50埃(Å)~500埃(Å)之間,且該頂金屬層的厚度係介於2000埃(Å)~7000埃(Å)之間。The method for manufacturing a low-reflection metal structure as described in claim 7, wherein the thickness of the bottom metal layer is between 50 Angstroms (Å) and 500 Angstroms (Å), and the thickness of the top metal layer is between 2000 Å and 2,000 Å. Between Angstrom (Å) to 7000 Angstrom (Å). 如請求項1所述之製作低反射金屬結構的方法,其中該圖案化低反射層的反射率介於2%至20%之間。The method for manufacturing a low-reflection metal structure according to claim 1, wherein the reflectivity of the patterned low-reflection layer is between 2% and 20%. 如請求項1所述之製作低反射金屬結構的方法,其中該金屬氧化物層中氧的含量原子百分比(atomic percent)係介於5%至50%之間。The method for fabricating a low-reflection metal structure according to claim 1, wherein the atomic percent of oxygen in the metal oxide layer is between 5% and 50%. 如請求項1所述之製作低反射金屬結構的方法,其中該金屬氧化物層包括一鉬氧化物層或一鉬鉭氧化物層。The method for manufacturing a low reflection metal structure according to claim 1, wherein the metal oxide layer includes a molybdenum oxide layer or a molybdenum tantalum oxide layer. 如請求項1所述之製作低反射金屬結構的方法,其中該金屬氮氧化物層中氧的含量原子百分比 (atomic percent)係介於5%至50%之間,且該金屬氮氧化物層中氮的含量係介於1%至10%之間。The method for fabricating a low-reflection metal structure according to claim 1, wherein the atomic percent of oxygen in the metal oxynitride layer is between 5% and 50%, and the metal oxynitride layer The content of nitrogen is between 1% and 10%. 如請求項1所述之製作低反射金屬結構的方法,其中該金屬氮氧化物層包括一鉬氮氧化物層或一鉬鉭氮氧化物層。The method for manufacturing a low reflection metal structure according to claim 1, wherein the metal oxynitride layer includes a molybdenum oxynitride layer or a molybdenum tantalum oxynitride layer. 如請求項1所述之製作低反射金屬結構的方法,其中該圖案化金屬層之側表面與底表面之間具有一夾角,且該夾角介於10度至80度之間。The method for manufacturing a low-reflection metal structure according to claim 1, wherein an angle is formed between a side surface and a bottom surface of the patterned metal layer, and the included angle is between 10 degrees and 80 degrees. 如請求項1所述之製作低反射金屬結構的方法,其中該低反射層為非晶相(amorphous phase)。The method for fabricating a low-reflection metal structure according to claim 1, wherein the low-reflection layer is an amorphous phase. 如請求項1所述之製作低反射金屬結構的方法,其另包括在形成該金屬層與該低反射層之前,先於該第一基板上形成一薄膜層,且該薄膜層為矽薄膜、矽氧化合物薄膜或矽氮化合物薄膜的單層或多層結構。The method for manufacturing a low-reflection metal structure according to claim 1, further comprising forming a thin film layer on the first substrate before forming the metal layer and the low-reflection layer, and the thin film layer is a silicon thin film, Monolayer or multilayer structure of silicon oxide film or silicon nitride film. 一種製作顯示面板的方法,包括: 進行請求項1所述之該製作低反射金屬結構的方法; 於該第一基板上形成複數個畫素結構; 於該第一基板上形成一第二基板;以及 於該第一基板與該第二基板之間形成一顯示介質層。A method for manufacturing a display panel, comprising: performing the method for manufacturing a low-reflection metal structure described in claim 1; forming a plurality of pixel structures on the first substrate; and forming a second substrate on the first substrate; And forming a display medium layer between the first substrate and the second substrate. 如請求項17所述之製作顯示面板的方法,其中該圖案化金屬層包括一閘極線、一閘極、一共通線、一資料線、一源極或一汲極之其中至少一者。The method for manufacturing a display panel according to claim 17, wherein the patterned metal layer includes at least one of a gate line, a gate, a common line, a data line, a source or a drain. 一種低反射金屬結構,包括: 一第一基板; 一圖案化金屬層,設置於該第一基板上;以及 一圖案化低反射層,設置於該圖案化金屬層上及/或下。A low-reflection metal structure includes: a first substrate; a patterned metal layer disposed on the first substrate; and a patterned low-reflection layer disposed on and / or under the patterned metal layer. 如請求項19所述之製作低反射金屬結構的方法,其中該圖案化低反射層設置於該圖案化金屬層上時,該圖案化低反射層僅覆蓋該圖案化金屬層之頂表面而未覆蓋該圖案化金屬層之側表面。The method for manufacturing a low-reflection metal structure as described in claim 19, wherein when the patterned low-reflection layer is disposed on the patterned metal layer, the patterned low-reflection layer only covers the top surface of the patterned metal layer without Cover the side surface of the patterned metal layer. 如請求項19所述之低反射金屬結構,其中該圖案化低反射層的厚度係介於50埃(Å)~500埃(Å)之間。The low reflection metal structure according to claim 19, wherein the thickness of the patterned low reflection layer is between 50 Angstroms (Å) to 500 Angstroms (Å). 如請求項19所述之低反射金屬結構,其中該圖案化金屬層具有一疊合結構,其包括一底金屬層以及一頂金屬層位於該底金屬層上。The low-reflection metal structure according to claim 19, wherein the patterned metal layer has a stacked structure including a bottom metal layer and a top metal layer on the bottom metal layer. 如請求項22所述之低反射金屬結構,其中該底金屬層的厚度係介於50埃(Å)~500埃(Å)之間,且該頂金屬層的厚度係介於2000埃(Å)~7000埃(Å)之間。The low reflection metal structure according to claim 22, wherein the thickness of the base metal layer is between 50 Angstroms (Å) to 500 Angstroms (Å), and the thickness of the top metal layer is between 2000 Angstroms (Å) ) ~ 7000 Angstroms (Å). 如請求項19所述之低反射金屬結構,其中該圖案化低反射層的反射率介於2%至20%之間。The low reflection metal structure according to claim 19, wherein the reflectivity of the patterned low reflection layer is between 2% and 20%. 如請求項19所述之低反射金屬結構,其中該圖案化低反射層包括一金屬氧化物層或一金屬氮氧化物層。The low reflection metal structure according to claim 19, wherein the patterned low reflection layer includes a metal oxide layer or a metal oxynitride layer. 如請求項25所述之低反射金屬結構,其中該金屬氧化物層中氧的含量原子百分比 (atomic percent)係介於5%至50%之間。The low reflection metal structure according to claim 25, wherein the atomic percent of oxygen in the metal oxide layer is between 5% and 50%. 如請求項25所述之低反射金屬結構,其中該金屬氧化物層包括一鉬氧化物層或一鉬鉭氧化物層。The low reflection metal structure according to claim 25, wherein the metal oxide layer comprises a molybdenum oxide layer or a molybdenum tantalum oxide layer. 如請求項25所述之製作低反射金屬結構的方法,其中該金屬氮氧化物層中氧的含量原子百分比 (atomic percent)係介於5%至50%之間,且該金屬氮氧化物層中氮的含量係介於1%至10%之間。The method for manufacturing a low reflection metal structure according to claim 25, wherein the atomic percent of oxygen in the metal oxynitride layer is between 5% and 50%, and the metal oxynitride layer The content of nitrogen is between 1% and 10%. 如請求項25所述之低反射金屬結構,其中該金屬氮氧化物層包括一鉬氮氧化物層或一鉬鉭氮氧化物層。The low reflection metal structure according to claim 25, wherein the metal oxynitride layer comprises a molybdenum oxynitride layer or a molybdenum tantalum oxynitride layer. 如請求項19所述之低反射金屬結構,其中該圖案化金屬層之側表面與底表面之間具有一夾角,且該夾角介於10度至80度之間。The low-reflective metal structure according to claim 19, wherein the patterned metal layer has an included angle between a side surface and a bottom surface, and the included angle is between 10 degrees and 80 degrees. 如請求項19所述之低反射金屬結構,另包括一介面層,設置於該第一基板與該圖案化低反射層之間,或該圖案化金屬層與該圖案化低反射層之間。The low reflection metal structure according to claim 19, further comprising an interface layer disposed between the first substrate and the patterned low reflection layer, or between the patterned metal layer and the patterned low reflection layer. 如請求項31所述之製作低反射金屬結構的方法,其中該介面層之材料包括金屬氧化物或金屬氮氧化物。The method for manufacturing a low-reflection metal structure according to claim 31, wherein a material of the interface layer includes a metal oxide or a metal oxynitride. 如請求項19所述之低反射金屬結構,其中該圖案化低反射層為非晶相(amorphous phase)。The low-reflection metal structure according to claim 19, wherein the patterned low-reflection layer is an amorphous phase. 一種顯示面板,包括: 如請求項19所述之該低反射金屬結構; 複數個畫素結構,設置於該第一基板上; 一第二基板,設置於該第一基板上;以及 一顯示介質層,設置於該第一基板與該第二基板之間。A display panel includes: the low reflection metal structure as described in claim 19; a plurality of pixel structures disposed on the first substrate; a second substrate disposed on the first substrate; and a display medium A layer is disposed between the first substrate and the second substrate. 如請求項34所述之顯示面板,其包括一彩色濾光片,設置於該第一基板上或該第二基板上。The display panel according to claim 34, comprising a color filter disposed on the first substrate or the second substrate. 如請求項34所述之顯示面板,其中該圖案化金屬層包括一閘極線、一閘極、一共通線、一資料線、一源極或一汲極之其中至少一者。The display panel according to claim 34, wherein the patterned metal layer includes at least one of a gate line, a gate, a common line, a data line, a source or a drain.
TW105110002A 2016-03-30 2016-03-30 Low reflection metal structure, display panel and manufacturing method thereof TWI591820B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105110002A TWI591820B (en) 2016-03-30 2016-03-30 Low reflection metal structure, display panel and manufacturing method thereof
CN201610331716.9A CN105785639A (en) 2016-03-30 2016-05-18 Low-reflection metal structure, display panel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105110002A TWI591820B (en) 2016-03-30 2016-03-30 Low reflection metal structure, display panel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI591820B TWI591820B (en) 2017-07-11
TW201810641A true TW201810641A (en) 2018-03-16

Family

ID=56378999

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105110002A TWI591820B (en) 2016-03-30 2016-03-30 Low reflection metal structure, display panel and manufacturing method thereof

Country Status (2)

Country Link
CN (1) CN105785639A (en)
TW (1) TWI591820B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11256131B1 (en) 2020-09-30 2022-02-22 Giantplus Technology Co., Ltd. Jump connection structure of reflective display and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108121098B (en) * 2017-12-19 2019-08-06 友达光电股份有限公司 The display panel of metal structure and preparation method thereof and application
CN108565246A (en) * 2018-01-03 2018-09-21 京东方科技集团股份有限公司 Thin film transistor base plate and preparation method thereof, dot structure, display device
CN111584515B (en) * 2020-05-14 2023-06-27 深圳市华星光电半导体显示技术有限公司 Array substrate and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI291726B (en) * 2002-10-25 2007-12-21 Nanya Technology Corp Process for etching metal layer
KR101098919B1 (en) * 2004-12-06 2011-12-27 매그나칩 반도체 유한회사 Method for manufacturing semiconductor device
KR20060063300A (en) * 2004-12-07 2006-06-12 매그나칩 반도체 유한회사 Method for forming metal contact of semiconductor device
KR20060076497A (en) * 2004-12-29 2006-07-04 주식회사 하이닉스반도체 Method of forming metal line in semiconductor device
KR20060078404A (en) * 2004-12-31 2006-07-05 매그나칩 반도체 유한회사 Method for forming metal line of semiconductor device
TWI340607B (en) * 2005-08-12 2011-04-11 Au Optronics Corp Organic electroluminescent display panel and fabricating method thereof
KR100727259B1 (en) * 2005-12-29 2007-06-11 동부일렉트로닉스 주식회사 Method of formining line in semiconductor device
KR20100018757A (en) * 2008-08-07 2010-02-18 주식회사 동부하이텍 Method for manufacturing of semiconductor device
JP2011233872A (en) * 2010-04-08 2011-11-17 Asahi Glass Co Ltd Method for manufacturing substrate with metal pattern, and substrate with metal laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11256131B1 (en) 2020-09-30 2022-02-22 Giantplus Technology Co., Ltd. Jump connection structure of reflective display and manufacturing method thereof

Also Published As

Publication number Publication date
CN105785639A (en) 2016-07-20
TWI591820B (en) 2017-07-11

Similar Documents

Publication Publication Date Title
US9484363B2 (en) Liquid crystal display and method of manufacturing the same
US9910327B2 (en) Array substrate, manufacturing method thereof and display device
US9240485B2 (en) Thin film transistor and method for manufacturing the same, array substrate and display device
US9691794B1 (en) Conductive layer in a semiconductor apparatus, display substrate and display apparatus having the same, and fabricating method thereof
KR101578694B1 (en) Method of fabricating oxide thin film transistor
US8187919B2 (en) Oxide thin film transistor and method of fabricating the same
KR102068956B1 (en) Thin film transistor, thin film transistor array substrate, and method of fabricating the same
US9236405B2 (en) Array substrate, manufacturing method and the display device thereof
CN107968097B (en) Display device, display substrate and manufacturing method thereof
TWI591820B (en) Low reflection metal structure, display panel and manufacturing method thereof
KR20110124530A (en) Oxide semiconductor, thin film transistor including the same and thin film transistor display panel including the same
WO2019080613A1 (en) Array substrate, display panel, display device, and method for manufacturing array substrate
CN103975441B (en) Thin film transistor (TFT) and image display device
CN109638078A (en) Preparation method, TFT, OLED backboard and the display device of TFT
WO2020093458A1 (en) Array substrate and preparation method therefor, liquid crystal display panel, and display device
TW201322456A (en) Thin film transistor and method for fabricating the same
KR101616368B1 (en) Method of fabricating oxide thin film transistor
US10444580B2 (en) Array substrate, display panel, display apparatus, and fabricating method thereof
TWI297545B (en)
KR101322314B1 (en) Method of fabricating oxide thin film transistor
CN113126357B (en) Display panel, display device and manufacturing method thereof
KR102155568B1 (en) Thin Film Transistor, and Organic Light Emitting Display Using The Same
US20160223872A1 (en) Liquid crystal display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees